]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Fix zfs_vdev_aggregation_limit bounds checking
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/spa.h>
37 #include <sys/spa_impl.h>
38 #include <sys/kstat.h>
39
40 /*
41 * ZFS I/O Scheduler
42 * ---------------
43 *
44 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
45 * I/O scheduler determines when and in what order those operations are
46 * issued. The I/O scheduler divides operations into five I/O classes
47 * prioritized in the following order: sync read, sync write, async read,
48 * async write, and scrub/resilver. Each queue defines the minimum and
49 * maximum number of concurrent operations that may be issued to the device.
50 * In addition, the device has an aggregate maximum. Note that the sum of the
51 * per-queue minimums must not exceed the aggregate maximum. If the
52 * sum of the per-queue maximums exceeds the aggregate maximum, then the
53 * number of active i/os may reach zfs_vdev_max_active, in which case no
54 * further i/os will be issued regardless of whether all per-queue
55 * minimums have been met.
56 *
57 * For many physical devices, throughput increases with the number of
58 * concurrent operations, but latency typically suffers. Further, physical
59 * devices typically have a limit at which more concurrent operations have no
60 * effect on throughput or can actually cause it to decrease.
61 *
62 * The scheduler selects the next operation to issue by first looking for an
63 * I/O class whose minimum has not been satisfied. Once all are satisfied and
64 * the aggregate maximum has not been hit, the scheduler looks for classes
65 * whose maximum has not been satisfied. Iteration through the I/O classes is
66 * done in the order specified above. No further operations are issued if the
67 * aggregate maximum number of concurrent operations has been hit or if there
68 * are no operations queued for an I/O class that has not hit its maximum.
69 * Every time an i/o is queued or an operation completes, the I/O scheduler
70 * looks for new operations to issue.
71 *
72 * All I/O classes have a fixed maximum number of outstanding operations
73 * except for the async write class. Asynchronous writes represent the data
74 * that is committed to stable storage during the syncing stage for
75 * transaction groups (see txg.c). Transaction groups enter the syncing state
76 * periodically so the number of queued async writes will quickly burst up and
77 * then bleed down to zero. Rather than servicing them as quickly as possible,
78 * the I/O scheduler changes the maximum number of active async write i/os
79 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
80 * both throughput and latency typically increase with the number of
81 * concurrent operations issued to physical devices, reducing the burstiness
82 * in the number of concurrent operations also stabilizes the response time of
83 * operations from other -- and in particular synchronous -- queues. In broad
84 * strokes, the I/O scheduler will issue more concurrent operations from the
85 * async write queue as there's more dirty data in the pool.
86 *
87 * Async Writes
88 *
89 * The number of concurrent operations issued for the async write I/O class
90 * follows a piece-wise linear function defined by a few adjustable points.
91 *
92 * | o---------| <-- zfs_vdev_async_write_max_active
93 * ^ | /^ |
94 * | | / | |
95 * active | / | |
96 * I/O | / | |
97 * count | / | |
98 * | / | |
99 * |------------o | | <-- zfs_vdev_async_write_min_active
100 * 0|____________^______|_________|
101 * 0% | | 100% of zfs_dirty_data_max
102 * | |
103 * | `-- zfs_vdev_async_write_active_max_dirty_percent
104 * `--------- zfs_vdev_async_write_active_min_dirty_percent
105 *
106 * Until the amount of dirty data exceeds a minimum percentage of the dirty
107 * data allowed in the pool, the I/O scheduler will limit the number of
108 * concurrent operations to the minimum. As that threshold is crossed, the
109 * number of concurrent operations issued increases linearly to the maximum at
110 * the specified maximum percentage of the dirty data allowed in the pool.
111 *
112 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
113 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
114 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
115 * maximum percentage, this indicates that the rate of incoming data is
116 * greater than the rate that the backend storage can handle. In this case, we
117 * must further throttle incoming writes (see dmu_tx_delay() for details).
