]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_queue.c
Add device rebuild feature
[mirror_zfs.git] / module / zfs / vdev_queue.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 /*
27 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/spa_impl.h>
33 #include <sys/zio.h>
34 #include <sys/avl.h>
35 #include <sys/dsl_pool.h>
36 #include <sys/metaslab_impl.h>
37 #include <sys/spa.h>
38 #include <sys/spa_impl.h>
39 #include <sys/kstat.h>
40 #include <sys/abd.h>
41
42 /*
43 * ZFS I/O Scheduler
44 * ---------------
45 *
46 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The
47 * I/O scheduler determines when and in what order those operations are
48 * issued. The I/O scheduler divides operations into five I/O classes
49 * prioritized in the following order: sync read, sync write, async read,
50 * async write, and scrub/resilver. Each queue defines the minimum and
51 * maximum number of concurrent operations that may be issued to the device.
52 * In addition, the device has an aggregate maximum. Note that the sum of the
53 * per-queue minimums must not exceed the aggregate maximum. If the
54 * sum of the per-queue maximums exceeds the aggregate maximum, then the
55 * number of active i/os may reach zfs_vdev_max_active, in which case no
56 * further i/os will be issued regardless of whether all per-queue
57 * minimums have been met.
58 *
59 * For many physical devices, throughput increases with the number of
60 * concurrent operations, but latency typically suffers. Further, physical
61 * devices typically have a limit at which more concurrent operations have no
62 * effect on throughput or can actually cause it to decrease.
63 *
64 * The scheduler selects the next operation to issue by first looking for an
65 * I/O class whose minimum has not been satisfied. Once all are satisfied and
66 * the aggregate maximum has not been hit, the scheduler looks for classes
67 * whose maximum has not been satisfied. Iteration through the I/O classes is
68 * done in the order specified above. No further operations are issued if the
69 * aggregate maximum number of concurrent operations has been hit or if there
70 * are no operations queued for an I/O class that has not hit its maximum.
71 * Every time an i/o is queued or an operation completes, the I/O scheduler
72 * looks for new operations to issue.
73 *
74 * All I/O classes have a fixed maximum number of outstanding operations
75 * except for the async write class. Asynchronous writes represent the data
76 * that is committed to stable storage during the syncing stage for
77 * transaction groups (see txg.c). Transaction groups enter the syncing state
78 * periodically so the number of queued async writes will quickly burst up and
79 * then bleed down to zero. Rather than servicing them as quickly as possible,
80 * the I/O scheduler changes the maximum number of active async write i/os
81 * according to the amount of dirty data in the pool (see dsl_pool.c). Since
82 * both throughput and latency typically increase with the number of
83 * concurrent operations issued to physical devices, reducing the burstiness
84 * in the number of concurrent operations also stabilizes the response time of
85 * operations from other -- and in particular synchronous -- queues. In broad
86 * strokes, the I/O scheduler will issue more concurrent operations from the
87 * async write queue as there's more dirty data in the pool.
88 *
89 * Async Writes
90 *
91 * The number of concurrent operations issued for the async write I/O class
92 * follows a piece-wise linear function defined by a few adjustable points.
93 *
94 * | o---------| <-- zfs_vdev_async_write_max_active
95 * ^ | /^ |
96 * | | / | |
97 * active | / | |
98 * I/O | / | |
99 * count | / | |
100 * | / | |
101 * |------------o | | <-- zfs_vdev_async_write_min_active
102 * 0|____________^______|_________|
103 * 0% | | 100% of zfs_dirty_data_max
104 * | |
105 * | `-- zfs_vdev_async_write_active_max_dirty_percent
106 * `--------- zfs_vdev_async_write_active_min_dirty_percent
107 *
108 * Until the amount of dirty data exceeds a minimum percentage of the dirty
109 * data allowed in the pool, the I/O scheduler will limit the number of
110 * concurrent operations to the minimum. As that threshold is crossed, the
111 * number of concurrent operations issued increases linearly to the maximum at
112 * the specified maximum percentage of the dirty data allowed in the pool.
113 *
114 * Ideally, the amount of dirty data on a busy pool will stay in the sloped
115 * part of the function between zfs_vdev_async_write_active_min_dirty_percent
116 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the
117 * maximum percentage, this indicates that the rate of incoming data is
118 * greater than the rate that the backend storage can handle. In this case, we
119 * must further throttle incoming writes (see dmu_tx_delay() for details).
120 */
121
122 /*
123 * The maximum number of i/os active to each device. Ideally, this will be >=
124 * the sum of each queue's max_active. It must be at least the sum of each
125 * queue's min_active.
126 */
127 uint32_t zfs_vdev_max_active = 1000;
128
129 /*
130 * Per-queue limits on the number of i/os active to each device. If the
131 * number of active i/os is < zfs_vdev_max_active, then the min_active comes
132 * into play. We will send min_active from each queue, and then select from
133 * queues in the order defined by zio_priority_t.
