]> git.proxmox.com Git - mirror_edk2.git/blob - ArmPkg/Library/ArmLib/AArch64/AArch64Mmu.c
ArmPkg/Library: AArch64 MMU EL1 support
[mirror_edk2.git] / ArmPkg / Library / ArmLib / AArch64 / AArch64Mmu.c
1 /** @file
2 * File managing the MMU for ARMv8 architecture
3 *
4 * Copyright (c) 2011-2013, ARM Limited. All rights reserved.
5 *
6 * This program and the accompanying materials
7 * are licensed and made available under the terms and conditions of the BSD License
8 * which accompanies this distribution. The full text of the license may be found at
9 * http://opensource.org/licenses/bsd-license.php
10 *
11 * THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
13 *
14 **/
15
16 #include <Uefi.h>
17 #include <Chipset/AArch64.h>
18 #include <Library/BaseMemoryLib.h>
19 #include <Library/MemoryAllocationLib.h>
20 #include <Library/ArmLib.h>
21 #include <Library/BaseLib.h>
22 #include <Library/DebugLib.h>
23 #include "AArch64Lib.h"
24 #include "ArmLibPrivate.h"
25
26 // We use this index definition to define an invalid block entry
27 #define TT_ATTR_INDX_INVALID ((UINT32)~0)
28
29 STATIC
30 UINT64
31 ArmMemoryAttributeToPageAttribute (
32 IN ARM_MEMORY_REGION_ATTRIBUTES Attributes
33 )
34 {
35 switch (Attributes) {
36 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK:
37 return TT_ATTR_INDX_MEMORY_WRITE_BACK;
38 case ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH:
39 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
40 case ARM_MEMORY_REGION_ATTRIBUTE_DEVICE:
41 return TT_ATTR_INDX_DEVICE_MEMORY;
42 case ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED:
43 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
44 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK:
45 return TT_ATTR_INDX_MEMORY_WRITE_BACK;
46 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH:
47 return TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
48 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_DEVICE:
49 return TT_ATTR_INDX_DEVICE_MEMORY;
50 case ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED:
51 return TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
52 default:
53 ASSERT(0);
54 return TT_ATTR_INDX_DEVICE_MEMORY;
55 }
56 }
57
58 UINT64
59 PageAttributeToGcdAttribute (
60 IN UINT64 PageAttributes
61 )
62 {
63 UINT64 GcdAttributes;
64
65 switch (PageAttributes & TT_ATTR_INDX_MASK) {
66 case TT_ATTR_INDX_DEVICE_MEMORY:
67 GcdAttributes = EFI_MEMORY_UC;
68 break;
69 case TT_ATTR_INDX_MEMORY_NON_CACHEABLE:
70 GcdAttributes = EFI_MEMORY_WC;
71 break;
72 case TT_ATTR_INDX_MEMORY_WRITE_THROUGH:
73 GcdAttributes = EFI_MEMORY_WT;
74 break;
75 case TT_ATTR_INDX_MEMORY_WRITE_BACK:
76 GcdAttributes = EFI_MEMORY_WB;
77 break;
78 default:
79 DEBUG ((EFI_D_ERROR, "PageAttributeToGcdAttribute: PageAttributes:0x%lX not supported.\n", PageAttributes));
80 ASSERT (0);
81 // The Global Coherency Domain (GCD) value is defined as a bit set.
82 // Returning 0 means no attribute has been set.