118 */
119
120 /*
121 * The maximum number of i/os active to each device. Ideally, this will be >=
122 * the sum of each queue's max_active. It must be at least the sum of each
123 * queue's min_active.
124 */
125 uint32_t zfs_vdev_max_active = 1000;
126
127 /*
128 * Per-queue limits on the number of i/os active to each device. If the
129 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
130 * into play. We will send min_active from each queue, and then select from
131 * queues in the order defined by zio_priority_t.
132 *
133 * In general, smaller max_active's will lead to lower latency of synchronous
134 * operations. Larger max_active's may lead to higher overall throughput,
135 * depending on underlying storage.
136 *
137 * The ratio of the queues' max_actives determines the balance of performance
138 * between reads, writes, and scrubs. E.g., increasing
139 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
140 * more quickly, but reads and writes to have higher latency and lower
141 * throughput.
142 */
143 uint32_t zfs_vdev_sync_read_min_active = 10;
144 uint32_t zfs_vdev_sync_read_max_active = 10;
145 uint32_t zfs_vdev_sync_write_min_active = 10;
146 uint32_t zfs_vdev_sync_write_max_active = 10;
147 uint32_t zfs_vdev_async_read_min_active = 1;
148 uint32_t zfs_vdev_async_read_max_active = 3;
149 uint32_t zfs_vdev_async_write_min_active = 1;
150 uint32_t zfs_vdev_async_write_max_active = 10;
151 uint32_t zfs_vdev_scrub_min_active = 1;
152 uint32_t zfs_vdev_scrub_max_active = 2;
153
154 /*
155 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
156 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
157 * zfs_vdev_async_write_active_max_dirty_percent, use
158 * zfs_vdev_async_write_max_active. The value is linearly interpolated
159 * between min and max.
160 */
161 int zfs_vdev_async_write_active_min_dirty_percent = 30;
162 int zfs_vdev_async_write_active_max_dirty_percent = 60;
163
164 /*
165 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
166 * For read I/Os, we also aggregate across small adjacency gaps; for writes
167 * we include spans of optional I/Os to aid aggregation at the disk even when
168 * they aren't able to help us aggregate at this level.
169 */
170 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE;
171 int zfs_vdev_read_gap_limit = 32 << 10;
172 int zfs_vdev_write_gap_limit = 4 << 10;
173
174 int
175 vdev_queue_offset_compare(const void *x1, const void *x2)
176 {
177 const zio_t *z1 = x1;
178 const zio_t *z2 = x2;
179
180 if (z1->io_offset < z2->io_offset)
181 return (-1);
182 if (z1->io_offset > z2->io_offset)
183 return (1);
184
185 if (z1 < z2)
186 return (-1);
187 if (z1 > z2)
188 return (1);
189
190 return (0);
191 }
192
193 static inline avl_tree_t *
194 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
195 {
196 return (&vq->vq_class[p].vqc_queued_tree);
197 }
198
199 static inline avl_tree_t *
200 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
201 {
202 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE);
203 if (t == ZIO_TYPE_READ)
204 return (&vq->vq_read_offset_tree);
205 else
206 return (&vq->vq_write_offset_tree);
207 }
208
209 int
210 vdev_queue_timestamp_compare(const void *x1, const void *x2)
211 {
212 const zio_t *z1 = x1;
213 const zio_t *z2 = x2;
214
215 if (z1->io_timestamp < z2->io_timestamp)
216 return (-1);
217 if (z1->io_timestamp > z2->io_timestamp)
218 return (1);
219
220 if (z1 < z2)
221 return (-1);
222 if (z1 > z2)
223 return (1);
224
225 return (0);
226 }
227
228 static int
229 vdev_queue_class_min_active(zio_priority_t p)
230 {
231 switch (p) {
232 case ZIO_PRIORITY_SYNC_READ:
233 return (zfs_vdev_sync_read_min_active);
234 case ZIO_PRIORITY_SYNC_WRITE:
235 return (zfs_vdev_sync_write_min_active);
236 case ZIO_PRIORITY_ASYNC_READ:
237 return (zfs_vdev_async_read_min_active);
238 case ZIO_PRIORITY_ASYNC_WRITE:
239 return (zfs_vdev_async_write_min_active);
240 case ZIO_PRIORITY_SCRUB:
241 return (zfs_vdev_scrub_min_active);
242 default:
243 panic("invalid priority %u", p);
244 return (0);
245 }
246 }
247
248 static int
249 vdev_queue_max_async_writes(spa_t *spa)
250 {
251 int writes;
252 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total;
253 uint64_t min_bytes = zfs_dirty_data_max *
254 zfs_vdev_async_write_active_min_dirty_percent / 100;
255 uint64_t max_bytes = zfs_dirty_data_max *
256 zfs_vdev_async_write_active_max_dirty_percent / 100;
257
258 /*
259 * Sync tasks correspond to interactive user actions. To reduce the
260 * execution time of those actions we push data out as fast as possible.
