]> git.proxmox.com Git - mirror_edk2.git/blob - UefiCpuPkg/Library/MpInitLib/MpLib.c
UefiCpuPkg/MpInitLib: Not use disabled AP when call StartAllAPs.
[mirror_edk2.git] / UefiCpuPkg / Library / MpInitLib / MpLib.c
1 /** @file
2 CPU MP Initialize Library common functions.
3
4 Copyright (c) 2016 - 2018, Intel Corporation. All rights reserved.<BR>
5 This program and the accompanying materials
6 are licensed and made available under the terms and conditions of the BSD License
7 which accompanies this distribution. The full text of the license may be found at
8 http://opensource.org/licenses/bsd-license.php
9
10 THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS,
11 WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED.
12
13 **/
14
15 #include "MpLib.h"
16
17 EFI_GUID mCpuInitMpLibHobGuid = CPU_INIT_MP_LIB_HOB_GUID;
18
19 /**
20 The function will check if BSP Execute Disable is enabled.
21
22 DxeIpl may have enabled Execute Disable for BSP, APs need to
23 get the status and sync up the settings.
24 If BSP's CR0.Paging is not set, BSP execute Disble feature is
25 not working actually.
26
27 @retval TRUE BSP Execute Disable is enabled.
28 @retval FALSE BSP Execute Disable is not enabled.
29 **/
30 BOOLEAN
31 IsBspExecuteDisableEnabled (
32 VOID
33 )
34 {
35 UINT32 Eax;
36 CPUID_EXTENDED_CPU_SIG_EDX Edx;
37 MSR_IA32_EFER_REGISTER EferMsr;
38 BOOLEAN Enabled;
39 IA32_CR0 Cr0;
40
41 Enabled = FALSE;
42 Cr0.UintN = AsmReadCr0 ();
43 if (Cr0.Bits.PG != 0) {
44 //
45 // If CR0 Paging bit is set
46 //
47 AsmCpuid (CPUID_EXTENDED_FUNCTION, &Eax, NULL, NULL, NULL);
48 if (Eax >= CPUID_EXTENDED_CPU_SIG) {
49 AsmCpuid (CPUID_EXTENDED_CPU_SIG, NULL, NULL, NULL, &Edx.Uint32);
50 //
51 // CPUID 0x80000001
52 // Bit 20: Execute Disable Bit available.
53 //
54 if (Edx.Bits.NX != 0) {
55 EferMsr.Uint64 = AsmReadMsr64 (MSR_IA32_EFER);
56 //
57 // MSR 0xC0000080
58 // Bit 11: Execute Disable Bit enable.
59 //
60 if (EferMsr.Bits.NXE != 0) {
61 Enabled = TRUE;
62 }
63 }
64 }
65 }
66
67 return Enabled;
68 }
69
70 /**
71 Worker function for SwitchBSP().
72
73 Worker function for SwitchBSP(), assigned to the AP which is intended
74 to become BSP.
75
76 @param[in] Buffer Pointer to CPU MP Data
77 **/
78 VOID
79 EFIAPI
80 FutureBSPProc (
81 IN VOID *Buffer
82 )
83 {
84 CPU_MP_DATA *DataInHob;
85
86 DataInHob = (CPU_MP_DATA *) Buffer;
87 AsmExchangeRole (&DataInHob->APInfo, &DataInHob->BSPInfo);
88 }
89
90 /**
91 Get the Application Processors state.
92
93 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
94
95 @return The AP status
96 **/
97 CPU_STATE
98 GetApState (
99 IN CPU_AP_DATA *CpuData
100 )
101 {
102 return CpuData->State;
103 }
104
105 /**
106 Set the Application Processors state.
107
108 @param[in] CpuData The pointer to CPU_AP_DATA of specified AP
109 @param[in] State The AP status
110 **/
111 VOID
112 SetApState (
113 IN CPU_AP_DATA *CpuData,
114 IN CPU_STATE State
115 )
116 {
117 AcquireSpinLock (&CpuData->ApLock);
118 CpuData->State = State;
119 ReleaseSpinLock (&CpuData->ApLock);
120 }
121
122 /**
123 Save BSP's local APIC timer setting.
124
125 @param[in] CpuMpData Pointer to CPU MP Data
126 **/
127 VOID
128 SaveLocalApicTimerSetting (
129 IN CPU_MP_DATA *CpuMpData
130 )
131 {
132 //
133 // Record the current local APIC timer setting of BSP
134 //
135 GetApicTimerState (
136 &CpuMpData->DivideValue,
137 &CpuMpData->PeriodicMode,
138 &CpuMpData->Vector
139 );
140 CpuMpData->CurrentTimerCount = GetApicTimerCurrentCount ();
141 CpuMpData->TimerInterruptState = GetApicTimerInterruptState ();
142 }
143
144 /**
145 Sync local APIC timer setting from BSP to AP.
146
147 @param[in] CpuMpData Pointer to CPU MP Data
148 **/
149 VOID
150 SyncLocalApicTimerSetting (
151 IN CPU_MP_DATA *CpuMpData
152 )
153 {
154 //
155 // Sync local APIC timer setting from BSP to AP
156 //
157 InitializeApicTimer (
158 CpuMpData->DivideValue,
159 CpuMpData->CurrentTimerCount,
160 CpuMpData->PeriodicMode,
161 CpuMpData->Vector
162 );
163 //
164 // Disable AP's local APIC timer interrupt
165 //
166 DisableApicTimerInterrupt ();
167 }
168
169 /**
170 Save the volatile registers required to be restored following INIT IPI.
171
172 @param[out] VolatileRegisters Returns buffer saved the volatile resisters
173 **/
174 VOID
175 SaveVolatileRegisters (
176 OUT CPU_VOLATILE_REGISTERS *VolatileRegisters
177 )
178 {
179 CPUID_VERSION_INFO_EDX VersionInfoEdx;
180
181 VolatileRegisters->Cr0 = AsmReadCr0 ();
182 VolatileRegisters->Cr3 = AsmReadCr3 ();
183 VolatileRegisters->Cr4 = AsmReadCr4 ();
184
185 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
186 if (VersionInfoEdx.Bits.DE != 0) {
187 //
188 // If processor supports Debugging Extensions feature
189 // by CPUID.[EAX=01H]:EDX.BIT2
190 //
191 VolatileRegisters->Dr0 = AsmReadDr0 ();
192 VolatileRegisters->Dr1 = AsmReadDr1 ();
193 VolatileRegisters->Dr2 = AsmReadDr2 ();
194 VolatileRegisters->Dr3 = AsmReadDr3 ();
195 VolatileRegisters->Dr6 = AsmReadDr6 ();
196 VolatileRegisters->Dr7 = AsmReadDr7 ();
197 }
198
199 AsmReadGdtr (&VolatileRegisters->Gdtr);
200 AsmReadIdtr (&VolatileRegisters->Idtr);
201 VolatileRegisters->Tr = AsmReadTr ();
202 }
203
204 /**
205 Restore the volatile registers following INIT IPI.
206
207 @param[in] VolatileRegisters Pointer to volatile resisters
208 @param[in] IsRestoreDr TRUE: Restore DRx if supported
209 FALSE: Do not restore DRx
210 **/
211 VOID
212 RestoreVolatileRegisters (
213 IN CPU_VOLATILE_REGISTERS *VolatileRegisters,
214 IN BOOLEAN IsRestoreDr
215 )
216 {
217 CPUID_VERSION_INFO_EDX VersionInfoEdx;
218 IA32_TSS_DESCRIPTOR *Tss;
219
220 AsmWriteCr0 (VolatileRegisters->Cr0);
221 AsmWriteCr3 (VolatileRegisters->Cr3);
222 AsmWriteCr4 (VolatileRegisters->Cr4);
223
224 if (IsRestoreDr) {
225 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, NULL, &VersionInfoEdx.Uint32);
226 if (VersionInfoEdx.Bits.DE != 0) {
227 //
228 // If processor supports Debugging Extensions feature
229 // by CPUID.[EAX=01H]:EDX.BIT2
230 //
231 AsmWriteDr0 (VolatileRegisters->Dr0);
232 AsmWriteDr1 (VolatileRegisters->Dr1);
233 AsmWriteDr2 (VolatileRegisters->Dr2);
234 AsmWriteDr3 (VolatileRegisters->Dr3);
235 AsmWriteDr6 (VolatileRegisters->Dr6);
236 AsmWriteDr7 (VolatileRegisters->Dr7);
237 }
238 }
239
240 AsmWriteGdtr (&VolatileRegisters->Gdtr);
241 AsmWriteIdtr (&VolatileRegisters->Idtr);
242 if (VolatileRegisters->Tr != 0 &&
243 VolatileRegisters->Tr < VolatileRegisters->Gdtr.Limit) {
244 Tss = (IA32_TSS_DESCRIPTOR *)(VolatileRegisters->Gdtr.Base +
245 VolatileRegisters->Tr);
246 if (Tss->Bits.P == 1) {
247 Tss->Bits.Type &= 0xD; // 1101 - Clear busy bit just in case
248 AsmWriteTr (VolatileRegisters->Tr);
249 }
250 }
251 }
252
253 /**
254 Detect whether Mwait-monitor feature is supported.
255
256 @retval TRUE Mwait-monitor feature is supported.
257 @retval FALSE Mwait-monitor feature is not supported.
258 **/
259 BOOLEAN
260 IsMwaitSupport (
261 VOID
262 )
263 {
264 CPUID_VERSION_INFO_ECX VersionInfoEcx;
265
266 AsmCpuid (CPUID_VERSION_INFO, NULL, NULL, &VersionInfoEcx.Uint32, NULL);
267 return (VersionInfoEcx.Bits.MONITOR == 1) ? TRUE : FALSE;
268 }
269
270 /**
271 Get AP loop mode.
272
273 @param[out] MonitorFilterSize Returns the largest monitor-line size in bytes.
274
275 @return The AP loop mode.
276 **/
277 UINT8
278 GetApLoopMode (
279 OUT UINT32 *MonitorFilterSize
280 )
281 {
282 UINT8 ApLoopMode;
283 CPUID_MONITOR_MWAIT_EBX MonitorMwaitEbx;
284
285 ASSERT (MonitorFilterSize != NULL);
286
287 ApLoopMode = PcdGet8 (PcdCpuApLoopMode);
288 ASSERT (ApLoopMode >= ApInHltLoop && ApLoopMode <= ApInRunLoop);
289 if (ApLoopMode == ApInMwaitLoop) {
290 if (!IsMwaitSupport ()) {
291 //
292 // If processor does not support MONITOR/MWAIT feature,
293 // force AP in Hlt-loop mode
294 //
295 ApLoopMode = ApInHltLoop;
296 }
297 }
298
299 if (ApLoopMode != ApInMwaitLoop) {
300 *MonitorFilterSize = sizeof (UINT32);
301 } else {
302 //
303 // CPUID.[EAX=05H]:EBX.BIT0-15: Largest monitor-line size in bytes
304 // CPUID.[EAX=05H].EDX: C-states supported using MWAIT
305 //
306 AsmCpuid (CPUID_MONITOR_MWAIT, NULL, &MonitorMwaitEbx.Uint32, NULL, NULL);
307 *MonitorFilterSize = MonitorMwaitEbx.Bits.LargestMonitorLineSize;
308 }
309
310 return ApLoopMode;
311 }
312
313 /**
314 Sort the APIC ID of all processors.
315
316 This function sorts the APIC ID of all processors so that processor number is
317 assigned in the ascending order of APIC ID which eases MP debugging.
