]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Linux 5.0 compat: Use totalram_pages()
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/kstat.h>
40 #include <sys/abd.h>
41
42 /*
43 * ZFS I/O Scheduler
44 * ---------------
45 *
46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
47 * I/O scheduler determines when and in what order those operations are
48 * issued. The I/O scheduler divides operations into five I/O classes
49 * prioritized in the following order: sync read, sync write, async read,
50 * async write, and scrub/resilver. Each queue defines the minimum and
51 * maximum number of concurrent operations that may be issued to the device.
52 * In addition, the device has an aggregate maximum. Note that the sum of the
53 * per-queue minimums must not exceed the aggregate maximum. If the
54 * sum of the per-queue maximums exceeds the aggregate maximum, then the
55 * number of active i/os may reach zfs_vdev_max_active, in which case no
56 * further i/os will be issued regardless of whether all per-queue
57 * minimums have been met.
58 *
59 * For many physical devices, throughput increases with the number of
60 * concurrent operations, but latency typically suffers. Further, physical
61 * devices typically have a limit at which more concurrent operations have no
62 * effect on throughput or can actually cause it to decrease.
63 *
64 * The scheduler selects the next operation to issue by first looking for an
65 * I/O class whose minimum has not been satisfied. Once all are satisfied and
66 * the aggregate maximum has not been hit, the scheduler looks for classes
67 * whose maximum has not been satisfied. Iteration through the I/O classes is
68 * done in the order specified above. No further operations are issued if the
69 * aggregate maximum number of concurrent operations has been hit or if there
70 * are no operations queued for an I/O class that has not hit its maximum.
71 * Every time an i/o is queued or an operation completes, the I/O scheduler
72 * looks for new operations to issue.
73 *
74 * All I/O classes have a fixed maximum number of outstanding operations
75 * except for the async write class. Asynchronous writes represent the data
76 * that is committed to stable storage during the syncing stage for
77 * transaction groups (see txg.c). Transaction groups enter the syncing state
78 * periodically so the number of queued async writes will quickly burst up and
79 * then bleed down to zero. Rather than servicing them as quickly as possible,
80 * the I/O scheduler changes the maximum number of active async write i/os
81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
82 * both throughput and latency typically increase with the number of
83 * concurrent operations issued to physical devices, reducing the burstiness
84 * in the number of concurrent operations also stabilizes the response time of
85 * operations from other -- and in particular synchronous -- queues. In broad
86 * strokes, the I/O scheduler will issue more concurrent operations from the
87 * async write queue as there's more dirty data in the pool.
88 *
89 * Async Writes
90 *
91 * The number of concurrent operations issued for the async write I/O class
92 * follows a piece-wise linear function defined by a few adjustable points.
93 *
94 * | o---------| <-- zfs_vdev_async_write_max_active
95 * ^ | /^ |
96 * | | / | |
97 * active | / | |
98 * I/O | / | |
99 * count | / | |
100 * | / | |
101 * |------------o | | <-- zfs_vdev_async_write_min_active
102 * 0|____________^______|_________|
103 * 0% | | 100% of zfs_dirty_data_max
104 * | |
105 * | `-- zfs_vdev_async_write_active_max_dirty_percent
106 * `--------- zfs_vdev_async_write_active_min_dirty_percent
107 *
108 * Until the amount of dirty data exceeds a minimum percentage of the dirty
109 * data allowed in the pool, the I/O scheduler will limit the number of
110 * concurrent operations to the minimum. As that threshold is crossed, the
111 * number of concurrent operations issued increases linearly to the maximum at
112 * the specified maximum percentage of the dirty data allowed in the pool.
113 *
114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
117 * maximum percentage, this indicates that the rate of incoming data is
118 * greater than the rate that the backend storage can handle. In this case, we
119 * must further throttle incoming writes (see dmu_tx_delay() for details).
120 */
121
122 /*
123 * The maximum number of i/os active to each device. Ideally, this will be >=
124 * the sum of each queue's max_active. It must be at least the sum of each
125 * queue's min_active.