134 *
135 * In general, smaller max_active's will lead to lower latency of synchronous
136 * operations. Larger max_active's may lead to higher overall throughput,
137 * depending on underlying storage.
138 *
139 * The ratio of the queues' max_actives determines the balance of performance
140 * between reads, writes, and scrubs. E.g., increasing
141 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete
142 * more quickly, but reads and writes to have higher latency and lower
143 * throughput.
144 */
145 uint32_t zfs_vdev_sync_read_min_active = 10;
146 uint32_t zfs_vdev_sync_read_max_active = 10;
147 uint32_t zfs_vdev_sync_write_min_active = 10;
148 uint32_t zfs_vdev_sync_write_max_active = 10;
149 uint32_t zfs_vdev_async_read_min_active = 1;
150 uint32_t zfs_vdev_async_read_max_active = 3;
151 uint32_t zfs_vdev_async_write_min_active = 2;
152 uint32_t zfs_vdev_async_write_max_active = 10;
153 uint32_t zfs_vdev_scrub_min_active = 1;
154 uint32_t zfs_vdev_scrub_max_active = 2;
155 uint32_t zfs_vdev_removal_min_active = 1;
156 uint32_t zfs_vdev_removal_max_active = 2;
157 uint32_t zfs_vdev_initializing_min_active = 1;
158 uint32_t zfs_vdev_initializing_max_active = 1;
159 uint32_t zfs_vdev_trim_min_active = 1;
160 uint32_t zfs_vdev_trim_max_active = 2;
161 uint32_t zfs_vdev_rebuild_min_active = 1;
162 uint32_t zfs_vdev_rebuild_max_active = 3;
163
164 /*
165 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent
166 * dirty data, use zfs_vdev_async_write_min_active. When it has more than
167 * zfs_vdev_async_write_active_max_dirty_percent, use
168 * zfs_vdev_async_write_max_active. The value is linearly interpolated
169 * between min and max.
170 */
171 int zfs_vdev_async_write_active_min_dirty_percent = 30;
172 int zfs_vdev_async_write_active_max_dirty_percent = 60;
173
174 /*
175 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O.
176 * For read I/Os, we also aggregate across small adjacency gaps; for writes
177 * we include spans of optional I/Os to aid aggregation at the disk even when
178 * they aren't able to help us aggregate at this level.
179 */
180 int zfs_vdev_aggregation_limit = 1 << 20;
181 int zfs_vdev_aggregation_limit_non_rotating = SPA_OLD_MAXBLOCKSIZE;
182 int zfs_vdev_read_gap_limit = 32 << 10;
183 int zfs_vdev_write_gap_limit = 4 << 10;
184
185 /*
186 * Define the queue depth percentage for each top-level. This percentage is
187 * used in conjunction with zfs_vdev_async_max_active to determine how many
188 * allocations a specific top-level vdev should handle. Once the queue depth
189 * reaches zfs_vdev_queue_depth_pct * zfs_vdev_async_write_max_active / 100
190 * then allocator will stop allocating blocks on that top-level device.
191 * The default kernel setting is 1000% which will yield 100 allocations per
192 * device. For userland testing, the default setting is 300% which equates
193 * to 30 allocations per device.
194 */
195 #ifdef _KERNEL
196 int zfs_vdev_queue_depth_pct = 1000;
197 #else
198 int zfs_vdev_queue_depth_pct = 300;
199 #endif
200
201 /*
202 * When performing allocations for a given metaslab, we want to make sure that
203 * there are enough IOs to aggregate together to improve throughput. We want to
204 * ensure that there are at least 128k worth of IOs that can be aggregated, and
205 * we assume that the average allocation size is 4k, so we need the queue depth
206 * to be 32 per allocator to get good aggregation of sequential writes.
207 */
208 int zfs_vdev_def_queue_depth = 32;
209
210 /*
211 * Allow TRIM I/Os to be aggregated. This should normally not be needed since
212 * TRIM I/O for extents up to zfs_trim_extent_bytes_max (128M) can be submitted
213 * by the TRIM code in zfs_trim.c.