261 */
262 if (spa_has_pending_synctask(spa)) {
263 return (zfs_vdev_async_write_max_active);
264 }
265
266 if (dirty < min_bytes)
267 return (zfs_vdev_async_write_min_active);
268 if (dirty > max_bytes)
269 return (zfs_vdev_async_write_max_active);
270
271 /*
272 * linear interpolation:
273 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
274 * move right by min_bytes
275 * move up by min_writes
276 */
277 writes = (dirty - min_bytes) *
278 (zfs_vdev_async_write_max_active -
279 zfs_vdev_async_write_min_active) /
280 (max_bytes - min_bytes) +
281 zfs_vdev_async_write_min_active;
282 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
283 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
284 return (writes);
285 }
286
287 static int
288 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
289 {
290 switch (p) {
291 case ZIO_PRIORITY_SYNC_READ:
292 return (zfs_vdev_sync_read_max_active);
293 case ZIO_PRIORITY_SYNC_WRITE:
294 return (zfs_vdev_sync_write_max_active);
295 case ZIO_PRIORITY_ASYNC_READ:
296 return (zfs_vdev_async_read_max_active);
297 case ZIO_PRIORITY_ASYNC_WRITE:
298 return (vdev_queue_max_async_writes(spa));
299 case ZIO_PRIORITY_SCRUB:
300 return (zfs_vdev_scrub_max_active);
301 default:
302 panic("invalid priority %u", p);
303 return (0);
304 }
305 }
306
307 /*
308 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
309 * there is no eligible class.
310 */
311 static zio_priority_t
312 vdev_queue_class_to_issue(vdev_queue_t *vq)
313 {
314 spa_t *spa = vq->vq_vdev->vdev_spa;
315 zio_priority_t p;
316
317 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
318 return (ZIO_PRIORITY_NUM_QUEUEABLE);
319
320 /* find a queue that has not reached its minimum # outstanding i/os */
321 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
322 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
323 vq->vq_class[p].vqc_active <
324 vdev_queue_class_min_active(p))
325 return (p);
326 }
327
328 /*
329 * If we haven't found a queue, look for one that hasn't reached its
330 * maximum # outstanding i/os.
331 */
332 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
333 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
334 vq->vq_class[p].vqc_active <
335 vdev_queue_class_max_active(spa, p))
336 return (p);
337 }
338
339 /* No eligible queued i/os */
340 return (ZIO_PRIORITY_NUM_QUEUEABLE);
341 }
342
343 void
344 vdev_queue_init(vdev_t *vd)
345 {
346 vdev_queue_t *vq = &vd->vdev_queue;
347 zio_priority_t p;
348
349 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
350 vq->vq_vdev = vd;
351 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
352
353 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
354 sizeof (zio_t), offsetof(struct zio, io_queue_node));
355 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
356 vdev_queue_offset_compare, sizeof (zio_t),
357 offsetof(struct zio, io_offset_node));
358 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
359 vdev_queue_offset_compare, sizeof (zio_t),
360 offsetof(struct zio, io_offset_node));
361
362 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
363 int (*compfn) (const void *, const void *);
364
365 /*
366 * The synchronous i/o queues are dispatched in FIFO rather
367 * than LBA order. This provides more consistent latency for
368 * these i/os.