318
319 @param[in] CpuMpData Pointer to PEI CPU MP Data
320 **/
321 VOID
322 SortApicId (
323 IN CPU_MP_DATA *CpuMpData
324 )
325 {
326 UINTN Index1;
327 UINTN Index2;
328 UINTN Index3;
329 UINT32 ApicId;
330 CPU_INFO_IN_HOB CpuInfo;
331 UINT32 ApCount;
332 CPU_INFO_IN_HOB *CpuInfoInHob;
333 volatile UINT32 *StartupApSignal;
334
335 ApCount = CpuMpData->CpuCount - 1;
336 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
337 if (ApCount != 0) {
338 for (Index1 = 0; Index1 < ApCount; Index1++) {
339 Index3 = Index1;
340 //
341 // Sort key is the hardware default APIC ID
342 //
343 ApicId = CpuInfoInHob[Index1].ApicId;
344 for (Index2 = Index1 + 1; Index2 <= ApCount; Index2++) {
345 if (ApicId > CpuInfoInHob[Index2].ApicId) {
346 Index3 = Index2;
347 ApicId = CpuInfoInHob[Index2].ApicId;
348 }
349 }
350 if (Index3 != Index1) {
351 CopyMem (&CpuInfo, &CpuInfoInHob[Index3], sizeof (CPU_INFO_IN_HOB));
352 CopyMem (
353 &CpuInfoInHob[Index3],
354 &CpuInfoInHob[Index1],
355 sizeof (CPU_INFO_IN_HOB)
356 );
357 CopyMem (&CpuInfoInHob[Index1], &CpuInfo, sizeof (CPU_INFO_IN_HOB));
358
359 //
360 // Also exchange the StartupApSignal.
361 //
362 StartupApSignal = CpuMpData->CpuData[Index3].StartupApSignal;
363 CpuMpData->CpuData[Index3].StartupApSignal =
364 CpuMpData->CpuData[Index1].StartupApSignal;
365 CpuMpData->CpuData[Index1].StartupApSignal = StartupApSignal;
366 }
367 }
368
369 //
370 // Get the processor number for the BSP
371 //
372 ApicId = GetInitialApicId ();
373 for (Index1 = 0; Index1 < CpuMpData->CpuCount; Index1++) {
374 if (CpuInfoInHob[Index1].ApicId == ApicId) {
375 CpuMpData->BspNumber = (UINT32) Index1;
376 break;
377 }
378 }
379 }
380 }
381
382 /**
383 Enable x2APIC mode on APs.
384
385 @param[in, out] Buffer Pointer to private data buffer.
386 **/
387 VOID
388 EFIAPI
389 ApFuncEnableX2Apic (
390 IN OUT VOID *Buffer
391 )
392 {
393 SetApicMode (LOCAL_APIC_MODE_X2APIC);
394 }
395
396 /**
397 Do sync on APs.
398
399 @param[in, out] Buffer Pointer to private data buffer.
400 **/
401 VOID
402 EFIAPI
403 ApInitializeSync (
404 IN OUT VOID *Buffer
405 )
406 {
407 CPU_MP_DATA *CpuMpData;
408
409 CpuMpData = (CPU_MP_DATA *) Buffer;
410 //
411 // Load microcode on AP
412 //
413 MicrocodeDetect (CpuMpData, FALSE);
414 //
415 // Sync BSP's MTRR table to AP
416 //
417 MtrrSetAllMtrrs (&CpuMpData->MtrrTable);
418 }
419
420 /**
421 Find the current Processor number by APIC ID.
422
423 @param[in] CpuMpData Pointer to PEI CPU MP Data
424 @param[out] ProcessorNumber Return the pocessor number found
425
426 @retval EFI_SUCCESS ProcessorNumber is found and returned.
427 @retval EFI_NOT_FOUND ProcessorNumber is not found.
428 **/
429 EFI_STATUS
430 GetProcessorNumber (
431 IN CPU_MP_DATA *CpuMpData,
432 OUT UINTN *ProcessorNumber
433 )
434 {
435 UINTN TotalProcessorNumber;
436 UINTN Index;
437 CPU_INFO_IN_HOB *CpuInfoInHob;
438 UINT32 CurrentApicId;
439
440 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
441
442 TotalProcessorNumber = CpuMpData->CpuCount;
443 CurrentApicId = GetApicId ();
444 for (Index = 0; Index < TotalProcessorNumber; Index ++) {
445 if (CpuInfoInHob[Index].ApicId == CurrentApicId) {
446 *ProcessorNumber = Index;
447 return EFI_SUCCESS;
448 }
449 }
450
451 return EFI_NOT_FOUND;
452 }
453
454 /**
455 This function will get CPU count in the system.
456
457 @param[in] CpuMpData Pointer to PEI CPU MP Data
458
459 @return CPU count detected
460 **/
461 UINTN
462 CollectProcessorCount (
463 IN CPU_MP_DATA *CpuMpData
464 )
465 {
466 UINTN Index;
467
468 //
469 // Send 1st broadcast IPI to APs to wakeup APs
470 //
471 CpuMpData->InitFlag = ApInitConfig;
472 CpuMpData->X2ApicEnable = FALSE;
473 WakeUpAP (CpuMpData, TRUE, 0, NULL, NULL, TRUE);
474 CpuMpData->InitFlag = ApInitDone;
475 ASSERT (CpuMpData->CpuCount <= PcdGet32 (PcdCpuMaxLogicalProcessorNumber));
476 //
477 // Wait for all APs finished the initialization
478 //
479 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
480 CpuPause ();
481 }
482
483 if (CpuMpData->CpuCount > 255) {
484 //
485 // If there are more than 255 processor found, force to enable X2APIC
486 //
487 CpuMpData->X2ApicEnable = TRUE;
488 }
489 if (CpuMpData->X2ApicEnable) {
490 DEBUG ((DEBUG_INFO, "Force x2APIC mode!\n"));
491 //
492 // Wakeup all APs to enable x2APIC mode
493 //
494 WakeUpAP (CpuMpData, TRUE, 0, ApFuncEnableX2Apic, NULL, TRUE);
495 //
496 // Wait for all known APs finished
497 //
498 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
499 CpuPause ();
500 }
501 //
502 // Enable x2APIC on BSP
503 //
504 SetApicMode (LOCAL_APIC_MODE_X2APIC);
505 //
506 // Set BSP/Aps state to IDLE
507 //
508 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
509 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
510 }
511 }
512 DEBUG ((DEBUG_INFO, "APIC MODE is %d\n", GetApicMode ()));
513 //
514 // Sort BSP/Aps by CPU APIC ID in ascending order
515 //
516 SortApicId (CpuMpData);
517
518 DEBUG ((DEBUG_INFO, "MpInitLib: Find %d processors in system.\n", CpuMpData->CpuCount));
519
520 return CpuMpData->CpuCount;
521 }
522
523 /**
524 Initialize CPU AP Data when AP is wakeup at the first time.
525
526 @param[in, out] CpuMpData Pointer to PEI CPU MP Data
527 @param[in] ProcessorNumber The handle number of processor
528 @param[in] BistData Processor BIST data
529 @param[in] ApTopOfStack Top of AP stack
530
531 **/
532 VOID
533 InitializeApData (
534 IN OUT CPU_MP_DATA *CpuMpData,
535 IN UINTN ProcessorNumber,
536 IN UINT32 BistData,
537 IN UINT64 ApTopOfStack
538 )
539 {
540 CPU_INFO_IN_HOB *CpuInfoInHob;
541
542 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
543 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
544 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
545 CpuInfoInHob[ProcessorNumber].Health = BistData;
546 CpuInfoInHob[ProcessorNumber].ApTopOfStack = ApTopOfStack;
547
548 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
549 CpuMpData->CpuData[ProcessorNumber].CpuHealthy = (BistData == 0) ? TRUE : FALSE;
550 if (CpuInfoInHob[ProcessorNumber].InitialApicId >= 0xFF) {
551 //
552 // Set x2APIC mode if there are any logical processor reporting
553 // an Initial APIC ID of 255 or greater.
554 //
555 AcquireSpinLock(&CpuMpData->MpLock);
556 CpuMpData->X2ApicEnable = TRUE;
557 ReleaseSpinLock(&CpuMpData->MpLock);
558 }
559
560 InitializeSpinLock(&CpuMpData->CpuData[ProcessorNumber].ApLock);
561 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
562 }
563
564 /**
565 This function will be called from AP reset code if BSP uses WakeUpAP.
566
567 @param[in] ExchangeInfo Pointer to the MP exchange info buffer
568 @param[in] ApIndex Number of current executing AP
569 **/
570 VOID
571 EFIAPI
572 ApWakeupFunction (
573 IN MP_CPU_EXCHANGE_INFO *ExchangeInfo,
574 IN UINTN ApIndex
575 )
576 {
577 CPU_MP_DATA *CpuMpData;
578 UINTN ProcessorNumber;
579 EFI_AP_PROCEDURE Procedure;
580 VOID *Parameter;
581 UINT32 BistData;
582 volatile UINT32 *ApStartupSignalBuffer;
583 CPU_INFO_IN_HOB *CpuInfoInHob;
584 UINT64 ApTopOfStack;
585 UINTN CurrentApicMode;
586
587 //
588 // AP finished assembly code and begin to execute C code
589 //
590 CpuMpData = ExchangeInfo->CpuMpData;
591
592 //
593 // AP's local APIC settings will be lost after received INIT IPI
594 // We need to re-initialize them at here
595 //
596 ProgramVirtualWireMode ();
597 //
598 // Mask the LINT0 and LINT1 so that AP doesn't enter the system timer interrupt handler.
599 //
600 DisableLvtInterrupts ();
601 SyncLocalApicTimerSetting (CpuMpData);
602
603 CurrentApicMode = GetApicMode ();
604 while (TRUE) {
605 if (CpuMpData->InitFlag == ApInitConfig) {
606 //
607 // Add CPU number
608 //
609 InterlockedIncrement ((UINT32 *) &CpuMpData->CpuCount);
610 ProcessorNumber = ApIndex;
611 //
612 // This is first time AP wakeup, get BIST information from AP stack
613 //
614 ApTopOfStack = CpuMpData->Buffer + (ProcessorNumber + 1) * CpuMpData->CpuApStackSize;
615 BistData = *(UINT32 *) ((UINTN) ApTopOfStack - sizeof (UINTN));
616 //
617 // Do some AP initialize sync
618 //
619 ApInitializeSync (CpuMpData);
620 //
621 // CpuMpData->CpuData[0].VolatileRegisters is initialized based on BSP environment,
622 // to initialize AP in InitConfig path.
623 // NOTE: IDTR.BASE stored in CpuMpData->CpuData[0].VolatileRegisters points to a different IDT shared by all APs.
