]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
cpu: Change tcg_cpu_exec() arg to cpu, not env
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
777872e5 20#ifndef _WIN32
a98d49b1 21#include <sys/types.h>
d5a8f07c
FB
22#include <sys/mman.h>
23#endif
54936004 24
055403b2 25#include "qemu-common.h"
6180a181 26#include "cpu.h"
b67d9a52 27#include "tcg.h"
b3c7724c 28#include "hw/hw.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
4485bd26 31#endif
cc9e98cb 32#include "hw/qdev.h"
1de7afc9 33#include "qemu/osdep.h"
9c17d615 34#include "sysemu/kvm.h"
2ff3de68 35#include "sysemu/sysemu.h"
0d09e41a 36#include "hw/xen/xen.h"
1de7afc9
PB
37#include "qemu/timer.h"
38#include "qemu/config-file.h"
75a34036 39#include "qemu/error-report.h"
022c62cb 40#include "exec/memory.h"
9c17d615 41#include "sysemu/dma.h"
022c62cb 42#include "exec/address-spaces.h"
53a5960a
PB
43#if defined(CONFIG_USER_ONLY)
44#include <qemu.h>
432d268c 45#else /* !CONFIG_USER_ONLY */
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
022c62cb 52#include "exec/cputlb.h"
5b6dd868 53#include "translate-all.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
67d95c15 57
b35ba30f
MT
58#include "qemu/range.h"
59
db7b5426 60//#define DEBUG_SUBPAGE
1196be37 61
e2eef170 62#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
63/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
64 * are protected by the ramlist lock.
65 */
0d53d9fe 66RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
67
68static MemoryRegion *system_memory;
309cb471 69static MemoryRegion *system_io;
62152b8a 70
f6790af6
AK
71AddressSpace address_space_io;
72AddressSpace address_space_memory;
2673a5da 73
0844e007 74MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 75static MemoryRegion io_mem_unassigned;
0e0df1e2 76
7bd4f430
PB
77/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
78#define RAM_PREALLOC (1 << 0)
79
dbcb8981
PB
80/* RAM is mmap-ed with MAP_SHARED */
81#define RAM_SHARED (1 << 1)
82
62be4e3a
MT
83/* Only a portion of RAM (used_length) is actually used, and migrated.
84 * This used_length size can change across reboots.
85 */
86#define RAM_RESIZEABLE (1 << 2)
87
e2eef170 88#endif
9fa3e853 89
bdc44640 90struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
91/* current CPU in the current thread. It is only valid inside
92 cpu_exec() */
4917cf44 93DEFINE_TLS(CPUState *, current_cpu);
2e70f6ef 94/* 0 = Do not count executed instructions.
bf20dc07 95 1 = Precise instruction counting.
2e70f6ef 96 2 = Adaptive rate instruction counting. */
5708fc66 97int use_icount;
6a00d601 98
e2eef170 99#if !defined(CONFIG_USER_ONLY)
4346ae3e 100
1db8abb1
PB
101typedef struct PhysPageEntry PhysPageEntry;
102
103struct PhysPageEntry {
9736e55b 104 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 105 uint32_t skip : 6;
9736e55b 106 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 107 uint32_t ptr : 26;
1db8abb1
PB
108};
109
8b795765
MT
110#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
111
03f49957 112/* Size of the L2 (and L3, etc) page tables. */
57271d63 113#define ADDR_SPACE_BITS 64
03f49957 114
026736ce 115#define P_L2_BITS 9
03f49957
PB
116#define P_L2_SIZE (1 << P_L2_BITS)
117
118#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
119
120typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 121
53cb28cb 122typedef struct PhysPageMap {
79e2b9ae
PB
123 struct rcu_head rcu;
124
53cb28cb
MA
125 unsigned sections_nb;
126 unsigned sections_nb_alloc;
127 unsigned nodes_nb;
128 unsigned nodes_nb_alloc;
129 Node *nodes;
130 MemoryRegionSection *sections;
131} PhysPageMap;
132
1db8abb1 133struct AddressSpaceDispatch {
79e2b9ae
PB
134 struct rcu_head rcu;
135
1db8abb1
PB
136 /* This is a multi-level map on the physical address space.
137 * The bottom level has pointers to MemoryRegionSections.
138 */
139 PhysPageEntry phys_map;
53cb28cb 140 PhysPageMap map;
acc9d80b 141 AddressSpace *as;
1db8abb1
PB
142};
143
90260c6c
JK
144#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
145typedef struct subpage_t {
146 MemoryRegion iomem;
acc9d80b 147 AddressSpace *as;
90260c6c
JK
148 hwaddr base;
149 uint16_t sub_section[TARGET_PAGE_SIZE];
150} subpage_t;
151
b41aac4f
LPF
152#define PHYS_SECTION_UNASSIGNED 0
153#define PHYS_SECTION_NOTDIRTY 1
154#define PHYS_SECTION_ROM 2
155#define PHYS_SECTION_WATCH 3
5312bd8b 156
e2eef170 157static void io_mem_init(void);
62152b8a 158static void memory_map_init(void);
09daed84 159static void tcg_commit(MemoryListener *listener);
e2eef170 160
1ec9b909 161static MemoryRegion io_mem_watch;
6658ffb8 162#endif
fd6ce8f6 163
6d9a1304 164#if !defined(CONFIG_USER_ONLY)
d6f2ea22 165
53cb28cb 166static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 167{
53cb28cb
MA
168 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
169 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
170 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
171 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
d6f2ea22 172 }
f7bf5461
AK
173}
174
db94604b 175static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
176{
177 unsigned i;
8b795765 178 uint32_t ret;
db94604b
PB
179 PhysPageEntry e;
180 PhysPageEntry *p;
f7bf5461 181
53cb28cb 182 ret = map->nodes_nb++;
db94604b 183 p = map->nodes[ret];
f7bf5461 184 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 185 assert(ret != map->nodes_nb_alloc);
db94604b
PB
186
187 e.skip = leaf ? 0 : 1;
188 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 189 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 190 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 191 }
f7bf5461 192 return ret;
d6f2ea22
AK
193}
194
53cb28cb
MA
195static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
196 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 197 int level)
f7bf5461
AK
198{
199 PhysPageEntry *p;
03f49957 200 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 201
9736e55b 202 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 203 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 204 }
db94604b 205 p = map->nodes[lp->ptr];
03f49957 206 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 207
03f49957 208 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 209 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 210 lp->skip = 0;
c19e8800 211 lp->ptr = leaf;
07f07b31
AK
212 *index += step;
213 *nb -= step;
2999097b 214 } else {
53cb28cb 215 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
216 }
217 ++lp;
f7bf5461
AK
218 }
219}
220
ac1970fb 221static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 222 hwaddr index, hwaddr nb,
2999097b 223 uint16_t leaf)
f7bf5461 224{
2999097b 225 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 226 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 227
53cb28cb 228 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
229}
230
b35ba30f
MT
231/* Compact a non leaf page entry. Simply detect that the entry has a single child,
232 * and update our entry so we can skip it and go directly to the destination.
233 */
234static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
235{
236 unsigned valid_ptr = P_L2_SIZE;
237 int valid = 0;
238 PhysPageEntry *p;
239 int i;
240
241 if (lp->ptr == PHYS_MAP_NODE_NIL) {
242 return;
243 }
244
245 p = nodes[lp->ptr];
246 for (i = 0; i < P_L2_SIZE; i++) {
247 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
248 continue;
249 }
250
251 valid_ptr = i;
252 valid++;
253 if (p[i].skip) {
254 phys_page_compact(&p[i], nodes, compacted);
255 }
256 }
257
258 /* We can only compress if there's only one child. */
259 if (valid != 1) {
260 return;
261 }
262
263 assert(valid_ptr < P_L2_SIZE);
264
265 /* Don't compress if it won't fit in the # of bits we have. */
266 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
267 return;
268 }
269
270 lp->ptr = p[valid_ptr].ptr;
271 if (!p[valid_ptr].skip) {
272 /* If our only child is a leaf, make this a leaf. */
273 /* By design, we should have made this node a leaf to begin with so we
274 * should never reach here.
275 * But since it's so simple to handle this, let's do it just in case we
276 * change this rule.
277 */
278 lp->skip = 0;
279 } else {
280 lp->skip += p[valid_ptr].skip;
281 }
282}
283
284static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
285{
286 DECLARE_BITMAP(compacted, nodes_nb);
287
288 if (d->phys_map.skip) {
53cb28cb 289 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
b35ba30f
MT
290 }
291}
292
97115a8d 293static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 294 Node *nodes, MemoryRegionSection *sections)
92e873b9 295{
31ab2b4a 296 PhysPageEntry *p;
97115a8d 297 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 298 int i;
f1f6e3b8 299
9736e55b 300 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 301 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 302 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 303 }
9affd6fc 304 p = nodes[lp.ptr];
03f49957 305 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 306 }
b35ba30f
MT
307
308 if (sections[lp.ptr].size.hi ||
309 range_covers_byte(sections[lp.ptr].offset_within_address_space,
310 sections[lp.ptr].size.lo, addr)) {
311 return &sections[lp.ptr];
312 } else {
313 return &sections[PHYS_SECTION_UNASSIGNED];
314 }
f3705d53
AK
315}
316
e5548617
BS
317bool memory_region_is_unassigned(MemoryRegion *mr)
318{
2a8e7499 319 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 320 && mr != &io_mem_watch;
fd6ce8f6 321}
149f54b5 322
79e2b9ae 323/* Called from RCU critical section */
c7086b4a 324static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
325 hwaddr addr,
326 bool resolve_subpage)
9f029603 327{
90260c6c
JK
328 MemoryRegionSection *section;
329 subpage_t *subpage;
330
53cb28cb 331 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
90260c6c
JK
332 if (resolve_subpage && section->mr->subpage) {
333 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 334 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
335 }
336 return section;
9f029603
JK
337}
338
79e2b9ae 339/* Called from RCU critical section */
90260c6c 340static MemoryRegionSection *
c7086b4a 341address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 342 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
343{
344 MemoryRegionSection *section;
965eb2fc 345 MemoryRegion *mr;
a87f3954 346 Int128 diff;
149f54b5 347
c7086b4a 348 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
349 /* Compute offset within MemoryRegionSection */
350 addr -= section->offset_within_address_space;
351
352 /* Compute offset within MemoryRegion */
353 *xlat = addr + section->offset_within_region;
354
965eb2fc 355 mr = section->mr;
b242e0e0
PB
356
357 /* MMIO registers can be expected to perform full-width accesses based only
358 * on their address, without considering adjacent registers that could
359 * decode to completely different MemoryRegions. When such registers
360 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
361 * regions overlap wildly. For this reason we cannot clamp the accesses
362 * here.
363 *
364 * If the length is small (as is the case for address_space_ldl/stl),
365 * everything works fine. If the incoming length is large, however,
366 * the caller really has to do the clamping through memory_access_size.
