]> git.proxmox.com Git - mirror_edk2.git/blob - BaseTools/Source/C/LzmaCompress/Sdk/C/LzmaEnc.c
BaseTools Lzma: Update LZMA SDK version to 18.05
[mirror_edk2.git] / BaseTools / Source / C / LzmaCompress / Sdk / C / LzmaEnc.c
1 /* LzmaEnc.c -- LZMA Encoder
2 2018-04-29 : Igor Pavlov : Public domain */
3
4 #include "Precomp.h"
5
6 #include <string.h>
7
8 /* #define SHOW_STAT */
9 /* #define SHOW_STAT2 */
10
11 #if defined(SHOW_STAT) || defined(SHOW_STAT2)
12 #include <stdio.h>
13 #endif
14
15 #include "LzmaEnc.h"
16
17 #include "LzFind.h"
18 #ifndef _7ZIP_ST
19 #include "LzFindMt.h"
20 #endif
21
22 #ifdef SHOW_STAT
23 static unsigned g_STAT_OFFSET = 0;
24 #endif
25
26 #define kLzmaMaxHistorySize ((UInt32)3 << 29)
27 /* #define kLzmaMaxHistorySize ((UInt32)7 << 29) */
28
29 #define kNumTopBits 24
30 #define kTopValue ((UInt32)1 << kNumTopBits)
31
32 #define kNumBitModelTotalBits 11
33 #define kBitModelTotal (1 << kNumBitModelTotalBits)
34 #define kNumMoveBits 5
35 #define kProbInitValue (kBitModelTotal >> 1)
36
37 #define kNumMoveReducingBits 4
38 #define kNumBitPriceShiftBits 4
39 #define kBitPrice (1 << kNumBitPriceShiftBits)
40
41 void LzmaEncProps_Init(CLzmaEncProps *p)
42 {
43 p->level = 5;
44 p->dictSize = p->mc = 0;
45 p->reduceSize = (UInt64)(Int64)-1;
46 p->lc = p->lp = p->pb = p->algo = p->fb = p->btMode = p->numHashBytes = p->numThreads = -1;
47 p->writeEndMark = 0;
48 }
49
50 void LzmaEncProps_Normalize(CLzmaEncProps *p)
51 {
52 int level = p->level;
53 if (level < 0) level = 5;
54 p->level = level;
55
56 if (p->dictSize == 0) p->dictSize = (level <= 5 ? (1 << (level * 2 + 14)) : (level <= 7 ? (1 << 25) : (1 << 26)));
57 if (p->dictSize > p->reduceSize)
58 {
59 unsigned i;
60 UInt32 reduceSize = (UInt32)p->reduceSize;
61 for (i = 11; i <= 30; i++)
62 {
63 if (reduceSize <= ((UInt32)2 << i)) { p->dictSize = ((UInt32)2 << i); break; }
64 if (reduceSize <= ((UInt32)3 << i)) { p->dictSize = ((UInt32)3 << i); break; }
65 }
66 }
67
68 if (p->lc < 0) p->lc = 3;
69 if (p->lp < 0) p->lp = 0;
70 if (p->pb < 0) p->pb = 2;
71
72 if (p->algo < 0) p->algo = (level < 5 ? 0 : 1);
73 if (p->fb < 0) p->fb = (level < 7 ? 32 : 64);
74 if (p->btMode < 0) p->btMode = (p->algo == 0 ? 0 : 1);
75 if (p->numHashBytes < 0) p->numHashBytes = 4;
76 if (p->mc == 0) p->mc = (16 + (p->fb >> 1)) >> (p->btMode ? 0 : 1);
77
78 if (p->numThreads < 0)
79 p->numThreads =
80 #ifndef _7ZIP_ST
81 ((p->btMode && p->algo) ? 2 : 1);
82 #else
83 1;
84 #endif
85 }
86
87 UInt32 LzmaEncProps_GetDictSize(const CLzmaEncProps *props2)
88 {
89 CLzmaEncProps props = *props2;
90 LzmaEncProps_Normalize(&props);
91 return props.dictSize;
92 }
93
94 #if (_MSC_VER >= 1400)
95 /* BSR code is fast for some new CPUs */
96 /* #define LZMA_LOG_BSR */
97 #endif
98
99 #ifdef LZMA_LOG_BSR
100
101 #define kDicLogSizeMaxCompress 32
102
103 #define BSR2_RET(pos, res) { unsigned long zz; _BitScanReverse(&zz, (pos)); res = (zz + zz) + ((pos >> (zz - 1)) & 1); }
104
105 static unsigned GetPosSlot1(UInt32 pos)
106 {
107 unsigned res;
108 BSR2_RET(pos, res);
109 return res;
110 }
111 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
112 #define GetPosSlot(pos, res) { if (pos < 2) res = pos; else BSR2_RET(pos, res); }
113
114 #else
115
116 #define kNumLogBits (9 + sizeof(size_t) / 2)
117 /* #define kNumLogBits (11 + sizeof(size_t) / 8 * 3) */
118
119 #define kDicLogSizeMaxCompress ((kNumLogBits - 1) * 2 + 7)
120
121 static void LzmaEnc_FastPosInit(Byte *g_FastPos)
122 {
123 unsigned slot;
124 g_FastPos[0] = 0;
125 g_FastPos[1] = 1;
126 g_FastPos += 2;
127
128 for (slot = 2; slot < kNumLogBits * 2; slot++)
129 {
130 size_t k = ((size_t)1 << ((slot >> 1) - 1));
131 size_t j;
132 for (j = 0; j < k; j++)
133 g_FastPos[j] = (Byte)slot;
134 g_FastPos += k;
135 }
136 }
137
138 /* we can use ((limit - pos) >> 31) only if (pos < ((UInt32)1 << 31)) */
139 /*
140 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
141 (0 - (((((UInt32)1 << (kNumLogBits + 6)) - 1) - pos) >> 31))); \
142 res = p->g_FastPos[pos >> zz] + (zz * 2); }
143 */
144
145 /*
146 #define BSR2_RET(pos, res) { unsigned zz = 6 + ((kNumLogBits - 1) & \
147 (0 - (((((UInt32)1 << (kNumLogBits)) - 1) - (pos >> 6)) >> 31))); \
148 res = p->g_FastPos[pos >> zz] + (zz * 2); }
149 */
150
151 #define BSR2_RET(pos, res) { unsigned zz = (pos < (1 << (kNumLogBits + 6))) ? 6 : 6 + kNumLogBits - 1; \
152 res = p->g_FastPos[pos >> zz] + (zz * 2); }
153
154 /*
155 #define BSR2_RET(pos, res) { res = (pos < (1 << (kNumLogBits + 6))) ? \
156 p->g_FastPos[pos >> 6] + 12 : \
157 p->g_FastPos[pos >> (6 + kNumLogBits - 1)] + (6 + (kNumLogBits - 1)) * 2; }
158 */
159
160 #define GetPosSlot1(pos) p->g_FastPos[pos]
161 #define GetPosSlot2(pos, res) { BSR2_RET(pos, res); }
162 #define GetPosSlot(pos, res) { if (pos < kNumFullDistances) res = p->g_FastPos[pos & (kNumFullDistances - 1)]; else BSR2_RET(pos, res); }
163
164 #endif
165
166
167 #define LZMA_NUM_REPS 4
168
169 typedef UInt16 CState;
170 typedef UInt16 CExtra;
171
172 typedef struct
173 {
174 UInt32 price;
175 CState state;
176 CExtra extra;
177 // 0 : normal
178 // 1 : LIT : MATCH
179 // > 1 : MATCH (extra-1) : LIT : REP0 (len)
180 UInt32 len;
181 UInt32 dist;
182 UInt32 reps[LZMA_NUM_REPS];
183 } COptimal;
184
185
186 #define kNumOpts (1 << 12)
187 #define kPackReserve (1 + kNumOpts * 2)
188
189 #define kNumLenToPosStates 4
190 #define kNumPosSlotBits 6
191 #define kDicLogSizeMin 0
192 #define kDicLogSizeMax 32
193 #define kDistTableSizeMax (kDicLogSizeMax * 2)
194
195 #define kNumAlignBits 4
196 #define kAlignTableSize (1 << kNumAlignBits)
197 #define kAlignMask (kAlignTableSize - 1)
198
199 #define kStartPosModelIndex 4
200 #define kEndPosModelIndex 14
201 #define kNumFullDistances (1 << (kEndPosModelIndex >> 1))
202
203 typedef
204 #ifdef _LZMA_PROB32
205 UInt32
206 #else
207 UInt16
208 #endif
209 CLzmaProb;
210
211 #define LZMA_PB_MAX 4
212 #define LZMA_LC_MAX 8
213 #define LZMA_LP_MAX 4
214
215 #define LZMA_NUM_PB_STATES_MAX (1 << LZMA_PB_MAX)
216
217 #define kLenNumLowBits 3
218 #define kLenNumLowSymbols (1 << kLenNumLowBits)
219 #define kLenNumHighBits 8
220 #define kLenNumHighSymbols (1 << kLenNumHighBits)
221 #define kLenNumSymbolsTotal (kLenNumLowSymbols * 2 + kLenNumHighSymbols)
222
223 #define LZMA_MATCH_LEN_MIN 2
224 #define LZMA_MATCH_LEN_MAX (LZMA_MATCH_LEN_MIN + kLenNumSymbolsTotal - 1)
225
226 #define kNumStates 12
227
228
229 typedef struct
230 {
231 CLzmaProb low[LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)];
232 CLzmaProb high[kLenNumHighSymbols];
233 } CLenEnc;
234
235
236 typedef struct
237 {
238 unsigned tableSize;
239 unsigned counters[LZMA_NUM_PB_STATES_MAX];
240 UInt32 prices[LZMA_NUM_PB_STATES_MAX][kLenNumSymbolsTotal];
241 } CLenPriceEnc;
242
243
244 typedef struct
245 {
246 UInt32 range;
247 unsigned cache;
248 UInt64 low;
249 UInt64 cacheSize;
250 Byte *buf;
251 Byte *bufLim;
252 Byte *bufBase;
253 ISeqOutStream *outStream;
254 UInt64 processed;
255 SRes res;
256 } CRangeEnc;
257
258
259 typedef struct
260 {
261 CLzmaProb *litProbs;
262
263 unsigned state;
264 UInt32 reps[LZMA_NUM_REPS];
265
266 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
267 CLzmaProb isRep[kNumStates];
268 CLzmaProb isRepG0[kNumStates];
269 CLzmaProb isRepG1[kNumStates];
270 CLzmaProb isRepG2[kNumStates];
271 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
272 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
273
274 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
275 CLzmaProb posEncoders[kNumFullDistances];
276
277 CLenEnc lenProbs;
278 CLenEnc repLenProbs;
279
280 } CSaveState;
281
282
283 typedef UInt32 CProbPrice;
284
285
286 typedef struct
287 {
288 void *matchFinderObj;
289 IMatchFinder matchFinder;
290
291 unsigned optCur;
292 unsigned optEnd;
293
294 unsigned longestMatchLen;
295 unsigned numPairs;
296 UInt32 numAvail;
297
298 unsigned state;
299 unsigned numFastBytes;
300 unsigned additionalOffset;
301 UInt32 reps[LZMA_NUM_REPS];
302 unsigned lpMask, pbMask;
303 CLzmaProb *litProbs;
304 CRangeEnc rc;
305
306 UInt32 backRes;
307
308 unsigned lc, lp, pb;
309 unsigned lclp;
310
311 Bool fastMode;
312 Bool writeEndMark;
313 Bool finished;
314 Bool multiThread;
315 Bool needInit;
316
317 UInt64 nowPos64;
318
319 unsigned matchPriceCount;
320 unsigned alignPriceCount;
321
322 unsigned distTableSize;
323
324 UInt32 dictSize;
325 SRes result;
326
327 #ifndef _7ZIP_ST
328 Bool mtMode;
329 // begin of CMatchFinderMt is used in LZ thread
330 CMatchFinderMt matchFinderMt;
331 // end of CMatchFinderMt is used in BT and HASH threads
332 #endif
333
334 CMatchFinder matchFinderBase;
335
336 #ifndef _7ZIP_ST
337 Byte pad[128];
338 #endif
339
340 // LZ thread
341 CProbPrice ProbPrices[kBitModelTotal >> kNumMoveReducingBits];
342
343 UInt32 matches[LZMA_MATCH_LEN_MAX * 2 + 2 + 1];
344
345 UInt32 alignPrices[kAlignTableSize];
346 UInt32 posSlotPrices[kNumLenToPosStates][kDistTableSizeMax];
347 UInt32 distancesPrices[kNumLenToPosStates][kNumFullDistances];
348
349 CLzmaProb posAlignEncoder[1 << kNumAlignBits];