126 */
127 uint32_t zfs_vdev_max_active = 1000;
128
129 /*
130 * Per-queue limits on the number of i/os active to each device. If the
131 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
132 * into play. We will send min_active from each queue, and then select from
133 * queues in the order defined by zio_priority_t.
134 *
135 * In general, smaller max_active's will lead to lower latency of synchronous
136 * operations. Larger max_active's may lead to higher overall throughput,
137 * depending on underlying storage.
138 *
139 * The ratio of the queues' max_actives determines the balance of performance
140 * between reads, writes, and scrubs. E.g., increasing
141 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
142 * more quickly, but reads and writes to have higher latency and lower
143 * throughput.
144 */
145 uint32_t zfs_vdev_sync_read_min_active = 10;
146 uint32_t zfs_vdev_sync_read_max_active = 10;
147 uint32_t zfs_vdev_sync_write_min_active = 10;
148 uint32_t zfs_vdev_sync_write_max_active = 10;
149 uint32_t zfs_vdev_async_read_min_active = 1;
150 uint32_t zfs_vdev_async_read_max_active = 3;
151 uint32_t zfs_vdev_async_write_min_active = 2;
152 uint32_t zfs_vdev_async_write_max_active = 10;
153 uint32_t zfs_vdev_scrub_min_active = 1;
154 uint32_t zfs_vdev_scrub_max_active = 2;
155 uint32_t zfs_vdev_removal_min_active = 1;
156 uint32_t zfs_vdev_removal_max_active = 2;
157 uint32_t zfs_vdev_initializing_min_active = 1;
158 uint32_t zfs_vdev_initializing_max_active = 1;
159
160 /*
161 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
162 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
163 * zfs_vdev_async_write_active_max_dirty_percent, use
164 * zfs_vdev_async_write_max_active. The value is linearly interpolated
165 * between min and max.
166 */
167 int zfs_vdev_async_write_active_min_dirty_percent = 30;
168 int zfs_vdev_async_write_active_max_dirty_percent = 60;
169
170 /*
171 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
172 * For read I/Os, we also aggregate across small adjacency gaps; for writes
173 * we include spans of optional I/Os to aid aggregation at the disk even when
174 * they aren't able to help us aggregate at this level.
175 */
176 int zfs_vdev_aggregation_limit = 1 << 20;
177 int zfs_vdev_read_gap_limit = 32 << 10;
178 int zfs_vdev_write_gap_limit = 4 << 10;
179
180 /*
181 * Define the queue depth percentage for each top-level. This percentage is
182 * used in conjunction with zfs_vdev_async_max_active to determine how many
183 * allocations a specific top-level vdev should handle. Once the queue depth
184 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
185 * then allocator will stop allocating blocks on that top-level device.
186 * The default kernel setting is 1000% which will yield 100 allocations per
187 * device. For userland testing, the default setting is 300% which equates
188 * to 30 allocations per device.
189 */
190 #ifdef _KERNEL
191 int zfs_vdev_queue_depth_pct = 1000;
192 #else
193 int zfs_vdev_queue_depth_pct = 300;
194 #endif
195
196 /*
197 * When performing allocations for a given metaslab, we want to make sure that
198 * there are enough IOs to aggregate together to improve throughput. We want to
199 * ensure that there are at least 128k worth of IOs that can be aggregated, and
200 * we assume that the average allocation size is 4k, so we need the queue depth
201 * to be 32 per allocator to get good aggregation of sequential writes.