367 */
965eb2fc 368 if (memory_region_is_ram(mr)) {
e4a511f8 369 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
370 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
371 }
149f54b5
PB
372 return section;
373}
90260c6c 374
a87f3954
PB
375static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
376{
377 if (memory_region_is_ram(mr)) {
378 return !(is_write && mr->readonly);
379 }
380 if (memory_region_is_romd(mr)) {
381 return !is_write;
382 }
383
384 return false;
385}
386
41063e1e 387/* Called from RCU critical section */
5c8a00ce
PB
388MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
389 hwaddr *xlat, hwaddr *plen,
390 bool is_write)
90260c6c 391{
30951157
AK
392 IOMMUTLBEntry iotlb;
393 MemoryRegionSection *section;
394 MemoryRegion *mr;
30951157
AK
395
396 for (;;) {
79e2b9ae
PB
397 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
398 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
399 mr = section->mr;
400
401 if (!mr->iommu_ops) {
402 break;
403 }
404
8d7b8cb9 405 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
406 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
407 | (addr & iotlb.addr_mask));
23820dbf 408 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
409 if (!(iotlb.perm & (1 << is_write))) {
410 mr = &io_mem_unassigned;
411 break;
412 }
413
414 as = iotlb.target_as;
415 }
416
fe680d0d 417 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 418 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 419 *plen = MIN(page, *plen);
a87f3954
PB
420 }
421
30951157
AK
422 *xlat = addr;
423 return mr;
90260c6c
JK
424}
425
79e2b9ae 426/* Called from RCU critical section */
90260c6c 427MemoryRegionSection *
9d82b5a7
PB
428address_space_translate_for_iotlb(CPUState *cpu, hwaddr addr,
429 hwaddr *xlat, hwaddr *plen)
90260c6c 430{
30951157 431 MemoryRegionSection *section;
9d82b5a7
PB
432 section = address_space_translate_internal(cpu->memory_dispatch,
433 addr, xlat, plen, false);
30951157
AK
434
435 assert(!section->mr->iommu_ops);
436 return section;
90260c6c 437}
5b6dd868 438#endif
fd6ce8f6 439
b170fce3 440#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
441
442static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 443{
259186a7 444 CPUState *cpu = opaque;
a513fe19 445
5b6dd868
BS
446 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
447 version_id is increased. */
259186a7 448 cpu->interrupt_request &= ~0x01;
c01a71c1 449 tlb_flush(cpu, 1);
5b6dd868
BS
450
451 return 0;
a513fe19 452}
7501267e 453
6c3bff0e
PD
454static int cpu_common_pre_load(void *opaque)
455{
456 CPUState *cpu = opaque;
457
adee6424 458 cpu->exception_index = -1;
6c3bff0e
PD
459
460 return 0;
461}
462
463static bool cpu_common_exception_index_needed(void *opaque)
464{
465 CPUState *cpu = opaque;
466
adee6424 467 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
468}
469
470static const VMStateDescription vmstate_cpu_common_exception_index = {
471 .name = "cpu_common/exception_index",
472 .version_id = 1,
473 .minimum_version_id = 1,
5cd8cada 474 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
475 .fields = (VMStateField[]) {
476 VMSTATE_INT32(exception_index, CPUState),
477 VMSTATE_END_OF_LIST()
478 }
479};
480
1a1562f5 481const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
482 .name = "cpu_common",
483 .version_id = 1,
484 .minimum_version_id = 1,
6c3bff0e 485 .pre_load = cpu_common_pre_load,
5b6dd868 486 .post_load = cpu_common_post_load,
35d08458 487 .fields = (VMStateField[]) {
259186a7
AF
488 VMSTATE_UINT32(halted, CPUState),
489 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 490 VMSTATE_END_OF_LIST()
6c3bff0e 491 },
5cd8cada
JQ
492 .subsections = (const VMStateDescription*[]) {
493 &vmstate_cpu_common_exception_index,
494 NULL
5b6dd868
BS
495 }
496};
1a1562f5 497
5b6dd868 498#endif
ea041c0e 499
38d8f5c8 500CPUState *qemu_get_cpu(int index)
ea041c0e 501{
bdc44640 502 CPUState *cpu;
ea041c0e 503
bdc44640 504 CPU_FOREACH(cpu) {
55e5c285 505 if (cpu->cpu_index == index) {
bdc44640 506 return cpu;
55e5c285 507 }
ea041c0e 508 }
5b6dd868 509
bdc44640 510 return NULL;
ea041c0e
FB
511}
512
09daed84
EI
513#if !defined(CONFIG_USER_ONLY)
514void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
515{
516 /* We only support one address space per cpu at the moment. */
517 assert(cpu->as == as);
518
519 if (cpu->tcg_as_listener) {
520 memory_listener_unregister(cpu->tcg_as_listener);
521 } else {
522 cpu->tcg_as_listener = g_new0(MemoryListener, 1);
523 }
524 cpu->tcg_as_listener->commit = tcg_commit;
525 memory_listener_register(cpu->tcg_as_listener, as);
526}
527#endif
528
b7bca733
BR
529#ifndef CONFIG_USER_ONLY
530static DECLARE_BITMAP(cpu_index_map, MAX_CPUMASK_BITS);
531
532static int cpu_get_free_index(Error **errp)
533{
534 int cpu = find_first_zero_bit(cpu_index_map, MAX_CPUMASK_BITS);
535
536 if (cpu >= MAX_CPUMASK_BITS) {
537 error_setg(errp, "Trying to use more CPUs than max of %d",
538 MAX_CPUMASK_BITS);
539 return -1;
540 }
541
542 bitmap_set(cpu_index_map, cpu, 1);
543 return cpu;
544}
545
546void cpu_exec_exit(CPUState *cpu)
547{
548 if (cpu->cpu_index == -1) {
549 /* cpu_index was never allocated by this @cpu or was already freed. */
550 return;
551 }
552
553 bitmap_clear(cpu_index_map, cpu->cpu_index, 1);
554 cpu->cpu_index = -1;
555}
556#else
557
558static int cpu_get_free_index(Error **errp)
559{
560 CPUState *some_cpu;
561 int cpu_index = 0;
562
563 CPU_FOREACH(some_cpu) {
564 cpu_index++;
565 }
566 return cpu_index;
567}
568
569void cpu_exec_exit(CPUState *cpu)
570{
571}
572#endif
573
5a790cc4 574void cpu_exec_init(CPUArchState *env, Error **errp)
ea041c0e 575{
5b6dd868 576 CPUState *cpu = ENV_GET_CPU(env);
b170fce3 577 CPUClass *cc = CPU_GET_CLASS(cpu);
5b6dd868 578 int cpu_index;
b7bca733 579 Error *local_err = NULL;
5b6dd868 580
291135b5
EH
581#ifndef CONFIG_USER_ONLY
582 cpu->as = &address_space_memory;
583 cpu->thread_id = qemu_get_thread_id();
584 cpu_reload_memory_map(cpu);
585#endif
586
5b6dd868
BS
587#if defined(CONFIG_USER_ONLY)
588 cpu_list_lock();
589#endif
b7bca733
BR
590 cpu_index = cpu->cpu_index = cpu_get_free_index(&local_err);
591 if (local_err) {
592 error_propagate(errp, local_err);
593#if defined(CONFIG_USER_ONLY)
594 cpu_list_unlock();
595#endif
596 return;
5b6dd868 597 }
bdc44640 598 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
5b6dd868
BS
599#if defined(CONFIG_USER_ONLY)
600 cpu_list_unlock();
601#endif
e0d47944
AF
602 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
603 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
604 }
5b6dd868 605#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
5b6dd868
BS
606 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
607 cpu_save, cpu_load, env);
b170fce3 608 assert(cc->vmsd == NULL);
e0d47944 609 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
5b6dd868 610#endif
b170fce3
AF
611 if (cc->vmsd != NULL) {
612 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
613 }
ea041c0e
FB
614}
615
94df27fd 616#if defined(CONFIG_USER_ONLY)
00b941e5 617static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
618{
619 tb_invalidate_phys_page_range(pc, pc + 1, 0);
620}
621#else
00b941e5 622static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 623{
e8262a1b
MF
624 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
625 if (phys != -1) {
09daed84 626 tb_invalidate_phys_addr(cpu->as,
29d8ec7b 627 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 628 }
1e7855a5 629}
c27004ec 630#endif
d720b93d 631
c527ee8f 632#if defined(CONFIG_USER_ONLY)
75a34036 633void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
634
635{
636}
637
3ee887e8
PM
638int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
639 int flags)
640{
641 return -ENOSYS;
642}
643
644void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
645{
646}
647
75a34036 648int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
649 int flags, CPUWatchpoint **watchpoint)
650{
651 return -ENOSYS;
652}
653#else
6658ffb8 654/* Add a watchpoint. */
75a34036 655int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 656 int flags, CPUWatchpoint **watchpoint)
6658ffb8 657{
c0ce998e 658 CPUWatchpoint *wp;
6658ffb8 659
05068c0d 660 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 661 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
662 error_report("tried to set invalid watchpoint at %"
663 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
664 return -EINVAL;
665 }
7267c094 666 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
667
668 wp->vaddr = addr;
05068c0d 669 wp->len = len;
a1d1bb31
AL
670 wp->flags = flags;
671
2dc9f411 672 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
673 if (flags & BP_GDB) {
674 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
675 } else {
676 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
677 }
6658ffb8 678
31b030d4 679 tlb_flush_page(cpu, addr);
a1d1bb31
AL
680
681 if (watchpoint)
682 *watchpoint = wp;
683 return 0;
6658ffb8
PB
684}
685
a1d1bb31 686/* Remove a specific watchpoint. */
75a34036 687int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 688 int flags)
6658ffb8 689{
a1d1bb31 690 CPUWatchpoint *wp;
6658ffb8 691
ff4700b0 692 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 693 if (addr == wp->vaddr && len == wp->len
6e140f28 694 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 695 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
696 return 0;
697 }
698 }
a1d1bb31 699 return -ENOENT;
6658ffb8
PB
700}
701
a1d1bb31 702/* Remove a specific watchpoint by reference. */
75a34036 703void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 704{
ff4700b0 705 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 706
31b030d4 707 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 708
7267c094 709 g_free(watchpoint);
a1d1bb31
AL
710}
711
712/* Remove all matching watchpoints. */
75a34036 713void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 714{
c0ce998e 715 CPUWatchpoint *wp, *next;
a1d1bb31 716
ff4700b0 717 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
718 if (wp->flags & mask) {
719 cpu_watchpoint_remove_by_ref(cpu, wp);
720 }
c0ce998e 721 }
7d03f82f 722}
05068c0d
PM
723
724/* Return true if this watchpoint address matches the specified
725 * access (ie the address range covered by the watchpoint overlaps
726 * partially or completely with the address range covered by the
727 * access).
728 */
729static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
730 vaddr addr,
731 vaddr len)
732{
733 /* We know the lengths are non-zero, but a little caution is
734 * required to avoid errors in the case where the range ends
735 * exactly at the top of the address space and so addr + len
736 * wraps round to zero.
737 */
738 vaddr wpend = wp->vaddr + wp->len - 1;
739 vaddr addrend = addr + len - 1;
740
741 return !(addr > wpend || wp->vaddr > addrend);
742}
743
c527ee8f 744#endif
7d03f82f 745
a1d1bb31 746/* Add a breakpoint. */
b3310ab3 747int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 748 CPUBreakpoint **breakpoint)
4c3a88a2 749{
c0ce998e 750 CPUBreakpoint *bp;
3b46e624 751
7267c094 752 bp = g_malloc(sizeof(*bp));
4c3a88a2 753
a1d1bb31
AL
754 bp->pc = pc;
755 bp->flags = flags;
756
2dc9f411 757 /* keep all GDB-injected breakpoints in front */
00b941e5 758 if (flags & BP_GDB) {
f0c3c505 759 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 760 } else {
f0c3c505 761 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 762 }
3b46e624 763
f0c3c505 764 breakpoint_invalidate(cpu, pc);
a1d1bb31 765
00b941e5 766 if (breakpoint) {
a1d1bb31 767 *breakpoint = bp;
00b941e5 768 }
4c3a88a2 769 return 0;
4c3a88a2
FB
770}
771
a1d1bb31 772/* Remove a specific breakpoint. */
b3310ab3 773int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 774{
a1d1bb31
AL
775 CPUBreakpoint *bp;
776
f0c3c505 777 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 778 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 779 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
780 return 0;
781 }
7d03f82f 782 }
a1d1bb31 783 return -ENOENT;
7d03f82f
EI
784}
785
a1d1bb31 786/* Remove a specific breakpoint by reference. */
b3310ab3 787void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 788{
f0c3c505
AF
789 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
790
791 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 792
7267c094 793 g_free(breakpoint);
a1d1bb31
AL
794}
795
796/* Remove all matching breakpoints. */
b3310ab3 797void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 798{
c0ce998e 799 CPUBreakpoint *bp, *next;
a1d1bb31 800
f0c3c505 801 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
802 if (bp->flags & mask) {
803 cpu_breakpoint_remove_by_ref(cpu, bp);
804 }
c0ce998e 805 }
4c3a88a2
FB
806}
807
c33a346e
FB
808/* enable or disable single step mode. EXCP_DEBUG is returned by the
809 CPU loop after each instruction */
3825b28f 810void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 811{
ed2803da
AF
812 if (cpu->singlestep_enabled != enabled) {
813 cpu->singlestep_enabled = enabled;
814 if (kvm_enabled()) {
38e478ec 815 kvm_update_guest_debug(cpu, 0);
ed2803da 816 } else {
ccbb4d44 817 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 818 /* XXX: only flush what is necessary */
bbd77c18 819 tb_flush(cpu);
e22a25c9 820 }
c33a346e 821 }
c33a346e
FB
822}
823
a47dddd7 824void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
825{
826 va_list ap;
493ae1f0 827 va_list ap2;
7501267e
FB
828
829 va_start(ap, fmt);
493ae1f0 830 va_copy(ap2, ap);
7501267e
FB
831 fprintf(stderr, "qemu: fatal: ");
832 vfprintf(stderr, fmt, ap);
833 fprintf(stderr, "\n");
878096ee 834 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
835 if (qemu_log_enabled()) {
836 qemu_log("qemu: fatal: ");
837 qemu_log_vprintf(fmt, ap2);
838 qemu_log("\n");
a0762859 839 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 840 qemu_log_flush();
93fcfe39 841 qemu_log_close();
924edcae 842 }
493ae1f0 843 va_end(ap2);
f9373291 844 va_end(ap);
fd052bf6
RV
845#if defined(CONFIG_USER_ONLY)
846 {
847 struct sigaction act;
848 sigfillset(&act.sa_mask);
849 act.sa_handler = SIG_DFL;
850 sigaction(SIGABRT, &act, NULL);
851 }
852#endif
7501267e
FB
853 abort();
854}
855
0124311e 856#if !defined(CONFIG_USER_ONLY)
0dc3f44a 857/* Called from RCU critical section */
041603fe
PB
858static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
859{
860 RAMBlock *block;
861
43771539 862 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 863 if (block && addr - block->offset < block->max_length) {
041603fe
PB
864 goto found;
865 }
0dc3f44a 866 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 867 if (addr - block->offset < block->max_length) {
041603fe
PB
868 goto found;
869 }
870 }
871
872 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
873 abort();
874
875found:
43771539
PB
876 /* It is safe to write mru_block outside the iothread lock. This
877 * is what happens:
878 *
879 * mru_block = xxx
880 * rcu_read_unlock()
881 * xxx removed from list
882 * rcu_read_lock()
883 * read mru_block
884 * mru_block = NULL;
885 * call_rcu(reclaim_ramblock, xxx);
886 * rcu_read_unlock()
887 *
888 * atomic_rcu_set is not needed here. The block was already published
889 * when it was placed into the list. Here we're just making an extra
890 * copy of the pointer.