350 CLzmaProb isRep[kNumStates];
351 CLzmaProb isRepG0[kNumStates];
352 CLzmaProb isRepG1[kNumStates];
353 CLzmaProb isRepG2[kNumStates];
354 CLzmaProb isMatch[kNumStates][LZMA_NUM_PB_STATES_MAX];
355 CLzmaProb isRep0Long[kNumStates][LZMA_NUM_PB_STATES_MAX];
356 CLzmaProb posSlotEncoder[kNumLenToPosStates][1 << kNumPosSlotBits];
357 CLzmaProb posEncoders[kNumFullDistances];
358
359 CLenEnc lenProbs;
360 CLenEnc repLenProbs;
361
362 #ifndef LZMA_LOG_BSR
363 Byte g_FastPos[1 << kNumLogBits];
364 #endif
365
366 CLenPriceEnc lenEnc;
367 CLenPriceEnc repLenEnc;
368
369 COptimal opt[kNumOpts];
370
371 CSaveState saveState;
372
373 #ifndef _7ZIP_ST
374 Byte pad2[128];
375 #endif
376 } CLzmaEnc;
377
378
379
380 #define COPY_ARR(dest, src, arr) memcpy(dest->arr, src->arr, sizeof(src->arr));
381
382 void LzmaEnc_SaveState(CLzmaEncHandle pp)
383 {
384 CLzmaEnc *p = (CLzmaEnc *)pp;
385 CSaveState *dest = &p->saveState;
386
387 dest->state = p->state;
388
389 dest->lenProbs = p->lenProbs;
390 dest->repLenProbs = p->repLenProbs;
391
392 COPY_ARR(dest, p, reps);
393
394 COPY_ARR(dest, p, posAlignEncoder);
395 COPY_ARR(dest, p, isRep);
396 COPY_ARR(dest, p, isRepG0);
397 COPY_ARR(dest, p, isRepG1);
398 COPY_ARR(dest, p, isRepG2);
399 COPY_ARR(dest, p, isMatch);
400 COPY_ARR(dest, p, isRep0Long);
401 COPY_ARR(dest, p, posSlotEncoder);
402 COPY_ARR(dest, p, posEncoders);
403
404 memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << p->lclp) * sizeof(CLzmaProb));
405 }
406
407
408 void LzmaEnc_RestoreState(CLzmaEncHandle pp)
409 {
410 CLzmaEnc *dest = (CLzmaEnc *)pp;
411 const CSaveState *p = &dest->saveState;
412
413 dest->state = p->state;
414
415 dest->lenProbs = p->lenProbs;
416 dest->repLenProbs = p->repLenProbs;
417
418 COPY_ARR(dest, p, reps);
419
420 COPY_ARR(dest, p, posAlignEncoder);
421 COPY_ARR(dest, p, isRep);
422 COPY_ARR(dest, p, isRepG0);
423 COPY_ARR(dest, p, isRepG1);
424 COPY_ARR(dest, p, isRepG2);
425 COPY_ARR(dest, p, isMatch);
426 COPY_ARR(dest, p, isRep0Long);
427 COPY_ARR(dest, p, posSlotEncoder);
428 COPY_ARR(dest, p, posEncoders);
429
430 memcpy(dest->litProbs, p->litProbs, ((UInt32)0x300 << dest->lclp) * sizeof(CLzmaProb));
431 }
432
433
434
435 SRes LzmaEnc_SetProps(CLzmaEncHandle pp, const CLzmaEncProps *props2)
436 {
437 CLzmaEnc *p = (CLzmaEnc *)pp;
438 CLzmaEncProps props = *props2;
439 LzmaEncProps_Normalize(&props);
440
441 if (props.lc > LZMA_LC_MAX
442 || props.lp > LZMA_LP_MAX
443 || props.pb > LZMA_PB_MAX
444 || props.dictSize > ((UInt64)1 << kDicLogSizeMaxCompress)
445 || props.dictSize > kLzmaMaxHistorySize)
446 return SZ_ERROR_PARAM;
447
448 p->dictSize = props.dictSize;
449 {
450 unsigned fb = props.fb;
451 if (fb < 5)
452 fb = 5;
453 if (fb > LZMA_MATCH_LEN_MAX)
454 fb = LZMA_MATCH_LEN_MAX;
455 p->numFastBytes = fb;
456 }
457 p->lc = props.lc;
458 p->lp = props.lp;
459 p->pb = props.pb;
460 p->fastMode = (props.algo == 0);
461 p->matchFinderBase.btMode = (Byte)(props.btMode ? 1 : 0);
462 {
463 unsigned numHashBytes = 4;
464 if (props.btMode)
465 {
466 if (props.numHashBytes < 2)
467 numHashBytes = 2;
468 else if (props.numHashBytes < 4)
469 numHashBytes = props.numHashBytes;
470 }
471 p->matchFinderBase.numHashBytes = numHashBytes;
472 }
473
474 p->matchFinderBase.cutValue = props.mc;
475
476 p->writeEndMark = props.writeEndMark;
477
478 #ifndef _7ZIP_ST
479 /*
480 if (newMultiThread != _multiThread)
481 {
482 ReleaseMatchFinder();
483 _multiThread = newMultiThread;
484 }
485 */
486 p->multiThread = (props.numThreads > 1);
487 #endif
488
489 return SZ_OK;
490 }
491
492
493 void LzmaEnc_SetDataSize(CLzmaEncHandle pp, UInt64 expectedDataSiize)
494 {
495 CLzmaEnc *p = (CLzmaEnc *)pp;
496 p->matchFinderBase.expectedDataSize = expectedDataSiize;
497 }
498
499
500 #define kState_Start 0
501 #define kState_LitAfterMatch 4
502 #define kState_LitAfterRep 5
503 #define kState_MatchAfterLit 7
504 #define kState_RepAfterLit 8
505
506 static const Byte kLiteralNextStates[kNumStates] = {0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 4, 5};
507 static const Byte kMatchNextStates[kNumStates] = {7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10};
508 static const Byte kRepNextStates[kNumStates] = {8, 8, 8, 8, 8, 8, 8, 11, 11, 11, 11, 11};
509 static const Byte kShortRepNextStates[kNumStates]= {9, 9, 9, 9, 9, 9, 9, 11, 11, 11, 11, 11};
510
511 #define IsLitState(s) ((s) < 7)
512 #define GetLenToPosState2(len) (((len) < kNumLenToPosStates - 1) ? (len) : kNumLenToPosStates - 1)
513 #define GetLenToPosState(len) (((len) < kNumLenToPosStates + 1) ? (len) - 2 : kNumLenToPosStates - 1)
514
515 #define kInfinityPrice (1 << 30)
516
517 static void RangeEnc_Construct(CRangeEnc *p)
518 {
519 p->outStream = NULL;
520 p->bufBase = NULL;
521 }
522
523 #define RangeEnc_GetProcessed(p) ((p)->processed + ((p)->buf - (p)->bufBase) + (p)->cacheSize)
524 #define RangeEnc_GetProcessed_sizet(p) ((size_t)(p)->processed + ((p)->buf - (p)->bufBase) + (size_t)(p)->cacheSize)
525
526 #define RC_BUF_SIZE (1 << 16)
527
528 static int RangeEnc_Alloc(CRangeEnc *p, ISzAllocPtr alloc)
529 {
530 if (!p->bufBase)
531 {
532 p->bufBase = (Byte *)ISzAlloc_Alloc(alloc, RC_BUF_SIZE);
533 if (!p->bufBase)
534 return 0;
535 p->bufLim = p->bufBase + RC_BUF_SIZE;
536 }
537 return 1;
538 }
539
540 static void RangeEnc_Free(CRangeEnc *p, ISzAllocPtr alloc)
541 {
542 ISzAlloc_Free(alloc, p->bufBase);
543 p->bufBase = 0;
544 }
545
546 static void RangeEnc_Init(CRangeEnc *p)
547 {
548 /* Stream.Init(); */
549 p->range = 0xFFFFFFFF;
550 p->cache = 0;
551 p->low = 0;
552 p->cacheSize = 0;
553
554 p->buf = p->bufBase;
555
556 p->processed = 0;
557 p->res = SZ_OK;
558 }
559
560 MY_NO_INLINE static void RangeEnc_FlushStream(CRangeEnc *p)
561 {
562 size_t num;
563 if (p->res != SZ_OK)
564 return;
565 num = p->buf - p->bufBase;
566 if (num != ISeqOutStream_Write(p->outStream, p->bufBase, num))
567 p->res = SZ_ERROR_WRITE;
568 p->processed += num;
569 p->buf = p->bufBase;
570 }
571
572 MY_NO_INLINE static void MY_FAST_CALL RangeEnc_ShiftLow(CRangeEnc *p)
573 {
574 UInt32 low = (UInt32)p->low;
575 unsigned high = (unsigned)(p->low >> 32);
576 p->low = (UInt32)(low << 8);
577 if (low < (UInt32)0xFF000000 || high != 0)
578 {
579 {
580 Byte *buf = p->buf;
581 *buf++ = (Byte)(p->cache + high);
582 p->cache = (unsigned)(low >> 24);
583 p->buf = buf;
584 if (buf == p->bufLim)
585 RangeEnc_FlushStream(p);
586 if (p->cacheSize == 0)
587 return;
588 }
589 high += 0xFF;
590 for (;;)
591 {
592 Byte *buf = p->buf;
593 *buf++ = (Byte)(high);
594 p->buf = buf;
595 if (buf == p->bufLim)
596 RangeEnc_FlushStream(p);
597 if (--p->cacheSize == 0)
598 return;
599 }
600 }
601 p->cacheSize++;
602 }
603
604 static void RangeEnc_FlushData(CRangeEnc *p)
605 {
606 int i;
607 for (i = 0; i < 5; i++)
608 RangeEnc_ShiftLow(p);
609 }
610
611 #define RC_NORM(p) if (range < kTopValue) { range <<= 8; RangeEnc_ShiftLow(p); }
612
613 #define RC_BIT_PRE(p, prob) \
614 ttt = *(prob); \
615 newBound = (range >> kNumBitModelTotalBits) * ttt;
616
617 // #define _LZMA_ENC_USE_BRANCH
618
619 #ifdef _LZMA_ENC_USE_BRANCH
620
621 #define RC_BIT(p, prob, symbol) { \
622 RC_BIT_PRE(p, prob) \
623 if (symbol == 0) { range = newBound; ttt += (kBitModelTotal - ttt) >> kNumMoveBits; } \
624 else { (p)->low += newBound; range -= newBound; ttt -= ttt >> kNumMoveBits; } \
625 *(prob) = (CLzmaProb)ttt; \
626 RC_NORM(p) \
627 }
628
629 #else
630
631 #define RC_BIT(p, prob, symbol) { \
632 UInt32 mask; \
633 RC_BIT_PRE(p, prob) \
634 mask = 0 - (UInt32)symbol; \
635 range &= mask; \
636 mask &= newBound; \
637 range -= mask; \
638 (p)->low += mask; \
639 mask = (UInt32)symbol - 1; \
640 range += newBound & mask; \
641 mask &= (kBitModelTotal - ((1 << kNumMoveBits) - 1)); \
642 mask += ((1 << kNumMoveBits) - 1); \
643 ttt += (Int32)(mask - ttt) >> kNumMoveBits; \
644 *(prob) = (CLzmaProb)ttt; \
645 RC_NORM(p) \
646 }
647
648 #endif
649
650
651
652
653 #define RC_BIT_0_BASE(p, prob) \
654 range = newBound; *(prob) = (CLzmaProb)(ttt + ((kBitModelTotal - ttt) >> kNumMoveBits));
655
656 #define RC_BIT_1_BASE(p, prob) \
657 range -= newBound; (p)->low += newBound; *(prob) = (CLzmaProb)(ttt - (ttt >> kNumMoveBits)); \
658
659 #define RC_BIT_0(p, prob) \
660 RC_BIT_0_BASE(p, prob) \
661 RC_NORM(p)
662
663 #define RC_BIT_1(p, prob) \
664 RC_BIT_1_BASE(p, prob) \
665 RC_NORM(p)
666
667 static void RangeEnc_EncodeBit_0(CRangeEnc *p, CLzmaProb *prob)
668 {
669 UInt32 range, ttt, newBound;
670 range = p->range;
671 RC_BIT_PRE(p, prob)
672 RC_BIT_0(p, prob)
673 p->range = range;
674 }
675
676 static void LitEnc_Encode(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol)
677 {
678 UInt32 range = p->range;
679 symbol |= 0x100;
680 do
681 {
682 UInt32 ttt, newBound;
683 // RangeEnc_EncodeBit(p, probs + (symbol >> 8), (symbol >> 7) & 1);
684 CLzmaProb *prob = probs + (symbol >> 8);
685 UInt32 bit = (symbol >> 7) & 1;
686 symbol <<= 1;
687 RC_BIT(p, prob, bit);
688 }
689 while (symbol < 0x10000);
690 p->range = range;
691 }
692
693 static void LitEnc_EncodeMatched(CRangeEnc *p, CLzmaProb *probs, UInt32 symbol, UInt32 matchByte)