214 */
215 int zfs_vdev_aggregate_trim = 0;
216
217 static int
218 vdev_queue_offset_compare(const void *x1, const void *x2)
219 {
220 const zio_t *z1 = (const zio_t *)x1;
221 const zio_t *z2 = (const zio_t *)x2;
222
223 int cmp = TREE_CMP(z1->io_offset, z2->io_offset);
224
225 if (likely(cmp))
226 return (cmp);
227
228 return (TREE_PCMP(z1, z2));
229 }
230
231 static inline avl_tree_t *
232 vdev_queue_class_tree(vdev_queue_t *vq, zio_priority_t p)
233 {
234 return (&vq->vq_class[p].vqc_queued_tree);
235 }
236
237 static inline avl_tree_t *
238 vdev_queue_type_tree(vdev_queue_t *vq, zio_type_t t)
239 {
240 ASSERT(t == ZIO_TYPE_READ || t == ZIO_TYPE_WRITE || t == ZIO_TYPE_TRIM);
241 if (t == ZIO_TYPE_READ)
242 return (&vq->vq_read_offset_tree);
243 else if (t == ZIO_TYPE_WRITE)
244 return (&vq->vq_write_offset_tree);
245 else
246 return (&vq->vq_trim_offset_tree);
247 }
248
249 static int
250 vdev_queue_timestamp_compare(const void *x1, const void *x2)
251 {
252 const zio_t *z1 = (const zio_t *)x1;
253 const zio_t *z2 = (const zio_t *)x2;
254
255 int cmp = TREE_CMP(z1->io_timestamp, z2->io_timestamp);
256
257 if (likely(cmp))
258 return (cmp);
259
260 return (TREE_PCMP(z1, z2));
261 }
262
263 static int
264 vdev_queue_class_min_active(zio_priority_t p)
265 {
266 switch (p) {
267 case ZIO_PRIORITY_SYNC_READ:
268 return (zfs_vdev_sync_read_min_active);
269 case ZIO_PRIORITY_SYNC_WRITE:
270 return (zfs_vdev_sync_write_min_active);
271 case ZIO_PRIORITY_ASYNC_READ:
272 return (zfs_vdev_async_read_min_active);
273 case ZIO_PRIORITY_ASYNC_WRITE:
274 return (zfs_vdev_async_write_min_active);
275 case ZIO_PRIORITY_SCRUB:
276 return (zfs_vdev_scrub_min_active);
277 case ZIO_PRIORITY_REMOVAL:
278 return (zfs_vdev_removal_min_active);
279 case ZIO_PRIORITY_INITIALIZING:
280 return (zfs_vdev_initializing_min_active);
281 case ZIO_PRIORITY_TRIM:
282 return (zfs_vdev_trim_min_active);
283 case ZIO_PRIORITY_REBUILD:
284 return (zfs_vdev_rebuild_min_active);
285 default:
286 panic("invalid priority %u", p);
287 return (0);
288 }
289 }
290
291 static int
292 vdev_queue_max_async_writes(spa_t *spa)
293 {
294 int writes;
295 uint64_t dirty = 0;
296 dsl_pool_t *dp = spa_get_dsl(spa);
297 uint64_t min_bytes = zfs_dirty_data_max *
298 zfs_vdev_async_write_active_min_dirty_percent / 100;
299 uint64_t max_bytes = zfs_dirty_data_max *
300 zfs_vdev_async_write_active_max_dirty_percent / 100;
301
302 /*
303 * Async writes may occur before the assignment of the spa's
304 * dsl_pool_t if a self-healing zio is issued prior to the
305 * completion of dmu_objset_open_impl().
306 */
307 if (dp == NULL)
308 return (zfs_vdev_async_write_max_active);
309
310 /*
311 * Sync tasks correspond to interactive user actions. To reduce the
312 * execution time of those actions we push data out as fast as possible.
313 */
314 if (spa_has_pending_synctask(spa))
315 return (zfs_vdev_async_write_max_active);
316
317 dirty = dp->dp_dirty_total;
318 if (dirty < min_bytes)
319 return (zfs_vdev_async_write_min_active);
320 if (dirty > max_bytes)
321 return (zfs_vdev_async_write_max_active);
322
323 /*
324 * linear interpolation:
325 * slope = (max_writes - min_writes) / (max_bytes - min_bytes)
326 * move right by min_bytes
327 * move up by min_writes
328 */
329 writes = (dirty - min_bytes) *
330 (zfs_vdev_async_write_max_active -
331 zfs_vdev_async_write_min_active) /
332 (max_bytes - min_bytes) +
333 zfs_vdev_async_write_min_active;
334 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active);
335 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active);
336 return (writes);
337 }
338
339 static int
340 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p)
341 {
342 switch (p) {
343 case ZIO_PRIORITY_SYNC_READ:
344 return (zfs_vdev_sync_read_max_active);
345 case ZIO_PRIORITY_SYNC_WRITE:
346 return (zfs_vdev_sync_write_max_active);
347 case ZIO_PRIORITY_ASYNC_READ:
348 return (zfs_vdev_async_read_max_active);
349 case ZIO_PRIORITY_ASYNC_WRITE:
350 return (vdev_queue_max_async_writes(spa));
351 case ZIO_PRIORITY_SCRUB:
352 return (zfs_vdev_scrub_max_active);
353 case ZIO_PRIORITY_REMOVAL:
354 return (zfs_vdev_removal_max_active);
355 case ZIO_PRIORITY_INITIALIZING:
356 return (zfs_vdev_initializing_max_active);
357 case ZIO_PRIORITY_TRIM:
358 return (zfs_vdev_trim_max_active);
359 case ZIO_PRIORITY_REBUILD:
360 return (zfs_vdev_rebuild_max_active);
361 default:
362 panic("invalid priority %u", p);
363 return (0);
364 }
365 }
366
367 /*
368 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if
369 * there is no eligible class.