891 */
041603fe
PB
892 ram_list.mru_block = block;
893 return block;
894}
895
a2f4d5be 896static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 897{
041603fe 898 ram_addr_t start1;
a2f4d5be
JQ
899 RAMBlock *block;
900 ram_addr_t end;
901
902 end = TARGET_PAGE_ALIGN(start + length);
903 start &= TARGET_PAGE_MASK;
d24981d3 904
0dc3f44a 905 rcu_read_lock();
041603fe
PB
906 block = qemu_get_ram_block(start);
907 assert(block == qemu_get_ram_block(end - 1));
1240be24 908 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
041603fe 909 cpu_tlb_reset_dirty_all(start1, length);
0dc3f44a 910 rcu_read_unlock();
d24981d3
JQ
911}
912
5579c7f3 913/* Note: start and end must be within the same ram block. */
03eebc9e
SH
914bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
915 ram_addr_t length,
916 unsigned client)
1ccde1cb 917{
03eebc9e
SH
918 unsigned long end, page;
919 bool dirty;
920
921 if (length == 0) {
922 return false;
923 }
f23db169 924
03eebc9e
SH
925 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
926 page = start >> TARGET_PAGE_BITS;
927 dirty = bitmap_test_and_clear_atomic(ram_list.dirty_memory[client],
928 page, end - page);
929
930 if (dirty && tcg_enabled()) {
a2f4d5be 931 tlb_reset_dirty_range_all(start, length);
5579c7f3 932 }
03eebc9e
SH
933
934 return dirty;
1ccde1cb
FB
935}
936
79e2b9ae 937/* Called from RCU critical section */
bb0e627a 938hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
939 MemoryRegionSection *section,
940 target_ulong vaddr,
941 hwaddr paddr, hwaddr xlat,
942 int prot,
943 target_ulong *address)
e5548617 944{
a8170e5e 945 hwaddr iotlb;
e5548617
BS
946 CPUWatchpoint *wp;
947
cc5bea60 948 if (memory_region_is_ram(section->mr)) {
e5548617
BS
949 /* Normal RAM. */
950 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
149f54b5 951 + xlat;
e5548617 952 if (!section->readonly) {
b41aac4f 953 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 954 } else {
b41aac4f 955 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
956 }
957 } else {
1b3fb98f 958 iotlb = section - section->address_space->dispatch->map.sections;
149f54b5 959 iotlb += xlat;
e5548617
BS
960 }
961
962 /* Make accesses to pages with watchpoints go via the
963 watchpoint trap routines. */
ff4700b0 964 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 965 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
966 /* Avoid trapping reads of pages with a write breakpoint. */
967 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 968 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
969 *address |= TLB_MMIO;
970 break;
971 }
972 }
973 }
974
975 return iotlb;
976}
9fa3e853
FB
977#endif /* defined(CONFIG_USER_ONLY) */
978
e2eef170 979#if !defined(CONFIG_USER_ONLY)
8da3ff18 980
c227f099 981static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 982 uint16_t section);
acc9d80b 983static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 984
a2b257d6
IM
985static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
986 qemu_anon_ram_alloc;
91138037
MA
987
988/*
989 * Set a custom physical guest memory alloator.
990 * Accelerators with unusual needs may need this. Hopefully, we can
991 * get rid of it eventually.
992 */
a2b257d6 993void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
994{
995 phys_mem_alloc = alloc;
996}
997
53cb28cb
MA
998static uint16_t phys_section_add(PhysPageMap *map,
999 MemoryRegionSection *section)
5312bd8b 1000{
68f3f65b
PB
1001 /* The physical section number is ORed with a page-aligned
1002 * pointer to produce the iotlb entries. Thus it should
1003 * never overflow into the page-aligned value.
1004 */
53cb28cb 1005 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1006
53cb28cb
MA
1007 if (map->sections_nb == map->sections_nb_alloc) {
1008 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1009 map->sections = g_renew(MemoryRegionSection, map->sections,
1010 map->sections_nb_alloc);
5312bd8b 1011 }
53cb28cb 1012 map->sections[map->sections_nb] = *section;
dfde4e6e 1013 memory_region_ref(section->mr);
53cb28cb 1014 return map->sections_nb++;
5312bd8b
AK
1015}
1016
058bc4b5
PB
1017static void phys_section_destroy(MemoryRegion *mr)
1018{
dfde4e6e
PB
1019 memory_region_unref(mr);
1020
058bc4b5
PB
1021 if (mr->subpage) {
1022 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1023 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1024 g_free(subpage);
1025 }
1026}
1027
6092666e 1028static void phys_sections_free(PhysPageMap *map)
5312bd8b 1029{
9affd6fc
PB
1030 while (map->sections_nb > 0) {
1031 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1032 phys_section_destroy(section->mr);
1033 }
9affd6fc
PB
1034 g_free(map->sections);
1035 g_free(map->nodes);
5312bd8b
AK
1036}
1037
ac1970fb 1038static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1039{
1040 subpage_t *subpage;
a8170e5e 1041 hwaddr base = section->offset_within_address_space
0f0cb164 1042 & TARGET_PAGE_MASK;
97115a8d 1043 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1044 d->map.nodes, d->map.sections);
0f0cb164
AK
1045 MemoryRegionSection subsection = {
1046 .offset_within_address_space = base,
052e87b0 1047 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1048 };
a8170e5e 1049 hwaddr start, end;
0f0cb164 1050
f3705d53 1051 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1052
f3705d53 1053 if (!(existing->mr->subpage)) {
acc9d80b 1054 subpage = subpage_init(d->as, base);
3be91e86 1055 subsection.address_space = d->as;
0f0cb164 1056 subsection.mr = &subpage->iomem;
ac1970fb 1057 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1058 phys_section_add(&d->map, &subsection));
0f0cb164 1059 } else {
f3705d53 1060 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1061 }
1062 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1063 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1064 subpage_register(subpage, start, end,
1065 phys_section_add(&d->map, section));
0f0cb164
AK
1066}
1067
1068
052e87b0
PB
1069static void register_multipage(AddressSpaceDispatch *d,
1070 MemoryRegionSection *section)
33417e70 1071{
a8170e5e 1072 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1073 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1074 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1075 TARGET_PAGE_BITS));
dd81124b 1076
733d5ef5
PB
1077 assert(num_pages);
1078 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1079}
1080
ac1970fb 1081static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1082{
89ae337a 1083 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1084 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1085 MemoryRegionSection now = *section, remain = *section;
052e87b0 1086 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1087
733d5ef5
PB
1088 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1089 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1090 - now.offset_within_address_space;
1091
052e87b0 1092 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1093 register_subpage(d, &now);
733d5ef5 1094 } else {
052e87b0 1095 now.size = int128_zero();
733d5ef5 1096 }
052e87b0
PB
1097 while (int128_ne(remain.size, now.size)) {
1098 remain.size = int128_sub(remain.size, now.size);
1099 remain.offset_within_address_space += int128_get64(now.size);
1100 remain.offset_within_region += int128_get64(now.size);
69b67646 1101 now = remain;
052e87b0 1102 if (int128_lt(remain.size, page_size)) {
733d5ef5 1103 register_subpage(d, &now);
88266249 1104 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1105 now.size = page_size;
ac1970fb 1106 register_subpage(d, &now);
69b67646 1107 } else {
052e87b0 1108 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1109 register_multipage(d, &now);
69b67646 1110 }
0f0cb164
AK
1111 }
1112}
1113
62a2744c
SY
1114void qemu_flush_coalesced_mmio_buffer(void)
1115{
1116 if (kvm_enabled())
1117 kvm_flush_coalesced_mmio_buffer();
1118}
1119
b2a8658e
UD
1120void qemu_mutex_lock_ramlist(void)
1121{
1122 qemu_mutex_lock(&ram_list.mutex);
1123}
1124
1125void qemu_mutex_unlock_ramlist(void)
1126{
1127 qemu_mutex_unlock(&ram_list.mutex);
1128}
1129
e1e84ba0 1130#ifdef __linux__
c902760f
MT
1131
1132#include <sys/vfs.h>
1133
1134#define HUGETLBFS_MAGIC 0x958458f6
1135
fc7a5800 1136static long gethugepagesize(const char *path, Error **errp)
c902760f
MT
1137{
1138 struct statfs fs;
1139 int ret;
1140
1141 do {
9742bf26 1142 ret = statfs(path, &fs);
c902760f
MT
1143 } while (ret != 0 && errno == EINTR);
1144
1145 if (ret != 0) {
fc7a5800
HT
1146 error_setg_errno(errp, errno, "failed to get page size of file %s",
1147 path);
9742bf26 1148 return 0;
c902760f
MT
1149 }
1150
1151 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 1152 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
1153
1154 return fs.f_bsize;
1155}
1156
04b16653
AW
1157static void *file_ram_alloc(RAMBlock *block,
1158 ram_addr_t memory,
7f56e740
PB
1159 const char *path,
1160 Error **errp)
c902760f
MT
1161{
1162 char *filename;
8ca761f6
PF
1163 char *sanitized_name;
1164 char *c;
557529dd 1165 void *area = NULL;
c902760f 1166 int fd;
557529dd 1167 uint64_t hpagesize;
fc7a5800 1168 Error *local_err = NULL;
c902760f 1169
fc7a5800
HT
1170 hpagesize = gethugepagesize(path, &local_err);
1171 if (local_err) {
1172 error_propagate(errp, local_err);
f9a49dfa 1173 goto error;
c902760f 1174 }
a2b257d6 1175 block->mr->align = hpagesize;
c902760f
MT
1176
1177 if (memory < hpagesize) {
557529dd
HT
1178 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1179 "or larger than huge page size 0x%" PRIx64,
1180 memory, hpagesize);
1181 goto error;
c902760f
MT
1182 }
1183
1184 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1185 error_setg(errp,
1186 "host lacks kvm mmu notifiers, -mem-path unsupported");
f9a49dfa 1187 goto error;
c902760f
MT
1188 }
1189
8ca761f6 1190 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
83234bf2 1191 sanitized_name = g_strdup(memory_region_name(block->mr));
8ca761f6
PF
1192 for (c = sanitized_name; *c != '\0'; c++) {
1193 if (*c == '/')
1194 *c = '_';
1195 }
1196
1197 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1198 sanitized_name);
1199 g_free(sanitized_name);
c902760f
MT
1200
1201 fd = mkstemp(filename);
1202 if (fd < 0) {
7f56e740
PB
1203 error_setg_errno(errp, errno,
1204 "unable to create backing store for hugepages");
e4ada482 1205 g_free(filename);
f9a49dfa 1206 goto error;
c902760f
MT
1207 }
1208 unlink(filename);
e4ada482 1209 g_free(filename);
c902760f
MT
1210
1211 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1212
1213 /*
1214 * ftruncate is not supported by hugetlbfs in older
1215 * hosts, so don't bother bailing out on errors.
1216 * If anything goes wrong with it under other filesystems,
1217 * mmap will fail.
1218 */
7f56e740 1219 if (ftruncate(fd, memory)) {
9742bf26 1220 perror("ftruncate");
7f56e740 1221 }
c902760f 1222
dbcb8981
PB
1223 area = mmap(0, memory, PROT_READ | PROT_WRITE,
1224 (block->flags & RAM_SHARED ? MAP_SHARED : MAP_PRIVATE),
1225 fd, 0);
c902760f 1226 if (area == MAP_FAILED) {
7f56e740
PB
1227 error_setg_errno(errp, errno,
1228 "unable to map backing store for hugepages");
9742bf26 1229 close(fd);
f9a49dfa 1230 goto error;
c902760f 1231 }
ef36fa14
MT
1232
1233 if (mem_prealloc) {
38183310 1234 os_mem_prealloc(fd, area, memory);
ef36fa14
MT
1235 }
1236
04b16653 1237 block->fd = fd;
c902760f 1238 return area;
f9a49dfa
MT
1239
1240error:
1241 if (mem_prealloc) {
81b07353 1242 error_report("%s", error_get_pretty(*errp));
f9a49dfa
MT
1243 exit(1);
1244 }
1245 return NULL;
c902760f
MT
1246}
1247#endif
1248
0dc3f44a 1249/* Called with the ramlist lock held. */
d17b5288 1250static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1251{
1252 RAMBlock *block, *next_block;
3e837b2c 1253 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1254
49cd9ac6
SH
1255 assert(size != 0); /* it would hand out same offset multiple times */
1256
0dc3f44a 1257 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1258 return 0;
0d53d9fe 1259 }
04b16653 1260
0dc3f44a 1261 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1262 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1263
62be4e3a 1264 end = block->offset + block->max_length;
04b16653 1265
0dc3f44a 1266 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1267 if (next_block->offset >= end) {
1268 next = MIN(next, next_block->offset);
1269 }
1270 }
1271 if (next - end >= size && next - end < mingap) {
3e837b2c 1272 offset = end;
04b16653
AW
1273 mingap = next - end;
1274 }
1275 }
3e837b2c
AW
1276
1277 if (offset == RAM_ADDR_MAX) {
1278 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1279 (uint64_t)size);
1280 abort();
1281 }
1282
04b16653
AW
1283 return offset;
1284}
1285
652d7ec2 1286ram_addr_t last_ram_offset(void)
d17b5288
AW
1287{
1288 RAMBlock *block;
1289 ram_addr_t last = 0;
1290
0dc3f44a
MD
1291 rcu_read_lock();
1292 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1293 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1294 }
0dc3f44a 1295 rcu_read_unlock();
d17b5288
AW
1296 return last;
1297}
1298
ddb97f1d
JB
1299static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1300{
1301 int ret;
ddb97f1d
JB
1302
1303 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1304 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1305 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1306 if (ret) {
1307 perror("qemu_madvise");
1308 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1309 "but dump_guest_core=off specified\n");
1310 }
1311 }
1312}
1313
0dc3f44a
MD
1314/* Called within an RCU critical section, or while the ramlist lock
1315 * is held.
1316 */
20cfe881 1317static RAMBlock *find_ram_block(ram_addr_t addr)
84b89d78 1318{
20cfe881 1319 RAMBlock *block;
84b89d78 1320
0dc3f44a 1321 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1322 if (block->offset == addr) {
20cfe881 1323 return block;
c5705a77
AK
1324 }
1325 }
20cfe881
HT
1326
1327 return NULL;
1328}
1329
ae3a7047 1330/* Called with iothread lock held. */
20cfe881
HT
1331void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1332{
ae3a7047 1333 RAMBlock *new_block, *block;
20cfe881 1334
0dc3f44a 1335 rcu_read_lock();
ae3a7047 1336 new_block = find_ram_block(addr);
c5705a77
AK
1337 assert(new_block);
1338 assert(!new_block->idstr[0]);
84b89d78 1339
09e5ab63
AL
1340 if (dev) {
1341 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1342 if (id) {
1343 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1344 g_free(id);
84b89d78
CM
1345 }
1346 }
1347 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1348
0dc3f44a 1349 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
c5705a77 1350 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1351 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1352 new_block->idstr);
1353 abort();
1354 }
1355 }
0dc3f44a 1356 rcu_read_unlock();
c5705a77
AK
1357}
1358
ae3a7047 1359/* Called with iothread lock held. */
20cfe881
HT
1360void qemu_ram_unset_idstr(ram_addr_t addr)
1361{
ae3a7047 1362 RAMBlock *block;
20cfe881 1363
ae3a7047
MD
1364 /* FIXME: arch_init.c assumes that this is not called throughout
1365 * migration. Ignore the problem since hot-unplug during migration
1366 * does not work anyway.