624 //
625 RestoreVolatileRegisters (&CpuMpData->CpuData[0].VolatileRegisters, FALSE);
626 InitializeApData (CpuMpData, ProcessorNumber, BistData, ApTopOfStack);
627 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
628 } else {
629 //
630 // Execute AP function if AP is ready
631 //
632 GetProcessorNumber (CpuMpData, &ProcessorNumber);
633 //
634 // Clear AP start-up signal when AP waken up
635 //
636 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
637 InterlockedCompareExchange32 (
638 (UINT32 *) ApStartupSignalBuffer,
639 WAKEUP_AP_SIGNAL,
640 0
641 );
642 if (CpuMpData->ApLoopMode == ApInHltLoop) {
643 //
644 // Restore AP's volatile registers saved
645 //
646 RestoreVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters, TRUE);
647 } else {
648 //
649 // The CPU driver might not flush TLB for APs on spot after updating
650 // page attributes. AP in mwait loop mode needs to take care of it when
651 // woken up.
652 //
653 CpuFlushTlb ();
654 }
655
656 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateReady) {
657 Procedure = (EFI_AP_PROCEDURE)CpuMpData->CpuData[ProcessorNumber].ApFunction;
658 Parameter = (VOID *) CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument;
659 if (Procedure != NULL) {
660 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateBusy);
661 //
662 // Enable source debugging on AP function
663 //
664 EnableDebugAgent ();
665 //
666 // Invoke AP function here
667 //
668 Procedure (Parameter);
669 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
670 if (CpuMpData->SwitchBspFlag) {
671 //
672 // Re-get the processor number due to BSP/AP maybe exchange in AP function
673 //
674 GetProcessorNumber (CpuMpData, &ProcessorNumber);
675 CpuMpData->CpuData[ProcessorNumber].ApFunction = 0;
676 CpuMpData->CpuData[ProcessorNumber].ApFunctionArgument = 0;
677 ApStartupSignalBuffer = CpuMpData->CpuData[ProcessorNumber].StartupApSignal;
678 CpuInfoInHob[ProcessorNumber].ApTopOfStack = CpuInfoInHob[CpuMpData->NewBspNumber].ApTopOfStack;
679 } else {
680 if (CpuInfoInHob[ProcessorNumber].ApicId != GetApicId () ||
681 CpuInfoInHob[ProcessorNumber].InitialApicId != GetInitialApicId ()) {
682 if (CurrentApicMode != GetApicMode ()) {
683 //
684 // If APIC mode change happened during AP function execution,
685 // we do not support APIC ID value changed.
686 //
687 ASSERT (FALSE);
688 CpuDeadLoop ();
689 } else {
690 //
691 // Re-get the CPU APICID and Initial APICID if they are changed
692 //
693 CpuInfoInHob[ProcessorNumber].ApicId = GetApicId ();
694 CpuInfoInHob[ProcessorNumber].InitialApicId = GetInitialApicId ();
695 }
696 }
697 }
698 }
699 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
700 }
701 }
702
703 //
704 // AP finished executing C code
705 //
706 InterlockedIncrement ((UINT32 *) &CpuMpData->FinishedCount);
707 InterlockedDecrement ((UINT32 *) &CpuMpData->MpCpuExchangeInfo->NumApsExecuting);
708
709 //
710 // Place AP is specified loop mode
711 //
712 if (CpuMpData->ApLoopMode == ApInHltLoop) {
713 //
714 // Save AP volatile registers
715 //
716 SaveVolatileRegisters (&CpuMpData->CpuData[ProcessorNumber].VolatileRegisters);
717 //
718 // Place AP in HLT-loop
719 //
720 while (TRUE) {
721 DisableInterrupts ();
722 CpuSleep ();
723 CpuPause ();
724 }
725 }
726 while (TRUE) {
727 DisableInterrupts ();
728 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
729 //
730 // Place AP in MWAIT-loop
731 //
732 AsmMonitor ((UINTN) ApStartupSignalBuffer, 0, 0);
733 if (*ApStartupSignalBuffer != WAKEUP_AP_SIGNAL) {
734 //
735 // Check AP start-up signal again.
736 // If AP start-up signal is not set, place AP into
737 // the specified C-state
738 //
739 AsmMwait (CpuMpData->ApTargetCState << 4, 0);
740 }
741 } else if (CpuMpData->ApLoopMode == ApInRunLoop) {
742 //
743 // Place AP in Run-loop
744 //
745 CpuPause ();
746 } else {
747 ASSERT (FALSE);
748 }
749
750 //
751 // If AP start-up signal is written, AP is waken up
752 // otherwise place AP in loop again
753 //
754 if (*ApStartupSignalBuffer == WAKEUP_AP_SIGNAL) {
755 break;
756 }
757 }
758 }
759 }
760
761 /**
762 Wait for AP wakeup and write AP start-up signal till AP is waken up.
763
764 @param[in] ApStartupSignalBuffer Pointer to AP wakeup signal
765 **/
766 VOID
767 WaitApWakeup (
768 IN volatile UINT32 *ApStartupSignalBuffer
769 )
770 {
771 //
772 // If AP is waken up, StartupApSignal should be cleared.
773 // Otherwise, write StartupApSignal again till AP waken up.
774 //
775 while (InterlockedCompareExchange32 (
776 (UINT32 *) ApStartupSignalBuffer,
777 WAKEUP_AP_SIGNAL,
778 WAKEUP_AP_SIGNAL
779 ) != 0) {
780 CpuPause ();
781 }
782 }
783
784 /**
785 This function will fill the exchange info structure.
786
787 @param[in] CpuMpData Pointer to CPU MP Data
788
789 **/
790 VOID
791 FillExchangeInfoData (
792 IN CPU_MP_DATA *CpuMpData
793 )
794 {
795 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
796 UINTN Size;
797 IA32_SEGMENT_DESCRIPTOR *Selector;
798
799 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
800 ExchangeInfo->Lock = 0;
801 ExchangeInfo->StackStart = CpuMpData->Buffer;
802 ExchangeInfo->StackSize = CpuMpData->CpuApStackSize;
803 ExchangeInfo->BufferStart = CpuMpData->WakeupBuffer;
804 ExchangeInfo->ModeOffset = CpuMpData->AddressMap.ModeEntryOffset;
805
806 ExchangeInfo->CodeSegment = AsmReadCs ();
807 ExchangeInfo->DataSegment = AsmReadDs ();
808
809 ExchangeInfo->Cr3 = AsmReadCr3 ();
810
811 ExchangeInfo->CFunction = (UINTN) ApWakeupFunction;
812 ExchangeInfo->ApIndex = 0;
813 ExchangeInfo->NumApsExecuting = 0;
814 ExchangeInfo->InitFlag = (UINTN) CpuMpData->InitFlag;
815 ExchangeInfo->CpuInfo = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
816 ExchangeInfo->CpuMpData = CpuMpData;
817
818 ExchangeInfo->EnableExecuteDisable = IsBspExecuteDisableEnabled ();
819
820 ExchangeInfo->InitializeFloatingPointUnitsAddress = (UINTN)InitializeFloatingPointUnits;
821
822 //
823 // Get the BSP's data of GDT and IDT
824 //
825 AsmReadGdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->GdtrProfile);
826 AsmReadIdtr ((IA32_DESCRIPTOR *) &ExchangeInfo->IdtrProfile);
827
828 //
829 // Find a 32-bit code segment
830 //
831 Selector = (IA32_SEGMENT_DESCRIPTOR *)ExchangeInfo->GdtrProfile.Base;
832 Size = ExchangeInfo->GdtrProfile.Limit + 1;
833 while (Size > 0) {
834 if (Selector->Bits.L == 0 && Selector->Bits.Type >= 8) {
835 ExchangeInfo->ModeTransitionSegment =
836 (UINT16)((UINTN)Selector - ExchangeInfo->GdtrProfile.Base);
837 break;
838 }
839 Selector += 1;
840 Size -= sizeof (IA32_SEGMENT_DESCRIPTOR);
841 }
842
843 //
844 // Copy all 32-bit code and 64-bit code into memory with type of
845 // EfiBootServicesCode to avoid page fault if NX memory protection is enabled.
846 //
847 if (CpuMpData->WakeupBufferHigh != 0) {
848 Size = CpuMpData->AddressMap.RendezvousFunnelSize -
849 CpuMpData->AddressMap.ModeTransitionOffset;
850 CopyMem (
851 (VOID *)CpuMpData->WakeupBufferHigh,
852 CpuMpData->AddressMap.RendezvousFunnelAddress +
853 CpuMpData->AddressMap.ModeTransitionOffset,
854 Size
855 );
856
857 ExchangeInfo->ModeTransitionMemory = (UINT32)CpuMpData->WakeupBufferHigh;
858 } else {
859 ExchangeInfo->ModeTransitionMemory = (UINT32)
860 (ExchangeInfo->BufferStart + CpuMpData->AddressMap.ModeTransitionOffset);
861 }
862
863 ExchangeInfo->ModeHighMemory = ExchangeInfo->ModeTransitionMemory +
864 (UINT32)ExchangeInfo->ModeOffset -
865 (UINT32)CpuMpData->AddressMap.ModeTransitionOffset;
866 ExchangeInfo->ModeHighSegment = (UINT16)ExchangeInfo->CodeSegment;
867 }
868
869 /**
870 Helper function that waits until the finished AP count reaches the specified
871 limit, or the specified timeout elapses (whichever comes first).
872
873 @param[in] CpuMpData Pointer to CPU MP Data.
874 @param[in] FinishedApLimit The number of finished APs to wait for.
875 @param[in] TimeLimit The number of microseconds to wait for.
876 **/
877 VOID
878 TimedWaitForApFinish (
879 IN CPU_MP_DATA *CpuMpData,
880 IN UINT32 FinishedApLimit,
881 IN UINT32 TimeLimit
882 );
883
884 /**
885 Get available system memory below 1MB by specified size.
886
887 @param[in] CpuMpData The pointer to CPU MP Data structure.
888 **/
889 VOID
890 BackupAndPrepareWakeupBuffer(
891 IN CPU_MP_DATA *CpuMpData
892 )
893 {
894 CopyMem (
895 (VOID *) CpuMpData->BackupBuffer,
896 (VOID *) CpuMpData->WakeupBuffer,
897 CpuMpData->BackupBufferSize
898 );
899 CopyMem (
900 (VOID *) CpuMpData->WakeupBuffer,
901 (VOID *) CpuMpData->AddressMap.RendezvousFunnelAddress,
902 CpuMpData->AddressMap.RendezvousFunnelSize
903 );
904 }
905
906 /**
907 Restore wakeup buffer data.
908
909 @param[in] CpuMpData The pointer to CPU MP Data structure.
910 **/
911 VOID
912 RestoreWakeupBuffer(
913 IN CPU_MP_DATA *CpuMpData
914 )
915 {
916 CopyMem (
917 (VOID *) CpuMpData->WakeupBuffer,
918 (VOID *) CpuMpData->BackupBuffer,
919 CpuMpData->BackupBufferSize
920 );
921 }
922
923 /**
924 Allocate reset vector buffer.
925
926 @param[in, out] CpuMpData The pointer to CPU MP Data structure.