370 */
371 static zio_priority_t
372 vdev_queue_class_to_issue(vdev_queue_t *vq)
373 {
374 spa_t *spa = vq->vq_vdev->vdev_spa;
375 zio_priority_t p;
376
377 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active)
378 return (ZIO_PRIORITY_NUM_QUEUEABLE);
379
380 /* find a queue that has not reached its minimum # outstanding i/os */
381 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
382 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
383 vq->vq_class[p].vqc_active <
384 vdev_queue_class_min_active(p))
385 return (p);
386 }
387
388 /*
389 * If we haven't found a queue, look for one that hasn't reached its
390 * maximum # outstanding i/os.
391 */
392 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
393 if (avl_numnodes(vdev_queue_class_tree(vq, p)) > 0 &&
394 vq->vq_class[p].vqc_active <
395 vdev_queue_class_max_active(spa, p))
396 return (p);
397 }
398
399 /* No eligible queued i/os */
400 return (ZIO_PRIORITY_NUM_QUEUEABLE);
401 }
402
403 void
404 vdev_queue_init(vdev_t *vd)
405 {
406 vdev_queue_t *vq = &vd->vdev_queue;
407 zio_priority_t p;
408
409 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL);
410 vq->vq_vdev = vd;
411 taskq_init_ent(&vd->vdev_queue.vq_io_search.io_tqent);
412
413 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare,
414 sizeof (zio_t), offsetof(struct zio, io_queue_node));
415 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_READ),
416 vdev_queue_offset_compare, sizeof (zio_t),
417 offsetof(struct zio, io_offset_node));
418 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE),
419 vdev_queue_offset_compare, sizeof (zio_t),
420 offsetof(struct zio, io_offset_node));
421 avl_create(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM),
422 vdev_queue_offset_compare, sizeof (zio_t),
423 offsetof(struct zio, io_offset_node));
424
425 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) {
426 int (*compfn) (const void *, const void *);
427
428 /*
429 * The synchronous/trim i/o queues are dispatched in FIFO rather
430 * than LBA order. This provides more consistent latency for
431 * these i/os.
432 */
433 if (p == ZIO_PRIORITY_SYNC_READ ||
434 p == ZIO_PRIORITY_SYNC_WRITE ||
435 p == ZIO_PRIORITY_TRIM) {
436 compfn = vdev_queue_timestamp_compare;
437 } else {
438 compfn = vdev_queue_offset_compare;
439 }
440 avl_create(vdev_queue_class_tree(vq, p), compfn,
441 sizeof (zio_t), offsetof(struct zio, io_queue_node));
442 }
443
444 vq->vq_last_offset = 0;
445 }
446
447 void
448 vdev_queue_fini(vdev_t *vd)
449 {
450 vdev_queue_t *vq = &vd->vdev_queue;
451
452 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++)
453 avl_destroy(vdev_queue_class_tree(vq, p));
454 avl_destroy(&vq->vq_active_tree);
455 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_READ));
456 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_WRITE));
457 avl_destroy(vdev_queue_type_tree(vq, ZIO_TYPE_TRIM));
458
459 mutex_destroy(&vq->vq_lock);
460 }
461
462 static void
463 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio)
464 {
465 spa_t *spa = zio->io_spa;
466 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
467
468 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
469 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
470 avl_add(vdev_queue_type_tree(vq, zio->io_type), zio);
471
472 if (shk->kstat != NULL) {
473 mutex_enter(&shk->lock);
474 kstat_waitq_enter(shk->kstat->ks_data);
475 mutex_exit(&shk->lock);
476 }
477 }
478
479 static void
480 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio)
481 {
482 spa_t *spa = zio->io_spa;
483 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
484
485 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
486 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
487 avl_remove(vdev_queue_type_tree(vq, zio->io_type), zio);
488
489 if (shk->kstat != NULL) {
490 mutex_enter(&shk->lock);
491 kstat_waitq_exit(shk->kstat->ks_data);
492 mutex_exit(&shk->lock);
493 }
494 }
495
496 static void
497 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio)
498 {
499 spa_t *spa = zio->io_spa;
500 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
501
502 ASSERT(MUTEX_HELD(&vq->vq_lock));
503 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
504 vq->vq_class[zio->io_priority].vqc_active++;
505 avl_add(&vq->vq_active_tree, zio);
506
507 if (shk->kstat != NULL) {
508 mutex_enter(&shk->lock);
509 kstat_runq_enter(shk->kstat->ks_data);
510 mutex_exit(&shk->lock);
511 }
512 }
513
514 static void
515 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio)
516 {
517 spa_t *spa = zio->io_spa;
518 spa_history_kstat_t *shk = &spa->spa_stats.io_history;
519
520 ASSERT(MUTEX_HELD(&vq->vq_lock));
521 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
522 vq->vq_class[zio->io_priority].vqc_active--;
523 avl_remove(&vq->vq_active_tree, zio);
524
525 if (shk->kstat != NULL) {
526 kstat_io_t *ksio = shk->kstat->ks_data;
527
528 mutex_enter(&shk->lock);
529 kstat_runq_exit(ksio);
530 if (zio->io_type == ZIO_TYPE_READ) {
531 ksio->reads++;
532 ksio->nread += zio->io_size;
533 } else if (zio->io_type == ZIO_TYPE_WRITE) {
534 ksio->writes++;
535 ksio->nwritten += zio->io_size;
536 }
537 mutex_exit(&shk->lock);
538 }
539 }
540
541 static void
542 vdev_queue_agg_io_done(zio_t *aio)
543 {
544 abd_free(aio->io_abd);
545 }
546
547 /*
548 * Compute the range spanned by two i/os, which is the endpoint of the last
549 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset).