1367 */
1368
0dc3f44a 1369 rcu_read_lock();
ae3a7047 1370 block = find_ram_block(addr);
20cfe881
HT
1371 if (block) {
1372 memset(block->idstr, 0, sizeof(block->idstr));
1373 }
0dc3f44a 1374 rcu_read_unlock();
20cfe881
HT
1375}
1376
8490fc78
LC
1377static int memory_try_enable_merging(void *addr, size_t len)
1378{
75cc7f01 1379 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1380 /* disabled by the user */
1381 return 0;
1382 }
1383
1384 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1385}
1386
62be4e3a
MT
1387/* Only legal before guest might have detected the memory size: e.g. on
1388 * incoming migration, or right after reset.
1389 *
1390 * As memory core doesn't know how is memory accessed, it is up to
1391 * resize callback to update device state and/or add assertions to detect
1392 * misuse, if necessary.
1393 */
1394int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp)
1395{
1396 RAMBlock *block = find_ram_block(base);
1397
1398 assert(block);
1399
129ddaf3
MT
1400 newsize = TARGET_PAGE_ALIGN(newsize);
1401
62be4e3a
MT
1402 if (block->used_length == newsize) {
1403 return 0;
1404 }
1405
1406 if (!(block->flags & RAM_RESIZEABLE)) {
1407 error_setg_errno(errp, EINVAL,
1408 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1409 " in != 0x" RAM_ADDR_FMT, block->idstr,
1410 newsize, block->used_length);
1411 return -EINVAL;
1412 }
1413
1414 if (block->max_length < newsize) {
1415 error_setg_errno(errp, EINVAL,
1416 "Length too large: %s: 0x" RAM_ADDR_FMT
1417 " > 0x" RAM_ADDR_FMT, block->idstr,
1418 newsize, block->max_length);
1419 return -EINVAL;
1420 }
1421
1422 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1423 block->used_length = newsize;
58d2707e
PB
1424 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1425 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1426 memory_region_set_size(block->mr, newsize);
1427 if (block->resized) {
1428 block->resized(block->idstr, newsize, block->host);
1429 }
1430 return 0;
1431}
1432
ef701d7b 1433static ram_addr_t ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1434{
e1c57ab8 1435 RAMBlock *block;
0d53d9fe 1436 RAMBlock *last_block = NULL;
2152f5ca
JQ
1437 ram_addr_t old_ram_size, new_ram_size;
1438
1439 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1440
b2a8658e 1441 qemu_mutex_lock_ramlist();
9b8424d5 1442 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1443
1444 if (!new_block->host) {
1445 if (xen_enabled()) {
9b8424d5
MT
1446 xen_ram_alloc(new_block->offset, new_block->max_length,
1447 new_block->mr);
e1c57ab8 1448 } else {
9b8424d5 1449 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1450 &new_block->mr->align);
39228250 1451 if (!new_block->host) {
ef701d7b
HT
1452 error_setg_errno(errp, errno,
1453 "cannot set up guest memory '%s'",
1454 memory_region_name(new_block->mr));
1455 qemu_mutex_unlock_ramlist();
1456 return -1;
39228250 1457 }
9b8424d5 1458 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1459 }
c902760f 1460 }
94a6b54f 1461
dd631697
LZ
1462 new_ram_size = MAX(old_ram_size,
1463 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1464 if (new_ram_size > old_ram_size) {
1465 migration_bitmap_extend(old_ram_size, new_ram_size);
1466 }
0d53d9fe
MD
1467 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1468 * QLIST (which has an RCU-friendly variant) does not have insertion at
1469 * tail, so save the last element in last_block.
1470 */
0dc3f44a 1471 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1472 last_block = block;
9b8424d5 1473 if (block->max_length < new_block->max_length) {
abb26d63
PB
1474 break;
1475 }
1476 }
1477 if (block) {
0dc3f44a 1478 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1479 } else if (last_block) {
0dc3f44a 1480 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1481 } else { /* list is empty */
0dc3f44a 1482 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1483 }
0d6d3c87 1484 ram_list.mru_block = NULL;
94a6b54f 1485
0dc3f44a
MD
1486 /* Write list before version */
1487 smp_wmb();
f798b07f 1488 ram_list.version++;
b2a8658e 1489 qemu_mutex_unlock_ramlist();
f798b07f 1490
2152f5ca
JQ
1491 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1492
1493 if (new_ram_size > old_ram_size) {
1ab4c8ce 1494 int i;
ae3a7047
MD
1495
1496 /* ram_list.dirty_memory[] is protected by the iothread lock. */
1ab4c8ce
JQ
1497 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1498 ram_list.dirty_memory[i] =
1499 bitmap_zero_extend(ram_list.dirty_memory[i],
1500 old_ram_size, new_ram_size);
1501 }
2152f5ca 1502 }
9b8424d5 1503 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1504 new_block->used_length,
1505 DIRTY_CLIENTS_ALL);
94a6b54f 1506
a904c911
PB
1507 if (new_block->host) {
1508 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1509 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
1510 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
1511 if (kvm_enabled()) {
1512 kvm_setup_guest_memory(new_block->host, new_block->max_length);
1513 }
e1c57ab8 1514 }
6f0437e8 1515
94a6b54f
PB
1516 return new_block->offset;
1517}
e9a1ab19 1518
0b183fc8 1519#ifdef __linux__
e1c57ab8 1520ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
dbcb8981 1521 bool share, const char *mem_path,
7f56e740 1522 Error **errp)
e1c57ab8
PB
1523{
1524 RAMBlock *new_block;
ef701d7b
HT
1525 ram_addr_t addr;
1526 Error *local_err = NULL;
e1c57ab8
PB
1527
1528 if (xen_enabled()) {
7f56e740
PB
1529 error_setg(errp, "-mem-path not supported with Xen");
1530 return -1;
e1c57ab8
PB
1531 }
1532
1533 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1534 /*
1535 * file_ram_alloc() needs to allocate just like
1536 * phys_mem_alloc, but we haven't bothered to provide
1537 * a hook there.
1538 */
7f56e740
PB
1539 error_setg(errp,
1540 "-mem-path not supported with this accelerator");
1541 return -1;
e1c57ab8
PB
1542 }
1543
1544 size = TARGET_PAGE_ALIGN(size);
1545 new_block = g_malloc0(sizeof(*new_block));
1546 new_block->mr = mr;
9b8424d5
MT
1547 new_block->used_length = size;
1548 new_block->max_length = size;
dbcb8981 1549 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1550 new_block->host = file_ram_alloc(new_block, size,
1551 mem_path, errp);
1552 if (!new_block->host) {
1553 g_free(new_block);
1554 return -1;
1555 }
1556
ef701d7b
HT
1557 addr = ram_block_add(new_block, &local_err);
1558 if (local_err) {
1559 g_free(new_block);
1560 error_propagate(errp, local_err);
1561 return -1;
1562 }
1563 return addr;
e1c57ab8 1564}
0b183fc8 1565#endif
e1c57ab8 1566
62be4e3a
MT
1567static
1568ram_addr_t qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1569 void (*resized)(const char*,
1570 uint64_t length,
1571 void *host),
1572 void *host, bool resizeable,
ef701d7b 1573 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1574{
1575 RAMBlock *new_block;
ef701d7b
HT
1576 ram_addr_t addr;
1577 Error *local_err = NULL;
e1c57ab8
PB
1578
1579 size = TARGET_PAGE_ALIGN(size);
62be4e3a 1580 max_size = TARGET_PAGE_ALIGN(max_size);
e1c57ab8
PB
1581 new_block = g_malloc0(sizeof(*new_block));
1582 new_block->mr = mr;
62be4e3a 1583 new_block->resized = resized;
9b8424d5
MT
1584 new_block->used_length = size;
1585 new_block->max_length = max_size;
62be4e3a 1586 assert(max_size >= size);
e1c57ab8
PB
1587 new_block->fd = -1;
1588 new_block->host = host;
1589 if (host) {
7bd4f430 1590 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1591 }
62be4e3a
MT
1592 if (resizeable) {
1593 new_block->flags |= RAM_RESIZEABLE;
1594 }
ef701d7b
HT
1595 addr = ram_block_add(new_block, &local_err);
1596 if (local_err) {
1597 g_free(new_block);
1598 error_propagate(errp, local_err);
1599 return -1;
1600 }
1601 return addr;
e1c57ab8
PB
1602}
1603
62be4e3a
MT
1604ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1605 MemoryRegion *mr, Error **errp)
1606{
1607 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1608}
1609
ef701d7b 1610ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1611{
62be4e3a
MT
1612 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1613}
1614
1615ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
1616 void (*resized)(const char*,
1617 uint64_t length,
1618 void *host),
1619 MemoryRegion *mr, Error **errp)
1620{
1621 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1622}
1623
1f2e98b6
AW
1624void qemu_ram_free_from_ptr(ram_addr_t addr)
1625{
1626 RAMBlock *block;
1627
b2a8658e 1628 qemu_mutex_lock_ramlist();
0dc3f44a 1629 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1f2e98b6 1630 if (addr == block->offset) {
0dc3f44a 1631 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1632 ram_list.mru_block = NULL;
0dc3f44a
MD
1633 /* Write list before version */
1634 smp_wmb();
f798b07f 1635 ram_list.version++;
43771539 1636 g_free_rcu(block, rcu);
b2a8658e 1637 break;
1f2e98b6
AW
1638 }
1639 }
b2a8658e 1640 qemu_mutex_unlock_ramlist();
1f2e98b6
AW
1641}
1642
43771539
PB
1643static void reclaim_ramblock(RAMBlock *block)
1644{
1645 if (block->flags & RAM_PREALLOC) {
1646 ;
1647 } else if (xen_enabled()) {
1648 xen_invalidate_map_cache_entry(block->host);
1649#ifndef _WIN32
1650 } else if (block->fd >= 0) {
1651 munmap(block->host, block->max_length);
1652 close(block->fd);
1653#endif
1654 } else {
1655 qemu_anon_ram_free(block->host, block->max_length);
1656 }
1657 g_free(block);
1658}
1659
c227f099 1660void qemu_ram_free(ram_addr_t addr)
e9a1ab19 1661{
04b16653
AW
1662 RAMBlock *block;
1663
b2a8658e 1664 qemu_mutex_lock_ramlist();
0dc3f44a 1665 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
04b16653 1666 if (addr == block->offset) {
0dc3f44a 1667 QLIST_REMOVE_RCU(block, next);
0d6d3c87 1668 ram_list.mru_block = NULL;
0dc3f44a
MD
1669 /* Write list before version */
1670 smp_wmb();
f798b07f 1671 ram_list.version++;
43771539 1672 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1673 break;
04b16653
AW
1674 }
1675 }
b2a8658e 1676 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1677}
1678
cd19cfa2
HY
1679#ifndef _WIN32
1680void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1681{
1682 RAMBlock *block;
1683 ram_addr_t offset;
1684 int flags;
1685 void *area, *vaddr;
1686
0dc3f44a 1687 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1688 offset = addr - block->offset;
9b8424d5 1689 if (offset < block->max_length) {
1240be24 1690 vaddr = ramblock_ptr(block, offset);
7bd4f430 1691 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1692 ;
dfeaf2ab
MA
1693 } else if (xen_enabled()) {
1694 abort();
cd19cfa2
HY
1695 } else {
1696 flags = MAP_FIXED;
3435f395 1697 if (block->fd >= 0) {
dbcb8981
PB
1698 flags |= (block->flags & RAM_SHARED ?
1699 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1700 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1701 flags, block->fd, offset);
cd19cfa2 1702 } else {
2eb9fbaa
MA
1703 /*
1704 * Remap needs to match alloc. Accelerators that
1705 * set phys_mem_alloc never remap. If they did,
1706 * we'd need a remap hook here.
1707 */
1708 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1709
cd19cfa2
HY
1710 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1711 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1712 flags, -1, 0);
cd19cfa2
HY
1713 }
1714 if (area != vaddr) {
f15fbc4b
AP
1715 fprintf(stderr, "Could not remap addr: "
1716 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1717 length, addr);
1718 exit(1);
1719 }
8490fc78 1720 memory_try_enable_merging(vaddr, length);
ddb97f1d 1721 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1722 }
cd19cfa2
HY
1723 }
1724 }
1725}
1726#endif /* !_WIN32 */
1727
a35ba7be
PB
1728int qemu_get_ram_fd(ram_addr_t addr)
1729{
ae3a7047
MD
1730 RAMBlock *block;
1731 int fd;
a35ba7be 1732
0dc3f44a 1733 rcu_read_lock();
ae3a7047
MD
1734 block = qemu_get_ram_block(addr);
1735 fd = block->fd;
0dc3f44a 1736 rcu_read_unlock();
ae3a7047 1737 return fd;
a35ba7be
PB
1738}
1739
3fd74b84
DM
1740void *qemu_get_ram_block_host_ptr(ram_addr_t addr)
1741{
ae3a7047
MD
1742 RAMBlock *block;
1743 void *ptr;
3fd74b84 1744
0dc3f44a 1745 rcu_read_lock();
ae3a7047
MD
1746 block = qemu_get_ram_block(addr);
1747 ptr = ramblock_ptr(block, 0);
0dc3f44a 1748 rcu_read_unlock();
ae3a7047 1749 return ptr;
3fd74b84
DM
1750}
1751
1b5ec234 1752/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1753 * This should not be used for general purpose DMA. Use address_space_map
1754 * or address_space_rw instead. For local memory (e.g. video ram) that the
1755 * device owns, use memory_region_get_ram_ptr.
0dc3f44a
MD
1756 *
1757 * By the time this function returns, the returned pointer is not protected
1758 * by RCU anymore. If the caller is not within an RCU critical section and
1759 * does not hold the iothread lock, it must have other means of protecting the
1760 * pointer, such as a reference to the region that includes the incoming
1761 * ram_addr_t.
