]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
block/iscsi: fix initialization of iTask in iscsi_co_get_block_status
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
54936004 21
f348b6d1 22#include "qemu/cutils.h"
6180a181 23#include "cpu.h"
63c91552 24#include "exec/exec-all.h"
51180423 25#include "exec/target_page.h"
b67d9a52 26#include "tcg.h"
741da0d3 27#include "hw/qdev-core.h"
c7e002c5 28#include "hw/qdev-properties.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3 44#include "sysemu/dma.h"
9c607668 45#include "sysemu/numa.h"
79ca7a1b 46#include "sysemu/hw_accel.h"
741da0d3 47#include "exec/address-spaces.h"
9c17d615 48#include "sysemu/xen-mapcache.h"
0ab8ed18 49#include "trace-root.h"
d3a5038c 50
e2fa71f5 51#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
e2fa71f5
DDAG
52#include <linux/falloc.h>
53#endif
54
53a5960a 55#endif
0dc3f44a 56#include "qemu/rcu_queue.h"
4840f10e 57#include "qemu/main-loop.h"
5b6dd868 58#include "translate-all.h"
7615936e 59#include "sysemu/replay.h"
0cac1b66 60
022c62cb 61#include "exec/memory-internal.h"
220c3ebd 62#include "exec/ram_addr.h"
508127e2 63#include "exec/log.h"
67d95c15 64
9dfeca7c
BR
65#include "migration/vmstate.h"
66
b35ba30f 67#include "qemu/range.h"
794e8f30
MT
68#ifndef _WIN32
69#include "qemu/mmap-alloc.h"
70#endif
b35ba30f 71
be9b23c4
PX
72#include "monitor/monitor.h"
73
db7b5426 74//#define DEBUG_SUBPAGE
1196be37 75
e2eef170 76#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
77/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
78 * are protected by the ramlist lock.
79 */
0d53d9fe 80RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
81
82static MemoryRegion *system_memory;
309cb471 83static MemoryRegion *system_io;
62152b8a 84
f6790af6
AK
85AddressSpace address_space_io;
86AddressSpace address_space_memory;
2673a5da 87
0844e007 88MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 89static MemoryRegion io_mem_unassigned;
0e0df1e2 90
7bd4f430
PB
91/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
92#define RAM_PREALLOC (1 << 0)
93
dbcb8981
PB
94/* RAM is mmap-ed with MAP_SHARED */
95#define RAM_SHARED (1 << 1)
96
62be4e3a
MT
97/* Only a portion of RAM (used_length) is actually used, and migrated.
98 * This used_length size can change across reboots.
99 */
100#define RAM_RESIZEABLE (1 << 2)
101
e2eef170 102#endif
9fa3e853 103
20bccb82
PM
104#ifdef TARGET_PAGE_BITS_VARY
105int target_page_bits;
106bool target_page_bits_decided;
107#endif
108
bdc44640 109struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
110/* current CPU in the current thread. It is only valid inside
111 cpu_exec() */
f240eb6f 112__thread CPUState *current_cpu;
2e70f6ef 113/* 0 = Do not count executed instructions.
bf20dc07 114 1 = Precise instruction counting.
2e70f6ef 115 2 = Adaptive rate instruction counting. */
5708fc66 116int use_icount;
6a00d601 117
a0be0c58
YZ
118uintptr_t qemu_host_page_size;
119intptr_t qemu_host_page_mask;
a0be0c58 120
20bccb82
PM
121bool set_preferred_target_page_bits(int bits)
122{
123 /* The target page size is the lowest common denominator for all
124 * the CPUs in the system, so we can only make it smaller, never
125 * larger. And we can't make it smaller once we've committed to
126 * a particular size.