550 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio);
551 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0.
552 */
553 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset)
554 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio))
555
556 /*
557 * Sufficiently adjacent io_offset's in ZIOs will be aggregated. We do this
558 * by creating a gang ABD from the adjacent ZIOs io_abd's. By using
559 * a gang ABD we avoid doing memory copies to and from the parent,
560 * child ZIOs. The gang ABD also accounts for gaps between adjacent
561 * io_offsets by simply getting the zero ABD for writes or allocating
562 * a new ABD for reads and placing them in the gang ABD as well.
563 */
564 static zio_t *
565 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio)
566 {
567 zio_t *first, *last, *aio, *dio, *mandatory, *nio;
568 zio_link_t *zl = NULL;
569 uint64_t maxgap = 0;
570 uint64_t size;
571 uint64_t limit;
572 int maxblocksize;
573 boolean_t stretch = B_FALSE;
574 avl_tree_t *t = vdev_queue_type_tree(vq, zio->io_type);
575 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT;
576 uint64_t next_offset;
577 abd_t *abd;
578
579 maxblocksize = spa_maxblocksize(vq->vq_vdev->vdev_spa);
580 if (vq->vq_vdev->vdev_nonrot)
581 limit = zfs_vdev_aggregation_limit_non_rotating;
582 else
583 limit = zfs_vdev_aggregation_limit;
584 limit = MAX(MIN(limit, maxblocksize), 0);
585
586 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE || limit == 0)
587 return (NULL);
588
589 /*
590 * While TRIM commands could be aggregated based on offset this
591 * behavior is disabled until it's determined to be beneficial.
592 */
593 if (zio->io_type == ZIO_TYPE_TRIM && !zfs_vdev_aggregate_trim)
594 return (NULL);
595
596 first = last = zio;
597
598 if (zio->io_type == ZIO_TYPE_READ)
599 maxgap = zfs_vdev_read_gap_limit;
600
601 /*
602 * We can aggregate I/Os that are sufficiently adjacent and of
603 * the same flavor, as expressed by the AGG_INHERIT flags.
604 * The latter requirement is necessary so that certain
605 * attributes of the I/O, such as whether it's a normal I/O
606 * or a scrub/resilver, can be preserved in the aggregate.
607 * We can include optional I/Os, but don't allow them
608 * to begin a range as they add no benefit in that situation.
609 */
610
611 /*
612 * We keep track of the last non-optional I/O.
613 */
614 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first;
615
616 /*
617 * Walk backwards through sufficiently contiguous I/Os
618 * recording the last non-optional I/O.
619 */
620 while ((dio = AVL_PREV(t, first)) != NULL &&
621 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
622 IO_SPAN(dio, last) <= limit &&
623 IO_GAP(dio, first) <= maxgap &&
624 dio->io_type == zio->io_type) {
625 first = dio;
626 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL))
627 mandatory = first;
628 }
629
630 /*
631 * Skip any initial optional I/Os.
632 */
633 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) {
634 first = AVL_NEXT(t, first);
635 ASSERT(first != NULL);
636 }
637
638
639 /*
640 * Walk forward through sufficiently contiguous I/Os.
641 * The aggregation limit does not apply to optional i/os, so that
642 * we can issue contiguous writes even if they are larger than the
643 * aggregation limit.
644 */
645 while ((dio = AVL_NEXT(t, last)) != NULL &&
646 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags &&
647 (IO_SPAN(first, dio) <= limit ||
648 (dio->io_flags & ZIO_FLAG_OPTIONAL)) &&
649 IO_SPAN(first, dio) <= maxblocksize &&
650 IO_GAP(last, dio) <= maxgap &&
651 dio->io_type == zio->io_type) {
652 last = dio;
653 if (!(last->io_flags & ZIO_FLAG_OPTIONAL))
654 mandatory = last;
655 }
656
657 /*
658 * Now that we've established the range of the I/O aggregation
659 * we must decide what to do with trailing optional I/Os.