927 **/
928 VOID
929 AllocateResetVector (
930 IN OUT CPU_MP_DATA *CpuMpData
931 )
932 {
933 UINTN ApResetVectorSize;
934
935 if (CpuMpData->WakeupBuffer == (UINTN) -1) {
936 ApResetVectorSize = CpuMpData->AddressMap.RendezvousFunnelSize +
937 sizeof (MP_CPU_EXCHANGE_INFO);
938
939 CpuMpData->WakeupBuffer = GetWakeupBuffer (ApResetVectorSize);
940 CpuMpData->MpCpuExchangeInfo = (MP_CPU_EXCHANGE_INFO *) (UINTN)
941 (CpuMpData->WakeupBuffer + CpuMpData->AddressMap.RendezvousFunnelSize);
942 CpuMpData->WakeupBufferHigh = GetModeTransitionBuffer (
943 CpuMpData->AddressMap.RendezvousFunnelSize -
944 CpuMpData->AddressMap.ModeTransitionOffset
945 );
946 }
947 BackupAndPrepareWakeupBuffer (CpuMpData);
948 }
949
950 /**
951 Free AP reset vector buffer.
952
953 @param[in] CpuMpData The pointer to CPU MP Data structure.
954 **/
955 VOID
956 FreeResetVector (
957 IN CPU_MP_DATA *CpuMpData
958 )
959 {
960 RestoreWakeupBuffer (CpuMpData);
961 }
962
963 /**
964 This function will be called by BSP to wakeup AP.
965
966 @param[in] CpuMpData Pointer to CPU MP Data
967 @param[in] Broadcast TRUE: Send broadcast IPI to all APs
968 FALSE: Send IPI to AP by ApicId
969 @param[in] ProcessorNumber The handle number of specified processor
970 @param[in] Procedure The function to be invoked by AP
971 @param[in] ProcedureArgument The argument to be passed into AP function
972 @param[in] WakeUpDisabledAps Whether need to wake up disabled APs in broadcast mode.
973 **/
974 VOID
975 WakeUpAP (
976 IN CPU_MP_DATA *CpuMpData,
977 IN BOOLEAN Broadcast,
978 IN UINTN ProcessorNumber,
979 IN EFI_AP_PROCEDURE Procedure, OPTIONAL
980 IN VOID *ProcedureArgument, OPTIONAL
981 IN BOOLEAN WakeUpDisabledAps
982 )
983 {
984 volatile MP_CPU_EXCHANGE_INFO *ExchangeInfo;
985 UINTN Index;
986 CPU_AP_DATA *CpuData;
987 BOOLEAN ResetVectorRequired;
988 CPU_INFO_IN_HOB *CpuInfoInHob;
989
990 CpuMpData->FinishedCount = 0;
991 ResetVectorRequired = FALSE;
992
993 if (CpuMpData->WakeUpByInitSipiSipi ||
994 CpuMpData->InitFlag != ApInitDone) {
995 ResetVectorRequired = TRUE;
996 AllocateResetVector (CpuMpData);
997 FillExchangeInfoData (CpuMpData);
998 SaveLocalApicTimerSetting (CpuMpData);
999 }
1000
1001 if (CpuMpData->ApLoopMode == ApInMwaitLoop) {
1002 //
1003 // Get AP target C-state each time when waking up AP,
1004 // for it maybe updated by platform again
1005 //
1006 CpuMpData->ApTargetCState = PcdGet8 (PcdCpuApTargetCstate);
1007 }
1008
1009 ExchangeInfo = CpuMpData->MpCpuExchangeInfo;
1010
1011 if (Broadcast) {
1012 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1013 if (Index != CpuMpData->BspNumber) {
1014 CpuData = &CpuMpData->CpuData[Index];
1015 //
1016 // All AP(include disabled AP) will be woke up by INIT-SIPI-SIPI, but
1017 // the AP procedure will be skipped for disabled AP because AP state
1018 // is not CpuStateReady.
1019 //
1020 if (GetApState (CpuData) == CpuStateDisabled && !WakeUpDisabledAps) {
1021 continue;
1022 }
1023
1024 CpuData->ApFunction = (UINTN) Procedure;
1025 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1026 SetApState (CpuData, CpuStateReady);
1027 if (CpuMpData->InitFlag != ApInitConfig) {
1028 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1029 }
1030 }
1031 }
1032 if (ResetVectorRequired) {
1033 //
1034 // Wakeup all APs
1035 //
1036 SendInitSipiSipiAllExcludingSelf ((UINT32) ExchangeInfo->BufferStart);
1037 }
1038 if (CpuMpData->InitFlag == ApInitConfig) {
1039 //
1040 // Here support two methods to collect AP count through adjust
1041 // PcdCpuApInitTimeOutInMicroSeconds values.
1042 //
1043 // one way is set a value to just let the first AP to start the
1044 // initialization, then through the later while loop to wait all Aps
1045 // finsh the initialization.
1046 // The other way is set a value to let all APs finished the initialzation.
1047 // In this case, the later while loop is useless.
1048 //
1049 TimedWaitForApFinish (
1050 CpuMpData,
1051 PcdGet32 (PcdCpuMaxLogicalProcessorNumber) - 1,
1052 PcdGet32 (PcdCpuApInitTimeOutInMicroSeconds)
1053 );
1054
1055 while (CpuMpData->MpCpuExchangeInfo->NumApsExecuting != 0) {
1056 CpuPause();
1057 }
1058 } else {
1059 //
1060 // Wait all APs waken up if this is not the 1st broadcast of SIPI
1061 //
1062 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1063 CpuData = &CpuMpData->CpuData[Index];
1064 if (Index != CpuMpData->BspNumber) {
1065 WaitApWakeup (CpuData->StartupApSignal);
1066 }
1067 }
1068 }
1069 } else {
1070 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1071 CpuData->ApFunction = (UINTN) Procedure;
1072 CpuData->ApFunctionArgument = (UINTN) ProcedureArgument;
1073 SetApState (CpuData, CpuStateReady);
1074 //
1075 // Wakeup specified AP
1076 //
1077 ASSERT (CpuMpData->InitFlag != ApInitConfig);
1078 *(UINT32 *) CpuData->StartupApSignal = WAKEUP_AP_SIGNAL;
1079 if (ResetVectorRequired) {
1080 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1081 SendInitSipiSipi (
1082 CpuInfoInHob[ProcessorNumber].ApicId,
1083 (UINT32) ExchangeInfo->BufferStart
1084 );
1085 }
1086 //
1087 // Wait specified AP waken up
1088 //
1089 WaitApWakeup (CpuData->StartupApSignal);
1090 }
1091
1092 if (ResetVectorRequired) {
1093 FreeResetVector (CpuMpData);
1094 }
1095
1096 //
1097 // After one round of Wakeup Ap actions, need to re-sync ApLoopMode with
1098 // WakeUpByInitSipiSipi flag. WakeUpByInitSipiSipi flag maybe changed by
1099 // S3SmmInitDone Ppi.
1100 //
1101 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1102 }
1103
1104 /**
1105 Calculate timeout value and return the current performance counter value.
1106
1107 Calculate the number of performance counter ticks required for a timeout.
1108 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1109 as infinity.
1110
1111 @param[in] TimeoutInMicroseconds Timeout value in microseconds.
1112 @param[out] CurrentTime Returns the current value of the performance counter.
1113
1114 @return Expected time stamp counter for timeout.
1115 If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1116 as infinity.
1117
1118 **/
1119 UINT64
1120 CalculateTimeout (
1121 IN UINTN TimeoutInMicroseconds,
1122 OUT UINT64 *CurrentTime
1123 )
1124 {
1125 UINT64 TimeoutInSeconds;
1126 UINT64 TimestampCounterFreq;
1127
1128 //
1129 // Read the current value of the performance counter
1130 //
1131 *CurrentTime = GetPerformanceCounter ();
1132
1133 //
1134 // If TimeoutInMicroseconds is 0, return value is also 0, which is recognized
1135 // as infinity.
1136 //
1137 if (TimeoutInMicroseconds == 0) {
1138 return 0;
1139 }
1140
1141 //
1142 // GetPerformanceCounterProperties () returns the timestamp counter's frequency
1143 // in Hz.
1144 //
1145 TimestampCounterFreq = GetPerformanceCounterProperties (NULL, NULL);
1146
1147 //
1148 // Check the potential overflow before calculate the number of ticks for the timeout value.
1149 //
1150 if (DivU64x64Remainder (MAX_UINT64, TimeoutInMicroseconds, NULL) < TimestampCounterFreq) {
1151 //
1152 // Convert microseconds into seconds if direct multiplication overflows
1153 //
1154 TimeoutInSeconds = DivU64x32 (TimeoutInMicroseconds, 1000000);
1155 //
1156 // Assertion if the final tick count exceeds MAX_UINT64
1157 //
1158 ASSERT (DivU64x64Remainder (MAX_UINT64, TimeoutInSeconds, NULL) >= TimestampCounterFreq);
1159 return MultU64x64 (TimestampCounterFreq, TimeoutInSeconds);
1160 } else {
1161 //
1162 // No overflow case, multiply the return value with TimeoutInMicroseconds and then divide
1163 // it by 1,000,000, to get the number of ticks for the timeout value.
1164 //
1165 return DivU64x32 (
1166 MultU64x64 (
1167 TimestampCounterFreq,
1168 TimeoutInMicroseconds
1169 ),
1170 1000000
1171 );
1172 }
1173 }
1174
1175 /**
1176 Checks whether timeout expires.
1177
1178 Check whether the number of elapsed performance counter ticks required for
1179 a timeout condition has been reached.
1180 If Timeout is zero, which means infinity, return value is always FALSE.
1181
1182 @param[in, out] PreviousTime On input, the value of the performance counter
1183 when it was last read.
1184 On output, the current value of the performance
1185 counter
1186 @param[in] TotalTime The total amount of elapsed time in performance
1187 counter ticks.
1188 @param[in] Timeout The number of performance counter ticks required
1189 to reach a timeout condition.
1190
1191 @retval TRUE A timeout condition has been reached.
1192 @retval FALSE A timeout condition has not been reached.
1193
1194 **/
1195 BOOLEAN
1196 CheckTimeout (
1197 IN OUT UINT64 *PreviousTime,
1198 IN UINT64 *TotalTime,
1199 IN UINT64 Timeout
1200 )
1201 {
1202 UINT64 Start;
1203 UINT64 End;
1204 UINT64 CurrentTime;
1205 INT64 Delta;
1206 INT64 Cycle;
1207
1208 if (Timeout == 0) {
1209 return FALSE;
1210 }
1211 GetPerformanceCounterProperties (&Start, &End);
1212 Cycle = End - Start;
1213 if (Cycle < 0) {
1214 Cycle = -Cycle;
1215 }
1216 Cycle++;
1217 CurrentTime = GetPerformanceCounter();
1218 Delta = (INT64) (CurrentTime - *PreviousTime);
1219 if (Start > End) {
1220 Delta = -Delta;
1221 }
1222 if (Delta < 0) {
1223 Delta += Cycle;
1224 }
1225 *TotalTime += Delta;
1226 *PreviousTime = CurrentTime;
1227 if (*TotalTime > Timeout) {
1228 return TRUE;
1229 }
1230 return FALSE;
1231 }
1232
1233 /**
1234 Helper function that waits until the finished AP count reaches the specified
1235 limit, or the specified timeout elapses (whichever comes first).
1236
1237 @param[in] CpuMpData Pointer to CPU MP Data.
1238 @param[in] FinishedApLimit The number of finished APs to wait for.
1239 @param[in] TimeLimit The number of microseconds to wait for.