83 GcdAttributes = 0;
84 }
85
86 // Determine protection attributes
87 if (((PageAttributes & TT_AP_MASK) == TT_AP_NO_RO) || ((PageAttributes & TT_AP_MASK) == TT_AP_RO_RO)) {
88 // Read only cases map to write-protect
89 GcdAttributes |= EFI_MEMORY_WP;
90 }
91
92 // Process eXecute Never attribute
93 if ((PageAttributes & (TT_PXN_MASK | TT_UXN_MASK)) != 0 ) {
94 GcdAttributes |= EFI_MEMORY_XP;
95 }
96
97 return GcdAttributes;
98 }
99
100 UINT64
101 GcdAttributeToPageAttribute (
102 IN UINT64 GcdAttributes
103 )
104 {
105 UINT64 PageAttributes;
106
107 switch (GcdAttributes & 0xFF) {
108 case EFI_MEMORY_UC:
109 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
110 break;
111 case EFI_MEMORY_WC:
112 PageAttributes = TT_ATTR_INDX_MEMORY_NON_CACHEABLE;
113 break;
114 case EFI_MEMORY_WT:
115 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_THROUGH;
116 break;
117 case EFI_MEMORY_WB:
118 PageAttributes = TT_ATTR_INDX_MEMORY_WRITE_BACK;
119 break;
120 default:
121 DEBUG ((EFI_D_ERROR, "GcdAttributeToPageAttribute: 0x%X attributes is not supported.\n", GcdAttributes));
122 ASSERT (0);
123 // If no match has been found then we mark the memory as device memory.
124 // The only side effect of using device memory should be a slow down in the performance.
125 PageAttributes = TT_ATTR_INDX_DEVICE_MEMORY;
126 }
127
128 // Determine protection attributes
129 if (GcdAttributes & EFI_MEMORY_WP) {
130 // Read only cases map to write-protect
131 PageAttributes |= TT_AP_RO_RO;
132 }
133
134 // Process eXecute Never attribute
135 if (GcdAttributes & EFI_MEMORY_XP) {
136 PageAttributes |= (TT_PXN_MASK | TT_UXN_MASK);
137 }
138
139 return PageAttributes;
140 }
141
142 ARM_MEMORY_REGION_ATTRIBUTES
143 GcdAttributeToArmAttribute (
144 IN UINT64 GcdAttributes
145 )
146 {
147 switch (GcdAttributes & 0xFF) {
148 case EFI_MEMORY_UC:
149 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
150 case EFI_MEMORY_WC:
151 return ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED;
152 case EFI_MEMORY_WT:
153 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH;
154 case EFI_MEMORY_WB:
155 return ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK;
156 default:
157 DEBUG ((EFI_D_ERROR, "GcdAttributeToArmAttribute: 0x%lX attributes is not supported.\n", GcdAttributes));
158 ASSERT (0);
159 return ARM_MEMORY_REGION_ATTRIBUTE_DEVICE;
160 }
161 }
162
163 // Describe the T0SZ values for each translation table level
164 typedef struct {
165 UINTN MinT0SZ;
166 UINTN MaxT0SZ;
167 UINTN LargestT0SZ; // Generally (MaxT0SZ == LargestT0SZ) but at the Level3 Table
168 // the MaxT0SZ is not at the boundary of the table
169 } T0SZ_DESCRIPTION_PER_LEVEL;
170
171 // Map table for the corresponding Level of Table
172 STATIC CONST T0SZ_DESCRIPTION_PER_LEVEL T0SZPerTableLevel[] = {
173 { 16, 24, 24 }, // Table Level 0
174 { 25, 33, 33 }, // Table Level 1
175 { 34, 39, 42 } // Table Level 2
176 };
177
178 VOID
179 GetRootTranslationTableInfo (
180 IN UINTN T0SZ,
181 OUT UINTN *TableLevel,
182 OUT UINTN *TableEntryCount
183 )
184 {
185 UINTN Index;
186
187 // Identify the level of the root table from the given T0SZ
188 for (Index = 0; Index < sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL); Index++) {
189 if (T0SZ <= T0SZPerTableLevel[Index].MaxT0SZ) {
190 break;
191 }
192 }
193
