]> git.proxmox.com Git - mirror_edk2.git/blame_incremental - PerformancePkg/Library/TscTimerLib/TscTimerLibShare.c
BaseTools: Update Python Makefile to include the new added python files
[mirror_edk2.git] / PerformancePkg / Library / TscTimerLib / TscTimerLibShare.c
... / ...
CommitLineData
1/** @file\r
2 The Timer Library implementation which uses the Time Stamp Counter in the processor.\r
3\r
4 For Pentium 4 processors, Intel Xeon processors (family [0FH], models [03H and higher]);\r
5 for Intel Core Solo and Intel Core Duo processors (family [06H], model [0EH]);\r
6 for the Intel Xeon processor 5100 series and Intel Core 2 Duo processors (family [06H], model [0FH]);\r
7 for Intel Core 2 and Intel Xeon processors (family [06H], display_model [17H]);\r
8 for Intel Atom processors (family [06H], display_model [1CH]):\r
9 the time-stamp counter increments at a constant rate.\r
10 That rate may be set by the maximum core-clock to bus-clock ratio of the processor or may be set by\r
11 the maximum resolved frequency at which the processor is booted. The maximum resolved frequency may\r
12 differ from the maximum qualified frequency of the processor.\r
13\r
14 The specific processor configuration determines the behavior. Constant TSC behavior ensures that the\r
15 duration of each clock tick is uniform and supports the use of the TSC as a wall clock timer even if\r
16 the processor core changes frequency. This is the architectural behavior moving forward.\r
17\r
18 A Processor's support for invariant TSC is indicated by CPUID.0x80000007.EDX[8].\r
19\r
20 Copyright (c) 2009 - 2011, Intel Corporation. All rights reserved.<BR>\r
21 This program and the accompanying materials\r
22 are licensed and made available under the terms and conditions of the BSD License\r
23 which accompanies this distribution. The full text of the license may be found at\r
24 http://opensource.org/licenses/bsd-license.php\r
25\r
26 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,\r
27 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.\r
28\r
29**/\r
30\r
31#include "TscTimerLibInternal.h"\r
32\r
33/** Calculate TSC frequency.\r
34\r
35 The TSC counting frequency is determined by comparing how far it counts\r
36 during a 1ms period as determined by the ACPI timer. The ACPI timer is\r
37 used because it counts at a known frequency.\r
38 If ACPI I/O space not enabled, this function will enable it. Then the\r
39 TSC is sampled, followed by waiting for 3579 clocks of the ACPI timer, or 1ms.\r
40 The TSC is then sampled again. The difference multiplied by 1000 is the TSC\r
41 frequency. There will be a small error because of the overhead of reading\r
42 the ACPI timer. An attempt is made to determine and compensate for this error.\r
43\r
44 @return The number of TSC counts per second.\r
45\r
46**/\r
47UINT64\r
48InternalCalculateTscFrequency (\r
49 VOID\r
50 )\r
51{\r
52 UINT64 StartTSC;\r
53 UINT64 EndTSC;\r
54 UINT32 TimerAddr;\r
55 UINT32 Ticks;\r
56 UINT64 TscFrequency;\r
57\r
58 //\r
59 // If ACPI I/O space is not enabled yet, program ACPI I/O base address and enable it.\r
60 //\r
61 if ((PciRead8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT)) & B_ICH_LPC_ACPI_CNT_ACPI_EN) == 0) {\r
62 PciWrite16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE), PcdGet16 (PcdPerfPkgAcpiIoPortBaseAddress));\r