1240 **/
1241 VOID
1242 TimedWaitForApFinish (
1243 IN CPU_MP_DATA *CpuMpData,
1244 IN UINT32 FinishedApLimit,
1245 IN UINT32 TimeLimit
1246 )
1247 {
1248 //
1249 // CalculateTimeout() and CheckTimeout() consider a TimeLimit of 0
1250 // "infinity", so check for (TimeLimit == 0) explicitly.
1251 //
1252 if (TimeLimit == 0) {
1253 return;
1254 }
1255
1256 CpuMpData->TotalTime = 0;
1257 CpuMpData->ExpectedTime = CalculateTimeout (
1258 TimeLimit,
1259 &CpuMpData->CurrentTime
1260 );
1261 while (CpuMpData->FinishedCount < FinishedApLimit &&
1262 !CheckTimeout (
1263 &CpuMpData->CurrentTime,
1264 &CpuMpData->TotalTime,
1265 CpuMpData->ExpectedTime
1266 )) {
1267 CpuPause ();
1268 }
1269
1270 if (CpuMpData->FinishedCount >= FinishedApLimit) {
1271 DEBUG ((
1272 DEBUG_VERBOSE,
1273 "%a: reached FinishedApLimit=%u in %Lu microseconds\n",
1274 __FUNCTION__,
1275 FinishedApLimit,
1276 DivU64x64Remainder (
1277 MultU64x32 (CpuMpData->TotalTime, 1000000),
1278 GetPerformanceCounterProperties (NULL, NULL),
1279 NULL
1280 )
1281 ));
1282 }
1283 }
1284
1285 /**
1286 Reset an AP to Idle state.
1287
1288 Any task being executed by the AP will be aborted and the AP
1289 will be waiting for a new task in Wait-For-SIPI state.
1290
1291 @param[in] ProcessorNumber The handle number of processor.
1292 **/
1293 VOID
1294 ResetProcessorToIdleState (
1295 IN UINTN ProcessorNumber
1296 )
1297 {
1298 CPU_MP_DATA *CpuMpData;
1299
1300 CpuMpData = GetCpuMpData ();
1301
1302 CpuMpData->InitFlag = ApInitReconfig;
1303 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, NULL, NULL, TRUE);
1304 while (CpuMpData->FinishedCount < 1) {
1305 CpuPause ();
1306 }
1307 CpuMpData->InitFlag = ApInitDone;
1308
1309 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateIdle);
1310 }
1311
1312 /**
1313 Searches for the next waiting AP.
1314
1315 Search for the next AP that is put in waiting state by single-threaded StartupAllAPs().
1316
1317 @param[out] NextProcessorNumber Pointer to the processor number of the next waiting AP.
1318
1319 @retval EFI_SUCCESS The next waiting AP has been found.
1320 @retval EFI_NOT_FOUND No waiting AP exists.
1321
1322 **/
1323 EFI_STATUS
1324 GetNextWaitingProcessorNumber (
1325 OUT UINTN *NextProcessorNumber
1326 )
1327 {
1328 UINTN ProcessorNumber;
1329 CPU_MP_DATA *CpuMpData;
1330
1331 CpuMpData = GetCpuMpData ();
1332
1333 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1334 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1335 *NextProcessorNumber = ProcessorNumber;
1336 return EFI_SUCCESS;
1337 }
1338 }
1339
1340 return EFI_NOT_FOUND;
1341 }
1342
1343 /** Checks status of specified AP.
1344
1345 This function checks whether the specified AP has finished the task assigned
1346 by StartupThisAP(), and whether timeout expires.
1347
1348 @param[in] ProcessorNumber The handle number of processor.
1349
1350 @retval EFI_SUCCESS Specified AP has finished task assigned by StartupThisAPs().
1351 @retval EFI_TIMEOUT The timeout expires.
1352 @retval EFI_NOT_READY Specified AP has not finished task and timeout has not expired.
1353 **/
1354 EFI_STATUS
1355 CheckThisAP (
1356 IN UINTN ProcessorNumber
1357 )
1358 {
1359 CPU_MP_DATA *CpuMpData;
1360 CPU_AP_DATA *CpuData;
1361
1362 CpuMpData = GetCpuMpData ();
1363 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1364
1365 //
1366 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1367 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1368 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1369 //
1370 //
1371 // If the AP finishes for StartupThisAP(), return EFI_SUCCESS.
1372 //
1373 if (GetApState(CpuData) == CpuStateIdle) {
1374 if (CpuData->Finished != NULL) {
1375 *(CpuData->Finished) = TRUE;
1376 }
1377 return EFI_SUCCESS;
1378 } else {
1379 //
1380 // If timeout expires for StartupThisAP(), report timeout.
1381 //
1382 if (CheckTimeout (&CpuData->CurrentTime, &CpuData->TotalTime, CpuData->ExpectedTime)) {
1383 if (CpuData->Finished != NULL) {
1384 *(CpuData->Finished) = FALSE;
1385 }
1386 //
1387 // Reset failed AP to idle state
1388 //
1389 ResetProcessorToIdleState (ProcessorNumber);
1390
1391 return EFI_TIMEOUT;
1392 }
1393 }
1394 return EFI_NOT_READY;
1395 }
1396
1397 /**
1398 Checks status of all APs.
1399
1400 This function checks whether all APs have finished task assigned by StartupAllAPs(),
1401 and whether timeout expires.
1402
1403 @retval EFI_SUCCESS All APs have finished task assigned by StartupAllAPs().
1404 @retval EFI_TIMEOUT The timeout expires.
1405 @retval EFI_NOT_READY APs have not finished task and timeout has not expired.
1406 **/
1407 EFI_STATUS
1408 CheckAllAPs (
1409 VOID
1410 )
1411 {
1412 UINTN ProcessorNumber;
1413 UINTN NextProcessorNumber;
1414 UINTN ListIndex;
1415 EFI_STATUS Status;
1416 CPU_MP_DATA *CpuMpData;
1417 CPU_AP_DATA *CpuData;
1418
1419 CpuMpData = GetCpuMpData ();
1420
1421 NextProcessorNumber = 0;
1422
1423 //
1424 // Go through all APs that are responsible for the StartupAllAPs().
1425 //
1426 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1427 if (!CpuMpData->CpuData[ProcessorNumber].Waiting) {
1428 continue;
1429 }
1430
1431 CpuData = &CpuMpData->CpuData[ProcessorNumber];
1432 //
1433 // Check the CPU state of AP. If it is CpuStateIdle, then the AP has finished its task.
1434 // Only BSP and corresponding AP access this unit of CPU Data. This means the AP will not modify the
1435 // value of state after setting the it to CpuStateIdle, so BSP can safely make use of its value.
1436 //
1437 if (GetApState(CpuData) == CpuStateIdle) {
1438 CpuMpData->RunningCount --;
1439 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1440
1441 //
1442 // If in Single Thread mode, then search for the next waiting AP for execution.
1443 //
1444 if (CpuMpData->SingleThread) {
1445 Status = GetNextWaitingProcessorNumber (&NextProcessorNumber);
1446
1447 if (!EFI_ERROR (Status)) {
1448 WakeUpAP (
1449 CpuMpData,
1450 FALSE,
1451 (UINT32) NextProcessorNumber,
1452 CpuMpData->Procedure,
1453 CpuMpData->ProcArguments,
1454 TRUE
1455 );
1456 }
1457 }
1458 }
1459 }
1460
1461 //
1462 // If all APs finish, return EFI_SUCCESS.
1463 //
1464 if (CpuMpData->RunningCount == 0) {
1465 return EFI_SUCCESS;
1466 }
1467
1468 //
1469 // If timeout expires, report timeout.
1470 //
1471 if (CheckTimeout (
1472 &CpuMpData->CurrentTime,
1473 &CpuMpData->TotalTime,
1474 CpuMpData->ExpectedTime)
1475 ) {
1476 //
1477 // If FailedCpuList is not NULL, record all failed APs in it.
1478 //
1479 if (CpuMpData->FailedCpuList != NULL) {
1480 *CpuMpData->FailedCpuList =
1481 AllocatePool ((CpuMpData->RunningCount + 1) * sizeof (UINTN));
1482 ASSERT (*CpuMpData->FailedCpuList != NULL);
1483 }
1484 ListIndex = 0;
1485
1486 for (ProcessorNumber = 0; ProcessorNumber < CpuMpData->CpuCount; ProcessorNumber++) {
1487 //
1488 // Check whether this processor is responsible for StartupAllAPs().
1489 //
1490 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
1491 //
1492 // Reset failed APs to idle state
1493 //
1494 ResetProcessorToIdleState (ProcessorNumber);
1495 CpuMpData->CpuData[ProcessorNumber].Waiting = FALSE;
1496 if (CpuMpData->FailedCpuList != NULL) {
1497 (*CpuMpData->FailedCpuList)[ListIndex++] = ProcessorNumber;
1498 }
1499 }
1500 }
1501 if (CpuMpData->FailedCpuList != NULL) {
1502 (*CpuMpData->FailedCpuList)[ListIndex] = END_OF_CPU_LIST;
1503 }
1504 return EFI_TIMEOUT;
1505 }
1506 return EFI_NOT_READY;
1507 }
1508
1509 /**
1510 MP Initialize Library initialization.
1511
1512 This service will allocate AP reset vector and wakeup all APs to do APs
1513 initialization.
1514
1515 This service must be invoked before all other MP Initialize Library
1516 service are invoked.
1517
1518 @retval EFI_SUCCESS MP initialization succeeds.
1519 @retval Others MP initialization fails.
1520
1521 **/
1522 EFI_STATUS
1523 EFIAPI
1524 MpInitLibInitialize (
1525 VOID
1526 )
1527 {
1528 CPU_MP_DATA *OldCpuMpData;
1529 CPU_INFO_IN_HOB *CpuInfoInHob;
1530 UINT32 MaxLogicalProcessorNumber;
1531 UINT32 ApStackSize;
1532 MP_ASSEMBLY_ADDRESS_MAP AddressMap;
1533 CPU_VOLATILE_REGISTERS VolatileRegisters;
1534 UINTN BufferSize;
1535 UINT32 MonitorFilterSize;
1536 VOID *MpBuffer;
1537 UINTN Buffer;
1538 CPU_MP_DATA *CpuMpData;
1539 UINT8 ApLoopMode;
1540 UINT8 *MonitorBuffer;
1541 UINTN Index;
1542 UINTN ApResetVectorSize;
1543 UINTN BackupBufferAddr;
1544 UINTN ApIdtBase;
1545 VOID *MicrocodePatchInRam;
1546
1547 OldCpuMpData = GetCpuMpDataFromGuidedHob ();
1548 if (OldCpuMpData == NULL) {
1549 MaxLogicalProcessorNumber = PcdGet32(PcdCpuMaxLogicalProcessorNumber);
1550 } else {
1551 MaxLogicalProcessorNumber = OldCpuMpData->CpuCount;
1552 }
1553 ASSERT (MaxLogicalProcessorNumber != 0);
1554
1555 AsmGetAddressMap (&AddressMap);
1556 ApResetVectorSize = AddressMap.RendezvousFunnelSize + sizeof (MP_CPU_EXCHANGE_INFO);
1557 ApStackSize = PcdGet32(PcdCpuApStackSize);
1558 ApLoopMode = GetApLoopMode (&MonitorFilterSize);
1559
1560 //
1561 // Save BSP's Control registers for APs
1562 //
1563 SaveVolatileRegisters (&VolatileRegisters);
1564
1565 BufferSize = ApStackSize * MaxLogicalProcessorNumber;
1566 BufferSize += MonitorFilterSize * MaxLogicalProcessorNumber;
1567 BufferSize += ApResetVectorSize;
1568 BufferSize = ALIGN_VALUE (BufferSize, 8);
1569 BufferSize += VolatileRegisters.Idtr.Limit + 1;
1570 BufferSize += sizeof (CPU_MP_DATA);
1571 BufferSize += (sizeof (CPU_AP_DATA) + sizeof (CPU_INFO_IN_HOB))* MaxLogicalProcessorNumber;
1572 MpBuffer = AllocatePages (EFI_SIZE_TO_PAGES (BufferSize));
1573 ASSERT (MpBuffer != NULL);
1574 ZeroMem (MpBuffer, BufferSize);
1575 Buffer = (UINTN) MpBuffer;
1576
1577 //
1578 // The layout of the Buffer is as below:
1579 //
1580 // +--------------------+ <-- Buffer
1581 // AP Stacks (N)
1582 // +--------------------+ <-- MonitorBuffer
1583 // AP Monitor Filters (N)
1584 // +--------------------+ <-- BackupBufferAddr (CpuMpData->BackupBuffer)
1585 // Backup Buffer
1586 // +--------------------+
1587 // Padding
1588 // +--------------------+ <-- ApIdtBase (8-byte boundary)
1589 // AP IDT All APs share one separate IDT. So AP can get address of CPU_MP_DATA from IDT Base.