1b5ec234
PB
1762 */
1763void *qemu_get_ram_ptr(ram_addr_t addr)
1764{
ae3a7047
MD
1765 RAMBlock *block;
1766 void *ptr;
1b5ec234 1767
0dc3f44a 1768 rcu_read_lock();
ae3a7047
MD
1769 block = qemu_get_ram_block(addr);
1770
1771 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1772 /* We need to check if the requested address is in the RAM
1773 * because we don't want to map the entire memory in QEMU.
1774 * In that case just map until the end of the page.
1775 */
1776 if (block->offset == 0) {
ae3a7047 1777 ptr = xen_map_cache(addr, 0, 0);
0dc3f44a 1778 goto unlock;
0d6d3c87 1779 }
ae3a7047
MD
1780
1781 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1782 }
ae3a7047
MD
1783 ptr = ramblock_ptr(block, addr - block->offset);
1784
0dc3f44a
MD
1785unlock:
1786 rcu_read_unlock();
ae3a7047 1787 return ptr;
dc828ca1
PB
1788}
1789
38bee5dc 1790/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
ae3a7047 1791 * but takes a size argument.
0dc3f44a
MD
1792 *
1793 * By the time this function returns, the returned pointer is not protected
1794 * by RCU anymore. If the caller is not within an RCU critical section and
1795 * does not hold the iothread lock, it must have other means of protecting the
1796 * pointer, such as a reference to the region that includes the incoming
1797 * ram_addr_t.
ae3a7047 1798 */
cb85f7ab 1799static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
38bee5dc 1800{
ae3a7047 1801 void *ptr;
8ab934f9
SS
1802 if (*size == 0) {
1803 return NULL;
1804 }
868bb33f 1805 if (xen_enabled()) {
e41d7c69 1806 return xen_map_cache(addr, *size, 1);
868bb33f 1807 } else {
38bee5dc 1808 RAMBlock *block;
0dc3f44a
MD
1809 rcu_read_lock();
1810 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5
MT
1811 if (addr - block->offset < block->max_length) {
1812 if (addr - block->offset + *size > block->max_length)
1813 *size = block->max_length - addr + block->offset;
ae3a7047 1814 ptr = ramblock_ptr(block, addr - block->offset);
0dc3f44a 1815 rcu_read_unlock();
ae3a7047 1816 return ptr;
38bee5dc
SS
1817 }
1818 }
1819
1820 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1821 abort();
38bee5dc
SS
1822 }
1823}
1824
7443b437 1825/* Some of the softmmu routines need to translate from a host pointer
ae3a7047
MD
1826 * (typically a TLB entry) back to a ram offset.
1827 *
1828 * By the time this function returns, the returned pointer is not protected
1829 * by RCU anymore. If the caller is not within an RCU critical section and
1830 * does not hold the iothread lock, it must have other means of protecting the
1831 * pointer, such as a reference to the region that includes the incoming
1832 * ram_addr_t.
1833 */
1b5ec234 1834MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 1835{
94a6b54f
PB
1836 RAMBlock *block;
1837 uint8_t *host = ptr;
ae3a7047 1838 MemoryRegion *mr;
94a6b54f 1839
868bb33f 1840 if (xen_enabled()) {
0dc3f44a 1841 rcu_read_lock();
e41d7c69 1842 *ram_addr = xen_ram_addr_from_mapcache(ptr);
ae3a7047 1843 mr = qemu_get_ram_block(*ram_addr)->mr;
0dc3f44a 1844 rcu_read_unlock();
ae3a7047 1845 return mr;
712c2b41
SS
1846 }
1847
0dc3f44a
MD
1848 rcu_read_lock();
1849 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1850 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1851 goto found;
1852 }
1853
0dc3f44a 1854 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1855 /* This case append when the block is not mapped. */
1856 if (block->host == NULL) {
1857 continue;
1858 }
9b8424d5 1859 if (host - block->host < block->max_length) {
23887b79 1860 goto found;
f471a17e 1861 }
94a6b54f 1862 }
432d268c 1863
0dc3f44a 1864 rcu_read_unlock();
1b5ec234 1865 return NULL;
23887b79
PB
1866
1867found:
1868 *ram_addr = block->offset + (host - block->host);
ae3a7047 1869 mr = block->mr;
0dc3f44a 1870 rcu_read_unlock();
ae3a7047 1871 return mr;
e890261f 1872}
f471a17e 1873
a8170e5e 1874static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1875 uint64_t val, unsigned size)
9fa3e853 1876{
52159192 1877 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1878 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1879 }
0e0df1e2
AK
1880 switch (size) {
1881 case 1:
1882 stb_p(qemu_get_ram_ptr(ram_addr), val);
1883 break;
1884 case 2:
1885 stw_p(qemu_get_ram_ptr(ram_addr), val);
1886 break;
1887 case 4:
1888 stl_p(qemu_get_ram_ptr(ram_addr), val);
1889 break;
1890 default:
1891 abort();
3a7d929e 1892 }
58d2707e
PB
1893 /* Set both VGA and migration bits for simplicity and to remove
1894 * the notdirty callback faster.
1895 */
1896 cpu_physical_memory_set_dirty_range(ram_addr, size,
1897 DIRTY_CLIENTS_NOCODE);
f23db169
FB
1898 /* we remove the notdirty callback only if the code has been
1899 flushed */
a2cd8c85 1900 if (!cpu_physical_memory_is_clean(ram_addr)) {
4917cf44 1901 CPUArchState *env = current_cpu->env_ptr;
93afeade 1902 tlb_set_dirty(env, current_cpu->mem_io_vaddr);
4917cf44 1903 }
9fa3e853
FB
1904}
1905
b018ddf6
PB
1906static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1907 unsigned size, bool is_write)
1908{
1909 return is_write;
1910}
1911
0e0df1e2 1912static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1913 .write = notdirty_mem_write,
b018ddf6 1914 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1915 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1916};
1917
0f459d16 1918/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 1919static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 1920{
93afeade
AF
1921 CPUState *cpu = current_cpu;
1922 CPUArchState *env = cpu->env_ptr;
06d55cc1 1923 target_ulong pc, cs_base;
0f459d16 1924 target_ulong vaddr;
a1d1bb31 1925 CPUWatchpoint *wp;
06d55cc1 1926 int cpu_flags;
0f459d16 1927
ff4700b0 1928 if (cpu->watchpoint_hit) {
06d55cc1
AL
1929 /* We re-entered the check after replacing the TB. Now raise
1930 * the debug interrupt so that is will trigger after the
1931 * current instruction. */
93afeade 1932 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
1933 return;
1934 }
93afeade 1935 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 1936 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
1937 if (cpu_watchpoint_address_matches(wp, vaddr, len)
1938 && (wp->flags & flags)) {
08225676
PM
1939 if (flags == BP_MEM_READ) {
1940 wp->flags |= BP_WATCHPOINT_HIT_READ;
1941 } else {
1942 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
1943 }
1944 wp->hitaddr = vaddr;
66b9b43c 1945 wp->hitattrs = attrs;
ff4700b0
AF
1946 if (!cpu->watchpoint_hit) {
1947 cpu->watchpoint_hit = wp;
239c51a5 1948 tb_check_watchpoint(cpu);
6e140f28 1949 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 1950 cpu->exception_index = EXCP_DEBUG;
5638d180 1951 cpu_loop_exit(cpu);
6e140f28
AL
1952 } else {
1953 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 1954 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
0ea8cb88 1955 cpu_resume_from_signal(cpu, NULL);
6e140f28 1956 }
06d55cc1 1957 }
6e140f28
AL
1958 } else {
1959 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
1960 }
1961 }
1962}
1963
6658ffb8
PB
1964/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1965 so these check for a hit then pass through to the normal out-of-line
1966 phys routines. */
66b9b43c
PM
1967static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
1968 unsigned size, MemTxAttrs attrs)
6658ffb8 1969{
66b9b43c
PM
1970 MemTxResult res;
1971 uint64_t data;
1972
1973 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 1974 switch (size) {
66b9b43c
PM
1975 case 1:
1976 data = address_space_ldub(&address_space_memory, addr, attrs, &res);
1977 break;
1978 case 2:
1979 data = address_space_lduw(&address_space_memory, addr, attrs, &res);
1980 break;
1981 case 4:
1982 data = address_space_ldl(&address_space_memory, addr, attrs, &res);
1983 break;
1ec9b909
AK
1984 default: abort();
1985 }
66b9b43c
PM
1986 *pdata = data;
1987 return res;
6658ffb8
PB
1988}
1989
66b9b43c
PM
1990static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
1991 uint64_t val, unsigned size,
1992 MemTxAttrs attrs)
6658ffb8 1993{
66b9b43c
PM
1994 MemTxResult res;
1995
1996 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 1997 switch (size) {
67364150 1998 case 1:
66b9b43c 1999 address_space_stb(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2000 break;
2001 case 2:
66b9b43c 2002 address_space_stw(&address_space_memory, addr, val, attrs, &res);
67364150
MF
2003 break;
2004 case 4:
66b9b43c 2005 address_space_stl(&address_space_memory, addr, val, attrs, &res);
67364150 2006 break;
1ec9b909
AK
2007 default: abort();
2008 }
66b9b43c 2009 return res;
6658ffb8
PB
2010}
2011
1ec9b909 2012static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2013 .read_with_attrs = watch_mem_read,
2014 .write_with_attrs = watch_mem_write,
1ec9b909 2015 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2016};
6658ffb8 2017
f25a49e0
PM
2018static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2019 unsigned len, MemTxAttrs attrs)
db7b5426 2020{
acc9d80b 2021 subpage_t *subpage = opaque;
ff6cff75 2022 uint8_t buf[8];
5c9eb028 2023 MemTxResult res;
791af8c8 2024
db7b5426 2025#if defined(DEBUG_SUBPAGE)
016e9d62 2026 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2027 subpage, len, addr);
db7b5426 2028#endif
5c9eb028
PM
2029 res = address_space_read(subpage->as, addr + subpage->base,
2030 attrs, buf, len);
2031 if (res) {
2032 return res;
f25a49e0 2033 }
acc9d80b
JK
2034 switch (len) {
2035 case 1:
f25a49e0
PM
2036 *data = ldub_p(buf);
2037 return MEMTX_OK;
acc9d80b 2038 case 2:
f25a49e0
PM
2039 *data = lduw_p(buf);
2040 return MEMTX_OK;
acc9d80b 2041 case 4:
f25a49e0
PM
2042 *data = ldl_p(buf);
2043 return MEMTX_OK;
ff6cff75 2044 case 8:
f25a49e0
PM
2045 *data = ldq_p(buf);
2046 return MEMTX_OK;
acc9d80b
JK
2047 default:
2048 abort();
2049 }
db7b5426
BS
2050}
2051
f25a49e0
PM
2052static MemTxResult subpage_write(void *opaque, hwaddr addr,
2053 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2054{
acc9d80b 2055 subpage_t *subpage = opaque;
ff6cff75 2056 uint8_t buf[8];
acc9d80b 2057
db7b5426 2058#if defined(DEBUG_SUBPAGE)
016e9d62 2059 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2060 " value %"PRIx64"\n",
2061 __func__, subpage, len, addr, value);
db7b5426 2062#endif
acc9d80b
JK
2063 switch (len) {
2064 case 1:
2065 stb_p(buf, value);
2066 break;
2067 case 2:
2068 stw_p(buf, value);
2069 break;
2070 case 4:
2071 stl_p(buf, value);
2072 break;
ff6cff75
PB
2073 case 8:
2074 stq_p(buf, value);
2075 break;
acc9d80b
JK
2076 default:
2077 abort();
2078 }
5c9eb028
PM
2079 return address_space_write(subpage->as, addr + subpage->base,
2080 attrs, buf, len);
db7b5426
BS
2081}
2082
c353e4cc 2083static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2084 unsigned len, bool is_write)
c353e4cc 2085{
acc9d80b 2086 subpage_t *subpage = opaque;
c353e4cc 2087#if defined(DEBUG_SUBPAGE)
016e9d62 2088 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2089 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2090#endif
2091
acc9d80b 2092 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2093 len, is_write);
c353e4cc
PB
2094}
2095
70c68e44 2096static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2097 .read_with_attrs = subpage_read,
2098 .write_with_attrs = subpage_write,
ff6cff75
PB
2099 .impl.min_access_size = 1,
2100 .impl.max_access_size = 8,
2101 .valid.min_access_size = 1,
2102 .valid.max_access_size = 8,
c353e4cc 2103 .valid.accepts = subpage_accepts,
70c68e44 2104 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2105};
2106
c227f099 2107static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2108 uint16_t section)
db7b5426
BS
2109{
2110 int idx, eidx;
2111
2112 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2113 return -1;
2114 idx = SUBPAGE_IDX(start);
2115 eidx = SUBPAGE_IDX(end);
2116#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2117 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2118 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2119#endif
db7b5426 2120 for (; idx <= eidx; idx++) {
5312bd8b 2121 mmio->sub_section[idx] = section;
db7b5426
BS
2122 }
2123
2124 return 0;
2125}
2126
acc9d80b 2127static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2128{
c227f099 2129 subpage_t *mmio;
db7b5426 2130
7267c094 2131 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2132
acc9d80b 2133 mmio->as = as;
1eec614b 2134 mmio->base = base;
2c9b15ca 2135 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2136 NULL, TARGET_PAGE_SIZE);
b3b00c78 2137 mmio->iomem.subpage = true;
db7b5426 2138#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2139 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2140 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2141#endif
b41aac4f 2142 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2143
2144 return mmio;
2145}
2146
a656e22f
PC
2147static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2148 MemoryRegion *mr)
5312bd8b 2149{
a656e22f 2150 assert(as);
5312bd8b 2151 MemoryRegionSection section = {
a656e22f 2152 .address_space = as,
5312bd8b
AK
2153 .mr = mr,
2154 .offset_within_address_space = 0,
2155 .offset_within_region = 0,
052e87b0 2156 .size = int128_2_64(),
5312bd8b
AK
2157 };
2158
53cb28cb 2159 return phys_section_add(map, &section);
5312bd8b
AK
2160}
2161
9d82b5a7 2162MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index)
aa102231 2163{
79e2b9ae
PB
2164 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->memory_dispatch);
2165 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2166