369 */
370 if (p == ZIO_PRIORITY_SYNC_READ || p == ZIO_PRIORITY_SYNC_WRITE)
371 compfn = vdev_queue_timestamp_compare;
372 else
373 compfn = vdev_queue_offset_compare;
374 avl_create(vdev_queue_class_tree(vq, p), compfn,
375 sizeof (zio_t), offsetof(struct zio, io_queue_node));
376 }
377 }
378
379 void
380 vdev_queue_fini(vdev_t *vd)
381 {
382 vdev_queue_t *vq = &vd->vdev_queue;
383 zio_priority_t p;
384
385 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
386 avl_destroy(vdev_queue_class_tree(vq, p));
387 avl_destroy(&vq->vq_active_tree);
388 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
389 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
390
391 mutex_destroy(&vq->vq_lock);
392 }
393
394 static void
395 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
396 {
397 spa_t *spa = zio->io_spa;
398 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
399
400 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
401 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
402 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
403
404 if (ssh->kstat != NULL) {
405 mutex_enter(&ssh->lock);
406 kstat_waitq_enter(ssh->kstat->ks_data);
407 mutex_exit(&ssh->lock);
408 }
409 }
410
411 static void
412 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
413 {
414 spa_t *spa = zio->io_spa;
415 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
416
417 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
418 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
419 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
420
421 if (ssh->kstat != NULL) {
422 mutex_enter(&ssh->lock);
423 kstat_waitq_exit(ssh->kstat->ks_data);
424 mutex_exit(&ssh->lock);
425 }
426 }
427
428 static void
429 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
430 {
431 spa_t *spa = zio->io_spa;
432 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
433
434 ASSERT(MUTEX_HELD(&vq->vq_lock));
435 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
436 vq->vq_class[zio->io_priority].vqc_active++;
437 avl_add(&vq->vq_active_tree, zio);
438
439 if (ssh->kstat != NULL) {
440 mutex_enter(&ssh->lock);
441 kstat_runq_enter(ssh->kstat->ks_data);
442 mutex_exit(&ssh->lock);
443 }
444 }
445
446 static void
447 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
448 {
449 spa_t *spa = zio->io_spa;
450 spa_stats_history_t *ssh = &spa->spa_stats.io_history;
451
452 ASSERT(MUTEX_HELD(&vq->vq_lock));
453 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
454 vq->vq_class[zio->io_priority].vqc_active--;
455 avl_remove(&vq->vq_active_tree, zio);
456
457 if (ssh->kstat != NULL) {
458 kstat_io_t *ksio = ssh->kstat->ks_data;
459
460 mutex_enter(&ssh->lock);
461 kstat_runq_exit(ksio);
462 if (zio->io_type == ZIO_TYPE_READ) {
463 ksio->reads++;
464 ksio->nread += zio->io_size;
465 } else if (zio->io_type == ZIO_TYPE_WRITE) {
466 ksio->writes++;
467 ksio->nwritten += zio->io_size;
468 }
469 mutex_exit(&ssh->lock);
470 }
471 }
472
473 static void
474 vdev_queue_agg_io_done(zio_t *aio)
475 {
476 if (aio->io_type == ZIO_TYPE_READ) {
477 zio_t *pio;
478 while ((pio = zio_walk_parents(aio)) != NULL) {
479 bcopy((char *)aio->io_data + (pio->io_offset -
480 aio->io_offset), pio->io_data, pio->io_size);
481 }
482 }
483
484 zio_buf_free(aio->io_data, aio->io_size);
485 }
486
487 /*
488 * Compute the range spanned by two i/os, which is the endpoint of the last
489 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
490 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
491 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
492 */
493 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
494 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
495
496 static zio_t *
497 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
498 {
499 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
500 uint64_t maxgap = 0;
501 uint64_t size;
502 uint64_t limit;
503 boolean_t stretch = B_FALSE;
504 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
505 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
506 void *buf;
507
508 limit = MAX(MIN(zfs_vdev_aggregation_limit,
509 spa_maxblocksize(vq->vq_vdev->vdev_spa)), 0);
510
511 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
512 return (NULL);
513
514 first = last = zio;
515
516 if (zio->io_type == ZIO_TYPE_READ)
517 maxgap = zfs_vdev_read_gap_limit;
518
519 /*
520 * We can aggregate I/Os that are sufficiently adjacent and of
521 * the same flavor, as expressed by the AGG_INHERIT flags.