694 {
695 UInt32 range = p->range;
696 UInt32 offs = 0x100;
697 symbol |= 0x100;
698 do
699 {
700 UInt32 ttt, newBound;
701 CLzmaProb *prob;
702 UInt32 bit;
703 matchByte <<= 1;
704 // RangeEnc_EncodeBit(p, probs + (offs + (matchByte & offs) + (symbol >> 8)), (symbol >> 7) & 1);
705 prob = probs + (offs + (matchByte & offs) + (symbol >> 8));
706 bit = (symbol >> 7) & 1;
707 symbol <<= 1;
708 offs &= ~(matchByte ^ symbol);
709 RC_BIT(p, prob, bit);
710 }
711 while (symbol < 0x10000);
712 p->range = range;
713 }
714
715
716
717 static void LzmaEnc_InitPriceTables(CProbPrice *ProbPrices)
718 {
719 UInt32 i;
720 for (i = 0; i < (kBitModelTotal >> kNumMoveReducingBits); i++)
721 {
722 const unsigned kCyclesBits = kNumBitPriceShiftBits;
723 UInt32 w = (i << kNumMoveReducingBits) + (1 << (kNumMoveReducingBits - 1));
724 unsigned bitCount = 0;
725 unsigned j;
726 for (j = 0; j < kCyclesBits; j++)
727 {
728 w = w * w;
729 bitCount <<= 1;
730 while (w >= ((UInt32)1 << 16))
731 {
732 w >>= 1;
733 bitCount++;
734 }
735 }
736 ProbPrices[i] = (CProbPrice)((kNumBitModelTotalBits << kCyclesBits) - 15 - bitCount);
737 // printf("\n%3d: %5d", i, ProbPrices[i]);
738 }
739 }
740
741
742 #define GET_PRICE(prob, symbol) \
743 p->ProbPrices[((prob) ^ (unsigned)(((-(int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
744
745 #define GET_PRICEa(prob, symbol) \
746 ProbPrices[((prob) ^ (unsigned)((-((int)(symbol))) & (kBitModelTotal - 1))) >> kNumMoveReducingBits];
747
748 #define GET_PRICE_0(prob) p->ProbPrices[(prob) >> kNumMoveReducingBits]
749 #define GET_PRICE_1(prob) p->ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
750
751 #define GET_PRICEa_0(prob) ProbPrices[(prob) >> kNumMoveReducingBits]
752 #define GET_PRICEa_1(prob) ProbPrices[((prob) ^ (kBitModelTotal - 1)) >> kNumMoveReducingBits]
753
754
755 static UInt32 LitEnc_GetPrice(const CLzmaProb *probs, UInt32 symbol, const CProbPrice *ProbPrices)
756 {
757 UInt32 price = 0;
758 symbol |= 0x100;
759 do
760 {
761 unsigned bit = symbol & 1;
762 symbol >>= 1;
763 price += GET_PRICEa(probs[symbol], bit);
764 }
765 while (symbol >= 2);
766 return price;
767 }
768
769
770 static UInt32 LitEnc_Matched_GetPrice(const CLzmaProb *probs, UInt32 symbol, UInt32 matchByte, const CProbPrice *ProbPrices)
771 {
772 UInt32 price = 0;
773 UInt32 offs = 0x100;
774 symbol |= 0x100;
775 do
776 {
777 matchByte <<= 1;
778 price += GET_PRICEa(probs[offs + (matchByte & offs) + (symbol >> 8)], (symbol >> 7) & 1);
779 symbol <<= 1;
780 offs &= ~(matchByte ^ symbol);
781 }
782 while (symbol < 0x10000);
783 return price;
784 }
785
786
787 static void RcTree_ReverseEncode(CRangeEnc *rc, CLzmaProb *probs, unsigned numBits, UInt32 symbol)
788 {
789 UInt32 range = rc->range;
790 unsigned m = 1;
791 do
792 {
793 UInt32 ttt, newBound;
794 unsigned bit = symbol & 1;
795 // RangeEnc_EncodeBit(rc, probs + m, bit);
796 symbol >>= 1;
797 RC_BIT(rc, probs + m, bit);
798 m = (m << 1) | bit;
799 }
800 while (--numBits);
801 rc->range = range;
802 }
803
804
805
806 static void LenEnc_Init(CLenEnc *p)
807 {
808 unsigned i;
809 for (i = 0; i < (LZMA_NUM_PB_STATES_MAX << (kLenNumLowBits + 1)); i++)
810 p->low[i] = kProbInitValue;
811 for (i = 0; i < kLenNumHighSymbols; i++)
812 p->high[i] = kProbInitValue;
813 }
814
815 static void LenEnc_Encode(CLenEnc *p, CRangeEnc *rc, unsigned symbol, unsigned posState)
816 {
817 UInt32 range, ttt, newBound;
818 CLzmaProb *probs = p->low;
819 range = rc->range;
820 RC_BIT_PRE(rc, probs);
821 if (symbol >= kLenNumLowSymbols)
822 {
823 RC_BIT_1(rc, probs);
824 probs += kLenNumLowSymbols;
825 RC_BIT_PRE(rc, probs);
826 if (symbol >= kLenNumLowSymbols * 2)
827 {
828 RC_BIT_1(rc, probs);
829 rc->range = range;
830 // RcTree_Encode(rc, p->high, kLenNumHighBits, symbol - kLenNumLowSymbols * 2);
831 LitEnc_Encode(rc, p->high, symbol - kLenNumLowSymbols * 2);
832 return;
833 }
834 symbol -= kLenNumLowSymbols;
835 }
836
837 // RcTree_Encode(rc, probs + (posState << kLenNumLowBits), kLenNumLowBits, symbol);
838 {
839 unsigned m;
840 unsigned bit;
841 RC_BIT_0(rc, probs);
842 probs += (posState << (1 + kLenNumLowBits));
843 bit = (symbol >> 2) ; RC_BIT(rc, probs + 1, bit); m = (1 << 1) + bit;
844 bit = (symbol >> 1) & 1; RC_BIT(rc, probs + m, bit); m = (m << 1) + bit;
845 bit = symbol & 1; RC_BIT(rc, probs + m, bit);
846 rc->range = range;
847 }
848 }
849
850 static void SetPrices_3(const CLzmaProb *probs, UInt32 startPrice, UInt32 *prices, const CProbPrice *ProbPrices)
851 {
852 unsigned i;
853 for (i = 0; i < 8; i += 2)
854 {
855 UInt32 price = startPrice;
856 UInt32 prob;
857 price += GET_PRICEa(probs[1 ], (i >> 2));
858 price += GET_PRICEa(probs[2 + (i >> 2)], (i >> 1) & 1);
859 prob = probs[4 + (i >> 1)];
860 prices[i ] = price + GET_PRICEa_0(prob);
861 prices[i + 1] = price + GET_PRICEa_1(prob);
862 }
863 }
864
865
866 MY_NO_INLINE static void MY_FAST_CALL LenPriceEnc_UpdateTable(
867 CLenPriceEnc *p, unsigned posState,
868 const CLenEnc *enc,
869 const CProbPrice *ProbPrices)
870 {
871 // int y; for (y = 0; y < 100; y++) {
872 UInt32 a;
873 unsigned i, numSymbols;
874
875 UInt32 *prices = p->prices[posState];
876 {
877 const CLzmaProb *probs = enc->low + (posState << (1 + kLenNumLowBits));
878 SetPrices_3(probs, GET_PRICEa_0(enc->low[0]), prices, ProbPrices);
879 a = GET_PRICEa_1(enc->low[0]);
880 SetPrices_3(probs + kLenNumLowSymbols, a + GET_PRICEa_0(enc->low[kLenNumLowSymbols]), prices + kLenNumLowSymbols, ProbPrices);
881 a += GET_PRICEa_1(enc->low[kLenNumLowSymbols]);
882 }
883 numSymbols = p->tableSize;
884 p->counters[posState] = numSymbols;
885 for (i = kLenNumLowSymbols * 2; i < numSymbols; i += 1)
886 {
887 prices[i] = a +
888 // RcTree_GetPrice(enc->high, kLenNumHighBits, i - kLenNumLowSymbols * 2, ProbPrices);
889 LitEnc_GetPrice(enc->high, i - kLenNumLowSymbols * 2, ProbPrices);
890 /*
891 unsigned sym = (i - kLenNumLowSymbols * 2) >> 1;
892 UInt32 price = a + RcTree_GetPrice(enc->high, kLenNumHighBits - 1, sym, ProbPrices);
893 UInt32 prob = enc->high[(1 << 7) + sym];
894 prices[i ] = price + GET_PRICEa_0(prob);
895 prices[i + 1] = price + GET_PRICEa_1(prob);
896 */
897 }
898 // }
899 }
900
901 static void LenPriceEnc_UpdateTables(CLenPriceEnc *p, unsigned numPosStates,
902 const CLenEnc *enc,
903 const CProbPrice *ProbPrices)
904 {
905 unsigned posState;
906 for (posState = 0; posState < numPosStates; posState++)
907 LenPriceEnc_UpdateTable(p, posState, enc, ProbPrices);
908 }
909
910
911 /*
912 #ifdef SHOW_STAT
913 g_STAT_OFFSET += num;
914 printf("\n MovePos %u", num);
915 #endif
916 */
917
918 #define MOVE_POS(p, num) { \
919 p->additionalOffset += (num); \
920 p->matchFinder.Skip(p->matchFinderObj, (num)); }
921
922
923 static unsigned ReadMatchDistances(CLzmaEnc *p, unsigned *numPairsRes)
924 {
925 unsigned numPairs;
926
927 p->additionalOffset++;
928 p->numAvail = p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
929 numPairs = p->matchFinder.GetMatches(p->matchFinderObj, p->matches);
930 *numPairsRes = numPairs;
931
932 #ifdef SHOW_STAT
933 printf("\n i = %u numPairs = %u ", g_STAT_OFFSET, numPairs / 2);
934 g_STAT_OFFSET++;
935 {
936 unsigned i;
937 for (i = 0; i < numPairs; i += 2)
938 printf("%2u %6u | ", p->matches[i], p->matches[i + 1]);
939 }
940 #endif
941
942 if (numPairs == 0)
943 return 0;
944 {
945 unsigned len = p->matches[(size_t)numPairs - 2];
946 if (len != p->numFastBytes)
947 return len;
948 {
949 UInt32 numAvail = p->numAvail;
950 if (numAvail > LZMA_MATCH_LEN_MAX)
951 numAvail = LZMA_MATCH_LEN_MAX;
952 {
953 const Byte *p1 = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
954 const Byte *p2 = p1 + len;
955 ptrdiff_t dif = (ptrdiff_t)-1 - p->matches[(size_t)numPairs - 1];
956 const Byte *lim = p1 + numAvail;
957 for (; p2 != lim && *p2 == p2[dif]; p2++);
958 return (unsigned)(p2 - p1);
959 }
960 }
961 }
962 }
963
964 #define MARK_LIT ((UInt32)(Int32)-1)
965
966 #define MakeAs_Lit(p) { (p)->dist = MARK_LIT; (p)->extra = 0; }
967 #define MakeAs_ShortRep(p) { (p)->dist = 0; (p)->extra = 0; }
968 #define IsShortRep(p) ((p)->dist == 0)
969
970
971 #define GetPrice_ShortRep(p, state, posState) \
972 ( GET_PRICE_0(p->isRepG0[state]) + GET_PRICE_0(p->isRep0Long[state][posState]))
973
974 #define GetPrice_Rep_0(p, state, posState) ( \
975 GET_PRICE_1(p->isMatch[state][posState]) \
976 + GET_PRICE_1(p->isRep0Long[state][posState])) \
977 + GET_PRICE_1(p->isRep[state]) \
978 + GET_PRICE_0(p->isRepG0[state])
979
980
981 static UInt32 GetPrice_PureRep(const CLzmaEnc *p, unsigned repIndex, size_t state, size_t posState)
982 {
983 UInt32 price;
984 UInt32 prob = p->isRepG0[state];
985 if (repIndex == 0)
986 {
987 price = GET_PRICE_0(prob);
988 price += GET_PRICE_1(p->isRep0Long[state][posState]);
989 }
990 else
991 {
992 price = GET_PRICE_1(prob);
993 prob = p->isRepG1[state];
994 if (repIndex == 1)
995 price += GET_PRICE_0(prob);
996 else
997 {
998 price += GET_PRICE_1(prob);
999 price += GET_PRICE(p->isRepG2[state], repIndex - 2);
1000 }
1001 }
1002 return price;