63 PciOr8 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_CNT), B_ICH_LPC_ACPI_CNT_ACPI_EN);\r
64 }\r
65\r
66 //\r
67 // ACPI I/O space should be enabled now, locate the ACPI Timer.\r
68 // ACPI I/O base address maybe have be initialized by other driver with different value,\r
69 // So get it from PCI space directly.\r
70 //\r
71 TimerAddr = ((PciRead16 (PCI_ICH_LPC_ADDRESS (R_ICH_LPC_ACPI_BASE))) & B_ICH_LPC_ACPI_BASE_BAR) + R_ACPI_PM1_TMR;\r
72 Ticks = IoRead32 (TimerAddr) + (3579); // Set Ticks to 1ms in the future\r
73 StartTSC = AsmReadTsc(); // Get base value for the TSC\r
74 //\r
75 // Wait until the ACPI timer has counted 1ms.\r
76 // Timer wrap-arounds are handled correctly by this function.\r
77 // When the current ACPI timer value is greater than 'Ticks', the while loop will exit.\r
78 //\r
79 while (((Ticks - IoRead32 (TimerAddr)) & BIT23) == 0) {\r
80 CpuPause();\r
81 }\r
82 EndTSC = AsmReadTsc(); // TSC value 1ms later\r
83\r
84 TscFrequency = MultU64x32 (\r
85 (EndTSC - StartTSC), // Number of TSC counts in 1ms\r
86 1000 // Number of ms in a second\r
87 );\r
88\r
89 return TscFrequency;\r
90}\r
91\r
92/** Stalls the CPU for at least the given number of ticks.\r
93\r
94 Stalls the CPU for at least the given number of ticks. It's invoked by\r
95 MicroSecondDelay() and NanoSecondDelay().\r
96\r
97 @param[in] Delay A period of time to delay in ticks.\r
98\r
99**/\r
100VOID\r
101InternalX86Delay (\r
102 IN UINT64 Delay\r
103 )\r
104{\r
105 UINT64 Ticks;\r
106\r
107 //\r
108 // The target timer count is calculated here\r
109 //\r
110 Ticks = AsmReadTsc() + Delay;\r
111\r
112 //\r
113 // Wait until time out\r
114 // Timer wrap-arounds are NOT handled correctly by this function.\r
115 // Thus, this function must be called within 10 years of reset since\r
116 // Intel guarantees a minimum of 10 years before the TSC wraps.\r
117 //\r
118 while (AsmReadTsc() <= Ticks) CpuPause();\r
119}\r
120\r
121/** Stalls the CPU for at least the specified number of MicroSeconds.\r
122\r
123 @param[in] MicroSeconds The minimum number of microseconds to delay.\r
124\r
125 @return The value of MicroSeconds input.\r
126\r
127**/\r
128UINTN\r
129EFIAPI\r
130MicroSecondDelay (\r
131 IN UINTN MicroSeconds\r
132 )\r
133{\r
134 InternalX86Delay (\r
135 DivU64x32 (\r
136 MultU64x64 (\r
137 InternalGetTscFrequency (),\r
138 MicroSeconds\r
139 ),\r
140 1000000u\r
141 )\r
142 );\r
143 return MicroSeconds;\r
144}\r
145\r
146/** Stalls the CPU for at least the specified number of NanoSeconds.\r
147\r
148 @param[in] NanoSeconds The minimum number of nanoseconds to delay.\r
149\r
150 @return The value of NanoSeconds input.\r
151\r
152**/\r
153UINTN\r
154EFIAPI\r
155NanoSecondDelay (\r
156 IN UINTN NanoSeconds\r
157 )\r
158{\r
159 InternalX86Delay (\r
160 DivU64x32 (\r
161 MultU64x32 (\r
162 InternalGetTscFrequency (),\r
163 (UINT32)NanoSeconds\r
164 ),\r
165 1000000000u\r
166 )\r
167 );\r
168 return NanoSeconds;\r
169}\r
170\r
171/** Retrieves the current value of the 64-bit free running Time-Stamp counter.\r
172\r
173 The time-stamp counter (as implemented in the P6 family, Pentium, Pentium M,\r
174 Pentium 4, Intel Xeon, Intel Core Solo and Intel Core Duo processors and\r