194 // If we have not found the corresponding maximum T0SZ then we use the last one
195 if (Index == sizeof (T0SZPerTableLevel) / sizeof (T0SZ_DESCRIPTION_PER_LEVEL)) {
196 Index--;
197 }
198
199 // Get the level of the root table
200 if (TableLevel) {
201 *TableLevel = Index;
202 }
203
204 // The Size of the Table is 2^(T0SZ-LargestT0SZ)
205 if (TableEntryCount) {
206 *TableEntryCount = 1 << (T0SZPerTableLevel[Index].LargestT0SZ - T0SZ + 1);
207 }
208 }
209
210 STATIC
211 VOID
212 LookupAddresstoRootTable (
213 IN UINT64 MaxAddress,
214 OUT UINTN *T0SZ,
215 OUT UINTN *TableEntryCount
216 )
217 {
218 UINTN TopBit;
219
220 // Check the parameters are not NULL
221 ASSERT ((T0SZ != NULL) && (TableEntryCount != NULL));
222
223 // Look for the highest bit set in MaxAddress
224 for (TopBit = 63; TopBit != 0; TopBit--) {
225 if ((1ULL << TopBit) & MaxAddress) {
226 // MaxAddress top bit is found
227 TopBit = TopBit + 1;
228 break;
229 }
230 }
231 ASSERT (TopBit != 0);
232
233 // Calculate T0SZ from the top bit of the MaxAddress
234 *T0SZ = 64 - TopBit;
235
236 // Get the Table info from T0SZ
237 GetRootTranslationTableInfo (*T0SZ, NULL, TableEntryCount);
238 }
239
240 STATIC
241 UINT64*
242 GetBlockEntryListFromAddress (
243 IN UINT64 *RootTable,
244 IN UINT64 RegionStart,
245 OUT UINTN *TableLevel,
246 IN OUT UINT64 *BlockEntrySize,
247 IN OUT UINT64 **LastBlockEntry
248 )
249 {
250 UINTN RootTableLevel;
251 UINTN RootTableEntryCount;
252 UINT64 *TranslationTable;
253 UINT64 *BlockEntry;
254 UINT64 BlockEntryAddress;
255 UINTN BaseAddressAlignment;
256 UINTN PageLevel;
257 UINTN Index;
258 UINTN IndexLevel;
259 UINTN T0SZ;
260 UINT64 Attributes;
261 UINT64 TableAttributes;
262
263 // Initialize variable
264 BlockEntry = NULL;
265
266 // Ensure the parameters are valid
267 ASSERT (TableLevel && BlockEntrySize && LastBlockEntry);
268
269 // Ensure the Region is aligned on 4KB boundary
270 ASSERT ((RegionStart & (SIZE_4KB - 1)) == 0);
271
272 // Ensure the required size is aligned on 4KB boundary
273 ASSERT ((*BlockEntrySize & (SIZE_4KB - 1)) == 0);
274
275 //
276 // Calculate LastBlockEntry from T0SZ - this is the last block entry of the root Translation table
277 //
278 T0SZ = ArmGetTCR () & TCR_T0SZ_MASK;
279 // Get the Table info from T0SZ
280 GetRootTranslationTableInfo (T0SZ, &RootTableLevel, &RootTableEntryCount);
281 // The last block of the root table depends on the number of entry in this table
282 *LastBlockEntry = (UINT64*)((UINTN)RootTable + ((RootTableEntryCount - 1) * sizeof(UINT64)));
283
284 // If the start address is 0x0 then we use the size of the region to identify the alignment
285 if (RegionStart == 0) {
286 // Identify the highest possible alignment for the Region Size
287 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {
288 if ((1 << BaseAddressAlignment) & *BlockEntrySize) {
289 break;
290 }
291 }
292 } else {
293 // Identify the highest possible alignment for the Base Address
294 for (BaseAddressAlignment = 0; BaseAddressAlignment < 64; BaseAddressAlignment++) {
295 if ((1 << BaseAddressAlignment) & RegionStart) {
296 break;
297 }
298 }
299 }
300
301 // Identify the Page Level the RegionStart must belongs to
302 PageLevel = 3 - ((BaseAddressAlignment - 12) / 9);
303
304 // If the required size is smaller than the current block size then we need to go to the page below.