202 */
203 int zfs_vdev_def_queue_depth = 32;
204
205
206 int
207 vdev_queue_offset_compare(const void *x1, const void *x2)
208 {
209 const zio_t *z1 = (const zio_t *)x1;
210 const zio_t *z2 = (const zio_t *)x2;
211
212 int cmp = AVL_CMP(z1->io_offset, z2->io_offset);
213
214 if (likely(cmp))
215 return (cmp);
216
217 return (AVL_PCMP(z1, z2));
218 }
219
220 static inline avl_tree_t *
221 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
222 {
223 return (&vq->vq_class[p].vqc_queued_tree);
224 }
225
226 static inline avl_tree_t *
227 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
228 {
229 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
230 if (t == ZIO_TYPE_READ)
231 return (&vq->vq_read_offset_tree);
232 else
233 return (&vq->vq_write_offset_tree);
234 }
235
236 int
237 vdev_queue_timestamp_compare(const void *x1, const void *x2)
238 {
239 const zio_t *z1 = (const zio_t *)x1;
240 const zio_t *z2 = (const zio_t *)x2;
241
242 int cmp = AVL_CMP(z1->io_timestamp, z2->io_timestamp);
243
244 if (likely(cmp))
245 return (cmp);
246
247 return (AVL_PCMP(z1, z2));
248 }
249
250 static int
251 vdev_queue_class_min_active(zio_priority_t p)
252 {
253 switch (p) {
254 case ZIO_PRIORITY_SYNC_READ:
255 return (zfs_vdev_sync_read_min_active);
256 case ZIO_PRIORITY_SYNC_WRITE:
257 return (zfs_vdev_sync_write_min_active);
258 case ZIO_PRIORITY_ASYNC_READ:
259 return (zfs_vdev_async_read_min_active);
260 case ZIO_PRIORITY_ASYNC_WRITE:
261 return (zfs_vdev_async_write_min_active);
262 case ZIO_PRIORITY_SCRUB:
263 return (zfs_vdev_scrub_min_active);
264 case ZIO_PRIORITY_REMOVAL:
265 return (zfs_vdev_removal_min_active);
266 case ZIO_PRIORITY_INITIALIZING:
267 return (zfs_vdev_initializing_min_active);
268 default:
269 panic("invalid priority %u", p);
270 return (0);
271 }
272 }
273
274 static int
275 vdev_queue_max_async_writes(spa_t *spa)
276 {
277 int writes;
278 uint64_t dirty = 0;
279 dsl_pool_t *dp = spa_get_dsl(spa);
280 uint64_t min_bytes = zfs_dirty_data_max *
281 zfs_vdev_async_write_active_min_dirty_percent / 100;
282 uint64_t max_bytes = zfs_dirty_data_max *
283 zfs_vdev_async_write_active_max_dirty_percent / 100;
284
285 /*
286 * Async writes may occur before the assignment of the spa's
287 * dsl_pool_t if a self-healing zio is issued prior to the
288 * completion of dmu_objset_open_impl().
289 */
290 if (dp == NULL)
291 return (zfs_vdev_async_write_max_active);
292
293 /*
294 * Sync tasks correspond to interactive user actions. To reduce the
295 * execution time of those actions we push data out as fast as possible.
296 */
297 if (spa_has_pending_synctask(spa))
298 return (zfs_vdev_async_write_max_active);
299
300 dirty = dp->dp_dirty_total;
301 if (dirty < min_bytes)
302 return (zfs_vdev_async_write_min_active);
303 if (dirty > max_bytes)
304 return (zfs_vdev_async_write_max_active);
305
306 /*
307 * linear interpolation:
308 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
309 * move right by min_bytes
310 * move up by min_writes
311 */
312 writes = (dirty - min_bytes) *
313 (zfs_vdev_async_write_max_active -
314 zfs_vdev_async_write_min_active) /
315 (max_bytes - min_bytes) +
316 zfs_vdev_async_write_min_active;
317 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
318 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
319 return (writes);
320 }
321
322 static int
323 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
324 {
325 switch (p) {
326 case ZIO_PRIORITY_SYNC_READ:
327 return (zfs_vdev_sync_read_max_active);
328 case ZIO_PRIORITY_SYNC_WRITE:
329 return (zfs_vdev_sync_write_max_active);
330 case ZIO_PRIORITY_ASYNC_READ:
331 return (zfs_vdev_async_read_max_active);
332 case ZIO_PRIORITY_ASYNC_WRITE:
333 return (vdev_queue_max_async_writes(spa));
334 case ZIO_PRIORITY_SCRUB:
335 return (zfs_vdev_scrub_max_active);
336 case ZIO_PRIORITY_REMOVAL:
337 return (zfs_vdev_removal_max_active);
338 case ZIO_PRIORITY_INITIALIZING:
339 return (zfs_vdev_initializing_max_active);
340 default:
341 panic("invalid priority %u", p);
342 return (0);
343 }
344 }
345
346 /*
347 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
348 * there is no eligible class.