522 * The latter requirement is necessary so that certain
523 * attributes of the I/O, such as whether it's a normal I/O
524 * or a scrub/resilver, can be preserved in the aggregate.
525 * We can include optional I/Os, but don't allow them
526 * to begin a range as they add no benefit in that situation.
527 */
528
529 /*
530 * We keep track of the last non-optional I/O.
531 */
532 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
533
534 /*
535 * Walk backwards through sufficiently contiguous I/Os
536 * recording the last non-option I/O.
537 */
538 while ((dio = AVL_PREV(t, first)) != NULL &&
539 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
540 IO_SPAN(dio, last) <= limit &&
541 IO_GAP(dio, first) <= maxgap) {
542 first = dio;
543 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
544 mandatory = first;
545 }
546
547 /*
548 * Skip any initial optional I/Os.
549 */
550 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
551 first = AVL_NEXT(t, first);
552 ASSERT(first != NULL);
553 }
554
555
556 /*
557 * Walk forward through sufficiently contiguous I/Os.
558 */
559 while ((dio = AVL_NEXT(t, last)) != NULL &&
560 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
561 IO_SPAN(first, dio) <= limit &&
562 IO_GAP(last, dio) <= maxgap) {
563 last = dio;
564 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
565 mandatory = last;
566 }
567
568 /*
569 * Now that we've established the range of the I/O aggregation
570 * we must decide what to do with trailing optional I/Os.
571 * For reads, there's nothing to do. While we are unable to
572 * aggregate further, it's possible that a trailing optional
573 * I/O would allow the underlying device to aggregate with
574 * subsequent I/Os. We must therefore determine if the next
575 * non-optional I/O is close enough to make aggregation
576 * worthwhile.
577 */
578 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
579 zio_t *nio = last;
580 while ((dio = AVL_NEXT(t, nio)) != NULL &&
581 IO_GAP(nio, dio) == 0 &&
582 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
583 nio = dio;
584 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
585 stretch = B_TRUE;
586 break;
587 }
588 }
589 }
590
591 if (stretch) {
592 /* This may be a no-op. */
593 dio = AVL_NEXT(t, last);
594 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
595 } else {
596 while (last != mandatory && last != first) {
597 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
598 last = AVL_PREV(t, last);
599 ASSERT(last != NULL);
600 }
601 }
602
603 if (first == last)
604 return (NULL);
605
606 size = IO_SPAN(first, last);
607 ASSERT3U(size, <=, limit);
608
609 buf = zio_buf_alloc_flags(size, KM_NOSLEEP);
610 if (buf == NULL)
611 return (NULL);
612
613 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
614 buf, size, first->io_type, zio->io_priority,
615 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
616 vdev_queue_agg_io_done, NULL);
617 aio->io_timestamp = first->io_timestamp;
618
619 nio = first;
620 do {
621 dio = nio;
622 nio = AVL_NEXT(t, dio);
623 ASSERT3U(dio->io_type, ==, aio->io_type);
624
625 if (dio->io_flags & ZIO_FLAG_NODATA) {
626 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
627 bzero((char *)aio->io_data + (dio->io_offset -
628 aio->io_offset), dio->io_size);
629 } else if (dio->io_type == ZIO_TYPE_WRITE) {
630 bcopy(dio->io_data, (char *)aio->io_data +
631 (dio->io_offset - aio->io_offset),
632 dio->io_size);
633 }
634
635 zio_add_child(dio, aio);
636 vdev_queue_io_remove(vq, dio);
637 zio_vdev_io_bypass(dio);
638 zio_execute(dio);
639 } while (dio != last);
640
641 return (aio);
642 }
643
644 static zio_t *
645 vdev_queue_io_to_issue(vdev_queue_t *vq)
646 {
647 zio_t *zio, *aio;
648 zio_priority_t p;
649 avl_index_t idx;
650 avl_tree_t *tree;
651
652 again:
653 ASSERT(MUTEX_HELD(&vq->vq_lock));
654
655 p = vdev_queue_class_to_issue(vq);
656
657 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
658 /* No eligible queued i/os */
659 return (NULL);
660 }
661
662 /*
663 * For LBA-ordered queues (async / scrub), issue the i/o which follows
664 * the most recently issued i/o in LBA (offset) order.