1003 }
1004
1005
1006 static unsigned Backward(CLzmaEnc *p, unsigned cur)
1007 {
1008 unsigned wr = cur + 1;
1009 p->optEnd = wr;
1010
1011 for (;;)
1012 {
1013 UInt32 dist = p->opt[cur].dist;
1014 UInt32 len = p->opt[cur].len;
1015 UInt32 extra = p->opt[cur].extra;
1016 cur -= len;
1017
1018 if (extra)
1019 {
1020 wr--;
1021 p->opt[wr].len = len;
1022 cur -= extra;
1023 len = extra;
1024 if (extra == 1)
1025 {
1026 p->opt[wr].dist = dist;
1027 dist = MARK_LIT;
1028 }
1029 else
1030 {
1031 p->opt[wr].dist = 0;
1032 len--;
1033 wr--;
1034 p->opt[wr].dist = MARK_LIT;
1035 p->opt[wr].len = 1;
1036 }
1037 }
1038
1039 if (cur == 0)
1040 {
1041 p->backRes = dist;
1042 p->optCur = wr;
1043 return len;
1044 }
1045
1046 wr--;
1047 p->opt[wr].dist = dist;
1048 p->opt[wr].len = len;
1049 }
1050 }
1051
1052
1053
1054 #define LIT_PROBS(pos, prevByte) \
1055 (p->litProbs + (UInt32)3 * (((((pos) << 8) + (prevByte)) & p->lpMask) << p->lc))
1056
1057
1058 static unsigned GetOptimum(CLzmaEnc *p, UInt32 position)
1059 {
1060 unsigned last, cur;
1061 UInt32 reps[LZMA_NUM_REPS];
1062 unsigned repLens[LZMA_NUM_REPS];
1063 UInt32 *matches;
1064
1065 {
1066 UInt32 numAvail;
1067 unsigned numPairs, mainLen, repMaxIndex, i, posState;
1068 UInt32 matchPrice, repMatchPrice;
1069 const Byte *data;
1070 Byte curByte, matchByte;
1071
1072 p->optCur = p->optEnd = 0;
1073
1074 if (p->additionalOffset == 0)
1075 mainLen = ReadMatchDistances(p, &numPairs);
1076 else
1077 {
1078 mainLen = p->longestMatchLen;
1079 numPairs = p->numPairs;
1080 }
1081
1082 numAvail = p->numAvail;
1083 if (numAvail < 2)
1084 {
1085 p->backRes = MARK_LIT;
1086 return 1;
1087 }
1088 if (numAvail > LZMA_MATCH_LEN_MAX)
1089 numAvail = LZMA_MATCH_LEN_MAX;
1090
1091 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1092 repMaxIndex = 0;
1093
1094 for (i = 0; i < LZMA_NUM_REPS; i++)
1095 {
1096 unsigned len;
1097 const Byte *data2;
1098 reps[i] = p->reps[i];
1099 data2 = data - reps[i];
1100 if (data[0] != data2[0] || data[1] != data2[1])
1101 {
1102 repLens[i] = 0;
1103 continue;
1104 }
1105 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1106 repLens[i] = len;
1107 if (len > repLens[repMaxIndex])
1108 repMaxIndex = i;
1109 }
1110
1111 if (repLens[repMaxIndex] >= p->numFastBytes)
1112 {
1113 unsigned len;
1114 p->backRes = repMaxIndex;
1115 len = repLens[repMaxIndex];
1116 MOVE_POS(p, len - 1)
1117 return len;
1118 }
1119
1120 matches = p->matches;
1121
1122 if (mainLen >= p->numFastBytes)
1123 {
1124 p->backRes = matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1125 MOVE_POS(p, mainLen - 1)
1126 return mainLen;
1127 }
1128
1129 curByte = *data;
1130 matchByte = *(data - reps[0]);
1131
1132 if (mainLen < 2 && curByte != matchByte && repLens[repMaxIndex] < 2)
1133 {
1134 p->backRes = MARK_LIT;
1135 return 1;
1136 }
1137
1138 p->opt[0].state = (CState)p->state;
1139
1140 posState = (position & p->pbMask);
1141
1142 {
1143 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1144 p->opt[1].price = GET_PRICE_0(p->isMatch[p->state][posState]) +
1145 (!IsLitState(p->state) ?
1146 LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1147 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1148 }
1149
1150 MakeAs_Lit(&p->opt[1]);
1151
1152 matchPrice = GET_PRICE_1(p->isMatch[p->state][posState]);
1153 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[p->state]);
1154
1155 if (matchByte == curByte)
1156 {
1157 UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, p->state, posState);
1158 if (shortRepPrice < p->opt[1].price)
1159 {
1160 p->opt[1].price = shortRepPrice;
1161 MakeAs_ShortRep(&p->opt[1]);
1162 }
1163 }
1164
1165 last = (mainLen >= repLens[repMaxIndex] ? mainLen : repLens[repMaxIndex]);
1166
1167 if (last < 2)
1168 {
1169 p->backRes = p->opt[1].dist;
1170 return 1;
1171 }
1172
1173 p->opt[1].len = 1;
1174
1175 p->opt[0].reps[0] = reps[0];
1176 p->opt[0].reps[1] = reps[1];
1177 p->opt[0].reps[2] = reps[2];
1178 p->opt[0].reps[3] = reps[3];
1179
1180 {
1181 unsigned len = last;
1182 do
1183 p->opt[len--].price = kInfinityPrice;
1184 while (len >= 2);
1185 }
1186
1187 // ---------- REP ----------
1188
1189 for (i = 0; i < LZMA_NUM_REPS; i++)
1190 {
1191 unsigned repLen = repLens[i];
1192 UInt32 price;
1193 if (repLen < 2)
1194 continue;
1195 price = repMatchPrice + GetPrice_PureRep(p, i, p->state, posState);
1196 do
1197 {
1198 UInt32 price2 = price + p->repLenEnc.prices[posState][(size_t)repLen - 2];
1199 COptimal *opt = &p->opt[repLen];
1200 if (price2 < opt->price)
1201 {
1202 opt->price = price2;
1203 opt->len = repLen;
1204 opt->dist = i;
1205 opt->extra = 0;
1206 }
1207 }
1208 while (--repLen >= 2);
1209 }
1210
1211
1212 // ---------- MATCH ----------
1213 {
1214 unsigned len = ((repLens[0] >= 2) ? repLens[0] + 1 : 2);
1215 if (len <= mainLen)
1216 {
1217 unsigned offs = 0;
1218 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[p->state]);
1219
1220 while (len > matches[offs])
1221 offs += 2;
1222
1223 for (; ; len++)
1224 {
1225 COptimal *opt;
1226 UInt32 dist = matches[(size_t)offs + 1];
1227 UInt32 price2 = normalMatchPrice + p->lenEnc.prices[posState][(size_t)len - LZMA_MATCH_LEN_MIN];
1228 unsigned lenToPosState = GetLenToPosState(len);
1229
1230 if (dist < kNumFullDistances)
1231 price2 += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
1232 else
1233 {
1234 unsigned slot;
1235 GetPosSlot2(dist, slot);
1236 price2 += p->alignPrices[dist & kAlignMask];
1237 price2 += p->posSlotPrices[lenToPosState][slot];
1238 }
1239
1240 opt = &p->opt[len];
1241
1242 if (price2 < opt->price)
1243 {
1244 opt->price = price2;
1245 opt->len = len;
1246 opt->dist = dist + LZMA_NUM_REPS;
1247 opt->extra = 0;
1248 }
1249
1250 if (len == matches[offs])
1251 {
1252 offs += 2;
1253 if (offs == numPairs)
1254 break;
1255 }
1256 }
1257 }
1258 }
1259
1260
1261 cur = 0;
1262
1263 #ifdef SHOW_STAT2
1264 /* if (position >= 0) */
1265 {
1266 unsigned i;
1267 printf("\n pos = %4X", position);
1268 for (i = cur; i <= last; i++)
1269 printf("\nprice[%4X] = %u", position - cur + i, p->opt[i].price);
1270 }
1271 #endif
1272 }
1273
1274
1275
1276 // ---------- Optimal Parsing ----------
1277
1278 for (;;)
1279 {
1280 UInt32 numAvail, numAvailFull;
1281 unsigned newLen, numPairs, prev, state, posState, startLen;
1282 UInt32 curPrice, litPrice, matchPrice, repMatchPrice;
1283 Bool nextIsLit;
1284 Byte curByte, matchByte;
1285 const Byte *data;
1286 COptimal *curOpt, *nextOpt;
1287
1288 if (++cur == last)
1289 return Backward(p, cur);
1290
1291 newLen = ReadMatchDistances(p, &numPairs);
1292
1293 if (newLen >= p->numFastBytes)
1294 {
1295 p->numPairs = numPairs;
1296 p->longestMatchLen = newLen;
1297 return Backward(p, cur);
1298 }
1299
1300 curOpt = &p->opt[cur];
1301 prev = cur - curOpt->len;
1302
1303 if (curOpt->len == 1)
1304 {
1305 state = p->opt[prev].state;
1306 if (IsShortRep(curOpt))
1307 state = kShortRepNextStates[state];
1308 else
1309 state = kLiteralNextStates[state];
1310 }
1311 else
1312 {
1313 const COptimal *prevOpt;
1314 UInt32 b0;
1315 UInt32 dist = curOpt->dist;
1316
1317 if (curOpt->extra)
1318 {
1319 prev -= curOpt->extra;
1320 state = kState_RepAfterLit;
1321 if (curOpt->extra == 1)
1322 state = (dist < LZMA_NUM_REPS) ? kState_RepAfterLit : kState_MatchAfterLit;
1323 }
1324 else
1325 {
1326 state = p->opt[prev].state;
1327 if (dist < LZMA_NUM_REPS)
1328 state = kRepNextStates[state];
1329 else
1330 state = kMatchNextStates[state];
1331 }
1332
1333 prevOpt = &p->opt[prev];
1334 b0 = prevOpt->reps[0];
1335
1336 if (dist < LZMA_NUM_REPS)
1337 {
1338 if (dist == 0)
1339 {
1340 reps[0] = b0;
1341 reps[1] = prevOpt->reps[1];
1342 reps[2] = prevOpt->reps[2];
1343 reps[3] = prevOpt->reps[3];
1344 }
1345 else
1346 {
1347 reps[1] = b0;
1348 b0 = prevOpt->reps[1];
1349 if (dist == 1)
1350 {
1351 reps[0] = b0;
1352 reps[2] = prevOpt->reps[2];
1353 reps[3] = prevOpt->reps[3];
1354 }
1355 else
1356 {
1357 reps[2] = b0;
1358 reps[0] = prevOpt->reps[dist];
1359 reps[3] = prevOpt->reps[dist ^ 1];
1360 }
1361 }
1362 }
1363 else
1364 {
1365 reps[0] = (dist - LZMA_NUM_REPS + 1);
1366 reps[1] = b0;
1367 reps[2] = prevOpt->reps[1];
1368 reps[3] = prevOpt->reps[2];
1369 }
1370 }
1371
1372 curOpt->state = (CState)state;
1373 curOpt->reps[0] = reps[0];
1374 curOpt->reps[1] = reps[1];
1375 curOpt->reps[2] = reps[2];
1376 curOpt->reps[3] = reps[3];
1377
1378 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1379 curByte = *data;
1380 matchByte = *(data - reps[0]);
1381
1382 position++;
1383 posState = (position & p->pbMask);
1384
1385 /*
1386 The order of Price checks:
1387 < LIT
1388 <= SHORT_REP
1389 < LIT : REP_0
1390 < REP [ : LIT : REP_0 ]
1391 < MATCH [ : LIT : REP_0 ]
1392 */
1393
1394 curPrice = curOpt->price;
1395 litPrice = curPrice + GET_PRICE_0(p->isMatch[state][posState]);
1396
1397 nextOpt = &p->opt[(size_t)cur + 1];
1398 nextIsLit = False;
1399
1400 // if (litPrice >= nextOpt->price) litPrice = 0; else // 18.new
1401 {
1402 const CLzmaProb *probs = LIT_PROBS(position, *(data - 1));
1403 litPrice += (!IsLitState(state) ?