349 */
350 static zio_priority_t
351 vdev_queue_class_to_issue(vdev_queue_t *vq)
352 {
353 spa_t *spa = vq->vq_vdev->vdev_spa;
354 zio_priority_t p;
355
356 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
357 return (ZIO_PRIORITY_NUM_QUEUEABLE);
358
359 /* find a queue that has not reached its minimum # outstanding i/os */
360 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
361 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
362 vq->vq_class[p].vqc_active <
363 vdev_queue_class_min_active(p))
364 return (p);
365 }
366
367 /*
368 * If we haven't found a queue, look for one that hasn't reached its
369 * maximum # outstanding i/os.
370 */
371 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
372 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
373 vq->vq_class[p].vqc_active <
374 vdev_queue_class_max_active(spa, p))
375 return (p);
376 }
377
378 /* No eligible queued i/os */
379 return (ZIO_PRIORITY_NUM_QUEUEABLE);
380 }
381
382 void
383 vdev_queue_init(vdev_t *vd)
384 {
385 vdev_queue_t *vq = &vd->vdev_queue;
386 zio_priority_t p;
387
388 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
389 vq->vq_vdev = vd;
390 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
391
392 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
393 sizeof (zio_t), offsetof(struct zio, io_queue_node));
394 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
395 vdev_queue_offset_compare, sizeof (zio_t),
396 offsetof(struct zio, io_offset_node));
397 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
398 vdev_queue_offset_compare, sizeof (zio_t),
399 offsetof(struct zio, io_offset_node));
400
401 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
402 int (*compfn) (const void *, const void *);
403
404 /*
405 * The synchronous i/o queues are dispatched in FIFO rather
406 * than LBA order. This provides more consistent latency for
407 * these i/os.
408 */
409 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
410 compfn = vdev_queue_timestamp_compare;
411 else
412 compfn = vdev_queue_offset_compare;
413 avl_create(vdev_queue_class_tree(vq, p), compfn,
414 sizeof (zio_t), offsetof(struct zio, io_queue_node));
415 }
416
417 vq->vq_last_offset = 0;
418 }
419
420 void
421 vdev_queue_fini(vdev_t *vd)
422 {
423 vdev_queue_t *vq = &vd->vdev_queue;
424
425 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
426 avl_destroy(vdev_queue_class_tree(vq, p));
427 avl_destroy(&vq->vq_active_tree);
428 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
429 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
430
431 mutex_destroy(&vq->vq_lock);
432 }
433
434 static void
435 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
436 {
437 spa_t *spa = zio->io_spa;
438 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
439
440 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
441 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
442 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
443
444 if (shk->kstat != NULL) {
445 mutex_enter(&shk->lock);
446 kstat_waitq_enter(shk->kstat->ks_data);
447 mutex_exit(&shk->lock);
448 }
449 }
450
451 static void
452 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
453 {
454 spa_t *spa = zio->io_spa;
455 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
456
457 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
458 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
459 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
460
461 if (shk->kstat != NULL) {
462 mutex_enter(&shk->lock);
463 kstat_waitq_exit(shk->kstat->ks_data);
464 mutex_exit(&shk->lock);
465 }
466 }
467
468 static void
469 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
470 {
471 spa_t *spa = zio->io_spa;
472 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
473
474 ASSERT(MUTEX_HELD(&vq->vq_lock));
475 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
476 vq->vq_class[zio->io_priority].vqc_active++;
477 avl_add(&vq->vq_active_tree, zio);
478
479 if (shk->kstat != NULL) {
480 mutex_enter(&shk->lock);
481 kstat_runq_enter(shk->kstat->ks_data);
482 mutex_exit(&shk->lock);
483 }
484 }
485
486 static void
487 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