1590 // +--------------------+ <-- CpuMpData
1591 // CPU_MP_DATA
1592 // +--------------------+ <-- CpuMpData->CpuData
1593 // CPU_AP_DATA (N)
1594 // +--------------------+ <-- CpuMpData->CpuInfoInHob
1595 // CPU_INFO_IN_HOB (N)
1596 // +--------------------+
1597 //
1598 MonitorBuffer = (UINT8 *) (Buffer + ApStackSize * MaxLogicalProcessorNumber);
1599 BackupBufferAddr = (UINTN) MonitorBuffer + MonitorFilterSize * MaxLogicalProcessorNumber;
1600 ApIdtBase = ALIGN_VALUE (BackupBufferAddr + ApResetVectorSize, 8);
1601 CpuMpData = (CPU_MP_DATA *) (ApIdtBase + VolatileRegisters.Idtr.Limit + 1);
1602 CpuMpData->Buffer = Buffer;
1603 CpuMpData->CpuApStackSize = ApStackSize;
1604 CpuMpData->BackupBuffer = BackupBufferAddr;
1605 CpuMpData->BackupBufferSize = ApResetVectorSize;
1606 CpuMpData->WakeupBuffer = (UINTN) -1;
1607 CpuMpData->CpuCount = 1;
1608 CpuMpData->BspNumber = 0;
1609 CpuMpData->WaitEvent = NULL;
1610 CpuMpData->SwitchBspFlag = FALSE;
1611 CpuMpData->CpuData = (CPU_AP_DATA *) (CpuMpData + 1);
1612 CpuMpData->CpuInfoInHob = (UINT64) (UINTN) (CpuMpData->CpuData + MaxLogicalProcessorNumber);
1613 CpuMpData->MicrocodePatchRegionSize = PcdGet64 (PcdCpuMicrocodePatchRegionSize);
1614 //
1615 // If platform has more than one CPU, relocate microcode to memory to reduce
1616 // loading microcode time.
1617 //
1618 MicrocodePatchInRam = NULL;
1619 if (MaxLogicalProcessorNumber > 1) {
1620 MicrocodePatchInRam = AllocatePages (
1621 EFI_SIZE_TO_PAGES (
1622 (UINTN)CpuMpData->MicrocodePatchRegionSize
1623 )
1624 );
1625 }
1626 if (MicrocodePatchInRam == NULL) {
1627 //
1628 // there is only one processor, or no microcode patch is available, or
1629 // memory allocation failed
1630 //
1631 CpuMpData->MicrocodePatchAddress = PcdGet64 (PcdCpuMicrocodePatchAddress);
1632 } else {
1633 //
1634 // there are multiple processors, and a microcode patch is available, and
1635 // memory allocation succeeded
1636 //
1637 CopyMem (
1638 MicrocodePatchInRam,
1639 (VOID *)(UINTN)PcdGet64 (PcdCpuMicrocodePatchAddress),
1640 (UINTN)CpuMpData->MicrocodePatchRegionSize
1641 );
1642 CpuMpData->MicrocodePatchAddress = (UINTN)MicrocodePatchInRam;
1643 }
1644
1645 InitializeSpinLock(&CpuMpData->MpLock);
1646
1647 //
1648 // Make sure no memory usage outside of the allocated buffer.
1649 //
1650 ASSERT ((CpuMpData->CpuInfoInHob + sizeof (CPU_INFO_IN_HOB) * MaxLogicalProcessorNumber) ==
1651 Buffer + BufferSize);
1652
1653 //
1654 // Duplicate BSP's IDT to APs.
1655 // All APs share one separate IDT. So AP can get the address of CpuMpData by using IDTR.BASE + IDTR.LIMIT + 1
1656 //
1657 CopyMem ((VOID *)ApIdtBase, (VOID *)VolatileRegisters.Idtr.Base, VolatileRegisters.Idtr.Limit + 1);
1658 VolatileRegisters.Idtr.Base = ApIdtBase;
1659 CopyMem (&CpuMpData->CpuData[0].VolatileRegisters, &VolatileRegisters, sizeof (VolatileRegisters));
1660 //
1661 // Set BSP basic information
1662 //
1663 InitializeApData (CpuMpData, 0, 0, CpuMpData->Buffer + ApStackSize);
1664 //
1665 // Save assembly code information
1666 //
1667 CopyMem (&CpuMpData->AddressMap, &AddressMap, sizeof (MP_ASSEMBLY_ADDRESS_MAP));
1668 //
1669 // Finally set AP loop mode
1670 //
1671 CpuMpData->ApLoopMode = ApLoopMode;
1672 DEBUG ((DEBUG_INFO, "AP Loop Mode is %d\n", CpuMpData->ApLoopMode));
1673
1674 CpuMpData->WakeUpByInitSipiSipi = (CpuMpData->ApLoopMode == ApInHltLoop);
1675
1676 //
1677 // Set up APs wakeup signal buffer
1678 //
1679 for (Index = 0; Index < MaxLogicalProcessorNumber; Index++) {
1680 CpuMpData->CpuData[Index].StartupApSignal =
1681 (UINT32 *)(MonitorBuffer + MonitorFilterSize * Index);
1682 }
1683 //
1684 // Load Microcode on BSP
1685 //
1686 MicrocodeDetect (CpuMpData, TRUE);
1687 //
1688 // Store BSP's MTRR setting
1689 //
1690 MtrrGetAllMtrrs (&CpuMpData->MtrrTable);
1691 //
1692 // Enable the local APIC for Virtual Wire Mode.
1693 //
1694 ProgramVirtualWireMode ();
1695
1696 if (OldCpuMpData == NULL) {
1697 if (MaxLogicalProcessorNumber > 1) {
1698 //
1699 // Wakeup all APs and calculate the processor count in system
1700 //
1701 CollectProcessorCount (CpuMpData);
1702 }
1703 } else {
1704 //
1705 // APs have been wakeup before, just get the CPU Information
1706 // from HOB
1707 //
1708 CpuMpData->CpuCount = OldCpuMpData->CpuCount;
1709 CpuMpData->BspNumber = OldCpuMpData->BspNumber;
1710 CpuMpData->InitFlag = ApInitReconfig;
1711 CpuMpData->CpuInfoInHob = OldCpuMpData->CpuInfoInHob;
1712 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1713 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1714 InitializeSpinLock(&CpuMpData->CpuData[Index].ApLock);
1715 if (CpuInfoInHob[Index].InitialApicId >= 255 || Index > 254) {
1716 CpuMpData->X2ApicEnable = TRUE;
1717 }
1718 CpuMpData->CpuData[Index].CpuHealthy = (CpuInfoInHob[Index].Health == 0)? TRUE:FALSE;
1719 CpuMpData->CpuData[Index].ApFunction = 0;
1720 CopyMem (&CpuMpData->CpuData[Index].VolatileRegisters, &VolatileRegisters, sizeof (CPU_VOLATILE_REGISTERS));
1721 }
1722 if (MaxLogicalProcessorNumber > 1) {
1723 //
1724 // Wakeup APs to do some AP initialize sync
1725 //
1726 WakeUpAP (CpuMpData, TRUE, 0, ApInitializeSync, CpuMpData, TRUE);
1727 //
1728 // Wait for all APs finished initialization
1729 //
1730 while (CpuMpData->FinishedCount < (CpuMpData->CpuCount - 1)) {
1731 CpuPause ();
1732 }
1733 CpuMpData->InitFlag = ApInitDone;
1734 for (Index = 0; Index < CpuMpData->CpuCount; Index++) {
1735 SetApState (&CpuMpData->CpuData[Index], CpuStateIdle);
1736 }
1737 }
1738 }
1739
1740 //
1741 // Initialize global data for MP support
1742 //
1743 InitMpGlobalData (CpuMpData);
1744
1745 return EFI_SUCCESS;
1746 }
1747
1748 /**
1749 Gets detailed MP-related information on the requested processor at the
1750 instant this call is made. This service may only be called from the BSP.
1751
1752 @param[in] ProcessorNumber The handle number of processor.
1753 @param[out] ProcessorInfoBuffer A pointer to the buffer where information for
1754 the requested processor is deposited.
1755 @param[out] HealthData Return processor health data.
1756
1757 @retval EFI_SUCCESS Processor information was returned.
1758 @retval EFI_DEVICE_ERROR The calling processor is an AP.
1759 @retval EFI_INVALID_PARAMETER ProcessorInfoBuffer is NULL.
1760 @retval EFI_NOT_FOUND The processor with the handle specified by
1761 ProcessorNumber does not exist in the platform.
1762 @retval EFI_NOT_READY MP Initialize Library is not initialized.