2167 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2168}
2169
e9179ce1
AK
2170static void io_mem_init(void)
2171{
1f6245e5 2172 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2173 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2174 NULL, UINT64_MAX);
2c9b15ca 2175 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2176 NULL, UINT64_MAX);
2c9b15ca 2177 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2178 NULL, UINT64_MAX);
e9179ce1
AK
2179}
2180
ac1970fb 2181static void mem_begin(MemoryListener *listener)
00752703
PB
2182{
2183 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2184 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2185 uint16_t n;
2186
a656e22f 2187 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2188 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2189 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2190 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2191 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2192 assert(n == PHYS_SECTION_ROM);
a656e22f 2193 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2194 assert(n == PHYS_SECTION_WATCH);
00752703 2195
9736e55b 2196 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2197 d->as = as;
2198 as->next_dispatch = d;
2199}
2200
79e2b9ae
PB
2201static void address_space_dispatch_free(AddressSpaceDispatch *d)
2202{
2203 phys_sections_free(&d->map);
2204 g_free(d);
2205}
2206
00752703 2207static void mem_commit(MemoryListener *listener)
ac1970fb 2208{
89ae337a 2209 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2210 AddressSpaceDispatch *cur = as->dispatch;
2211 AddressSpaceDispatch *next = as->next_dispatch;
2212
53cb28cb 2213 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2214
79e2b9ae 2215 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2216 if (cur) {
79e2b9ae 2217 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2218 }
9affd6fc
PB
2219}
2220
1d71148e 2221static void tcg_commit(MemoryListener *listener)
50c1e149 2222{
182735ef 2223 CPUState *cpu;
117712c3
AK
2224
2225 /* since each CPU stores ram addresses in its TLB cache, we must
2226 reset the modified entries */
2227 /* XXX: slow ! */
bdc44640 2228 CPU_FOREACH(cpu) {
33bde2e1
EI
2229 /* FIXME: Disentangle the cpu.h circular files deps so we can
2230 directly get the right CPU from listener. */
2231 if (cpu->tcg_as_listener != listener) {
2232 continue;
2233 }
76e5c76f 2234 cpu_reload_memory_map(cpu);
117712c3 2235 }
50c1e149
AK
2236}
2237
ac1970fb
AK
2238void address_space_init_dispatch(AddressSpace *as)
2239{
00752703 2240 as->dispatch = NULL;
89ae337a 2241 as->dispatch_listener = (MemoryListener) {
ac1970fb 2242 .begin = mem_begin,
00752703 2243 .commit = mem_commit,
ac1970fb
AK
2244 .region_add = mem_add,
2245 .region_nop = mem_add,
2246 .priority = 0,
2247 };
89ae337a 2248 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2249}
2250
6e48e8f9
PB
2251void address_space_unregister(AddressSpace *as)
2252{
2253 memory_listener_unregister(&as->dispatch_listener);
2254}
2255
83f3c251
AK
2256void address_space_destroy_dispatch(AddressSpace *as)
2257{
2258 AddressSpaceDispatch *d = as->dispatch;
2259
79e2b9ae
PB
2260 atomic_rcu_set(&as->dispatch, NULL);
2261 if (d) {
2262 call_rcu(d, address_space_dispatch_free, rcu);
2263 }
83f3c251
AK
2264}
2265
62152b8a
AK
2266static void memory_map_init(void)
2267{
7267c094 2268 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2269
57271d63 2270 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2271 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2272
7267c094 2273 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2274 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2275 65536);
7dca8043 2276 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2277}
2278
2279MemoryRegion *get_system_memory(void)
2280{
2281 return system_memory;
2282}
2283
309cb471
AK
2284MemoryRegion *get_system_io(void)
2285{
2286 return system_io;
2287}
2288
e2eef170
PB
2289#endif /* !defined(CONFIG_USER_ONLY) */
2290
13eb76e0
FB
2291/* physical memory access (slow version, mainly for debug) */
2292#if defined(CONFIG_USER_ONLY)
f17ec444 2293int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2294 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2295{
2296 int l, flags;
2297 target_ulong page;
53a5960a 2298 void * p;
13eb76e0
FB
2299
2300 while (len > 0) {
2301 page = addr & TARGET_PAGE_MASK;
2302 l = (page + TARGET_PAGE_SIZE) - addr;
2303 if (l > len)
2304 l = len;
2305 flags = page_get_flags(page);
2306 if (!(flags & PAGE_VALID))
a68fe89c 2307 return -1;
13eb76e0
FB
2308 if (is_write) {
2309 if (!(flags & PAGE_WRITE))
a68fe89c 2310 return -1;
579a97f7 2311 /* XXX: this code should not depend on lock_user */
72fb7daa 2312 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2313 return -1;
72fb7daa
AJ
2314 memcpy(p, buf, l);
2315 unlock_user(p, addr, l);
13eb76e0
FB
2316 } else {
2317 if (!(flags & PAGE_READ))
a68fe89c 2318 return -1;
579a97f7 2319 /* XXX: this code should not depend on lock_user */
72fb7daa 2320 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2321 return -1;
72fb7daa 2322 memcpy(buf, p, l);
5b257578 2323 unlock_user(p, addr, 0);
13eb76e0
FB
2324 }
2325 len -= l;
2326 buf += l;
2327 addr += l;
2328 }
a68fe89c 2329 return 0;
13eb76e0 2330}
8df1cd07 2331
13eb76e0 2332#else
51d7a9eb 2333
845b6214 2334static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2335 hwaddr length)
51d7a9eb 2336{
e87f7778
PB
2337 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
2338 /* No early return if dirty_log_mask is or becomes 0, because
2339 * cpu_physical_memory_set_dirty_range will still call
2340 * xen_modified_memory.
2341 */
2342 if (dirty_log_mask) {
2343 dirty_log_mask =
2344 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2345 }
2346 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2347 tb_invalidate_phys_range(addr, addr + length);
2348 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2349 }
e87f7778 2350 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2351}
2352
23326164 2353static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2354{
e1622f4b 2355 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2356
2357 /* Regions are assumed to support 1-4 byte accesses unless
2358 otherwise specified. */
23326164
RH
2359 if (access_size_max == 0) {
2360 access_size_max = 4;
2361 }
2362
2363 /* Bound the maximum access by the alignment of the address. */
2364 if (!mr->ops->impl.unaligned) {
2365 unsigned align_size_max = addr & -addr;
2366 if (align_size_max != 0 && align_size_max < access_size_max) {
2367 access_size_max = align_size_max;
2368 }
82f2563f 2369 }
23326164
RH
2370
2371 /* Don't attempt accesses larger than the maximum. */
2372 if (l > access_size_max) {
2373 l = access_size_max;
82f2563f 2374 }
098178f2
PB
2375 if (l & (l - 1)) {
2376 l = 1 << (qemu_fls(l) - 1);
2377 }
23326164
RH
2378
2379 return l;
82f2563f
PB
2380}
2381
4840f10e 2382static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2383{
4840f10e
JK
2384 bool unlocked = !qemu_mutex_iothread_locked();
2385 bool release_lock = false;
2386
2387 if (unlocked && mr->global_locking) {
2388 qemu_mutex_lock_iothread();
2389 unlocked = false;
2390 release_lock = true;
2391 }
125b3806 2392 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2393 if (unlocked) {
2394 qemu_mutex_lock_iothread();
2395 }
125b3806 2396 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2397 if (unlocked) {
2398 qemu_mutex_unlock_iothread();
2399 }
125b3806 2400 }
4840f10e
JK
2401
2402 return release_lock;
125b3806
PB
2403}
2404
5c9eb028
PM
2405MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2406 uint8_t *buf, int len, bool is_write)
13eb76e0 2407{
149f54b5 2408 hwaddr l;
13eb76e0 2409 uint8_t *ptr;
791af8c8 2410 uint64_t val;
149f54b5 2411 hwaddr addr1;
5c8a00ce 2412 MemoryRegion *mr;
3b643495 2413 MemTxResult result = MEMTX_OK;
4840f10e 2414 bool release_lock = false;
3b46e624 2415
41063e1e 2416 rcu_read_lock();
13eb76e0 2417 while (len > 0) {
149f54b5 2418 l = len;
5c8a00ce 2419 mr = address_space_translate(as, addr, &addr1, &l, is_write);
3b46e624 2420
13eb76e0 2421 if (is_write) {
5c8a00ce 2422 if (!memory_access_is_direct(mr, is_write)) {
4840f10e 2423 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2424 l = memory_access_size(mr, l, addr1);
4917cf44 2425 /* XXX: could force current_cpu to NULL to avoid
6a00d601 2426 potential bugs */
23326164
RH
2427 switch (l) {
2428 case 8:
2429 /* 64 bit write access */
2430 val = ldq_p(buf);
3b643495
PM
2431 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2432 attrs);
23326164
RH
2433 break;
2434 case 4:
1c213d19 2435 /* 32 bit write access */
c27004ec 2436 val = ldl_p(buf);
3b643495
PM
2437 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2438 attrs);
23326164
RH
2439 break;
2440 case 2:
1c213d19 2441 /* 16 bit write access */
c27004ec 2442 val = lduw_p(buf);
3b643495
PM
2443 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2444 attrs);
23326164
RH
2445 break;
2446 case 1:
1c213d19 2447 /* 8 bit write access */
c27004ec 2448 val = ldub_p(buf);
3b643495
PM
2449 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2450 attrs);
23326164
RH
2451 break;
2452 default:
2453 abort();
13eb76e0 2454 }
2bbfa05d 2455 } else {
5c8a00ce 2456 addr1 += memory_region_get_ram_addr(mr);
13eb76e0 2457 /* RAM case */
5579c7f3 2458 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 2459 memcpy(ptr, buf, l);
845b6214 2460 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0
FB
2461 }
2462 } else {
5c8a00ce 2463 if (!memory_access_is_direct(mr, is_write)) {
13eb76e0 2464 /* I/O case */
4840f10e 2465 release_lock |= prepare_mmio_access(mr);
5c8a00ce 2466 l = memory_access_size(mr, l, addr1);
23326164
RH
2467 switch (l) {
2468 case 8:
2469 /* 64 bit read access */
3b643495
PM
2470 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2471 attrs);
23326164
RH
2472 stq_p(buf, val);
2473 break;
2474 case 4:
13eb76e0 2475 /* 32 bit read access */
3b643495
PM
2476 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2477 attrs);
c27004ec 2478 stl_p(buf, val);
23326164
RH
2479 break;
2480 case 2:
13eb76e0 2481 /* 16 bit read access */
3b643495
PM
2482 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2483 attrs);
c27004ec 2484 stw_p(buf, val);
23326164
RH
2485 break;
2486 case 1:
1c213d19 2487 /* 8 bit read access */
3b643495
PM
2488 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2489 attrs);
c27004ec 2490 stb_p(buf, val);
23326164
RH
2491 break;
2492 default:
2493 abort();
13eb76e0
FB
2494 }
2495 } else {
2496 /* RAM case */
5c8a00ce 2497 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
f3705d53 2498 memcpy(buf, ptr, l);
13eb76e0
FB
2499 }
2500 }
4840f10e
JK
2501
2502 if (release_lock) {
2503 qemu_mutex_unlock_iothread();
2504 release_lock = false;
2505 }
2506
13eb76e0
FB
2507 len -= l;
2508 buf += l;
2509 addr += l;
2510 }
41063e1e 2511 rcu_read_unlock();
fd8aaa76 2512
3b643495 2513 return result;
13eb76e0 2514}
8df1cd07 2515
5c9eb028
PM
2516MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2517 const uint8_t *buf, int len)
ac1970fb 2518{
5c9eb028 2519 return address_space_rw(as, addr, attrs, (uint8_t *)buf, len, true);
ac1970fb
AK
2520}
2521
5c9eb028
PM
2522MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2523 uint8_t *buf, int len)
ac1970fb 2524{
5c9eb028 2525 return address_space_rw(as, addr, attrs, buf, len, false);
ac1970fb
AK
2526}
2527
2528
a8170e5e 2529void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2530 int len, int is_write)
2531{
5c9eb028
PM
2532 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2533 buf, len, is_write);
ac1970fb
AK
2534}
2535
582b55a9
AG
2536enum write_rom_type {
2537 WRITE_DATA,
2538 FLUSH_CACHE,
2539};
2540
2a221651 2541static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2542 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2543{
149f54b5 2544 hwaddr l;
d0ecd2aa 2545 uint8_t *ptr;
149f54b5 2546 hwaddr addr1;
5c8a00ce 2547 MemoryRegion *mr;
3b46e624 2548
41063e1e 2549 rcu_read_lock();
d0ecd2aa 2550 while (len > 0) {
149f54b5 2551 l = len;
2a221651 2552 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2553
5c8a00ce
PB
2554 if (!(memory_region_is_ram(mr) ||
2555 memory_region_is_romd(mr))) {
b242e0e0 2556 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2557 } else {
5c8a00ce 2558 addr1 += memory_region_get_ram_addr(mr);
d0ecd2aa 2559 /* ROM/RAM case */
5579c7f3 2560 ptr = qemu_get_ram_ptr(addr1);
582b55a9
AG
2561 switch (type) {
2562 case WRITE_DATA:
2563 memcpy(ptr, buf, l);
845b6214 2564 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2565 break;
2566 case FLUSH_CACHE:
2567 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2568 break;
2569 }
d0ecd2aa
FB
2570 }
2571 len -= l;
2572 buf += l;
2573 addr += l;
2574 }
41063e1e 2575 rcu_read_unlock();
d0ecd2aa
FB
2576}
2577
582b55a9 2578/* used for ROM loading : can write in RAM and ROM */
2a221651 2579void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2580 const uint8_t *buf, int len)
2581{
2a221651 2582 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2583}
2584
2585void cpu_flush_icache_range(hwaddr start, int len)
2586{
2587 /*
2588 * This function should do the same thing as an icache flush that was
2589 * triggered from within the guest. For TCG we are always cache coherent,
2590 * so there is no need to flush anything. For KVM / Xen we need to flush
2591 * the host's instruction cache at least.