488 {
489 spa_t *spa = zio->io_spa;
490 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
491
492 ASSERT(MUTEX_HELD(&vq->vq_lock));
493 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
494 vq->vq_class[zio->io_priority].vqc_active--;
495 avl_remove(&vq->vq_active_tree, zio);
496
497 if (shk->kstat != NULL) {
498 kstat_io_t *ksio = shk->kstat->ks_data;
499
500 mutex_enter(&shk->lock);
501 kstat_runq_exit(ksio);
502 if (zio->io_type == ZIO_TYPE_READ) {
503 ksio->reads++;
504 ksio->nread += zio->io_size;
505 } else if (zio->io_type == ZIO_TYPE_WRITE) {
506 ksio->writes++;
507 ksio->nwritten += zio->io_size;
508 }
509 mutex_exit(&shk->lock);
510 }
511 }
512
513 static void
514 vdev_queue_agg_io_done(zio_t *aio)
515 {
516 if (aio->io_type == ZIO_TYPE_READ) {
517 zio_t *pio;
518 zio_link_t *zl = NULL;
519 while ((pio = zio_walk_parents(aio, &zl)) != NULL) {
520 abd_copy_off(pio->io_abd, aio->io_abd,
521 0, pio->io_offset - aio->io_offset, pio->io_size);
522 }
523 }
524
525 abd_free(aio->io_abd);
526 }
527
528 /*
529 * Compute the range spanned by two i/os, which is the endpoint of the last
530 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
531 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
532 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
533 */
534 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
535 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
536
537 static zio_t *
538 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
539 {
540 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
541 zio_link_t *zl = NULL;
542 uint64_t maxgap = 0;
543 uint64_t size;
544 uint64_t limit;
545 int maxblocksize;
546 boolean_t stretch = B_FALSE;
547 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
548 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
549 abd_t *abd;
550
551 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
552 limit = MAX(MIN(zfs_vdev_aggregation_limit, maxblocksize), 0);
553
554 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
555 return (NULL);
556
557 first = last = zio;
558
559 if (zio->io_type == ZIO_TYPE_READ)
560 maxgap = zfs_vdev_read_gap_limit;
561
562 /*
563 * We can aggregate I/Os that are sufficiently adjacent and of
564 * the same flavor, as expressed by the AGG_INHERIT flags.
565 * The latter requirement is necessary so that certain
566 * attributes of the I/O, such as whether it's a normal I/O
567 * or a scrub/resilver, can be preserved in the aggregate.
568 * We can include optional I/Os, but don't allow them
569 * to begin a range as they add no benefit in that situation.
570 */
571
572 /*
573 * We keep track of the last non-optional I/O.
574 */
575 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
576
577 /*
578 * Walk backwards through sufficiently contiguous I/Os
579 * recording the last non-optional I/O.
580 */
581 while ((dio = AVL_PREV(t, first)) != NULL &&
582 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
583 IO_SPAN(dio, last) <= limit &&
584 IO_GAP(dio, first) <= maxgap &&
585 dio->io_type == zio->io_type) {
586 first = dio;
587 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
588 mandatory = first;
589 }
590
591 /*
592 * Skip any initial optional I/Os.
593 */
594 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
595 first = AVL_NEXT(t, first);
596 ASSERT(first != NULL);
597 }
598
599
600 /*
601 * Walk forward through sufficiently contiguous I/Os.
602 * The aggregation limit does not apply to optional i/os, so that
603 * we can issue contiguous writes even if they are larger than the
604 * aggregation limit.
605 */
606 while ((dio = AVL_NEXT(t, last)) != NULL &&
607 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
608 (IO_SPAN(first, dio) <= limit ||
609 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
610 IO_SPAN(first, dio) <= maxblocksize &&
611 IO_GAP(last, dio) <= maxgap &&
612 dio->io_type == zio->io_type) {
613 last = dio;
614 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
615 mandatory = last;
616 }
617
618 /*
619 * Now that we've established the range of the I/O aggregation
620 * we must decide what to do with trailing optional I/Os.