1763
1764 **/
1765 EFI_STATUS
1766 EFIAPI
1767 MpInitLibGetProcessorInfo (
1768 IN UINTN ProcessorNumber,
1769 OUT EFI_PROCESSOR_INFORMATION *ProcessorInfoBuffer,
1770 OUT EFI_HEALTH_FLAGS *HealthData OPTIONAL
1771 )
1772 {
1773 CPU_MP_DATA *CpuMpData;
1774 UINTN CallerNumber;
1775 CPU_INFO_IN_HOB *CpuInfoInHob;
1776
1777 CpuMpData = GetCpuMpData ();
1778 CpuInfoInHob = (CPU_INFO_IN_HOB *) (UINTN) CpuMpData->CpuInfoInHob;
1779
1780 //
1781 // Check whether caller processor is BSP
1782 //
1783 MpInitLibWhoAmI (&CallerNumber);
1784 if (CallerNumber != CpuMpData->BspNumber) {
1785 return EFI_DEVICE_ERROR;
1786 }
1787
1788 if (ProcessorInfoBuffer == NULL) {
1789 return EFI_INVALID_PARAMETER;
1790 }
1791
1792 if (ProcessorNumber >= CpuMpData->CpuCount) {
1793 return EFI_NOT_FOUND;
1794 }
1795
1796 ProcessorInfoBuffer->ProcessorId = (UINT64) CpuInfoInHob[ProcessorNumber].ApicId;
1797 ProcessorInfoBuffer->StatusFlag = 0;
1798 if (ProcessorNumber == CpuMpData->BspNumber) {
1799 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_AS_BSP_BIT;
1800 }
1801 if (CpuMpData->CpuData[ProcessorNumber].CpuHealthy) {
1802 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_HEALTH_STATUS_BIT;
1803 }
1804 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
1805 ProcessorInfoBuffer->StatusFlag &= ~PROCESSOR_ENABLED_BIT;
1806 } else {
1807 ProcessorInfoBuffer->StatusFlag |= PROCESSOR_ENABLED_BIT;
1808 }
1809
1810 //
1811 // Get processor location information
1812 //
1813 GetProcessorLocationByApicId (
1814 CpuInfoInHob[ProcessorNumber].ApicId,
1815 &ProcessorInfoBuffer->Location.Package,
1816 &ProcessorInfoBuffer->Location.Core,
1817 &ProcessorInfoBuffer->Location.Thread
1818 );
1819
1820 if (HealthData != NULL) {
1821 HealthData->Uint32 = CpuInfoInHob[ProcessorNumber].Health;
1822 }
1823
1824 return EFI_SUCCESS;
1825 }
1826
1827 /**
1828 Worker function to switch the requested AP to be the BSP from that point onward.
1829
1830 @param[in] ProcessorNumber The handle number of AP that is to become the new BSP.
1831 @param[in] EnableOldBSP If TRUE, then the old BSP will be listed as an
1832 enabled AP. Otherwise, it will be disabled.
1833
1834 @retval EFI_SUCCESS BSP successfully switched.
1835 @retval others Failed to switch BSP.
1836
1837 **/
1838 EFI_STATUS
1839 SwitchBSPWorker (
1840 IN UINTN ProcessorNumber,
1841 IN BOOLEAN EnableOldBSP
1842 )
1843 {
1844 CPU_MP_DATA *CpuMpData;
1845 UINTN CallerNumber;
1846 CPU_STATE State;
1847 MSR_IA32_APIC_BASE_REGISTER ApicBaseMsr;
1848 BOOLEAN OldInterruptState;
1849 BOOLEAN OldTimerInterruptState;
1850
1851 //
1852 // Save and Disable Local APIC timer interrupt
1853 //
1854 OldTimerInterruptState = GetApicTimerInterruptState ();
1855 DisableApicTimerInterrupt ();
1856 //
1857 // Before send both BSP and AP to a procedure to exchange their roles,
1858 // interrupt must be disabled. This is because during the exchange role
1859 // process, 2 CPU may use 1 stack. If interrupt happens, the stack will
1860 // be corrupted, since interrupt return address will be pushed to stack
1861 // by hardware.
1862 //
1863 OldInterruptState = SaveAndDisableInterrupts ();
1864
1865 //
1866 // Mask LINT0 & LINT1 for the old BSP
1867 //
1868 DisableLvtInterrupts ();
1869
1870 CpuMpData = GetCpuMpData ();
1871
1872 //
1873 // Check whether caller processor is BSP
1874 //
1875 MpInitLibWhoAmI (&CallerNumber);
1876 if (CallerNumber != CpuMpData->BspNumber) {
1877 return EFI_DEVICE_ERROR;
1878 }
1879
1880 if (ProcessorNumber >= CpuMpData->CpuCount) {
1881 return EFI_NOT_FOUND;
1882 }
1883
1884 //
1885 // Check whether specified AP is disabled
1886 //
1887 State = GetApState (&CpuMpData->CpuData[ProcessorNumber]);
1888 if (State == CpuStateDisabled) {
1889 return EFI_INVALID_PARAMETER;
1890 }
1891
1892 //
1893 // Check whether ProcessorNumber specifies the current BSP
1894 //
1895 if (ProcessorNumber == CpuMpData->BspNumber) {
1896 return EFI_INVALID_PARAMETER;
1897 }
1898
1899 //
1900 // Check whether specified AP is busy
1901 //
1902 if (State == CpuStateBusy) {
1903 return EFI_NOT_READY;
1904 }
1905
1906 CpuMpData->BSPInfo.State = CPU_SWITCH_STATE_IDLE;
1907 CpuMpData->APInfo.State = CPU_SWITCH_STATE_IDLE;
1908 CpuMpData->SwitchBspFlag = TRUE;
1909 CpuMpData->NewBspNumber = ProcessorNumber;
1910
1911 //
1912 // Clear the BSP bit of MSR_IA32_APIC_BASE
1913 //
1914 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1915 ApicBaseMsr.Bits.BSP = 0;
1916 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1917
1918 //
1919 // Need to wakeUp AP (future BSP).
1920 //
1921 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, FutureBSPProc, CpuMpData, TRUE);
1922
1923 AsmExchangeRole (&CpuMpData->BSPInfo, &CpuMpData->APInfo);
1924
1925 //
1926 // Set the BSP bit of MSR_IA32_APIC_BASE on new BSP
1927 //
1928 ApicBaseMsr.Uint64 = AsmReadMsr64 (MSR_IA32_APIC_BASE);
1929 ApicBaseMsr.Bits.BSP = 1;
1930 AsmWriteMsr64 (MSR_IA32_APIC_BASE, ApicBaseMsr.Uint64);
1931 ProgramVirtualWireMode ();
1932
1933 //
1934 // Wait for old BSP finished AP task
1935 //
1936 while (GetApState (&CpuMpData->CpuData[CallerNumber]) != CpuStateIdle) {
1937 CpuPause ();
1938 }
1939
1940 CpuMpData->SwitchBspFlag = FALSE;
1941 //
1942 // Set old BSP enable state
1943 //
1944 if (!EnableOldBSP) {
1945 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateDisabled);
1946 } else {
1947 SetApState (&CpuMpData->CpuData[CallerNumber], CpuStateIdle);
1948 }
1949 //
1950 // Save new BSP number
1951 //
1952 CpuMpData->BspNumber = (UINT32) ProcessorNumber;
1953
1954 //
1955 // Restore interrupt state.
1956 //
1957 SetInterruptState (OldInterruptState);
1958
1959 if (OldTimerInterruptState) {
1960 EnableApicTimerInterrupt ();
1961 }
1962
1963 return EFI_SUCCESS;
1964 }
1965
1966 /**
1967 Worker function to let the caller enable or disable an AP from this point onward.
1968 This service may only be called from the BSP.
1969
1970 @param[in] ProcessorNumber The handle number of AP.
1971 @param[in] EnableAP Specifies the new state for the processor for
1972 enabled, FALSE for disabled.
1973 @param[in] HealthFlag If not NULL, a pointer to a value that specifies
1974 the new health status of the AP.
1975
1976 @retval EFI_SUCCESS The specified AP was enabled or disabled successfully.
1977 @retval others Failed to Enable/Disable AP.
1978
1979 **/
1980 EFI_STATUS
1981 EnableDisableApWorker (
1982 IN UINTN ProcessorNumber,
1983 IN BOOLEAN EnableAP,
1984 IN UINT32 *HealthFlag OPTIONAL
1985 )
1986 {
1987 CPU_MP_DATA *CpuMpData;
1988 UINTN CallerNumber;
1989
1990 CpuMpData = GetCpuMpData ();
1991
1992 //
1993 // Check whether caller processor is BSP
1994 //
1995 MpInitLibWhoAmI (&CallerNumber);
1996 if (CallerNumber != CpuMpData->BspNumber) {
1997 return EFI_DEVICE_ERROR;
1998 }
1999
2000 if (ProcessorNumber == CpuMpData->BspNumber) {
2001 return EFI_INVALID_PARAMETER;
2002 }
2003
2004 if (ProcessorNumber >= CpuMpData->CpuCount) {
2005 return EFI_NOT_FOUND;
2006 }
2007
2008 if (!EnableAP) {
2009 SetApState (&CpuMpData->CpuData[ProcessorNumber], CpuStateDisabled);
2010 } else {
2011 ResetProcessorToIdleState (ProcessorNumber);
2012 }
2013
2014 if (HealthFlag != NULL) {
2015 CpuMpData->CpuData[ProcessorNumber].CpuHealthy =
2016 (BOOLEAN) ((*HealthFlag & PROCESSOR_HEALTH_STATUS_BIT) != 0);
2017 }
2018
2019 return EFI_SUCCESS;
2020 }
2021
2022 /**
2023 This return the handle number for the calling processor. This service may be
2024 called from the BSP and APs.
2025
2026 @param[out] ProcessorNumber Pointer to the handle number of AP.
2027 The range is from 0 to the total number of
2028 logical processors minus 1. The total number of
2029 logical processors can be retrieved by
2030 MpInitLibGetNumberOfProcessors().
2031
2032 @retval EFI_SUCCESS The current processor handle number was returned
2033 in ProcessorNumber.
2034 @retval EFI_INVALID_PARAMETER ProcessorNumber is NULL.
2035 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2036
2037 **/
2038 EFI_STATUS
2039 EFIAPI
2040 MpInitLibWhoAmI (
2041 OUT UINTN *ProcessorNumber
2042 )
2043 {
2044 CPU_MP_DATA *CpuMpData;
2045
2046 if (ProcessorNumber == NULL) {
2047 return EFI_INVALID_PARAMETER;
2048 }
2049
2050 CpuMpData = GetCpuMpData ();
2051
2052 return GetProcessorNumber (CpuMpData, ProcessorNumber);
2053 }
2054
2055 /**
2056 Retrieves the number of logical processor in the platform and the number of
2057 those logical processors that are enabled on this boot. This service may only
2058 be called from the BSP.
2059
2060 @param[out] NumberOfProcessors Pointer to the total number of logical
2061 processors in the system, including the BSP
2062 and disabled APs.
2063 @param[out] NumberOfEnabledProcessors Pointer to the number of enabled logical
2064 processors that exist in system, including
2065 the BSP.
2066
2067 @retval EFI_SUCCESS The number of logical processors and enabled
2068 logical processors was retrieved.
2069 @retval EFI_DEVICE_ERROR The calling processor is an AP.
2070 @retval EFI_INVALID_PARAMETER NumberOfProcessors is NULL and NumberOfEnabledProcessors
2071 is NULL.
2072 @retval EFI_NOT_READY MP Initialize Library is not initialized.
2073
2074 **/
2075 EFI_STATUS
2076 EFIAPI
2077 MpInitLibGetNumberOfProcessors (
2078 OUT UINTN *NumberOfProcessors, OPTIONAL
2079 OUT UINTN *NumberOfEnabledProcessors OPTIONAL
2080 )
2081 {
2082 CPU_MP_DATA *CpuMpData;
2083 UINTN CallerNumber;
2084 UINTN ProcessorNumber;
2085 UINTN EnabledProcessorNumber;
2086 UINTN Index;
2087
2088 CpuMpData = GetCpuMpData ();
2089
2090 if ((NumberOfProcessors == NULL) && (NumberOfEnabledProcessors == NULL)) {
2091 return EFI_INVALID_PARAMETER;
2092 }
2093
2094 //
2095 // Check whether caller processor is BSP
2096 //
2097 MpInitLibWhoAmI (&CallerNumber);
2098 if (CallerNumber != CpuMpData->BspNumber) {
2099 return EFI_DEVICE_ERROR;
2100 }
2101
2102 ProcessorNumber = CpuMpData->CpuCount;
2103 EnabledProcessorNumber = 0;
2104 for (Index = 0; Index < ProcessorNumber; Index++) {
2105 if (GetApState (&CpuMpData->CpuData[Index]) != CpuStateDisabled) {
2106 EnabledProcessorNumber ++;
2107 }
2108 }
2109
2110 if (NumberOfProcessors != NULL) {
2111 *NumberOfProcessors = ProcessorNumber;
2112 }
2113 if (NumberOfEnabledProcessors != NULL) {
2114 *NumberOfEnabledProcessors = EnabledProcessorNumber;
2115 }
2116
2117 return EFI_SUCCESS;
2118 }
2119
2120
2121 /**
2122 Worker function to execute a caller provided function on all enabled APs.
2123
2124 @param[in] Procedure A pointer to the function to be run on
2125 enabled APs of the system.