2592 */
2593 if (tcg_enabled()) {
2594 return;
2595 }
2596
2a221651
EI
2597 cpu_physical_memory_write_rom_internal(&address_space_memory,
2598 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2599}
2600
6d16c2f8 2601typedef struct {
d3e71559 2602 MemoryRegion *mr;
6d16c2f8 2603 void *buffer;
a8170e5e
AK
2604 hwaddr addr;
2605 hwaddr len;
c2cba0ff 2606 bool in_use;
6d16c2f8
AL
2607} BounceBuffer;
2608
2609static BounceBuffer bounce;
2610
ba223c29 2611typedef struct MapClient {
e95205e1 2612 QEMUBH *bh;
72cf2d4f 2613 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2614} MapClient;
2615
38e047b5 2616QemuMutex map_client_list_lock;
72cf2d4f
BS
2617static QLIST_HEAD(map_client_list, MapClient) map_client_list
2618 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2619
e95205e1
FZ
2620static void cpu_unregister_map_client_do(MapClient *client)
2621{
2622 QLIST_REMOVE(client, link);
2623 g_free(client);
2624}
2625
33b6c2ed
FZ
2626static void cpu_notify_map_clients_locked(void)
2627{
2628 MapClient *client;
2629
2630 while (!QLIST_EMPTY(&map_client_list)) {
2631 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2632 qemu_bh_schedule(client->bh);
2633 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2634 }
2635}
2636
e95205e1 2637void cpu_register_map_client(QEMUBH *bh)
ba223c29 2638{
7267c094 2639 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2640
38e047b5 2641 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2642 client->bh = bh;
72cf2d4f 2643 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2644 if (!atomic_read(&bounce.in_use)) {
2645 cpu_notify_map_clients_locked();
2646 }
38e047b5 2647 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2648}
2649
38e047b5 2650void cpu_exec_init_all(void)
ba223c29 2651{
38e047b5
FZ
2652 qemu_mutex_init(&ram_list.mutex);
2653 memory_map_init();
2654 io_mem_init();
2655 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2656}
2657
e95205e1 2658void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2659{
2660 MapClient *client;
2661
e95205e1
FZ
2662 qemu_mutex_lock(&map_client_list_lock);
2663 QLIST_FOREACH(client, &map_client_list, link) {
2664 if (client->bh == bh) {
2665 cpu_unregister_map_client_do(client);
2666 break;
2667 }
ba223c29 2668 }
e95205e1 2669 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2670}
2671
2672static void cpu_notify_map_clients(void)
2673{
38e047b5 2674 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2675 cpu_notify_map_clients_locked();
38e047b5 2676 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2677}
2678
51644ab7
PB
2679bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2680{
5c8a00ce 2681 MemoryRegion *mr;
51644ab7
PB
2682 hwaddr l, xlat;
2683
41063e1e 2684 rcu_read_lock();
51644ab7
PB
2685 while (len > 0) {
2686 l = len;
5c8a00ce
PB
2687 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2688 if (!memory_access_is_direct(mr, is_write)) {
2689 l = memory_access_size(mr, l, addr);
2690 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2691 return false;
2692 }
2693 }
2694
2695 len -= l;
2696 addr += l;
2697 }
41063e1e 2698 rcu_read_unlock();
51644ab7
PB
2699 return true;
2700}
2701
6d16c2f8
AL
2702/* Map a physical memory region into a host virtual address.
2703 * May map a subset of the requested range, given by and returned in *plen.
2704 * May return NULL if resources needed to perform the mapping are exhausted.
2705 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2706 * Use cpu_register_map_client() to know when retrying the map operation is
2707 * likely to succeed.
6d16c2f8 2708 */
ac1970fb 2709void *address_space_map(AddressSpace *as,
a8170e5e
AK
2710 hwaddr addr,
2711 hwaddr *plen,
ac1970fb 2712 bool is_write)
6d16c2f8 2713{
a8170e5e 2714 hwaddr len = *plen;
e3127ae0
PB
2715 hwaddr done = 0;
2716 hwaddr l, xlat, base;
2717 MemoryRegion *mr, *this_mr;
2718 ram_addr_t raddr;
6d16c2f8 2719
e3127ae0
PB
2720 if (len == 0) {
2721 return NULL;
2722 }
38bee5dc 2723
e3127ae0 2724 l = len;
41063e1e 2725 rcu_read_lock();
e3127ae0 2726 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2727
e3127ae0 2728 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2729 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2730 rcu_read_unlock();
e3127ae0 2731 return NULL;
6d16c2f8 2732 }
e85d9db5
KW
2733 /* Avoid unbounded allocations */
2734 l = MIN(l, TARGET_PAGE_SIZE);
2735 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2736 bounce.addr = addr;
2737 bounce.len = l;
d3e71559
PB
2738
2739 memory_region_ref(mr);
2740 bounce.mr = mr;
e3127ae0 2741 if (!is_write) {
5c9eb028
PM
2742 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2743 bounce.buffer, l);
8ab934f9 2744 }
6d16c2f8 2745
41063e1e 2746 rcu_read_unlock();
e3127ae0
PB
2747 *plen = l;
2748 return bounce.buffer;
2749 }
2750
2751 base = xlat;
2752 raddr = memory_region_get_ram_addr(mr);
2753
2754 for (;;) {
6d16c2f8
AL
2755 len -= l;
2756 addr += l;
e3127ae0
PB
2757 done += l;
2758 if (len == 0) {
2759 break;
2760 }
2761
2762 l = len;
2763 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2764 if (this_mr != mr || xlat != base + done) {
2765 break;
2766 }
6d16c2f8 2767 }
e3127ae0 2768
d3e71559 2769 memory_region_ref(mr);
41063e1e 2770 rcu_read_unlock();
e3127ae0
PB
2771 *plen = done;
2772 return qemu_ram_ptr_length(raddr + base, plen);
6d16c2f8
AL
2773}
2774
ac1970fb 2775/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2776 * Will also mark the memory as dirty if is_write == 1. access_len gives
2777 * the amount of memory that was actually read or written by the caller.
2778 */
a8170e5e
AK
2779void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2780 int is_write, hwaddr access_len)
6d16c2f8
AL
2781{
2782 if (buffer != bounce.buffer) {
d3e71559
PB
2783 MemoryRegion *mr;
2784 ram_addr_t addr1;
2785
2786 mr = qemu_ram_addr_from_host(buffer, &addr1);
2787 assert(mr != NULL);
6d16c2f8 2788 if (is_write) {
845b6214 2789 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2790 }
868bb33f 2791 if (xen_enabled()) {
e41d7c69 2792 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2793 }
d3e71559 2794 memory_region_unref(mr);
6d16c2f8
AL
2795 return;
2796 }
2797 if (is_write) {
5c9eb028
PM
2798 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2799 bounce.buffer, access_len);
6d16c2f8 2800 }
f8a83245 2801 qemu_vfree(bounce.buffer);
6d16c2f8 2802 bounce.buffer = NULL;
d3e71559 2803 memory_region_unref(bounce.mr);
c2cba0ff 2804 atomic_mb_set(&bounce.in_use, false);
ba223c29 2805 cpu_notify_map_clients();
6d16c2f8 2806}
d0ecd2aa 2807
a8170e5e
AK
2808void *cpu_physical_memory_map(hwaddr addr,
2809 hwaddr *plen,
ac1970fb
AK
2810 int is_write)
2811{
2812 return address_space_map(&address_space_memory, addr, plen, is_write);
2813}
2814
a8170e5e
AK
2815void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2816 int is_write, hwaddr access_len)
ac1970fb
AK
2817{
2818 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2819}
2820
8df1cd07 2821/* warning: addr must be aligned */
50013115
PM
2822static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2823 MemTxAttrs attrs,
2824 MemTxResult *result,
2825 enum device_endian endian)
8df1cd07 2826{
8df1cd07 2827 uint8_t *ptr;
791af8c8 2828 uint64_t val;
5c8a00ce 2829 MemoryRegion *mr;
149f54b5
PB
2830 hwaddr l = 4;
2831 hwaddr addr1;
50013115 2832 MemTxResult r;
4840f10e 2833 bool release_lock = false;
8df1cd07 2834
41063e1e 2835 rcu_read_lock();
fdfba1a2 2836 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2837 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 2838 release_lock |= prepare_mmio_access(mr);
125b3806 2839
8df1cd07 2840 /* I/O case */
50013115 2841 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
2842#if defined(TARGET_WORDS_BIGENDIAN)
2843 if (endian == DEVICE_LITTLE_ENDIAN) {
2844 val = bswap32(val);
2845 }
2846#else
2847 if (endian == DEVICE_BIG_ENDIAN) {
2848 val = bswap32(val);
2849 }
2850#endif
8df1cd07
FB
2851 } else {
2852 /* RAM case */
5c8a00ce 2853 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2854 & TARGET_PAGE_MASK)
149f54b5 2855 + addr1);
1e78bcc1
AG
2856 switch (endian) {
2857 case DEVICE_LITTLE_ENDIAN:
2858 val = ldl_le_p(ptr);
2859 break;
2860 case DEVICE_BIG_ENDIAN:
2861 val = ldl_be_p(ptr);
2862 break;
2863 default:
2864 val = ldl_p(ptr);
2865 break;
2866 }
50013115
PM
2867 r = MEMTX_OK;
2868 }
2869 if (result) {
2870 *result = r;
8df1cd07 2871 }
4840f10e
JK
2872 if (release_lock) {
2873 qemu_mutex_unlock_iothread();
2874 }
41063e1e 2875 rcu_read_unlock();
8df1cd07
FB
2876 return val;
2877}
2878
50013115
PM
2879uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
2880 MemTxAttrs attrs, MemTxResult *result)
2881{
2882 return address_space_ldl_internal(as, addr, attrs, result,
2883 DEVICE_NATIVE_ENDIAN);
2884}
2885
2886uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
2887 MemTxAttrs attrs, MemTxResult *result)
2888{
2889 return address_space_ldl_internal(as, addr, attrs, result,
2890 DEVICE_LITTLE_ENDIAN);
2891}
2892
2893uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
2894 MemTxAttrs attrs, MemTxResult *result)
2895{
2896 return address_space_ldl_internal(as, addr, attrs, result,
2897 DEVICE_BIG_ENDIAN);
2898}
2899
fdfba1a2 2900uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2901{
50013115 2902 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2903}
2904
fdfba1a2 2905uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2906{
50013115 2907 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2908}
2909
fdfba1a2 2910uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2911{
50013115 2912 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2913}
2914
84b7b8e7 2915/* warning: addr must be aligned */
50013115
PM
2916static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
2917 MemTxAttrs attrs,
2918 MemTxResult *result,
2919 enum device_endian endian)
84b7b8e7 2920{
84b7b8e7
FB
2921 uint8_t *ptr;
2922 uint64_t val;
5c8a00ce 2923 MemoryRegion *mr;
149f54b5
PB
2924 hwaddr l = 8;
2925 hwaddr addr1;
50013115 2926 MemTxResult r;
4840f10e 2927 bool release_lock = false;
84b7b8e7 2928
41063e1e 2929 rcu_read_lock();
2c17449b 2930 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
2931 false);
2932 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 2933 release_lock |= prepare_mmio_access(mr);
125b3806 2934
84b7b8e7 2935 /* I/O case */
50013115 2936 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
2937#if defined(TARGET_WORDS_BIGENDIAN)
2938 if (endian == DEVICE_LITTLE_ENDIAN) {
2939 val = bswap64(val);
2940 }
2941#else
2942 if (endian == DEVICE_BIG_ENDIAN) {
2943 val = bswap64(val);
2944 }
84b7b8e7
FB
2945#endif
2946 } else {
2947 /* RAM case */
5c8a00ce 2948 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 2949 & TARGET_PAGE_MASK)
149f54b5 2950 + addr1);
1e78bcc1
AG
2951 switch (endian) {
2952 case DEVICE_LITTLE_ENDIAN:
2953 val = ldq_le_p(ptr);
2954 break;
2955 case DEVICE_BIG_ENDIAN:
2956 val = ldq_be_p(ptr);
2957 break;
2958 default:
2959 val = ldq_p(ptr);
2960 break;
2961 }
50013115
PM
2962 r = MEMTX_OK;
2963 }
2964 if (result) {
2965 *result = r;
84b7b8e7 2966 }
4840f10e
JK
2967 if (release_lock) {
2968 qemu_mutex_unlock_iothread();
2969 }
41063e1e 2970 rcu_read_unlock();
84b7b8e7
FB
2971 return val;
2972}
2973
50013115
PM
2974uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
2975 MemTxAttrs attrs, MemTxResult *result)
2976{
2977 return address_space_ldq_internal(as, addr, attrs, result,
2978 DEVICE_NATIVE_ENDIAN);
2979}
2980
2981uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
2982 MemTxAttrs attrs, MemTxResult *result)
2983{
2984 return address_space_ldq_internal(as, addr, attrs, result,
2985 DEVICE_LITTLE_ENDIAN);
2986}
2987
2988uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
2989 MemTxAttrs attrs, MemTxResult *result)
2990{
2991 return address_space_ldq_internal(as, addr, attrs, result,
2992 DEVICE_BIG_ENDIAN);
2993}
2994
2c17449b 2995uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 2996{
50013115 2997 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
2998}
2999
2c17449b 3000uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3001{
50013115 3002 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3003}
3004
2c17449b 3005uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3006{
50013115 3007 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3008}
3009
aab33094 3010/* XXX: optimize */
50013115
PM
3011uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3012 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3013{
3014 uint8_t val;
50013115
PM
3015 MemTxResult r;
3016
3017 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3018 if (result) {
3019 *result = r;
3020 }
aab33094
FB
3021 return val;
3022}
3023
50013115
PM
3024uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3025{
3026 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3027}
3028
733f0b02 3029/* warning: addr must be aligned */
50013115
PM
3030static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3031 hwaddr addr,
3032 MemTxAttrs attrs,
3033 MemTxResult *result,
3034 enum device_endian endian)
aab33094 3035{
733f0b02
MT
3036 uint8_t *ptr;
3037 uint64_t val;
5c8a00ce 3038 MemoryRegion *mr;
149f54b5
PB
3039 hwaddr l = 2;
3040 hwaddr addr1;
50013115 3041 MemTxResult r;
4840f10e 3042 bool release_lock = false;
733f0b02 3043
41063e1e 3044 rcu_read_lock();
41701aa4 3045 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3046 false);