621 * For reads, there's nothing to do. While we are unable to
622 * aggregate further, it's possible that a trailing optional
623 * I/O would allow the underlying device to aggregate with
624 * subsequent I/Os. We must therefore determine if the next
625 * non-optional I/O is close enough to make aggregation
626 * worthwhile.
627 */
628 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
629 zio_t *nio = last;
630 while ((dio = AVL_NEXT(t, nio)) != NULL &&
631 IO_GAP(nio, dio) == 0 &&
632 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
633 nio = dio;
634 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
635 stretch = B_TRUE;
636 break;
637 }
638 }
639 }
640
641 if (stretch) {
642 /*
643 * We are going to include an optional io in our aggregated
644 * span, thus closing the write gap. Only mandatory i/os can
645 * start aggregated spans, so make sure that the next i/o
646 * after our span is mandatory.
647 */
648 dio = AVL_NEXT(t, last);
649 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
650 } else {
651 /* do not include the optional i/o */
652 while (last != mandatory && last != first) {
653 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
654 last = AVL_PREV(t, last);
655 ASSERT(last != NULL);
656 }
657 }
658
659 if (first == last)
660 return (NULL);
661
662 size = IO_SPAN(first, last);
663 ASSERT3U(size, <=, maxblocksize);
664
665 abd = abd_alloc_for_io(size, B_TRUE);
666 if (abd == NULL)
667 return (NULL);
668
669 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
670 abd, size, first->io_type, zio->io_priority,
671 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
672 vdev_queue_agg_io_done, NULL);
673 aio->io_timestamp = first->io_timestamp;
674
675 nio = first;
676 do {
677 dio = nio;
678 nio = AVL_NEXT(t, dio);
679 ASSERT3U(dio->io_type, ==, aio->io_type);
680
681 if (dio->io_flags & ZIO_FLAG_NODATA) {
682 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
683 abd_zero_off(aio->io_abd,
684 dio->io_offset - aio->io_offset, dio->io_size);
685 } else if (dio->io_type == ZIO_TYPE_WRITE) {
686 abd_copy_off(aio->io_abd, dio->io_abd,
687 dio->io_offset - aio->io_offset, 0, dio->io_size);
688 }
689
690 zio_add_child(dio, aio);
691 vdev_queue_io_remove(vq, dio);
692 } while (dio != last);
693
694 /*
695 * We need to drop the vdev queue's lock to avoid a deadlock that we
696 * could encounter since this I/O will complete immediately.
697 */
698 mutex_exit(&vq->vq_lock);
699 while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
700 zio_vdev_io_bypass(dio);
701 zio_execute(dio);
702 }
703 mutex_enter(&vq->vq_lock);
704
705 return (aio);
706 }
707
708 static zio_t *
709 vdev_queue_io_to_issue(vdev_queue_t *vq)
710 {
711 zio_t *zio, *aio;
712 zio_priority_t p;
713 avl_index_t idx;
714 avl_tree_t *tree;
715
716 again:
717 ASSERT(MUTEX_HELD(&vq->vq_lock));
718
719 p = vdev_queue_class_to_issue(vq);
720
721 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
722 /* No eligible queued i/os */
723 return (NULL);
724 }
725
726 /*
727 * For LBA-ordered queues (async / scrub / initializing), issue the
728 * i/o which follows the most recently issued i/o in LBA (offset) order.
729 *
730 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
731 */
732 tree = vdev_queue_class_tree(vq, p);
733 vq->vq_io_search.io_timestamp = 0;
734 vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
735 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
736 zio = avl_nearest(tree, idx, AVL_AFTER);
737 if (zio == NULL)
738 zio = avl_first(tree);
739 ASSERT3U(zio->io_priority, ==, p);
740
741 aio = vdev_queue_aggregate(vq, zio);
742 if (aio != NULL)
743 zio = aio;
744 else
745 vdev_queue_io_remove(vq, zio);
746
747 /*
748 * If the I/O is or was optional and therefore has no data, we need to
749 * simply discard it. We need to drop the vdev queue's lock to avoid a
750 * deadlock that we could encounter since this I/O will complete
751 * immediately.