660 * For reads, there's nothing to do. While we are unable to
661 * aggregate further, it's possible that a trailing optional
662 * I/O would allow the underlying device to aggregate with
663 * subsequent I/Os. We must therefore determine if the next
664 * non-optional I/O is close enough to make aggregation
665 * worthwhile.
666 */
667 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) {
668 zio_t *nio = last;
669 while ((dio = AVL_NEXT(t, nio)) != NULL &&
670 IO_GAP(nio, dio) == 0 &&
671 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) {
672 nio = dio;
673 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) {
674 stretch = B_TRUE;
675 break;
676 }
677 }
678 }
679
680 if (stretch) {
681 /*
682 * We are going to include an optional io in our aggregated
683 * span, thus closing the write gap. Only mandatory i/os can
684 * start aggregated spans, so make sure that the next i/o
685 * after our span is mandatory.
686 */
687 dio = AVL_NEXT(t, last);
688 dio->io_flags &= ~ZIO_FLAG_OPTIONAL;
689 } else {
690 /* do not include the optional i/o */
691 while (last != mandatory && last != first) {
692 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL);
693 last = AVL_PREV(t, last);
694 ASSERT(last != NULL);
695 }
696 }
697
698 if (first == last)
699 return (NULL);
700
701 size = IO_SPAN(first, last);
702 ASSERT3U(size, <=, maxblocksize);
703
704 abd = abd_alloc_gang_abd();
705 if (abd == NULL)
706 return (NULL);
707
708 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset,
709 abd, size, first->io_type, zio->io_priority,
710 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE,
711 vdev_queue_agg_io_done, NULL);
712 aio->io_timestamp = first->io_timestamp;
713
714 nio = first;
715 next_offset = first->io_offset;
716 do {
717 dio = nio;
718 nio = AVL_NEXT(t, dio);
719 zio_add_child(dio, aio);
720 vdev_queue_io_remove(vq, dio);
721
722 if (dio->io_offset != next_offset) {
723 /* allocate a buffer for a read gap */
724 ASSERT3U(dio->io_type, ==, ZIO_TYPE_READ);
725 ASSERT3U(dio->io_offset, >, next_offset);
726 abd = abd_alloc_for_io(
727 dio->io_offset - next_offset, B_TRUE);
728 abd_gang_add(aio->io_abd, abd, B_TRUE);
729 }
730 if (dio->io_abd &&
731 (dio->io_size != abd_get_size(dio->io_abd))) {
732 /* abd size not the same as IO size */
733 ASSERT3U(abd_get_size(dio->io_abd), >, dio->io_size);
734 abd = abd_get_offset_size(dio->io_abd, 0, dio->io_size);
735 abd_gang_add(aio->io_abd, abd, B_TRUE);
736 } else {
737 if (dio->io_flags & ZIO_FLAG_NODATA) {
738 /* allocate a buffer for a write gap */
739 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE);
740 ASSERT3P(dio->io_abd, ==, NULL);
741 abd_gang_add(aio->io_abd,
742 abd_get_zeros(dio->io_size), B_TRUE);
743 } else {
744 /*
745 * We pass B_FALSE to abd_gang_add()
746 * because we did not allocate a new
747 * ABD, so it is assumed the caller
748 * will free this ABD.
749 */
750 abd_gang_add(aio->io_abd, dio->io_abd,
751 B_FALSE);
752 }
753 }
754 next_offset = dio->io_offset + dio->io_size;
755 } while (dio != last);
756 ASSERT3U(abd_get_size(aio->io_abd), ==, aio->io_size);
757
758 /*
759 * We need to drop the vdev queue's lock during zio_execute() to
760 * avoid a deadlock that we could encounter due to lock order
761 * reversal between vq_lock and io_lock in zio_change_priority().
762 */
763 mutex_exit(&vq->vq_lock);
764 while ((dio = zio_walk_parents(aio, &zl)) != NULL) {
765 ASSERT3U(dio->io_type, ==, aio->io_type);
766
767 zio_vdev_io_bypass(dio);
768 zio_execute(dio);
769 }
770 mutex_enter(&vq->vq_lock);
771
772 return (aio);
773 }
774
775 static zio_t *
776 vdev_queue_io_to_issue(vdev_queue_t *vq)
777 {
778 zio_t *zio, *aio;
779 zio_priority_t p;
780 avl_index_t idx;
781 avl_tree_t *tree;
782
783 again:
784 ASSERT(MUTEX_HELD(&vq->vq_lock));
785
786 p = vdev_queue_class_to_issue(vq);
787
788 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) {
789 /* No eligible queued i/os */
790 return (NULL);
791 }
792
793 /*
794 * For LBA-ordered queues (async / scrub / initializing), issue the
795 * i/o which follows the most recently issued i/o in LBA (offset) order.
796 *
797 * For FIFO queues (sync/trim), issue the i/o with the lowest timestamp.