3047 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3048 release_lock |= prepare_mmio_access(mr);
125b3806 3049
733f0b02 3050 /* I/O case */
50013115 3051 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3052#if defined(TARGET_WORDS_BIGENDIAN)
3053 if (endian == DEVICE_LITTLE_ENDIAN) {
3054 val = bswap16(val);
3055 }
3056#else
3057 if (endian == DEVICE_BIG_ENDIAN) {
3058 val = bswap16(val);
3059 }
3060#endif
733f0b02
MT
3061 } else {
3062 /* RAM case */
5c8a00ce 3063 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
06ef3525 3064 & TARGET_PAGE_MASK)
149f54b5 3065 + addr1);
1e78bcc1
AG
3066 switch (endian) {
3067 case DEVICE_LITTLE_ENDIAN:
3068 val = lduw_le_p(ptr);
3069 break;
3070 case DEVICE_BIG_ENDIAN:
3071 val = lduw_be_p(ptr);
3072 break;
3073 default:
3074 val = lduw_p(ptr);
3075 break;
3076 }
50013115
PM
3077 r = MEMTX_OK;
3078 }
3079 if (result) {
3080 *result = r;
733f0b02 3081 }
4840f10e
JK
3082 if (release_lock) {
3083 qemu_mutex_unlock_iothread();
3084 }
41063e1e 3085 rcu_read_unlock();
733f0b02 3086 return val;
aab33094
FB
3087}
3088
50013115
PM
3089uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3090 MemTxAttrs attrs, MemTxResult *result)
3091{
3092 return address_space_lduw_internal(as, addr, attrs, result,
3093 DEVICE_NATIVE_ENDIAN);
3094}
3095
3096uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3097 MemTxAttrs attrs, MemTxResult *result)
3098{
3099 return address_space_lduw_internal(as, addr, attrs, result,
3100 DEVICE_LITTLE_ENDIAN);
3101}
3102
3103uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3104 MemTxAttrs attrs, MemTxResult *result)
3105{
3106 return address_space_lduw_internal(as, addr, attrs, result,
3107 DEVICE_BIG_ENDIAN);
3108}
3109
41701aa4 3110uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3111{
50013115 3112 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3113}
3114
41701aa4 3115uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3116{
50013115 3117 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3118}
3119
41701aa4 3120uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3121{
50013115 3122 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3123}
3124
8df1cd07
FB
3125/* warning: addr must be aligned. The ram page is not masked as dirty
3126 and the code inside is not invalidated. It is useful if the dirty
3127 bits are used to track modified PTEs */
50013115
PM
3128void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3129 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3130{
8df1cd07 3131 uint8_t *ptr;
5c8a00ce 3132 MemoryRegion *mr;
149f54b5
PB
3133 hwaddr l = 4;
3134 hwaddr addr1;
50013115 3135 MemTxResult r;
845b6214 3136 uint8_t dirty_log_mask;
4840f10e 3137 bool release_lock = false;
8df1cd07 3138
41063e1e 3139 rcu_read_lock();
2198a121 3140 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3141 true);
3142 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3143 release_lock |= prepare_mmio_access(mr);
125b3806 3144
50013115 3145 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3146 } else {
5c8a00ce 3147 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3148 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3149 stl_p(ptr, val);
74576198 3150
845b6214
PB
3151 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3152 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
58d2707e 3153 cpu_physical_memory_set_dirty_range(addr1, 4, dirty_log_mask);
50013115
PM
3154 r = MEMTX_OK;
3155 }
3156 if (result) {
3157 *result = r;
8df1cd07 3158 }
4840f10e
JK
3159 if (release_lock) {
3160 qemu_mutex_unlock_iothread();
3161 }
41063e1e 3162 rcu_read_unlock();
8df1cd07
FB
3163}
3164
50013115
PM
3165void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3166{
3167 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3168}
3169
8df1cd07 3170/* warning: addr must be aligned */
50013115
PM
3171static inline void address_space_stl_internal(AddressSpace *as,
3172 hwaddr addr, uint32_t val,
3173 MemTxAttrs attrs,
3174 MemTxResult *result,
3175 enum device_endian endian)
8df1cd07 3176{
8df1cd07 3177 uint8_t *ptr;
5c8a00ce 3178 MemoryRegion *mr;
149f54b5
PB
3179 hwaddr l = 4;
3180 hwaddr addr1;
50013115 3181 MemTxResult r;
4840f10e 3182 bool release_lock = false;
8df1cd07 3183
41063e1e 3184 rcu_read_lock();
ab1da857 3185 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3186 true);
3187 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3188 release_lock |= prepare_mmio_access(mr);
125b3806 3189
1e78bcc1
AG
3190#if defined(TARGET_WORDS_BIGENDIAN)
3191 if (endian == DEVICE_LITTLE_ENDIAN) {
3192 val = bswap32(val);
3193 }
3194#else
3195 if (endian == DEVICE_BIG_ENDIAN) {
3196 val = bswap32(val);
3197 }
3198#endif
50013115 3199 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3200 } else {
8df1cd07 3201 /* RAM case */
5c8a00ce 3202 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
5579c7f3 3203 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3204 switch (endian) {
3205 case DEVICE_LITTLE_ENDIAN:
3206 stl_le_p(ptr, val);
3207 break;
3208 case DEVICE_BIG_ENDIAN:
3209 stl_be_p(ptr, val);
3210 break;
3211 default:
3212 stl_p(ptr, val);
3213 break;
3214 }
845b6214 3215 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3216 r = MEMTX_OK;
3217 }
3218 if (result) {
3219 *result = r;
8df1cd07 3220 }
4840f10e
JK
3221 if (release_lock) {
3222 qemu_mutex_unlock_iothread();
3223 }
41063e1e 3224 rcu_read_unlock();
8df1cd07
FB
3225}
3226
50013115
PM
3227void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3228 MemTxAttrs attrs, MemTxResult *result)
3229{
3230 address_space_stl_internal(as, addr, val, attrs, result,
3231 DEVICE_NATIVE_ENDIAN);
3232}
3233
3234void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3235 MemTxAttrs attrs, MemTxResult *result)
3236{
3237 address_space_stl_internal(as, addr, val, attrs, result,
3238 DEVICE_LITTLE_ENDIAN);
3239}
3240
3241void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3242 MemTxAttrs attrs, MemTxResult *result)
3243{
3244 address_space_stl_internal(as, addr, val, attrs, result,
3245 DEVICE_BIG_ENDIAN);
3246}
3247
ab1da857 3248void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3249{
50013115 3250 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3251}
3252
ab1da857 3253void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3254{
50013115 3255 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3256}
3257
ab1da857 3258void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3259{
50013115 3260 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3261}
3262
aab33094 3263/* XXX: optimize */
50013115
PM
3264void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3265 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3266{
3267 uint8_t v = val;
50013115
PM
3268 MemTxResult r;
3269
3270 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3271 if (result) {
3272 *result = r;
3273 }
3274}
3275
3276void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3277{
3278 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3279}
3280
733f0b02 3281/* warning: addr must be aligned */
50013115
PM
3282static inline void address_space_stw_internal(AddressSpace *as,
3283 hwaddr addr, uint32_t val,
3284 MemTxAttrs attrs,
3285 MemTxResult *result,
3286 enum device_endian endian)
aab33094 3287{
733f0b02 3288 uint8_t *ptr;
5c8a00ce 3289 MemoryRegion *mr;
149f54b5
PB
3290 hwaddr l = 2;
3291 hwaddr addr1;
50013115 3292 MemTxResult r;
4840f10e 3293 bool release_lock = false;
733f0b02 3294
41063e1e 3295 rcu_read_lock();
5ce5944d 3296 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3297 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3298 release_lock |= prepare_mmio_access(mr);
125b3806 3299
1e78bcc1
AG
3300#if defined(TARGET_WORDS_BIGENDIAN)
3301 if (endian == DEVICE_LITTLE_ENDIAN) {
3302 val = bswap16(val);
3303 }
3304#else
3305 if (endian == DEVICE_BIG_ENDIAN) {
3306 val = bswap16(val);
3307 }
3308#endif
50013115 3309 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3310 } else {
733f0b02 3311 /* RAM case */
5c8a00ce 3312 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
733f0b02 3313 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3314 switch (endian) {
3315 case DEVICE_LITTLE_ENDIAN:
3316 stw_le_p(ptr, val);
3317 break;
3318 case DEVICE_BIG_ENDIAN:
3319 stw_be_p(ptr, val);
3320 break;
3321 default:
3322 stw_p(ptr, val);
3323 break;
3324 }
845b6214 3325 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3326 r = MEMTX_OK;
3327 }
3328 if (result) {
3329 *result = r;
733f0b02 3330 }
4840f10e
JK
3331 if (release_lock) {
3332 qemu_mutex_unlock_iothread();
3333 }
41063e1e 3334 rcu_read_unlock();
aab33094
FB
3335}
3336
50013115
PM
3337void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3338 MemTxAttrs attrs, MemTxResult *result)
3339{
3340 address_space_stw_internal(as, addr, val, attrs, result,
3341 DEVICE_NATIVE_ENDIAN);
3342}
3343
3344void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3345 MemTxAttrs attrs, MemTxResult *result)
3346{
3347 address_space_stw_internal(as, addr, val, attrs, result,
3348 DEVICE_LITTLE_ENDIAN);
3349}
3350
3351void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3352 MemTxAttrs attrs, MemTxResult *result)
3353{
3354 address_space_stw_internal(as, addr, val, attrs, result,
3355 DEVICE_BIG_ENDIAN);
3356}
3357
5ce5944d 3358void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3359{
50013115 3360 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3361}
3362
5ce5944d 3363void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3364{
50013115 3365 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3366}
3367
5ce5944d 3368void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3369{
50013115 3370 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3371}
3372
aab33094 3373/* XXX: optimize */
50013115
PM
3374void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3375 MemTxAttrs attrs, MemTxResult *result)
aab33094 3376{
50013115 3377 MemTxResult r;
aab33094 3378 val = tswap64(val);
50013115
PM
3379 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3380 if (result) {
3381 *result = r;
3382 }
aab33094
FB
3383}
3384
50013115
PM
3385void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3386 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3387{
50013115 3388 MemTxResult r;
1e78bcc1 3389 val = cpu_to_le64(val);
50013115
PM
3390 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3391 if (result) {
3392 *result = r;
3393 }
3394}
3395void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3396 MemTxAttrs attrs, MemTxResult *result)
3397{
3398 MemTxResult r;
3399 val = cpu_to_be64(val);
3400 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3401 if (result) {
3402 *result = r;
3403 }
3404}
3405
3406void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3407{
3408 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3409}
3410
3411void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3412{
3413 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3414}
3415
f606604f 3416void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3417{
50013115 3418 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3419}
3420
5e2972fd 3421/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3422int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3423 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3424{
3425 int l;
a8170e5e 3426 hwaddr phys_addr;
9b3c35e0 3427 target_ulong page;
13eb76e0
FB
3428
3429 while (len > 0) {
3430 page = addr & TARGET_PAGE_MASK;
f17ec444 3431 phys_addr = cpu_get_phys_page_debug(cpu, page);
13eb76e0
FB
3432 /* if no physical page mapped, return an error */
3433 if (phys_addr == -1)
3434 return -1;
3435 l = (page + TARGET_PAGE_SIZE) - addr;
3436 if (l > len)
3437 l = len;
5e2972fd 3438 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b
EI
3439 if (is_write) {
3440 cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
3441 } else {
5c9eb028
PM
3442 address_space_rw(cpu->as, phys_addr, MEMTXATTRS_UNSPECIFIED,
3443 buf, l, 0);
2e38847b 3444 }
13eb76e0
FB
3445 len -= l;
3446 buf += l;
3447 addr += l;
3448 }
3449 return 0;
3450}
a68fe89c 3451#endif
13eb76e0 3452
8e4a424b
BS
3453/*
3454 * A helper function for the _utterly broken_ virtio device model to find out if
3455 * it's running on a big endian machine. Don't do this at home kids!
3456 */
98ed8ecf
GK
3457bool target_words_bigendian(void);
3458bool target_words_bigendian(void)
8e4a424b
BS
3459{
3460#if defined(TARGET_WORDS_BIGENDIAN)
3461 return true;
3462#else
3463 return false;
3464#endif
3465}
3466
76f35538 3467#ifndef CONFIG_USER_ONLY
a8170e5e 3468bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3469{
5c8a00ce 3470 MemoryRegion*mr;
149f54b5 3471 hwaddr l = 1;
41063e1e 3472 bool res;
76f35538 3473
41063e1e 3474 rcu_read_lock();
5c8a00ce
PB
3475 mr = address_space_translate(&address_space_memory,
3476 phys_addr, &phys_addr, &l, false);
76f35538 3477
41063e1e
PB
3478 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3479 rcu_read_unlock();
3480 return res;
76f35538 3481}
bd2fa51f 3482
e3807054 3483int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3484{
3485 RAMBlock *block;
e3807054 3486 int ret = 0;
bd2fa51f 3487
0dc3f44a
MD
3488 rcu_read_lock();
3489 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3490 ret = func(block->idstr, block->host, block->offset,
3491 block->used_length, opaque);
3492 if (ret) {
3493 break;
3494 }
bd2fa51f 3495 }
0dc3f44a 3496 rcu_read_unlock();
e3807054 3497 return ret;
bd2fa51f 3498}
ec3f8c99 3499#endif