1404 LitEnc_Matched_GetPrice(probs, curByte, matchByte, p->ProbPrices) :
1405 LitEnc_GetPrice(probs, curByte, p->ProbPrices));
1406
1407 if (litPrice < nextOpt->price)
1408 {
1409 nextOpt->price = litPrice;
1410 nextOpt->len = 1;
1411 MakeAs_Lit(nextOpt);
1412 nextIsLit = True;
1413 }
1414 }
1415
1416 matchPrice = curPrice + GET_PRICE_1(p->isMatch[state][posState]);
1417 repMatchPrice = matchPrice + GET_PRICE_1(p->isRep[state]);
1418
1419 // ---------- SHORT_REP ----------
1420 // if (IsLitState(state)) // 18.new
1421 if (matchByte == curByte)
1422 // if (repMatchPrice < nextOpt->price) // 18.new
1423 if (nextOpt->len < 2
1424 || (nextOpt->dist != 0
1425 && nextOpt->extra <= 1 // 17.old
1426 ))
1427 {
1428 UInt32 shortRepPrice = repMatchPrice + GetPrice_ShortRep(p, state, posState);
1429 if (shortRepPrice <= nextOpt->price) // 17.old
1430 // if (shortRepPrice < nextOpt->price) // 18.new
1431 {
1432 nextOpt->price = shortRepPrice;
1433 nextOpt->len = 1;
1434 MakeAs_ShortRep(nextOpt);
1435 nextIsLit = False;
1436 }
1437 }
1438
1439 numAvailFull = p->numAvail;
1440 {
1441 UInt32 temp = kNumOpts - 1 - cur;
1442 if (numAvailFull > temp)
1443 numAvailFull = temp;
1444 }
1445
1446 if (numAvailFull < 2)
1447 continue;
1448 numAvail = (numAvailFull <= p->numFastBytes ? numAvailFull : p->numFastBytes);
1449
1450 // numAvail <= p->numFastBytes
1451
1452 // ---------- LIT : REP_0 ----------
1453
1454 if (
1455 // litPrice != 0 && // 18.new
1456 !nextIsLit
1457 && matchByte != curByte
1458 && numAvailFull > 2)
1459 {
1460 const Byte *data2 = data - reps[0];
1461 if (data[1] == data2[1] && data[2] == data2[2])
1462 {
1463 unsigned len;
1464 unsigned limit = p->numFastBytes + 1;
1465 if (limit > numAvailFull)
1466 limit = numAvailFull;
1467 for (len = 3; len < limit && data[len] == data2[len]; len++);
1468
1469 {
1470 unsigned state2 = kLiteralNextStates[state];
1471 unsigned posState2 = (position + 1) & p->pbMask;
1472 UInt32 price = litPrice + GetPrice_Rep_0(p, state2, posState2);
1473 {
1474 unsigned offset = cur + len;
1475 while (last < offset)
1476 p->opt[++last].price = kInfinityPrice;
1477
1478 // do
1479 {
1480 UInt32 price2;
1481 COptimal *opt;
1482 len--;
1483 // price2 = price + GetPrice_Len_Rep_0(p, len, state2, posState2);
1484 price2 = price + p->repLenEnc.prices[posState2][len - LZMA_MATCH_LEN_MIN];
1485
1486 opt = &p->opt[offset];
1487 // offset--;
1488 if (price2 < opt->price)
1489 {
1490 opt->price = price2;
1491 opt->len = len;
1492 opt->dist = 0;
1493 opt->extra = 1;
1494 }
1495 }
1496 // while (len >= 3);
1497 }
1498 }
1499 }
1500 }
1501
1502 startLen = 2; /* speed optimization */
1503 {
1504 // ---------- REP ----------
1505 unsigned repIndex = 0; // 17.old
1506 // unsigned repIndex = IsLitState(state) ? 0 : 1; // 18.notused
1507 for (; repIndex < LZMA_NUM_REPS; repIndex++)
1508 {
1509 unsigned len;
1510 UInt32 price;
1511 const Byte *data2 = data - reps[repIndex];
1512 if (data[0] != data2[0] || data[1] != data2[1])
1513 continue;
1514
1515 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1516
1517 // if (len < startLen) continue; // 18.new: speed optimization
1518
1519 while (last < cur + len)
1520 p->opt[++last].price = kInfinityPrice;
1521 {
1522 unsigned len2 = len;
1523 price = repMatchPrice + GetPrice_PureRep(p, repIndex, state, posState);
1524 do
1525 {
1526 UInt32 price2 = price + p->repLenEnc.prices[posState][(size_t)len2 - 2];
1527 COptimal *opt = &p->opt[cur + len2];
1528 if (price2 < opt->price)
1529 {
1530 opt->price = price2;
1531 opt->len = len2;
1532 opt->dist = repIndex;
1533 opt->extra = 0;
1534 }
1535 }
1536 while (--len2 >= 2);
1537 }
1538
1539 if (repIndex == 0) startLen = len + 1; // 17.old
1540 // startLen = len + 1; // 18.new
1541
1542 /* if (_maxMode) */
1543 {
1544 // ---------- REP : LIT : REP_0 ----------
1545 // numFastBytes + 1 + numFastBytes
1546
1547 unsigned len2 = len + 1;
1548 unsigned limit = len2 + p->numFastBytes;
1549 if (limit > numAvailFull)
1550 limit = numAvailFull;
1551
1552 for (; len2 < limit && data[len2] == data2[len2]; len2++);
1553
1554 len2 -= len;
1555 if (len2 >= 3)
1556 {
1557 unsigned state2 = kRepNextStates[state];
1558 unsigned posState2 = (position + len) & p->pbMask;
1559 price +=
1560 p->repLenEnc.prices[posState][(size_t)len - 2]
1561 + GET_PRICE_0(p->isMatch[state2][posState2])
1562 + LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1563 data[len], data2[len], p->ProbPrices);
1564
1565 // state2 = kLiteralNextStates[state2];
1566 state2 = kState_LitAfterRep;
1567 posState2 = (posState2 + 1) & p->pbMask;
1568
1569
1570 price += GetPrice_Rep_0(p, state2, posState2);
1571 {
1572 unsigned offset = cur + len + len2;
1573 while (last < offset)
1574 p->opt[++last].price = kInfinityPrice;
1575 // do
1576 {
1577 unsigned price2;
1578 COptimal *opt;
1579 len2--;
1580 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1581 price2 = price + p->repLenEnc.prices[posState2][len2 - LZMA_MATCH_LEN_MIN];
1582
1583 opt = &p->opt[offset];
1584 // offset--;
1585 if (price2 < opt->price)
1586 {
1587 opt->price = price2;
1588 opt->len = len2;
1589 opt->extra = (CExtra)(len + 1);
1590 opt->dist = repIndex;
1591 }
1592 }
1593 // while (len2 >= 3);
1594 }
1595 }
1596 }
1597 }
1598 }
1599
1600
1601 // ---------- MATCH ----------
1602 /* for (unsigned len = 2; len <= newLen; len++) */
1603 if (newLen > numAvail)
1604 {
1605 newLen = numAvail;
1606 for (numPairs = 0; newLen > matches[numPairs]; numPairs += 2);
1607 matches[numPairs] = newLen;
1608 numPairs += 2;
1609 }
1610
1611 if (newLen >= startLen)
1612 {
1613 UInt32 normalMatchPrice = matchPrice + GET_PRICE_0(p->isRep[state]);
1614 UInt32 dist;
1615 unsigned offs, posSlot, len;
1616 while (last < cur + newLen)
1617 p->opt[++last].price = kInfinityPrice;
1618
1619 offs = 0;
1620 while (startLen > matches[offs])
1621 offs += 2;
1622 dist = matches[(size_t)offs + 1];
1623
1624 // if (dist >= kNumFullDistances)
1625 GetPosSlot2(dist, posSlot);
1626
1627 for (len = /*2*/ startLen; ; len++)
1628 {
1629 UInt32 price = normalMatchPrice + p->lenEnc.prices[posState][(size_t)len - LZMA_MATCH_LEN_MIN];
1630 {
1631 COptimal *opt;
1632 unsigned lenToPosState = len - 2; lenToPosState = GetLenToPosState2(lenToPosState);
1633 if (dist < kNumFullDistances)
1634 price += p->distancesPrices[lenToPosState][dist & (kNumFullDistances - 1)];
1635 else
1636 price += p->posSlotPrices[lenToPosState][posSlot] + p->alignPrices[dist & kAlignMask];
1637
1638 opt = &p->opt[cur + len];
1639 if (price < opt->price)
1640 {
1641 opt->price = price;
1642 opt->len = len;
1643 opt->dist = dist + LZMA_NUM_REPS;
1644 opt->extra = 0;
1645 }
1646 }
1647
1648 if (/*_maxMode && */ len == matches[offs])
1649 {
1650 // MATCH : LIT : REP_0
1651
1652 const Byte *data2 = data - dist - 1;
1653 unsigned len2 = len + 1;
1654 unsigned limit = len2 + p->numFastBytes;
1655 if (limit > numAvailFull)
1656 limit = numAvailFull;
1657
1658 for (; len2 < limit && data[len2] == data2[len2]; len2++);
1659
1660 len2 -= len;
1661
1662 if (len2 >= 3)
1663 {
1664 unsigned state2 = kMatchNextStates[state];
1665 unsigned posState2 = (position + len) & p->pbMask;
1666 unsigned offset;
1667 price += GET_PRICE_0(p->isMatch[state2][posState2]);
1668 price += LitEnc_Matched_GetPrice(LIT_PROBS(position + len, data[(size_t)len - 1]),
1669 data[len], data2[len], p->ProbPrices);
1670
1671 // state2 = kLiteralNextStates[state2];
1672 state2 = kState_LitAfterMatch;
1673
1674 posState2 = (posState2 + 1) & p->pbMask;
1675 price += GetPrice_Rep_0(p, state2, posState2);
1676
1677 offset = cur + len + len2;
1678 while (last < offset)
1679 p->opt[++last].price = kInfinityPrice;
1680 // do
1681 {
1682 UInt32 price2;
1683 COptimal *opt;
1684 len2--;
1685 // price2 = price + GetPrice_Len_Rep_0(p, len2, state2, posState2);
1686 price2 = price + p->repLenEnc.prices[posState2][len2 - LZMA_MATCH_LEN_MIN];
1687 opt = &p->opt[offset];
1688 // offset--;
1689 if (price2 < opt->price)
1690 {
1691 opt->price = price2;
1692 opt->len = len2;
1693 opt->extra = (CExtra)(len + 1);
1694 opt->dist = dist + LZMA_NUM_REPS;
1695 }
1696 }
1697 // while (len2 >= 3);
1698 }
1699
1700 offs += 2;
1701 if (offs == numPairs)
1702 break;
1703 dist = matches[(size_t)offs + 1];
1704 // if (dist >= kNumFullDistances)
1705 GetPosSlot2(dist, posSlot);
1706 }
1707 }
1708 }
1709 }
1710 }
1711
1712
1713
1714 #define ChangePair(smallDist, bigDist) (((bigDist) >> 7) > (smallDist))
1715
1716
1717
1718 static unsigned GetOptimumFast(CLzmaEnc *p)
1719 {
1720 UInt32 numAvail, mainDist;
1721 unsigned mainLen, numPairs, repIndex, repLen, i;
1722 const Byte *data;
1723
1724 if (p->additionalOffset == 0)
1725 mainLen = ReadMatchDistances(p, &numPairs);
1726 else
1727 {
1728 mainLen = p->longestMatchLen;
1729 numPairs = p->numPairs;
1730 }
1731
1732 numAvail = p->numAvail;
1733 p->backRes = MARK_LIT;
1734 if (numAvail < 2)
1735 return 1;
1736 if (numAvail > LZMA_MATCH_LEN_MAX)
1737 numAvail = LZMA_MATCH_LEN_MAX;
1738 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1739 repLen = repIndex = 0;
1740
1741 for (i = 0; i < LZMA_NUM_REPS; i++)
1742 {
1743 unsigned len;
1744 const Byte *data2 = data - p->reps[i];
1745 if (data[0] != data2[0] || data[1] != data2[1])
1746 continue;
1747 for (len = 2; len < numAvail && data[len] == data2[len]; len++);
1748 if (len >= p->numFastBytes)
1749 {