798 */
799 tree = vdev_queue_class_tree(vq, p);
800 vq->vq_io_search.io_timestamp = 0;
801 vq->vq_io_search.io_offset = vq->vq_last_offset - 1;
802 VERIFY3P(avl_find(tree, &vq->vq_io_search, &idx), ==, NULL);
803 zio = avl_nearest(tree, idx, AVL_AFTER);
804 if (zio == NULL)
805 zio = avl_first(tree);
806 ASSERT3U(zio->io_priority, ==, p);
807
808 aio = vdev_queue_aggregate(vq, zio);
809 if (aio != NULL)
810 zio = aio;
811 else
812 vdev_queue_io_remove(vq, zio);
813
814 /*
815 * If the I/O is or was optional and therefore has no data, we need to
816 * simply discard it. We need to drop the vdev queue's lock to avoid a
817 * deadlock that we could encounter since this I/O will complete
818 * immediately.
819 */
820 if (zio->io_flags & ZIO_FLAG_NODATA) {
821 mutex_exit(&vq->vq_lock);
822 zio_vdev_io_bypass(zio);
823 zio_execute(zio);
824 mutex_enter(&vq->vq_lock);
825 goto again;
826 }
827
828 vdev_queue_pending_add(vq, zio);
829 vq->vq_last_offset = zio->io_offset + zio->io_size;
830
831 return (zio);
832 }
833
834 zio_t *
835 vdev_queue_io(zio_t *zio)
836 {
837 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
838 zio_t *nio;
839
840 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE)
841 return (zio);
842
843 /*
844 * Children i/os inherent their parent's priority, which might
845 * not match the child's i/o type. Fix it up here.
846 */
847 if (zio->io_type == ZIO_TYPE_READ) {
848 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
849
850 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ &&
851 zio->io_priority != ZIO_PRIORITY_ASYNC_READ &&
852 zio->io_priority != ZIO_PRIORITY_SCRUB &&
853 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
854 zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
855 zio->io_priority != ZIO_PRIORITY_REBUILD) {
856 zio->io_priority = ZIO_PRIORITY_ASYNC_READ;
857 }
858 } else if (zio->io_type == ZIO_TYPE_WRITE) {
859 ASSERT(zio->io_priority != ZIO_PRIORITY_TRIM);
860
861 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE &&
862 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE &&
863 zio->io_priority != ZIO_PRIORITY_REMOVAL &&
864 zio->io_priority != ZIO_PRIORITY_INITIALIZING &&
865 zio->io_priority != ZIO_PRIORITY_REBUILD) {
866 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE;
867 }
868 } else {
869 ASSERT(zio->io_type == ZIO_TYPE_TRIM);
870 ASSERT(zio->io_priority == ZIO_PRIORITY_TRIM);
871 }
872
873 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE;
874
875 mutex_enter(&vq->vq_lock);
876 zio->io_timestamp = gethrtime();
877 vdev_queue_io_add(vq, zio);
878 nio = vdev_queue_io_to_issue(vq);
879 mutex_exit(&vq->vq_lock);
880
881 if (nio == NULL)
882 return (NULL);
883
884 if (nio->io_done == vdev_queue_agg_io_done) {
885 zio_nowait(nio);
886 return (NULL);
887 }
888
889 return (nio);
890 }
891
892 void
893 vdev_queue_io_done(zio_t *zio)
894 {
895 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
896 zio_t *nio;
897
898 mutex_enter(&vq->vq_lock);
899
900 vdev_queue_pending_remove(vq, zio);
901
902 zio->io_delta = gethrtime() - zio->io_timestamp;
903 vq->vq_io_complete_ts = gethrtime();
904 vq->vq_io_delta_ts = vq->vq_io_complete_ts - zio->io_timestamp;
905
906 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) {
907 mutex_exit(&vq->vq_lock);
908 if (nio->io_done == vdev_queue_agg_io_done) {
909 zio_nowait(nio);
910 } else {
911 zio_vdev_io_reissue(nio);
912 zio_execute(nio);
913 }
914 mutex_enter(&vq->vq_lock);
915 }
916
917 mutex_exit(&vq->vq_lock);
918 }
919
920 void
921 vdev_queue_change_io_priority(zio_t *zio, zio_priority_t priority)
922 {
923 vdev_queue_t *vq = &zio->io_vd->vdev_queue;
924 avl_tree_t *tree;
925
926 /*
927 * ZIO_PRIORITY_NOW is used by the vdev cache code and the aggregate zio
928 * code to issue IOs without adding them to the vdev queue. In this
929 * case, the zio is already going to be issued as quickly as possible
930 * and so it doesn't need any reprioritization to help.