305 // The PageLevel was calculated on the Base Address alignment but did not take in account the alignment
306 // of the allocation size
307 if (*BlockEntrySize < TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel)) {
308 // It does not fit so we need to go a page level above
309 PageLevel++;
310 }
311
312 // Expose the found PageLevel to the caller
313 *TableLevel = PageLevel;
314
315 // Now, we have the Table Level we can get the Block Size associated to this table
316 *BlockEntrySize = TT_BLOCK_ENTRY_SIZE_AT_LEVEL (PageLevel);
317
318 //
319 // Get the Table Descriptor for the corresponding PageLevel. We need to decompose RegionStart to get appropriate entries
320 //
321
322 TranslationTable = RootTable;
323 for (IndexLevel = RootTableLevel; IndexLevel <= PageLevel; IndexLevel++) {
324 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel, RegionStart);
325
326 if ((IndexLevel != 3) && ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_TABLE_ENTRY)) {
327 // Go to the next table
328 TranslationTable = (UINT64*)(*BlockEntry & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
329
330 // If we are at the last level then update the output
331 if (IndexLevel == PageLevel) {
332 // And get the appropriate BlockEntry at the next level
333 BlockEntry = (UINT64*)TT_GET_ENTRY_FOR_ADDRESS (TranslationTable, IndexLevel + 1, RegionStart);
334
335 // Set the last block for this new table
336 *LastBlockEntry = (UINT64*)((UINTN)TranslationTable + ((TT_ENTRY_COUNT - 1) * sizeof(UINT64)));
337 }
338 } else if ((*BlockEntry & TT_TYPE_MASK) == TT_TYPE_BLOCK_ENTRY) {
339 // If we are not at the last level then we need to split this BlockEntry
340 if (IndexLevel != PageLevel) {
341 // Retrieve the attributes from the block entry
342 Attributes = *BlockEntry & TT_ATTRIBUTES_MASK;
343
344 // Convert the block entry attributes into Table descriptor attributes
345 TableAttributes = TT_TABLE_AP_NO_PERMISSION;
346 if (Attributes & TT_PXN_MASK) {
347 TableAttributes = TT_TABLE_PXN;
348 }
349 if (Attributes & TT_UXN_MASK) {
350 TableAttributes = TT_TABLE_XN;
351 }
352 if (Attributes & TT_NS) {
353 TableAttributes = TT_TABLE_NS;
354 }
355
356 // Get the address corresponding at this entry
357 BlockEntryAddress = RegionStart;
358 BlockEntryAddress = BlockEntryAddress >> TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
359 // Shift back to right to set zero before the effective address
360 BlockEntryAddress = BlockEntryAddress << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel);
361
362 // Set the correct entry type for the next page level
363 if ((IndexLevel + 1) == 3) {
364 Attributes |= TT_TYPE_BLOCK_ENTRY_LEVEL3;
365 } else {
366 Attributes |= TT_TYPE_BLOCK_ENTRY;
367 }
368
369 // Create a new translation table
370 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));
371 if (TranslationTable == NULL) {
372 return NULL;
373 }
374 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
375
376 // Fill the BlockEntry with the new TranslationTable
377 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TableAttributes | TT_TYPE_TABLE_ENTRY;
378 // Update the last block entry with the newly created translation table
379 *LastBlockEntry = (UINT64*)((UINTN)TranslationTable + ((TT_ENTRY_COUNT - 1) * sizeof(UINT64)));
380
381 // Populate the newly created lower level table
382 BlockEntry = TranslationTable;
383 for (Index = 0; Index < TT_ENTRY_COUNT; Index++) {
384 *BlockEntry = Attributes | (BlockEntryAddress + (Index << TT_ADDRESS_OFFSET_AT_LEVEL(IndexLevel + 1)));
385 BlockEntry++;
386 }
387 // Block Entry points at the beginning of the Translation Table
388 BlockEntry = TranslationTable;
389 }
390 } else {
391 // Case of Invalid Entry and we are at a page level above of the one targetted.