1750 p->backRes = i;
1751 MOVE_POS(p, len - 1)
1752 return len;
1753 }
1754 if (len > repLen)
1755 {
1756 repIndex = i;
1757 repLen = len;
1758 }
1759 }
1760
1761 if (mainLen >= p->numFastBytes)
1762 {
1763 p->backRes = p->matches[(size_t)numPairs - 1] + LZMA_NUM_REPS;
1764 MOVE_POS(p, mainLen - 1)
1765 return mainLen;
1766 }
1767
1768 mainDist = 0; /* for GCC */
1769
1770 if (mainLen >= 2)
1771 {
1772 mainDist = p->matches[(size_t)numPairs - 1];
1773 while (numPairs > 2)
1774 {
1775 UInt32 dist2;
1776 if (mainLen != p->matches[(size_t)numPairs - 4] + 1)
1777 break;
1778 dist2 = p->matches[(size_t)numPairs - 3];
1779 if (!ChangePair(dist2, mainDist))
1780 break;
1781 numPairs -= 2;
1782 mainLen--;
1783 mainDist = dist2;
1784 }
1785 if (mainLen == 2 && mainDist >= 0x80)
1786 mainLen = 1;
1787 }
1788
1789 if (repLen >= 2)
1790 if ( repLen + 1 >= mainLen
1791 || (repLen + 2 >= mainLen && mainDist >= (1 << 9))
1792 || (repLen + 3 >= mainLen && mainDist >= (1 << 15)))
1793 {
1794 p->backRes = repIndex;
1795 MOVE_POS(p, repLen - 1)
1796 return repLen;
1797 }
1798
1799 if (mainLen < 2 || numAvail <= 2)
1800 return 1;
1801
1802 {
1803 unsigned len1 = ReadMatchDistances(p, &p->numPairs);
1804 p->longestMatchLen = len1;
1805
1806 if (len1 >= 2)
1807 {
1808 UInt32 newDist = p->matches[(size_t)p->numPairs - 1];
1809 if ( (len1 >= mainLen && newDist < mainDist)
1810 || (len1 == mainLen + 1 && !ChangePair(mainDist, newDist))
1811 || (len1 > mainLen + 1)
1812 || (len1 + 1 >= mainLen && mainLen >= 3 && ChangePair(newDist, mainDist)))
1813 return 1;
1814 }
1815 }
1816
1817 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - 1;
1818
1819 for (i = 0; i < LZMA_NUM_REPS; i++)
1820 {
1821 unsigned len, limit;
1822 const Byte *data2 = data - p->reps[i];
1823 if (data[0] != data2[0] || data[1] != data2[1])
1824 continue;
1825 limit = mainLen - 1;
1826 for (len = 2;; len++)
1827 {
1828 if (len >= limit)
1829 return 1;
1830 if (data[len] != data2[len])
1831 break;
1832 }
1833 }
1834
1835 p->backRes = mainDist + LZMA_NUM_REPS;
1836 if (mainLen != 2)
1837 {
1838 MOVE_POS(p, mainLen - 2)
1839 }
1840 return mainLen;
1841 }
1842
1843
1844
1845
1846 static void WriteEndMarker(CLzmaEnc *p, unsigned posState)
1847 {
1848 UInt32 range;
1849 range = p->rc.range;
1850 {
1851 UInt32 ttt, newBound;
1852 CLzmaProb *prob = &p->isMatch[p->state][posState];
1853 RC_BIT_PRE(&p->rc, prob)
1854 RC_BIT_1(&p->rc, prob)
1855 prob = &p->isRep[p->state];
1856 RC_BIT_PRE(&p->rc, prob)
1857 RC_BIT_0(&p->rc, prob)
1858 }
1859 p->state = kMatchNextStates[p->state];
1860
1861 p->rc.range = range;
1862 LenEnc_Encode(&p->lenProbs, &p->rc, 0, posState);
1863 range = p->rc.range;
1864
1865 {
1866 // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[0], (1 << kNumPosSlotBits) - 1);
1867 CLzmaProb *probs = p->posSlotEncoder[0];
1868 unsigned m = 1;
1869 do
1870 {
1871 UInt32 ttt, newBound;
1872 RC_BIT_PRE(p, probs + m)
1873 RC_BIT_1(&p->rc, probs + m);
1874 m = (m << 1) + 1;
1875 }
1876 while (m < (1 << kNumPosSlotBits));
1877 }
1878 {
1879 // RangeEnc_EncodeDirectBits(&p->rc, ((UInt32)1 << (30 - kNumAlignBits)) - 1, 30 - kNumAlignBits); UInt32 range = p->range;
1880 unsigned numBits = 30 - kNumAlignBits;
1881 do
1882 {
1883 range >>= 1;
1884 p->rc.low += range;
1885 RC_NORM(&p->rc)
1886 }
1887 while (--numBits);
1888 }
1889
1890 {
1891 // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, kAlignMask);
1892 CLzmaProb *probs = p->posAlignEncoder;
1893 unsigned m = 1;
1894 do
1895 {
1896 UInt32 ttt, newBound;
1897 RC_BIT_PRE(p, probs + m)
1898 RC_BIT_1(&p->rc, probs + m);
1899 m = (m << 1) + 1;
1900 }
1901 while (m < kAlignTableSize);
1902 }
1903 p->rc.range = range;
1904 }
1905
1906
1907 static SRes CheckErrors(CLzmaEnc *p)
1908 {
1909 if (p->result != SZ_OK)
1910 return p->result;
1911 if (p->rc.res != SZ_OK)
1912 p->result = SZ_ERROR_WRITE;
1913 if (p->matchFinderBase.result != SZ_OK)
1914 p->result = SZ_ERROR_READ;
1915 if (p->result != SZ_OK)
1916 p->finished = True;
1917 return p->result;
1918 }
1919
1920
1921 MY_NO_INLINE static SRes Flush(CLzmaEnc *p, UInt32 nowPos)
1922 {
1923 /* ReleaseMFStream(); */
1924 p->finished = True;
1925 if (p->writeEndMark)
1926 WriteEndMarker(p, nowPos & p->pbMask);
1927 RangeEnc_FlushData(&p->rc);
1928 RangeEnc_FlushStream(&p->rc);
1929 return CheckErrors(p);
1930 }
1931
1932
1933
1934 static void FillAlignPrices(CLzmaEnc *p)
1935 {
1936 unsigned i;
1937 const CProbPrice *ProbPrices = p->ProbPrices;
1938 const CLzmaProb *probs = p->posAlignEncoder;
1939 p->alignPriceCount = 0;
1940 for (i = 0; i < kAlignTableSize / 2; i++)
1941 {
1942 UInt32 price = 0;
1943 unsigned symbol = i;
1944 unsigned m = 1;
1945 unsigned bit;
1946 UInt32 prob;
1947 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
1948 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
1949 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[m], bit); m = (m << 1) + bit;
1950 prob = probs[m];
1951 p->alignPrices[i ] = price + GET_PRICEa_0(prob);
1952 p->alignPrices[i + 8] = price + GET_PRICEa_1(prob);
1953 // p->alignPrices[i] = RcTree_ReverseGetPrice(p->posAlignEncoder, kNumAlignBits, i, p->ProbPrices);
1954 }
1955 }
1956
1957
1958 static void FillDistancesPrices(CLzmaEnc *p)
1959 {
1960 UInt32 tempPrices[kNumFullDistances];
1961 unsigned i, lenToPosState;
1962
1963 const CProbPrice *ProbPrices = p->ProbPrices;
1964 p->matchPriceCount = 0;
1965
1966 for (i = kStartPosModelIndex; i < kNumFullDistances; i++)
1967 {
1968 unsigned posSlot = GetPosSlot1(i);
1969 unsigned footerBits = ((posSlot >> 1) - 1);
1970 unsigned base = ((2 | (posSlot & 1)) << footerBits);
1971 // tempPrices[i] = RcTree_ReverseGetPrice(p->posEncoders + base, footerBits, i - base, p->ProbPrices);
1972
1973 const CLzmaProb *probs = p->posEncoders + base;
1974 UInt32 price = 0;
1975 unsigned m = 1;
1976 unsigned symbol = i - base;
1977 do
1978 {
1979 unsigned bit = symbol & 1;
1980 symbol >>= 1;
1981 price += GET_PRICEa(probs[m], bit);
1982 m = (m << 1) + bit;
1983 }
1984 while (--footerBits);
1985 tempPrices[i] = price;
1986 }
1987
1988 for (lenToPosState = 0; lenToPosState < kNumLenToPosStates; lenToPosState++)
1989 {
1990 unsigned posSlot;
1991 const CLzmaProb *encoder = p->posSlotEncoder[lenToPosState];
1992 UInt32 *posSlotPrices = p->posSlotPrices[lenToPosState];
1993 unsigned distTableSize = p->distTableSize;
1994 const CLzmaProb *probs = encoder;
1995 for (posSlot = 0; posSlot < distTableSize; posSlot += 2)
1996 {
1997 // posSlotPrices[posSlot] = RcTree_GetPrice(encoder, kNumPosSlotBits, posSlot, p->ProbPrices);
1998 UInt32 price = 0;
1999 unsigned bit;
2000 unsigned symbol = (posSlot >> 1) + (1 << (kNumPosSlotBits - 1));
2001 UInt32 prob;
2002 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[symbol], bit);
2003 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[symbol], bit);
2004 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[symbol], bit);
2005 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[symbol], bit);
2006 bit = symbol & 1; symbol >>= 1; price += GET_PRICEa(probs[symbol], bit);
2007 prob = probs[(posSlot >> 1) + (1 << (kNumPosSlotBits - 1))];
2008 posSlotPrices[posSlot ] = price + GET_PRICEa_0(prob);
2009 posSlotPrices[posSlot + 1] = price + GET_PRICEa_1(prob);
2010 }
2011 for (posSlot = kEndPosModelIndex; posSlot < distTableSize; posSlot++)
2012 posSlotPrices[posSlot] += ((UInt32)(((posSlot >> 1) - 1) - kNumAlignBits) << kNumBitPriceShiftBits);
2013
2014 {
2015 UInt32 *distancesPrices = p->distancesPrices[lenToPosState];
2016 {
2017 distancesPrices[0] = posSlotPrices[0];
2018 distancesPrices[1] = posSlotPrices[1];
2019 distancesPrices[2] = posSlotPrices[2];
2020 distancesPrices[3] = posSlotPrices[3];
2021 }
2022 for (i = 4; i < kNumFullDistances; i += 2)
2023 {
2024 UInt32 slotPrice = posSlotPrices[GetPosSlot1(i)];
2025 distancesPrices[i ] = slotPrice + tempPrices[i];
2026 distancesPrices[i + 1] = slotPrice + tempPrices[i + 1];
2027 }
2028 }
2029 }
2030 }
2031
2032
2033
2034 void LzmaEnc_Construct(CLzmaEnc *p)
2035 {
2036 RangeEnc_Construct(&p->rc);
2037 MatchFinder_Construct(&p->matchFinderBase);
2038
2039 #ifndef _7ZIP_ST
2040 MatchFinderMt_Construct(&p->matchFinderMt);
2041 p->matchFinderMt.MatchFinder = &p->matchFinderBase;
2042 #endif
2043
2044 {
2045 CLzmaEncProps props;
2046 LzmaEncProps_Init(&props);
2047 LzmaEnc_SetProps(p, &props);
2048 }
2049
2050 #ifndef LZMA_LOG_BSR
2051 LzmaEnc_FastPosInit(p->g_FastPos);
2052 #endif
2053
2054 LzmaEnc_InitPriceTables(p->ProbPrices);
2055 p->litProbs = NULL;
2056 p->saveState.litProbs = NULL;
2057
2058 }
2059
2060 CLzmaEncHandle LzmaEnc_Create(ISzAllocPtr alloc)
2061 {
2062 void *p;
2063 p = ISzAlloc_Alloc(alloc, sizeof(CLzmaEnc));
2064 if (p)
2065 LzmaEnc_Construct((CLzmaEnc *)p);
2066 return p;
2067 }
2068
2069 void LzmaEnc_FreeLits(CLzmaEnc *p, ISzAllocPtr alloc)
2070 {
2071 ISzAlloc_Free(alloc, p->litProbs);
2072 ISzAlloc_Free(alloc, p->saveState.litProbs);
2073 p->litProbs = NULL;
2074 p->saveState.litProbs = NULL;
2075 }
2076
2077 void LzmaEnc_Destruct(CLzmaEnc *p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2078 {
2079 #ifndef _7ZIP_ST
2080 MatchFinderMt_Destruct(&p->matchFinderMt, allocBig);
2081 #endif
2082
2083 MatchFinder_Free(&p->matchFinderBase, allocBig);
2084 LzmaEnc_FreeLits(p, alloc);
2085 RangeEnc_Free(&p->rc, alloc);
2086 }
2087