931 */
932 if (zio->io_priority == ZIO_PRIORITY_NOW)
933 return;
934
935 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
936 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
937
938 if (zio->io_type == ZIO_TYPE_READ) {
939 if (priority != ZIO_PRIORITY_SYNC_READ &&
940 priority != ZIO_PRIORITY_ASYNC_READ &&
941 priority != ZIO_PRIORITY_SCRUB)
942 priority = ZIO_PRIORITY_ASYNC_READ;
943 } else {
944 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
945 if (priority != ZIO_PRIORITY_SYNC_WRITE &&
946 priority != ZIO_PRIORITY_ASYNC_WRITE)
947 priority = ZIO_PRIORITY_ASYNC_WRITE;
948 }
949
950 mutex_enter(&vq->vq_lock);
951
952 /*
953 * If the zio is in none of the queues we can simply change
954 * the priority. If the zio is waiting to be submitted we must
955 * remove it from the queue and re-insert it with the new priority.
956 * Otherwise, the zio is currently active and we cannot change its
957 * priority.
958 */
959 tree = vdev_queue_class_tree(vq, zio->io_priority);
960 if (avl_find(tree, zio, NULL) == zio) {
961 avl_remove(vdev_queue_class_tree(vq, zio->io_priority), zio);
962 zio->io_priority = priority;
963 avl_add(vdev_queue_class_tree(vq, zio->io_priority), zio);
964 } else if (avl_find(&vq->vq_active_tree, zio, NULL) != zio) {
965 zio->io_priority = priority;
966 }
967
968 mutex_exit(&vq->vq_lock);
969 }
970
971 /*
972 * As these two methods are only used for load calculations we're not
973 * concerned if we get an incorrect value on 32bit platforms due to lack of
974 * vq_lock mutex use here, instead we prefer to keep it lock free for
975 * performance.
976 */
977 int
978 vdev_queue_length(vdev_t *vd)
979 {
980 return (avl_numnodes(&vd->vdev_queue.vq_active_tree));
981 }
982
983 uint64_t
984 vdev_queue_last_offset(vdev_t *vd)
985 {
986 return (vd->vdev_queue.vq_last_offset);
987 }
988
989 /* BEGIN CSTYLED */
990 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit, INT, ZMOD_RW,
991 "Max vdev I/O aggregation size");
992
993 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregation_limit_non_rotating, INT, ZMOD_RW,
994 "Max vdev I/O aggregation size for non-rotating media");
995
996 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, aggregate_trim, INT, ZMOD_RW,
997 "Allow TRIM I/O to be aggregated");
998
999 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, read_gap_limit, INT, ZMOD_RW,
1000 "Aggregate read I/O over gap");
1001
1002 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, write_gap_limit, INT, ZMOD_RW,
1003 "Aggregate write I/O over gap");
1004
1005 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_active, INT, ZMOD_RW,
1006 "Maximum number of active I/Os per vdev");
1007
1008 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_max_dirty_percent, INT, ZMOD_RW,
1009 "Async write concurrency max threshold");
1010
1011 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_active_min_dirty_percent, INT, ZMOD_RW,
1012 "Async write concurrency min threshold");
1013
1014 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_max_active, INT, ZMOD_RW,
1015 "Max active async read I/Os per vdev");
1016
1017 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_read_min_active, INT, ZMOD_RW,
1018 "Min active async read I/Os per vdev");
1019
1020 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_max_active, INT, ZMOD_RW,
1021 "Max active async write I/Os per vdev");
1022
1023 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, async_write_min_active, INT, ZMOD_RW,
1024 "Min active async write I/Os per vdev");
1025
1026 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_max_active, INT, ZMOD_RW,
1027 "Max active initializing I/Os per vdev");
1028
1029 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, initializing_min_active, INT, ZMOD_RW,
1030 "Min active initializing I/Os per vdev");
1031
1032 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_max_active, INT, ZMOD_RW,
1033 "Max active removal I/Os per vdev");
1034
1035 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, removal_min_active, INT, ZMOD_RW,
1036 "Min active removal I/Os per vdev");
1037
1038 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_max_active, INT, ZMOD_RW,
1039 "Max active scrub I/Os per vdev");
1040
1041 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, scrub_min_active, INT, ZMOD_RW,
1042 "Min active scrub I/Os per vdev");
1043
1044 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_max_active, INT, ZMOD_RW,
1045 "Max active sync read I/Os per vdev");
1046
1047 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_read_min_active, INT, ZMOD_RW,
1048 "Min active sync read I/Os per vdev");
1049
1050 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_max_active, INT, ZMOD_RW,
1051 "Max active sync write I/Os per vdev");
1052
1053 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, sync_write_min_active, INT, ZMOD_RW,
1054 "Min active sync write I/Os per vdev");
1055
1056 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_max_active, INT, ZMOD_RW,
1057 "Max active trim/discard I/Os per vdev");
1058
1059 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, trim_min_active, INT, ZMOD_RW,
1060 "Min active trim/discard I/Os per vdev");
1061
1062 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_max_active, INT, ZMOD_RW,
1063 "Max active rebuild I/Os per vdev");
1064
1065 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, rebuild_min_active, INT, ZMOD_RW,
1066 "Min active rebuild I/Os per vdev");
1067
1068 ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, queue_depth_pct, INT, ZMOD_RW,
1069 "Queue depth percentage for each top-level vdev");
1070 /* END CSTYLED */