2126 @param[in] SingleThread If TRUE, then all the enabled APs execute
2127 the function specified by Procedure one by
2128 one, in ascending order of processor handle
2129 number. If FALSE, then all the enabled APs
2130 execute the function specified by Procedure
2131 simultaneously.
2132 @param[in] WaitEvent The event created by the caller with CreateEvent()
2133 service.
2134 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2135 APs to return from Procedure, either for
2136 blocking or non-blocking mode.
2137 @param[in] ProcedureArgument The parameter passed into Procedure for
2138 all APs.
2139 @param[out] FailedCpuList If all APs finish successfully, then its
2140 content is set to NULL. If not all APs
2141 finish before timeout expires, then its
2142 content is set to address of the buffer
2143 holding handle numbers of the failed APs.
2144
2145 @retval EFI_SUCCESS In blocking mode, all APs have finished before
2146 the timeout expired.
2147 @retval EFI_SUCCESS In non-blocking mode, function has been dispatched
2148 to all enabled APs.
2149 @retval others Failed to Startup all APs.
2150
2151 **/
2152 EFI_STATUS
2153 StartupAllAPsWorker (
2154 IN EFI_AP_PROCEDURE Procedure,
2155 IN BOOLEAN SingleThread,
2156 IN EFI_EVENT WaitEvent OPTIONAL,
2157 IN UINTN TimeoutInMicroseconds,
2158 IN VOID *ProcedureArgument OPTIONAL,
2159 OUT UINTN **FailedCpuList OPTIONAL
2160 )
2161 {
2162 EFI_STATUS Status;
2163 CPU_MP_DATA *CpuMpData;
2164 UINTN ProcessorCount;
2165 UINTN ProcessorNumber;
2166 UINTN CallerNumber;
2167 CPU_AP_DATA *CpuData;
2168 BOOLEAN HasEnabledAp;
2169 CPU_STATE ApState;
2170
2171 CpuMpData = GetCpuMpData ();
2172
2173 if (FailedCpuList != NULL) {
2174 *FailedCpuList = NULL;
2175 }
2176
2177 if (CpuMpData->CpuCount == 1) {
2178 return EFI_NOT_STARTED;
2179 }
2180
2181 if (Procedure == NULL) {
2182 return EFI_INVALID_PARAMETER;
2183 }
2184
2185 //
2186 // Check whether caller processor is BSP
2187 //
2188 MpInitLibWhoAmI (&CallerNumber);
2189 if (CallerNumber != CpuMpData->BspNumber) {
2190 return EFI_DEVICE_ERROR;
2191 }
2192
2193 //
2194 // Update AP state
2195 //
2196 CheckAndUpdateApsStatus ();
2197
2198 ProcessorCount = CpuMpData->CpuCount;
2199 HasEnabledAp = FALSE;
2200 //
2201 // Check whether all enabled APs are idle.
2202 // If any enabled AP is not idle, return EFI_NOT_READY.
2203 //
2204 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2205 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2206 if (ProcessorNumber != CpuMpData->BspNumber) {
2207 ApState = GetApState (CpuData);
2208 if (ApState != CpuStateDisabled) {
2209 HasEnabledAp = TRUE;
2210 if (ApState != CpuStateIdle) {
2211 //
2212 // If any enabled APs are busy, return EFI_NOT_READY.
2213 //
2214 return EFI_NOT_READY;
2215 }
2216 }
2217 }
2218 }
2219
2220 if (!HasEnabledAp) {
2221 //
2222 // If no enabled AP exists, return EFI_NOT_STARTED.
2223 //
2224 return EFI_NOT_STARTED;
2225 }
2226
2227 CpuMpData->RunningCount = 0;
2228 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2229 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2230 CpuData->Waiting = FALSE;
2231 if (ProcessorNumber != CpuMpData->BspNumber) {
2232 if (CpuData->State == CpuStateIdle) {
2233 //
2234 // Mark this processor as responsible for current calling.
2235 //
2236 CpuData->Waiting = TRUE;
2237 CpuMpData->RunningCount++;
2238 }
2239 }
2240 }
2241
2242 CpuMpData->Procedure = Procedure;
2243 CpuMpData->ProcArguments = ProcedureArgument;
2244 CpuMpData->SingleThread = SingleThread;
2245 CpuMpData->FinishedCount = 0;
2246 CpuMpData->FailedCpuList = FailedCpuList;
2247 CpuMpData->ExpectedTime = CalculateTimeout (
2248 TimeoutInMicroseconds,
2249 &CpuMpData->CurrentTime
2250 );
2251 CpuMpData->TotalTime = 0;
2252 CpuMpData->WaitEvent = WaitEvent;
2253
2254 if (!SingleThread) {
2255 WakeUpAP (CpuMpData, TRUE, 0, Procedure, ProcedureArgument, FALSE);
2256 } else {
2257 for (ProcessorNumber = 0; ProcessorNumber < ProcessorCount; ProcessorNumber++) {
2258 if (ProcessorNumber == CallerNumber) {
2259 continue;
2260 }
2261 if (CpuMpData->CpuData[ProcessorNumber].Waiting) {
2262 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2263 break;
2264 }
2265 }
2266 }
2267
2268 Status = EFI_SUCCESS;
2269 if (WaitEvent == NULL) {
2270 do {
2271 Status = CheckAllAPs ();
2272 } while (Status == EFI_NOT_READY);
2273 }
2274
2275 return Status;
2276 }
2277
2278 /**
2279 Worker function to let the caller get one enabled AP to execute a caller-provided
2280 function.
2281
2282 @param[in] Procedure A pointer to the function to be run on
2283 enabled APs of the system.
2284 @param[in] ProcessorNumber The handle number of the AP.
2285 @param[in] WaitEvent The event created by the caller with CreateEvent()
2286 service.
2287 @param[in] TimeoutInMicroseconds Indicates the time limit in microseconds for
2288 APs to return from Procedure, either for
2289 blocking or non-blocking mode.
2290 @param[in] ProcedureArgument The parameter passed into Procedure for
2291 all APs.
2292 @param[out] Finished If AP returns from Procedure before the
2293 timeout expires, its content is set to TRUE.
2294 Otherwise, the value is set to FALSE.
2295
2296 @retval EFI_SUCCESS In blocking mode, specified AP finished before
2297 the timeout expires.
2298 @retval others Failed to Startup AP.
2299
2300 **/
2301 EFI_STATUS
2302 StartupThisAPWorker (
2303 IN EFI_AP_PROCEDURE Procedure,
2304 IN UINTN ProcessorNumber,
2305 IN EFI_EVENT WaitEvent OPTIONAL,
2306 IN UINTN TimeoutInMicroseconds,
2307 IN VOID *ProcedureArgument OPTIONAL,
2308 OUT BOOLEAN *Finished OPTIONAL
2309 )
2310 {
2311 EFI_STATUS Status;
2312 CPU_MP_DATA *CpuMpData;
2313 CPU_AP_DATA *CpuData;
2314 UINTN CallerNumber;
2315
2316 CpuMpData = GetCpuMpData ();
2317
2318 if (Finished != NULL) {
2319 *Finished = FALSE;
2320 }
2321
2322 //
2323 // Check whether caller processor is BSP
2324 //
2325 MpInitLibWhoAmI (&CallerNumber);
2326 if (CallerNumber != CpuMpData->BspNumber) {
2327 return EFI_DEVICE_ERROR;
2328 }
2329
2330 //
2331 // Check whether processor with the handle specified by ProcessorNumber exists
2332 //
2333 if (ProcessorNumber >= CpuMpData->CpuCount) {
2334 return EFI_NOT_FOUND;
2335 }
2336
2337 //
2338 // Check whether specified processor is BSP
2339 //
2340 if (ProcessorNumber == CpuMpData->BspNumber) {
2341 return EFI_INVALID_PARAMETER;
2342 }
2343
2344 //
2345 // Check parameter Procedure
2346 //
2347 if (Procedure == NULL) {
2348 return EFI_INVALID_PARAMETER;
2349 }
2350
2351 //
2352 // Update AP state
2353 //
2354 CheckAndUpdateApsStatus ();
2355
2356 //
2357 // Check whether specified AP is disabled
2358 //
2359 if (GetApState (&CpuMpData->CpuData[ProcessorNumber]) == CpuStateDisabled) {
2360 return EFI_INVALID_PARAMETER;
2361 }
2362
2363 //
2364 // If WaitEvent is not NULL, execute in non-blocking mode.
2365 // BSP saves data for CheckAPsStatus(), and returns EFI_SUCCESS.
2366 // CheckAPsStatus() will check completion and timeout periodically.
2367 //
2368 CpuData = &CpuMpData->CpuData[ProcessorNumber];
2369 CpuData->WaitEvent = WaitEvent;
2370 CpuData->Finished = Finished;
2371 CpuData->ExpectedTime = CalculateTimeout (TimeoutInMicroseconds, &CpuData->CurrentTime);
2372 CpuData->TotalTime = 0;
2373
2374 WakeUpAP (CpuMpData, FALSE, ProcessorNumber, Procedure, ProcedureArgument, TRUE);
2375
2376 //
2377 // If WaitEvent is NULL, execute in blocking mode.
2378 // BSP checks AP's state until it finishes or TimeoutInMicrosecsond expires.
2379 //
2380 Status = EFI_SUCCESS;
2381 if (WaitEvent == NULL) {
2382 do {
2383 Status = CheckThisAP (ProcessorNumber);
2384 } while (Status == EFI_NOT_READY);
2385 }
2386
2387 return Status;
2388 }
2389
2390 /**
2391 Get pointer to CPU MP Data structure from GUIDed HOB.
2392
2393 @return The pointer to CPU MP Data structure.
2394 **/
2395 CPU_MP_DATA *
2396 GetCpuMpDataFromGuidedHob (
2397 VOID
2398 )
2399 {
2400 EFI_HOB_GUID_TYPE *GuidHob;
2401 VOID *DataInHob;
2402 CPU_MP_DATA *CpuMpData;
2403
2404 CpuMpData = NULL;
2405 GuidHob = GetFirstGuidHob (&mCpuInitMpLibHobGuid);
2406 if (GuidHob != NULL) {
2407 DataInHob = GET_GUID_HOB_DATA (GuidHob);
2408 CpuMpData = (CPU_MP_DATA *) (*(UINTN *) DataInHob);
2409 }
2410 return CpuMpData;
2411 }
2412