2088 void LzmaEnc_Destroy(CLzmaEncHandle p, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2089 {
2090 LzmaEnc_Destruct((CLzmaEnc *)p, alloc, allocBig);
2091 ISzAlloc_Free(alloc, p);
2092 }
2093
2094
2095 static SRes LzmaEnc_CodeOneBlock(CLzmaEnc *p, UInt32 maxPackSize, UInt32 maxUnpackSize)
2096 {
2097 UInt32 nowPos32, startPos32;
2098 if (p->needInit)
2099 {
2100 p->matchFinder.Init(p->matchFinderObj);
2101 p->needInit = 0;
2102 }
2103
2104 if (p->finished)
2105 return p->result;
2106 RINOK(CheckErrors(p));
2107
2108 nowPos32 = (UInt32)p->nowPos64;
2109 startPos32 = nowPos32;
2110
2111 if (p->nowPos64 == 0)
2112 {
2113 unsigned numPairs;
2114 Byte curByte;
2115 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2116 return Flush(p, nowPos32);
2117 ReadMatchDistances(p, &numPairs);
2118 RangeEnc_EncodeBit_0(&p->rc, &p->isMatch[kState_Start][0]);
2119 // p->state = kLiteralNextStates[p->state];
2120 curByte = *(p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset);
2121 LitEnc_Encode(&p->rc, p->litProbs, curByte);
2122 p->additionalOffset--;
2123 nowPos32++;
2124 }
2125
2126 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) != 0)
2127
2128 for (;;)
2129 {
2130 UInt32 dist;
2131 unsigned len, posState;
2132 UInt32 range, ttt, newBound;
2133 CLzmaProb *probs;
2134
2135 if (p->fastMode)
2136 len = GetOptimumFast(p);
2137 else
2138 {
2139 unsigned oci = p->optCur;
2140 if (p->optEnd == oci)
2141 len = GetOptimum(p, nowPos32);
2142 else
2143 {
2144 const COptimal *opt = &p->opt[oci];
2145 len = opt->len;
2146 p->backRes = opt->dist;
2147 p->optCur = oci + 1;
2148 }
2149 }
2150
2151 posState = (unsigned)nowPos32 & p->pbMask;
2152 range = p->rc.range;
2153 probs = &p->isMatch[p->state][posState];
2154
2155 RC_BIT_PRE(&p->rc, probs)
2156
2157 dist = p->backRes;
2158
2159 #ifdef SHOW_STAT2
2160 printf("\n pos = %6X, len = %3u pos = %6u", nowPos32, len, dist);
2161 #endif
2162
2163 if (dist == MARK_LIT)
2164 {
2165 Byte curByte;
2166 const Byte *data;
2167 unsigned state;
2168
2169 RC_BIT_0(&p->rc, probs);
2170 p->rc.range = range;
2171 data = p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2172 probs = LIT_PROBS(nowPos32, *(data - 1));
2173 curByte = *data;
2174 state = p->state;
2175 p->state = kLiteralNextStates[state];
2176 if (IsLitState(state))
2177 LitEnc_Encode(&p->rc, probs, curByte);
2178 else
2179 LitEnc_EncodeMatched(&p->rc, probs, curByte, *(data - p->reps[0]));
2180 }
2181 else
2182 {
2183 RC_BIT_1(&p->rc, probs);
2184 probs = &p->isRep[p->state];
2185 RC_BIT_PRE(&p->rc, probs)
2186
2187 if (dist < LZMA_NUM_REPS)
2188 {
2189 RC_BIT_1(&p->rc, probs);
2190 probs = &p->isRepG0[p->state];
2191 RC_BIT_PRE(&p->rc, probs)
2192 if (dist == 0)
2193 {
2194 RC_BIT_0(&p->rc, probs);
2195 probs = &p->isRep0Long[p->state][posState];
2196 RC_BIT_PRE(&p->rc, probs)
2197 if (len != 1)
2198 {
2199 RC_BIT_1_BASE(&p->rc, probs);
2200 }
2201 else
2202 {
2203 RC_BIT_0_BASE(&p->rc, probs);
2204 p->state = kShortRepNextStates[p->state];
2205 }
2206 }
2207 else
2208 {
2209 RC_BIT_1(&p->rc, probs);
2210 probs = &p->isRepG1[p->state];
2211 RC_BIT_PRE(&p->rc, probs)
2212 if (dist == 1)
2213 {
2214 RC_BIT_0_BASE(&p->rc, probs);
2215 dist = p->reps[1];
2216 }
2217 else
2218 {
2219 RC_BIT_1(&p->rc, probs);
2220 probs = &p->isRepG2[p->state];
2221 RC_BIT_PRE(&p->rc, probs)
2222 if (dist == 2)
2223 {
2224 RC_BIT_0_BASE(&p->rc, probs);
2225 dist = p->reps[2];
2226 }
2227 else
2228 {
2229 RC_BIT_1_BASE(&p->rc, probs);
2230 dist = p->reps[3];
2231 p->reps[3] = p->reps[2];
2232 }
2233 p->reps[2] = p->reps[1];
2234 }
2235 p->reps[1] = p->reps[0];
2236 p->reps[0] = dist;
2237 }
2238
2239 RC_NORM(&p->rc)
2240
2241 p->rc.range = range;
2242
2243 if (len != 1)
2244 {
2245 LenEnc_Encode(&p->repLenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2246 if (!p->fastMode)
2247 if (--p->repLenEnc.counters[posState] == 0)
2248 LenPriceEnc_UpdateTable(&p->repLenEnc, posState, &p->repLenProbs, p->ProbPrices);
2249
2250 p->state = kRepNextStates[p->state];
2251 }
2252 }
2253 else
2254 {
2255 unsigned posSlot;
2256 RC_BIT_0(&p->rc, probs);
2257 p->rc.range = range;
2258 p->state = kMatchNextStates[p->state];
2259
2260 LenEnc_Encode(&p->lenProbs, &p->rc, len - LZMA_MATCH_LEN_MIN, posState);
2261 if (!p->fastMode)
2262 if (--p->lenEnc.counters[posState] == 0)
2263 LenPriceEnc_UpdateTable(&p->lenEnc, posState, &p->lenProbs, p->ProbPrices);
2264
2265 dist -= LZMA_NUM_REPS;
2266 p->reps[3] = p->reps[2];
2267 p->reps[2] = p->reps[1];
2268 p->reps[1] = p->reps[0];
2269 p->reps[0] = dist + 1;
2270
2271 p->matchPriceCount++;
2272 GetPosSlot(dist, posSlot);
2273 // RcTree_Encode_PosSlot(&p->rc, p->posSlotEncoder[GetLenToPosState(len)], posSlot);
2274 {
2275 UInt32 symbol = posSlot + (1 << kNumPosSlotBits);
2276 range = p->rc.range;
2277 probs = p->posSlotEncoder[GetLenToPosState(len)];
2278 do
2279 {
2280 CLzmaProb *prob = probs + (symbol >> kNumPosSlotBits);
2281 UInt32 bit = (symbol >> (kNumPosSlotBits - 1)) & 1;
2282 symbol <<= 1;
2283 RC_BIT(&p->rc, prob, bit);
2284 }
2285 while (symbol < (1 << kNumPosSlotBits * 2));
2286 p->rc.range = range;
2287 }
2288
2289 if (dist >= kStartPosModelIndex)
2290 {
2291 unsigned footerBits = ((posSlot >> 1) - 1);
2292
2293 if (dist < kNumFullDistances)
2294 {
2295 unsigned base = ((2 | (posSlot & 1)) << footerBits);
2296 RcTree_ReverseEncode(&p->rc, p->posEncoders + base, footerBits, dist - base);
2297 }
2298 else
2299 {
2300 UInt32 pos2 = (dist | 0xF) << (32 - footerBits);
2301 range = p->rc.range;
2302 // RangeEnc_EncodeDirectBits(&p->rc, posReduced >> kNumAlignBits, footerBits - kNumAlignBits);
2303 /*
2304 do
2305 {
2306 range >>= 1;
2307 p->rc.low += range & (0 - ((dist >> --footerBits) & 1));
2308 RC_NORM(&p->rc)
2309 }
2310 while (footerBits > kNumAlignBits);
2311 */
2312 do
2313 {
2314 range >>= 1;
2315 p->rc.low += range & (0 - (pos2 >> 31));
2316 pos2 += pos2;
2317 RC_NORM(&p->rc)
2318 }
2319 while (pos2 != 0xF0000000);
2320
2321
2322 // RcTree_ReverseEncode(&p->rc, p->posAlignEncoder, kNumAlignBits, posReduced & kAlignMask);
2323
2324 {
2325 unsigned m = 1;
2326 unsigned bit;
2327 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2328 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2329 bit = dist & 1; dist >>= 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit); m = (m << 1) + bit;
2330 bit = dist & 1; RC_BIT(&p->rc, p->posAlignEncoder + m, bit);
2331 p->rc.range = range;
2332 p->alignPriceCount++;
2333 }
2334 }
2335 }
2336 }
2337 }
2338
2339 nowPos32 += len;
2340 p->additionalOffset -= len;
2341
2342 if (p->additionalOffset == 0)
2343 {
2344 UInt32 processed;
2345
2346 if (!p->fastMode)
2347 {
2348 if (p->matchPriceCount >= (1 << 7))
2349 FillDistancesPrices(p);
2350 if (p->alignPriceCount >= kAlignTableSize)
2351 FillAlignPrices(p);
2352 }
2353
2354 if (p->matchFinder.GetNumAvailableBytes(p->matchFinderObj) == 0)
2355 break;
2356 processed = nowPos32 - startPos32;
2357
2358 if (maxPackSize)
2359 {
2360 if (processed + kNumOpts + 300 >= maxUnpackSize
2361 || RangeEnc_GetProcessed_sizet(&p->rc) + kPackReserve >= maxPackSize)
2362 break;
2363 }
2364 else if (processed >= (1 << 17))
2365 {
2366 p->nowPos64 += nowPos32 - startPos32;
2367 return CheckErrors(p);
2368 }
2369 }
2370 }
2371
2372 p->nowPos64 += nowPos32 - startPos32;
2373 return Flush(p, nowPos32);
2374 }
2375
2376
2377
2378 #define kBigHashDicLimit ((UInt32)1 << 24)
2379
2380 static SRes LzmaEnc_Alloc(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2381 {
2382 UInt32 beforeSize = kNumOpts;
2383 if (!RangeEnc_Alloc(&p->rc, alloc))
2384 return SZ_ERROR_MEM;
2385
2386 #ifndef _7ZIP_ST
2387 p->mtMode = (p->multiThread && !p->fastMode && (p->matchFinderBase.btMode != 0));
2388 #endif
2389
2390 {
2391 unsigned lclp = p->lc + p->lp;
2392 if (!p->litProbs || !p->saveState.litProbs || p->lclp != lclp)
2393 {
2394 LzmaEnc_FreeLits(p, alloc);
2395 p->litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2396 p->saveState.litProbs = (CLzmaProb *)ISzAlloc_Alloc(alloc, ((UInt32)0x300 << lclp) * sizeof(CLzmaProb));
2397 if (!p->litProbs || !p->saveState.litProbs)
2398 {
2399 LzmaEnc_FreeLits(p, alloc);
2400 return SZ_ERROR_MEM;
2401 }
2402 p->lclp = lclp;
2403 }
2404 }
2405
2406 p->matchFinderBase.bigHash = (Byte)(p->dictSize > kBigHashDicLimit ? 1 : 0);
2407
2408 if (beforeSize + p->dictSize < keepWindowSize)
2409 beforeSize = keepWindowSize - p->dictSize;
2410
2411 #ifndef _7ZIP_ST
2412 if (p->mtMode)
2413 {
2414 RINOK(MatchFinderMt_Create(&p->matchFinderMt, p->dictSize, beforeSize, p->numFastBytes,
2415 LZMA_MATCH_LEN_MAX
2416 + 1 /* 18.04 */
2417 , allocBig));
2418 p->matchFinderObj = &p->matchFinderMt;
2419 p->matchFinderBase.bigHash = (Byte)(
2420 (p->dictSize > kBigHashDicLimit && p->matchFinderBase.hashMask >= 0xFFFFFF) ? 1 : 0);
2421 MatchFinderMt_CreateVTable(&p->matchFinderMt, &p->matchFinder);
2422 }
2423 else
2424 #endif
2425 {
2426 if (!MatchFinder_Create(&p->matchFinderBase, p->dictSize, beforeSize, p->numFastBytes, LZMA_MATCH_LEN_MAX, allocBig))
2427 return SZ_ERROR_MEM;
2428 p->matchFinderObj = &p->matchFinderBase;
2429 MatchFinder_CreateVTable(&p->matchFinderBase, &p->matchFinder);
2430 }
2431
2432 return SZ_OK;
2433 }
2434
2435 void LzmaEnc_Init(CLzmaEnc *p)
2436 {
2437 unsigned i;
2438 p->state = 0;
2439 p->reps[0] =
2440 p->reps[1] =
2441 p->reps[2] =
2442 p->reps[3] = 1;
2443