392 if (IndexLevel != PageLevel) {
393 // Create a new translation table
394 TranslationTable = (UINT64*)AllocatePages (EFI_SIZE_TO_PAGES((TT_ENTRY_COUNT * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE));
395 if (TranslationTable == NULL) {
396 return NULL;
397 }
398 TranslationTable = (UINT64*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
399
400 ZeroMem (TranslationTable, TT_ENTRY_COUNT * sizeof(UINT64));
401
402 // Fill the new BlockEntry with the TranslationTable
403 *BlockEntry = ((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE) | TT_TYPE_TABLE_ENTRY;
404 }
405 }
406 }
407
408 return BlockEntry;
409 }
410
411 STATIC
412 RETURN_STATUS
413 FillTranslationTable (
414 IN UINT64 *RootTable,
415 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryRegion
416 )
417 {
418 UINT64 Attributes;
419 UINT32 Type;
420 UINT64 RegionStart;
421 UINT64 RemainingRegionLength;
422 UINT64 *BlockEntry;
423 UINT64 *LastBlockEntry;
424 UINT64 BlockEntrySize;
425 UINTN TableLevel;
426
427 // Ensure the Length is aligned on 4KB boundary
428 ASSERT ((MemoryRegion->Length > 0) && ((MemoryRegion->Length & (SIZE_4KB - 1)) == 0));
429
430 // Variable initialization
431 Attributes = ArmMemoryAttributeToPageAttribute (MemoryRegion->Attributes) | TT_AF;
432 RemainingRegionLength = MemoryRegion->Length;
433 RegionStart = MemoryRegion->VirtualBase;
434
435 do {
436 // Get the first Block Entry that matches the Virtual Address and also the information on the Table Descriptor
437 // such as the the size of the Block Entry and the address of the last BlockEntry of the Table Descriptor
438 BlockEntrySize = RemainingRegionLength;
439 BlockEntry = GetBlockEntryListFromAddress (RootTable, RegionStart, &TableLevel, &BlockEntrySize, &LastBlockEntry);
440 if (BlockEntry == NULL) {
441 // GetBlockEntryListFromAddress() return NULL when it fails to allocate new pages from the Translation Tables
442 return RETURN_OUT_OF_RESOURCES;
443 }
444
445 if (TableLevel != 3) {
446 Type = TT_TYPE_BLOCK_ENTRY;
447 } else {
448 Type = TT_TYPE_BLOCK_ENTRY_LEVEL3;
449 }
450
451 do {
452 // Fill the Block Entry with attribute and output block address
453 *BlockEntry = (RegionStart & TT_ADDRESS_MASK_BLOCK_ENTRY) | Attributes | Type;
454
455 // Go to the next BlockEntry
456 RegionStart += BlockEntrySize;
457 RemainingRegionLength -= BlockEntrySize;
458 BlockEntry++;
459 } while ((RemainingRegionLength >= BlockEntrySize) && (BlockEntry <= LastBlockEntry));
460 } while (RemainingRegionLength != 0);
461
462 return RETURN_SUCCESS;
463 }
464
465 RETURN_STATUS
466 SetMemoryAttributes (
467 IN EFI_PHYSICAL_ADDRESS BaseAddress,
468 IN UINT64 Length,
469 IN UINT64 Attributes,
470 IN EFI_PHYSICAL_ADDRESS VirtualMask
471 )
472 {
473 RETURN_STATUS Status;
474 ARM_MEMORY_REGION_DESCRIPTOR MemoryRegion;
475 UINT64 *TranslationTable;
476
477 MemoryRegion.PhysicalBase = BaseAddress;
478 MemoryRegion.VirtualBase = BaseAddress;
479 MemoryRegion.Length = Length;
480 MemoryRegion.Attributes = GcdAttributeToArmAttribute (Attributes);
481
482 TranslationTable = ArmGetTTBR0BaseAddress ();
483
484 Status = FillTranslationTable (TranslationTable, &MemoryRegion);
485 if (RETURN_ERROR (Status)) {
486 return Status;
487 }
488
489 // Flush d-cache so descriptors make it back to uncached memory for subsequent table walks
490 // flush and invalidate pages
491 ArmCleanInvalidateDataCache ();
492
493 ArmInvalidateInstructionCache ();
494
495 // Invalidate all TLB entries so changes are synced
496 ArmInvalidateTlb ();
497
498 return RETURN_SUCCESS;
499 }
500
501 RETURN_STATUS
502 EFIAPI
503 ArmConfigureMmu (
504 IN ARM_MEMORY_REGION_DESCRIPTOR *MemoryTable,
505 OUT VOID **TranslationTableBase OPTIONAL,
506 OUT UINTN *TranslationTableSize OPTIONAL
507 )
508 {
509 VOID* TranslationTable;
510 UINTN TranslationTablePageCount;
511 UINT32 TranslationTableAttribute;
512 ARM_MEMORY_REGION_DESCRIPTOR *MemoryTableEntry;
513 UINT64 MaxAddress;
514 UINT64 TopAddress;
515 UINTN T0SZ;
516 UINTN RootTableEntryCount;
517 UINT64 TCR;
518 RETURN_STATUS Status;
519
520 ASSERT (MemoryTable != NULL);
521
522 // Identify the highest address of the memory table
523 MaxAddress = MemoryTable->PhysicalBase + MemoryTable->Length - 1;
524 MemoryTableEntry = MemoryTable;
525 while (MemoryTableEntry->Length != 0) {
526 TopAddress = MemoryTableEntry->PhysicalBase + MemoryTableEntry->Length - 1;
527 if (TopAddress > MaxAddress) {
528 MaxAddress = TopAddress;
529 }
530 MemoryTableEntry++;
531 }
532
533 // Lookup the Table Level to get the information
534 LookupAddresstoRootTable (MaxAddress, &T0SZ, &RootTableEntryCount);
535
536 //
537 // Set TCR that allows us to retrieve T0SZ in the subsequent functions
538 //
539 // Ideally we will be running at EL2, but should support EL1 as well.