175 later processors) is a 64-bit counter that is set to 0 following a RESET of\r
176 the processor. Following a RESET, the counter increments even when the\r
177 processor is halted by the HLT instruction or the external STPCLK# pin. Note\r
178 that the assertion of the external DPSLP# pin may cause the time-stamp\r
179 counter to stop.\r
180\r
181 The properties of the counter can be retrieved by the\r
182 GetPerformanceCounterProperties() function.\r
183\r
184 @return The current value of the free running performance counter.\r
185\r
186**/\r
187UINT64\r
188EFIAPI\r
189GetPerformanceCounter (\r
190 VOID\r
191 )\r
192{\r
193 return AsmReadTsc();\r
194}\r
195\r
196/** Retrieves the 64-bit frequency in Hz and the range of performance counter\r
197 values.\r
198\r
199 If StartValue is not NULL, then the value that the performance counter starts\r
200 with, 0x0, is returned in StartValue. If EndValue is not NULL, then the value\r
201 that the performance counter end with, 0xFFFFFFFFFFFFFFFF, is returned in\r
202 EndValue.\r
203\r
204 The 64-bit frequency of the performance counter, in Hz, is always returned.\r
205 To determine average processor clock frequency, Intel recommends the use of\r
206 EMON logic to count processor core clocks over the period of time for which\r
207 the average is required.\r
208\r
209\r
210 @param[out] StartValue Pointer to where the performance counter's starting value is saved, or NULL.\r
211 @param[out] EndValue Pointer to where the performance counter's ending value is saved, or NULL.\r
212\r
213 @return The frequency in Hz.\r
214\r
215**/\r
216UINT64\r
217EFIAPI\r
218GetPerformanceCounterProperties (\r
219 OUT UINT64 *StartValue, OPTIONAL\r
220 OUT UINT64 *EndValue OPTIONAL\r
221 )\r
222{\r
223 if (StartValue != NULL) {\r
224 *StartValue = 0;\r
225 }\r
226 if (EndValue != NULL) {\r
227 *EndValue = 0xFFFFFFFFFFFFFFFFull;\r
228 }\r
229\r
230 return InternalGetTscFrequency ();\r
231}\r
232\r
233/**\r
234 Converts elapsed ticks of performance counter to time in nanoseconds.\r
235\r
236 This function converts the elapsed ticks of running performance counter to\r
237 time value in unit of nanoseconds.\r
238\r
239 @param Ticks The number of elapsed ticks of running performance counter.\r
240\r
241 @return The elapsed time in nanoseconds.\r
242\r
243**/\r
244UINT64\r
245EFIAPI\r
246GetTimeInNanoSecond (\r
247 IN UINT64 Ticks\r
248 )\r
249{\r
250 UINT64 Frequency;\r
251 UINT64 NanoSeconds;\r
252 UINT64 Remainder;\r
253 INTN Shift;\r
254\r
255 Frequency = GetPerformanceCounterProperties (NULL, NULL);\r
256\r
257 //\r
258 // Ticks\r
259 // Time = --------- x 1,000,000,000\r
260 // Frequency\r
261 //\r
262 NanoSeconds = MultU64x32 (DivU64x64Remainder (Ticks, Frequency, &Remainder), 1000000000u);\r
263\r
264 //\r
265 // Ensure (Remainder * 1,000,000,000) will not overflow 64-bit.\r
266 // Since 2^29 < 1,000,000,000 = 0x3B9ACA00 < 2^30, Remainder should < 2^(64-30) = 2^34,\r
267 // i.e. highest bit set in Remainder should <= 33.\r
268 //\r
269 Shift = MAX (0, HighBitSet64 (Remainder) - 33);\r
270 Remainder = RShiftU64 (Remainder, (UINTN) Shift);\r
271 Frequency = RShiftU64 (Frequency, (UINTN) Shift);\r
272 NanoSeconds += DivU64x64Remainder (MultU64x32 (Remainder, 1000000000u), Frequency, NULL);\r
273\r
274 return NanoSeconds;\r
275}\r