752 */
753 if (zio->io_flags & ZIO_FLAG_NODATA) {
754 mutex_exit(&vq->vq_lock);
755 zio_vdev_io_bypass(zio);
756 zio_execute(zio);
757 mutex_enter(&vq->vq_lock);
758 goto again;
759 }
760
761 vdev_queue_pending_add(vq, zio);
762 vq->vq_last_offset = zio->io_offset + zio->io_size;
763
764 return (zio);
765 }
766
767 zio_t *
768 vdev_queue_io(zio_t *zio)
769 {
770 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
771 zio_t *nio;
772
773 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
774 return (zio);
775
776 /*
777 * Children i/os inherent their parent's priority, which might
778 * not match the child's i/o type. Fix it up here.
779 */
780 if (zio->io_type == ZIO_TYPE_READ) {
781 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
782 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
783 zio->io_priority != ZIO_PRIORITY_SCRUB &&
784 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
785 zio->io_priority != ZIO_PRIORITY_INITIALIZING)
786 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
787 } else {
788 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
789 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
790 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
791 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
792 zio->io_priority != ZIO_PRIORITY_INITIALIZING)
793 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
794 }
795
796 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
797
798 mutex_enter(&vq->vq_lock);
799 zio->io_timestamp = gethrtime();
800 vdev_queue_io_add(vq, zio);
801 nio = vdev_queue_io_to_issue(vq);
802 mutex_exit(&vq->vq_lock);
803
804 if (nio == NULL)
805 return (NULL);
806
807 if (nio->io_done == vdev_queue_agg_io_done) {
808 zio_nowait(nio);
809 return (NULL);
810 }
811
812 return (nio);
813 }
814
815 void
816 vdev_queue_io_done(zio_t *zio)
817 {
818 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
819 zio_t *nio;
820
821 mutex_enter(&vq->vq_lock);
822
823 vdev_queue_pending_remove(vq, zio);
824
825 zio->io_delta = gethrtime() - zio->io_timestamp;
826 vq->vq_io_complete_ts = gethrtime();
827 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
828
829 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
830 mutex_exit(&vq->vq_lock);
831 if (nio->io_done == vdev_queue_agg_io_done) {
832 zio_nowait(nio);
833 } else {
834 zio_vdev_io_reissue(nio);
835 zio_execute(nio);
836 }
837 mutex_enter(&vq->vq_lock);
838 }
839
840 mutex_exit(&vq->vq_lock);
841 }
842
843 void
844 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
845 {
846 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
847 avl_tree_t *tree;
848
849 /*
850 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
851 * code to issue IOs without adding them to the vdev queue. In this
852 * case, the zio is already going to be issued as quickly as possible
853 * and so it doesn't need any reprioitization to help.
854 */
855 if (zio->io_priority == ZIO_PRIORITY_NOW)
856 return;
857
858 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
859 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
860
861 if (zio->io_type == ZIO_TYPE_READ) {
862 if (priority != ZIO_PRIORITY_SYNC_READ &&
863 priority != ZIO_PRIORITY_ASYNC_READ &&
864 priority != ZIO_PRIORITY_SCRUB)
865 priority = ZIO_PRIORITY_ASYNC_READ;
866 } else {
867 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
868 if (priority != ZIO_PRIORITY_SYNC_WRITE &&
869 priority != ZIO_PRIORITY_ASYNC_WRITE)
870 priority = ZIO_PRIORITY_ASYNC_WRITE;
871 }
872
873 mutex_enter(&vq->vq_lock);
874
875 /*
876 * If the zio is in none of the queues we can simply change
877 * the priority. If the zio is waiting to be submitted we must
878 * remove it from the queue and re-insert it with the new priority.