540 // UEFI should not run at EL3.
541 if (ArmReadCurrentEL () == AARCH64_EL2) {
542 //Note: Bits 23 and 31 are reserved(RES1) bits in TCR_EL2
543 TCR = T0SZ | (1UL << 31) | (1UL << 23) | TCR_TG0_4KB;
544
545 // Set the Physical Address Size using MaxAddress
546 if (MaxAddress < SIZE_4GB) {
547 TCR |= TCR_PS_4GB;
548 } else if (MaxAddress < SIZE_64GB) {
549 TCR |= TCR_PS_64GB;
550 } else if (MaxAddress < SIZE_1TB) {
551 TCR |= TCR_PS_1TB;
552 } else if (MaxAddress < SIZE_4TB) {
553 TCR |= TCR_PS_4TB;
554 } else if (MaxAddress < SIZE_16TB) {
555 TCR |= TCR_PS_16TB;
556 } else if (MaxAddress < SIZE_256TB) {
557 TCR |= TCR_PS_256TB;
558 } else {
559 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
560 ASSERT (0); // Bigger than 48-bit memory space are not supported
561 return RETURN_UNSUPPORTED;
562 }
563 } else if (ArmReadCurrentEL () == AARCH64_EL1) {
564 TCR = T0SZ | TCR_TG0_4KB;
565
566 // Set the Physical Address Size using MaxAddress
567 if (MaxAddress < SIZE_4GB) {
568 TCR |= TCR_IPS_4GB;
569 } else if (MaxAddress < SIZE_64GB) {
570 TCR |= TCR_IPS_64GB;
571 } else if (MaxAddress < SIZE_1TB) {
572 TCR |= TCR_IPS_1TB;
573 } else if (MaxAddress < SIZE_4TB) {
574 TCR |= TCR_IPS_4TB;
575 } else if (MaxAddress < SIZE_16TB) {
576 TCR |= TCR_IPS_16TB;
577 } else if (MaxAddress < SIZE_256TB) {
578 TCR |= TCR_IPS_256TB;
579 } else {
580 DEBUG ((EFI_D_ERROR, "ArmConfigureMmu: The MaxAddress 0x%lX is not supported by this MMU configuration.\n", MaxAddress));
581 ASSERT (0); // Bigger than 48-bit memory space are not supported
582 return RETURN_UNSUPPORTED;
583 }
584 } else {
585 ASSERT (0); // UEFI is only expected to run at EL2 and EL1, not EL3.
586 return RETURN_UNSUPPORTED;
587 }
588
589 // Set TCR
590 ArmSetTCR (TCR);
591
592 // Allocate pages for translation table
593 TranslationTablePageCount = EFI_SIZE_TO_PAGES((RootTableEntryCount * sizeof(UINT64)) + TT_ALIGNMENT_DESCRIPTION_TABLE);
594 TranslationTable = AllocatePages (TranslationTablePageCount);
595 if (TranslationTable == NULL) {
596 return RETURN_OUT_OF_RESOURCES;
597 }
598 TranslationTable = (VOID*)((UINTN)TranslationTable & TT_ADDRESS_MASK_DESCRIPTION_TABLE);
599 // We set TTBR0 just after allocating the table to retrieve its location from the subsequent
600 // functions without needing to pass this value across the functions. The MMU is only enabled
601 // after the translation tables are populated.