2444 RangeEnc_Init(&p->rc);
2445
2446 for (i = 0; i < (1 << kNumAlignBits); i++)
2447 p->posAlignEncoder[i] = kProbInitValue;
2448
2449 for (i = 0; i < kNumStates; i++)
2450 {
2451 unsigned j;
2452 for (j = 0; j < LZMA_NUM_PB_STATES_MAX; j++)
2453 {
2454 p->isMatch[i][j] = kProbInitValue;
2455 p->isRep0Long[i][j] = kProbInitValue;
2456 }
2457 p->isRep[i] = kProbInitValue;
2458 p->isRepG0[i] = kProbInitValue;
2459 p->isRepG1[i] = kProbInitValue;
2460 p->isRepG2[i] = kProbInitValue;
2461 }
2462
2463 {
2464 for (i = 0; i < kNumLenToPosStates; i++)
2465 {
2466 CLzmaProb *probs = p->posSlotEncoder[i];
2467 unsigned j;
2468 for (j = 0; j < (1 << kNumPosSlotBits); j++)
2469 probs[j] = kProbInitValue;
2470 }
2471 }
2472 {
2473 for (i = 0; i < kNumFullDistances; i++)
2474 p->posEncoders[i] = kProbInitValue;
2475 }
2476
2477 {
2478 UInt32 num = (UInt32)0x300 << (p->lp + p->lc);
2479 UInt32 k;
2480 CLzmaProb *probs = p->litProbs;
2481 for (k = 0; k < num; k++)
2482 probs[k] = kProbInitValue;
2483 }
2484
2485
2486 LenEnc_Init(&p->lenProbs);
2487 LenEnc_Init(&p->repLenProbs);
2488
2489 p->optEnd = 0;
2490 p->optCur = 0;
2491 p->additionalOffset = 0;
2492
2493 p->pbMask = (1 << p->pb) - 1;
2494 p->lpMask = ((UInt32)0x100 << p->lp) - ((unsigned)0x100 >> p->lc);
2495 }
2496
2497 void LzmaEnc_InitPrices(CLzmaEnc *p)
2498 {
2499 if (!p->fastMode)
2500 {
2501 FillDistancesPrices(p);
2502 FillAlignPrices(p);
2503 }
2504
2505 p->lenEnc.tableSize =
2506 p->repLenEnc.tableSize =
2507 p->numFastBytes + 1 - LZMA_MATCH_LEN_MIN;
2508 LenPriceEnc_UpdateTables(&p->lenEnc, 1 << p->pb, &p->lenProbs, p->ProbPrices);
2509 LenPriceEnc_UpdateTables(&p->repLenEnc, 1 << p->pb, &p->repLenProbs, p->ProbPrices);
2510 }
2511
2512 static SRes LzmaEnc_AllocAndInit(CLzmaEnc *p, UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2513 {
2514 unsigned i;
2515 for (i = kEndPosModelIndex / 2; i < kDicLogSizeMax; i++)
2516 if (p->dictSize <= ((UInt32)1 << i))
2517 break;
2518 p->distTableSize = i * 2;
2519
2520 p->finished = False;
2521 p->result = SZ_OK;
2522 RINOK(LzmaEnc_Alloc(p, keepWindowSize, alloc, allocBig));
2523 LzmaEnc_Init(p);
2524 LzmaEnc_InitPrices(p);
2525 p->nowPos64 = 0;
2526 return SZ_OK;
2527 }
2528
2529 static SRes LzmaEnc_Prepare(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream,
2530 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2531 {
2532 CLzmaEnc *p = (CLzmaEnc *)pp;
2533 p->matchFinderBase.stream = inStream;
2534 p->needInit = 1;
2535 p->rc.outStream = outStream;
2536 return LzmaEnc_AllocAndInit(p, 0, alloc, allocBig);
2537 }
2538
2539 SRes LzmaEnc_PrepareForLzma2(CLzmaEncHandle pp,
2540 ISeqInStream *inStream, UInt32 keepWindowSize,
2541 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2542 {
2543 CLzmaEnc *p = (CLzmaEnc *)pp;
2544 p->matchFinderBase.stream = inStream;
2545 p->needInit = 1;
2546 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2547 }
2548
2549 static void LzmaEnc_SetInputBuf(CLzmaEnc *p, const Byte *src, SizeT srcLen)
2550 {
2551 p->matchFinderBase.directInput = 1;
2552 p->matchFinderBase.bufferBase = (Byte *)src;
2553 p->matchFinderBase.directInputRem = srcLen;
2554 }
2555
2556 SRes LzmaEnc_MemPrepare(CLzmaEncHandle pp, const Byte *src, SizeT srcLen,
2557 UInt32 keepWindowSize, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2558 {
2559 CLzmaEnc *p = (CLzmaEnc *)pp;
2560 LzmaEnc_SetInputBuf(p, src, srcLen);
2561 p->needInit = 1;
2562
2563 LzmaEnc_SetDataSize(pp, srcLen);
2564 return LzmaEnc_AllocAndInit(p, keepWindowSize, alloc, allocBig);
2565 }
2566
2567 void LzmaEnc_Finish(CLzmaEncHandle pp)
2568 {
2569 #ifndef _7ZIP_ST
2570 CLzmaEnc *p = (CLzmaEnc *)pp;
2571 if (p->mtMode)
2572 MatchFinderMt_ReleaseStream(&p->matchFinderMt);
2573 #else
2574 UNUSED_VAR(pp);
2575 #endif
2576 }
2577
2578
2579 typedef struct
2580 {
2581 ISeqOutStream vt;
2582 Byte *data;
2583 SizeT rem;
2584 Bool overflow;
2585 } CLzmaEnc_SeqOutStreamBuf;
2586
2587 static size_t SeqOutStreamBuf_Write(const ISeqOutStream *pp, const void *data, size_t size)
2588 {
2589 CLzmaEnc_SeqOutStreamBuf *p = CONTAINER_FROM_VTBL(pp, CLzmaEnc_SeqOutStreamBuf, vt);
2590 if (p->rem < size)
2591 {
2592 size = p->rem;
2593 p->overflow = True;
2594 }
2595 memcpy(p->data, data, size);
2596 p->rem -= size;
2597 p->data += size;
2598 return size;
2599 }
2600
2601
2602 UInt32 LzmaEnc_GetNumAvailableBytes(CLzmaEncHandle pp)
2603 {
2604 const CLzmaEnc *p = (CLzmaEnc *)pp;
2605 return p->matchFinder.GetNumAvailableBytes(p->matchFinderObj);
2606 }
2607
2608
2609 const Byte *LzmaEnc_GetCurBuf(CLzmaEncHandle pp)
2610 {
2611 const CLzmaEnc *p = (CLzmaEnc *)pp;
2612 return p->matchFinder.GetPointerToCurrentPos(p->matchFinderObj) - p->additionalOffset;
2613 }
2614
2615
2616 SRes LzmaEnc_CodeOneMemBlock(CLzmaEncHandle pp, Bool reInit,
2617 Byte *dest, size_t *destLen, UInt32 desiredPackSize, UInt32 *unpackSize)
2618 {
2619 CLzmaEnc *p = (CLzmaEnc *)pp;
2620 UInt64 nowPos64;
2621 SRes res;
2622 CLzmaEnc_SeqOutStreamBuf outStream;
2623
2624 outStream.vt.Write = SeqOutStreamBuf_Write;
2625 outStream.data = dest;
2626 outStream.rem = *destLen;
2627 outStream.overflow = False;
2628
2629 p->writeEndMark = False;
2630 p->finished = False;
2631 p->result = SZ_OK;
2632
2633 if (reInit)
2634 LzmaEnc_Init(p);
2635 LzmaEnc_InitPrices(p);
2636
2637 nowPos64 = p->nowPos64;
2638 RangeEnc_Init(&p->rc);
2639 p->rc.outStream = &outStream.vt;
2640
2641 if (desiredPackSize == 0)
2642 return SZ_ERROR_OUTPUT_EOF;
2643
2644 res = LzmaEnc_CodeOneBlock(p, desiredPackSize, *unpackSize);
2645
2646 *unpackSize = (UInt32)(p->nowPos64 - nowPos64);
2647 *destLen -= outStream.rem;
2648 if (outStream.overflow)
2649 return SZ_ERROR_OUTPUT_EOF;
2650
2651 return res;
2652 }
2653
2654
2655 static SRes LzmaEnc_Encode2(CLzmaEnc *p, ICompressProgress *progress)
2656 {
2657 SRes res = SZ_OK;
2658
2659 #ifndef _7ZIP_ST
2660 Byte allocaDummy[0x300];
2661 allocaDummy[0] = 0;
2662 allocaDummy[1] = allocaDummy[0];
2663 #endif
2664
2665 for (;;)
2666 {
2667 res = LzmaEnc_CodeOneBlock(p, 0, 0);
2668 if (res != SZ_OK || p->finished)
2669 break;
2670 if (progress)
2671 {
2672 res = ICompressProgress_Progress(progress, p->nowPos64, RangeEnc_GetProcessed(&p->rc));
2673 if (res != SZ_OK)
2674 {
2675 res = SZ_ERROR_PROGRESS;
2676 break;
2677 }
2678 }
2679 }
2680
2681 LzmaEnc_Finish(p);
2682
2683 /*
2684 if (res == SZ_OK && !Inline_MatchFinder_IsFinishedOK(&p->matchFinderBase))
2685 res = SZ_ERROR_FAIL;
2686 }
2687 */
2688
2689 return res;
2690 }
2691
2692
2693 SRes LzmaEnc_Encode(CLzmaEncHandle pp, ISeqOutStream *outStream, ISeqInStream *inStream, ICompressProgress *progress,
2694 ISzAllocPtr alloc, ISzAllocPtr allocBig)
2695 {
2696 RINOK(LzmaEnc_Prepare(pp, outStream, inStream, alloc, allocBig));
2697 return LzmaEnc_Encode2((CLzmaEnc *)pp, progress);
2698 }
2699
2700
2701 SRes LzmaEnc_WriteProperties(CLzmaEncHandle pp, Byte *props, SizeT *size)
2702 {
2703 CLzmaEnc *p = (CLzmaEnc *)pp;
2704 unsigned i;
2705 UInt32 dictSize = p->dictSize;
2706 if (*size < LZMA_PROPS_SIZE)
2707 return SZ_ERROR_PARAM;
2708 *size = LZMA_PROPS_SIZE;
2709 props[0] = (Byte)((p->pb * 5 + p->lp) * 9 + p->lc);
2710
2711 if (dictSize >= ((UInt32)1 << 22))
2712 {
2713 UInt32 kDictMask = ((UInt32)1 << 20) - 1;
2714 if (dictSize < (UInt32)0xFFFFFFFF - kDictMask)
2715 dictSize = (dictSize + kDictMask) & ~kDictMask;
2716 }
2717 else for (i = 11; i <= 30; i++)
2718 {
2719 if (dictSize <= ((UInt32)2 << i)) { dictSize = (2 << i); break; }
2720 if (dictSize <= ((UInt32)3 << i)) { dictSize = (3 << i); break; }
2721 }
2722
2723 for (i = 0; i < 4; i++)
2724 props[1 + i] = (Byte)(dictSize >> (8 * i));
2725 return SZ_OK;
2726 }
2727
2728
2729 unsigned LzmaEnc_IsWriteEndMark(CLzmaEncHandle pp)
2730 {
2731 return ((CLzmaEnc *)pp)->writeEndMark;
2732 }
2733
2734
2735 SRes LzmaEnc_MemEncode(CLzmaEncHandle pp, Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2736 int writeEndMark, ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2737 {
2738 SRes res;
2739 CLzmaEnc *p = (CLzmaEnc *)pp;
2740
2741 CLzmaEnc_SeqOutStreamBuf outStream;
2742
2743 outStream.vt.Write = SeqOutStreamBuf_Write;
2744 outStream.data = dest;
2745 outStream.rem = *destLen;
2746 outStream.overflow = False;
2747
2748 p->writeEndMark = writeEndMark;
2749 p->rc.outStream = &outStream.vt;
2750
2751 res = LzmaEnc_MemPrepare(pp, src, srcLen, 0, alloc, allocBig);
2752
2753 if (res == SZ_OK)
2754 {
2755 res = LzmaEnc_Encode2(p, progress);
2756 if (res == SZ_OK && p->nowPos64 != srcLen)
2757 res = SZ_ERROR_FAIL;
2758 }
2759
2760 *destLen -= outStream.rem;
2761 if (outStream.overflow)
2762 return SZ_ERROR_OUTPUT_EOF;
2763 return res;
2764 }
2765
2766
2767 SRes LzmaEncode(Byte *dest, SizeT *destLen, const Byte *src, SizeT srcLen,
2768 const CLzmaEncProps *props, Byte *propsEncoded, SizeT *propsSize, int writeEndMark,
2769 ICompressProgress *progress, ISzAllocPtr alloc, ISzAllocPtr allocBig)
2770 {
2771 CLzmaEnc *p = (CLzmaEnc *)LzmaEnc_Create(alloc);
2772 SRes res;
2773 if (!p)
2774 return SZ_ERROR_MEM;
2775
2776 res = LzmaEnc_SetProps(p, props);
2777 if (res == SZ_OK)
2778 {
2779 res = LzmaEnc_WriteProperties(p, propsEncoded, propsSize);
2780 if (res == SZ_OK)
2781 res = LzmaEnc_MemEncode(p, dest, destLen, src, srcLen,
2782 writeEndMark, progress, alloc, allocBig);
2783 }
2784
2785 LzmaEnc_Destroy(p, alloc, allocBig);
2786 return res;
2787 }