879 * Otherwise, the zio is currently active and we cannot change its
880 * priority.
881 */
882 tree = vdev_queue_class_tree(vq, zio->io_priority);
883 if (avl_find(tree, zio, NULL) == zio) {
884 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
885 zio->io_priority = priority;
886 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
887 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
888 zio->io_priority = priority;
889 }
890
891 mutex_exit(&vq->vq_lock);
892 }
893
894 /*
895 * As these two methods are only used for load calculations we're not
896 * concerned if we get an incorrect value on 32bit platforms due to lack of
897 * vq_lock mutex use here, instead we prefer to keep it lock free for
898 * performance.
899 */
900 int
901 vdev_queue_length(vdev_t *vd)
902 {
903 return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
904 }
905
906 uint64_t
907 vdev_queue_last_offset(vdev_t *vd)
908 {
909 return (vd->vdev_queue.vq_last_offset);
910 }
911
912 #if defined(_KERNEL)
913 module_param(zfs_vdev_aggregation_limit, int, 0644);
914 MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
915
916 module_param(zfs_vdev_read_gap_limit, int, 0644);
917 MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
918
919 module_param(zfs_vdev_write_gap_limit, int, 0644);
920 MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
921
922 module_param(zfs_vdev_max_active, int, 0644);
923 MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
924
925 module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
926 MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
927 "Async write concurrency max threshold");
928
929 module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
930 MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
931 "Async write concurrency min threshold");
932
933 module_param(zfs_vdev_async_read_max_active, int, 0644);
934 MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
935 "Max active async read I/Os per vdev");
936
937 module_param(zfs_vdev_async_read_min_active, int, 0644);
938 MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
939 "Min active async read I/Os per vdev");
940
941 module_param(zfs_vdev_async_write_max_active, int, 0644);
942 MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
943 "Max active async write I/Os per vdev");
944
945 module_param(zfs_vdev_async_write_min_active, int, 0644);
946 MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
947 "Min active async write I/Os per vdev");
948
949 module_param(zfs_vdev_initializing_max_active, int, 0644);
950 MODULE_PARM_DESC(zfs_vdev_initializing_max_active,
951 "Max active initializing I/Os per vdev");
952
953 module_param(zfs_vdev_initializing_min_active, int, 0644);
954 MODULE_PARM_DESC(zfs_vdev_initializing_min_active,
955 "Min active initializing I/Os per vdev");
956
957 module_param(zfs_vdev_removal_max_active, int, 0644);
958 MODULE_PARM_DESC(zfs_vdev_removal_max_active,
959 "Max active removal I/Os per vdev");
960
961 module_param(zfs_vdev_removal_min_active, int, 0644);
962 MODULE_PARM_DESC(zfs_vdev_removal_min_active,
963 "Min active removal I/Os per vdev");
964
965 module_param(zfs_vdev_scrub_max_active, int, 0644);
966 MODULE_PARM_DESC(zfs_vdev_scrub_max_active,
967 "Max active scrub I/Os per vdev");
968
969 module_param(zfs_vdev_scrub_min_active, int, 0644);
970 MODULE_PARM_DESC(zfs_vdev_scrub_min_active,
971 "Min active scrub I/Os per vdev");
972
973 module_param(zfs_vdev_sync_read_max_active, int, 0644);
974 MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
975 "Max active sync read I/Os per vdev");
976
977 module_param(zfs_vdev_sync_read_min_active, int, 0644);
978 MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
979 "Min active sync read I/Os per vdev");
980
981 module_param(zfs_vdev_sync_write_max_active, int, 0644);
982 MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
983 "Max active sync write I/Os per vdev");
984
985 module_param(zfs_vdev_sync_write_min_active, int, 0644);
986 MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
987 "Min active sync write I/Os per vdev");
988
989 module_param(zfs_vdev_queue_depth_pct, int, 0644);
990 MODULE_PARM_DESC(zfs_vdev_queue_depth_pct,
991 "Queue depth percentage for each top-level vdev");
992 #endif