602 ArmSetTTBR0 (TranslationTable);
603
604 if (TranslationTableBase != NULL) {
605 *TranslationTableBase = TranslationTable;
606 }
607
608 if (TranslationTableSize != NULL) {
609 *TranslationTableSize = RootTableEntryCount * sizeof(UINT64);
610 }
611
612 ZeroMem (TranslationTable, RootTableEntryCount * sizeof(UINT64));
613
614 // Disable MMU and caches. ArmDisableMmu() also invalidates the TLBs
615 ArmDisableMmu ();
616 ArmDisableDataCache ();
617 ArmDisableInstructionCache ();
618
619 // Make sure nothing sneaked into the cache
620 ArmCleanInvalidateDataCache ();
621 ArmInvalidateInstructionCache ();
622
623 TranslationTableAttribute = TT_ATTR_INDX_INVALID;
624 while (MemoryTable->Length != 0) {
625 // Find the memory attribute for the Translation Table
626 if (((UINTN)TranslationTable >= MemoryTable->PhysicalBase) &&
627 ((UINTN)TranslationTable <= MemoryTable->PhysicalBase - 1 + MemoryTable->Length)) {
628 TranslationTableAttribute = MemoryTable->Attributes;
629 }
630
631 Status = FillTranslationTable (TranslationTable, MemoryTable);
632 if (RETURN_ERROR (Status)) {
633 goto FREE_TRANSLATION_TABLE;
634 }
635 MemoryTable++;
636 }
637
638 // Translate the Memory Attributes into Translation Table Register Attributes
639 if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_UNCACHED_UNBUFFERED) ||
640 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_UNCACHED_UNBUFFERED)) {
641 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_NON_CACHEABLE | TCR_RGN_INNER_NON_CACHEABLE;
642 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_BACK) ||
643 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_BACK)) {
644 TCR |= TCR_SH_INNER_SHAREABLE | TCR_RGN_OUTER_WRITE_BACK_ALLOC | TCR_RGN_INNER_WRITE_BACK_ALLOC;
645 } else if ((TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_WRITE_THROUGH) ||
646 (TranslationTableAttribute == ARM_MEMORY_REGION_ATTRIBUTE_NONSECURE_WRITE_THROUGH)) {
647 TCR |= TCR_SH_NON_SHAREABLE | TCR_RGN_OUTER_WRITE_THROUGH | TCR_RGN_INNER_WRITE_THROUGH;
648 } else {
649 // If we failed to find a mapping that contains the root translation table then it probably means the translation table
650 // is not mapped in the given memory map.
651 ASSERT (0);
652 Status = RETURN_UNSUPPORTED;
653 goto FREE_TRANSLATION_TABLE;
654 }
655
656 ArmSetMAIR (MAIR_ATTR(TT_ATTR_INDX_DEVICE_MEMORY, MAIR_ATTR_DEVICE_MEMORY) | // mapped to EFI_MEMORY_UC
657 MAIR_ATTR(TT_ATTR_INDX_MEMORY_NON_CACHEABLE, MAIR_ATTR_NORMAL_MEMORY_NON_CACHEABLE) | // mapped to EFI_MEMORY_WC
658 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_THROUGH, MAIR_ATTR_NORMAL_MEMORY_WRITE_THROUGH) | // mapped to EFI_MEMORY_WT
659 MAIR_ATTR(TT_ATTR_INDX_MEMORY_WRITE_BACK, MAIR_ATTR_NORMAL_MEMORY_WRITE_BACK)); // mapped to EFI_MEMORY_WB
660
661 ArmDisableAlignmentCheck ();
662 ArmEnableInstructionCache ();
663 ArmEnableDataCache ();
664
665 ArmEnableMmu ();
666 return RETURN_SUCCESS;
667
668 FREE_TRANSLATION_TABLE:
669 FreePages (TranslationTable, TranslationTablePageCount);
670 return Status;
671 }