665 *
666 * For FIFO queues (sync), issue the i/o with the lowest timestamp.
667 */
668 tree = vdev_queue_class_tree(vq, p);
669 vq->vq_io_search.io_timestamp = 0;
670 vq->vq_io_search.io_offset = vq->vq_last_offset + 1;
671 VERIFY3P(avl_find(tree, &vq->vq_io_search,
672 &idx), ==, NULL);
673 zio = avl_nearest(tree, idx, AVL_AFTER);
674 if (zio == NULL)
675 zio = avl_first(tree);
676 ASSERT3U(zio->io_priority, ==, p);
677
678 aio = vdev_queue_aggregate(vq, zio);
679 if (aio != NULL)
680 zio = aio;
681 else
682 vdev_queue_io_remove(vq, zio);
683
684 /*
685 * If the I/O is or was optional and therefore has no data, we need to
686 * simply discard it. We need to drop the vdev queue's lock to avoid a
687 * deadlock that we could encounter since this I/O will complete
688 * immediately.
689 */
690 if (zio->io_flags & ZIO_FLAG_NODATA) {
691 mutex_exit(&vq->vq_lock);
692 zio_vdev_io_bypass(zio);
693 zio_execute(zio);
694 mutex_enter(&vq->vq_lock);
695 goto again;
696 }
697
698 vdev_queue_pending_add(vq, zio);
699 vq->vq_last_offset = zio->io_offset;
700
701 return (zio);
702 }
703
704 zio_t *
705 vdev_queue_io(zio_t *zio)
706 {
707 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
708 zio_t *nio;
709
710 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
711 return (zio);
712
713 /*
714 * Children i/os inherent their parent's priority, which might
715 * not match the child's i/o type. Fix it up here.
716 */
717 if (zio->io_type == ZIO_TYPE_READ) {
718 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
719 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
720 zio->io_priority != ZIO_PRIORITY_SCRUB)
721 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
722 } else {
723 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
724 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
725 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE)
726 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
727 }
728
729 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
730
731 mutex_enter(&vq->vq_lock);
732 zio->io_timestamp = gethrtime();
733 vdev_queue_io_add(vq, zio);
734 nio = vdev_queue_io_to_issue(vq);
735 mutex_exit(&vq->vq_lock);
736
737 if (nio == NULL)
738 return (NULL);
739
740 if (nio->io_done == vdev_queue_agg_io_done) {
741 zio_nowait(nio);
742 return (NULL);
743 }
744
745 return (nio);
746 }
747
748 void
749 vdev_queue_io_done(zio_t *zio)
750 {
751 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
752 zio_t *nio;
753
754 if (zio_injection_enabled)
755 delay(SEC_TO_TICK(zio_handle_io_delay(zio)));
756
757 mutex_enter(&vq->vq_lock);
758
759 vdev_queue_pending_remove(vq, zio);
760
761 zio->io_delta = gethrtime() - zio->io_timestamp;
762 vq->vq_io_complete_ts = gethrtime();
763 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
764
765 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
766 mutex_exit(&vq->vq_lock);
767 if (nio->io_done == vdev_queue_agg_io_done) {
768 zio_nowait(nio);
769 } else {
770 zio_vdev_io_reissue(nio);
771 zio_execute(nio);
772 }
773 mutex_enter(&vq->vq_lock);
774 }
775
776 mutex_exit(&vq->vq_lock);
777 }
778
779 #if defined(_KERNEL) && defined(HAVE_SPL)
780 module_param(zfs_vdev_aggregation_limit, int, 0644);
781 MODULE_PARM_DESC(zfs_vdev_aggregation_limit, "Max vdev I/O aggregation size");
782
783 module_param(zfs_vdev_read_gap_limit, int, 0644);
784 MODULE_PARM_DESC(zfs_vdev_read_gap_limit, "Aggregate read I/O over gap");
785
786 module_param(zfs_vdev_write_gap_limit, int, 0644);
787 MODULE_PARM_DESC(zfs_vdev_write_gap_limit, "Aggregate write I/O over gap");
788
789 module_param(zfs_vdev_max_active, int, 0644);
790 MODULE_PARM_DESC(zfs_vdev_max_active, "Maximum number of active I/Os per vdev");
791
792 module_param(zfs_vdev_async_write_active_max_dirty_percent, int, 0644);
793 MODULE_PARM_DESC(zfs_vdev_async_write_active_max_dirty_percent,
794 "Async write concurrency max threshold");
795
796 module_param(zfs_vdev_async_write_active_min_dirty_percent, int, 0644);
797 MODULE_PARM_DESC(zfs_vdev_async_write_active_min_dirty_percent,
798 "Async write concurrency min threshold");
799
800 module_param(zfs_vdev_async_read_max_active, int, 0644);
801 MODULE_PARM_DESC(zfs_vdev_async_read_max_active,
802 "Max active async read I/Os per vdev");
803
804 module_param(zfs_vdev_async_read_min_active, int, 0644);
805 MODULE_PARM_DESC(zfs_vdev_async_read_min_active,
806 "Min active async read I/Os per vdev");
807
808 module_param(zfs_vdev_async_write_max_active, int, 0644);
809 MODULE_PARM_DESC(zfs_vdev_async_write_max_active,
810 "Max active async write I/Os per vdev");
811
812 module_param(zfs_vdev_async_write_min_active, int, 0644);
813 MODULE_PARM_DESC(zfs_vdev_async_write_min_active,
814 "Min active async write I/Os per vdev");
815
816 module_param(zfs_vdev_scrub_max_active, int, 0644);
817 MODULE_PARM_DESC(zfs_vdev_scrub_max_active, "Max active scrub I/Os per vdev");
818
819 module_param(zfs_vdev_scrub_min_active, int, 0644);
820 MODULE_PARM_DESC(zfs_vdev_scrub_min_active, "Min active scrub I/Os per vdev");
821
822 module_param(zfs_vdev_sync_read_max_active, int, 0644);
823 MODULE_PARM_DESC(zfs_vdev_sync_read_max_active,
824 "Max active sync read I/Os per vdev");
825
826 module_param(zfs_vdev_sync_read_min_active, int, 0644);
827 MODULE_PARM_DESC(zfs_vdev_sync_read_min_active,
828 "Min active sync read I/Os per vdev");
829
830 module_param(zfs_vdev_sync_write_max_active, int, 0644);
831 MODULE_PARM_DESC(zfs_vdev_sync_write_max_active,
832 "Max active sync write I/Os per vdev");
833
834 module_param(zfs_vdev_sync_write_min_active, int, 0644);
835 MODULE_PARM_DESC(zfs_vdev_sync_write_min_active,
836 "Min active sync write I/Os per vdev");
837 #endif