127 */
128#ifdef TARGET_PAGE_BITS_VARY
129 assert(bits >= TARGET_PAGE_BITS_MIN);
130 if (target_page_bits == 0 || target_page_bits > bits) {
131 if (target_page_bits_decided) {
132 return false;
133 }
134 target_page_bits = bits;
135 }
136#endif
137 return true;
138}
139
e2eef170 140#if !defined(CONFIG_USER_ONLY)
4346ae3e 141
20bccb82
PM
142static void finalize_target_page_bits(void)
143{
144#ifdef TARGET_PAGE_BITS_VARY
145 if (target_page_bits == 0) {
146 target_page_bits = TARGET_PAGE_BITS_MIN;
147 }
148 target_page_bits_decided = true;
149#endif
150}
151
1db8abb1
PB
152typedef struct PhysPageEntry PhysPageEntry;
153
154struct PhysPageEntry {
9736e55b 155 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 156 uint32_t skip : 6;
9736e55b 157 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 158 uint32_t ptr : 26;
1db8abb1
PB
159};
160
8b795765
MT
161#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
162
03f49957 163/* Size of the L2 (and L3, etc) page tables. */
57271d63 164#define ADDR_SPACE_BITS 64
03f49957 165
026736ce 166#define P_L2_BITS 9
03f49957
PB
167#define P_L2_SIZE (1 << P_L2_BITS)
168
169#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
170
171typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 172
53cb28cb 173typedef struct PhysPageMap {
79e2b9ae
PB
174 struct rcu_head rcu;
175
53cb28cb
MA
176 unsigned sections_nb;
177 unsigned sections_nb_alloc;
178 unsigned nodes_nb;
179 unsigned nodes_nb_alloc;
180 Node *nodes;
181 MemoryRegionSection *sections;
182} PhysPageMap;
183
1db8abb1 184struct AddressSpaceDispatch {
729633c2 185 MemoryRegionSection *mru_section;
1db8abb1
PB
186 /* This is a multi-level map on the physical address space.
187 * The bottom level has pointers to MemoryRegionSections.
188 */
189 PhysPageEntry phys_map;
53cb28cb 190 PhysPageMap map;
1db8abb1
PB
191};
192
90260c6c
JK
193#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
194typedef struct subpage_t {
195 MemoryRegion iomem;
16620684 196 FlatView *fv;
90260c6c 197 hwaddr base;
2615fabd 198 uint16_t sub_section[];
90260c6c
JK
199} subpage_t;
200
b41aac4f
LPF
201#define PHYS_SECTION_UNASSIGNED 0
202#define PHYS_SECTION_NOTDIRTY 1
203#define PHYS_SECTION_ROM 2
204#define PHYS_SECTION_WATCH 3
5312bd8b 205
e2eef170 206static void io_mem_init(void);
62152b8a 207static void memory_map_init(void);
09daed84 208static void tcg_commit(MemoryListener *listener);
e2eef170 209
1ec9b909 210static MemoryRegion io_mem_watch;
32857f4d
PM
211
212/**
213 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
214 * @cpu: the CPU whose AddressSpace this is
215 * @as: the AddressSpace itself
216 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
217 * @tcg_as_listener: listener for tracking changes to the AddressSpace
218 */
219struct CPUAddressSpace {
220 CPUState *cpu;
221 AddressSpace *as;
222 struct AddressSpaceDispatch *memory_dispatch;
223 MemoryListener tcg_as_listener;
224};
225
8deaf12c
GH
226struct DirtyBitmapSnapshot {
227 ram_addr_t start;
228 ram_addr_t end;
229 unsigned long dirty[];
230};
231
6658ffb8 232#endif
fd6ce8f6 233
6d9a1304 234#if !defined(CONFIG_USER_ONLY)
d6f2ea22 235
53cb28cb 236static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 237{
101420b8 238 static unsigned alloc_hint = 16;
53cb28cb 239 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 240 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
241 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
242 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 243 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 244 }
f7bf5461
AK
245}
246
db94604b 247static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
248{
249 unsigned i;
8b795765 250 uint32_t ret;
db94604b
PB
251 PhysPageEntry e;
252 PhysPageEntry *p;
f7bf5461 253
53cb28cb 254 ret = map->nodes_nb++;
db94604b 255 p = map->nodes[ret];
f7bf5461 256 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 257 assert(ret != map->nodes_nb_alloc);
db94604b
PB
258
259 e.skip = leaf ? 0 : 1;
260 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 261 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 262 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 263 }
f7bf5461 264 return ret;
d6f2ea22
AK
265}
266
53cb28cb
MA
267static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
268 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 269 int level)
f7bf5461
AK
270{
271 PhysPageEntry *p;
03f49957 272 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 273
9736e55b 274 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 275 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 276 }
db94604b 277 p = map->nodes[lp->ptr];
03f49957 278 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 279
03f49957 280 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 281 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 282 lp->skip = 0;
c19e8800 283 lp->ptr = leaf;
07f07b31
AK
284 *index += step;
285 *nb -= step;
2999097b 286 } else {
53cb28cb 287 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
288 }
289 ++lp;
f7bf5461
AK
290 }
291}
292
ac1970fb 293static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 294 hwaddr index, hwaddr nb,
2999097b 295 uint16_t leaf)
f7bf5461 296{
2999097b 297 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 298 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 299
53cb28cb 300 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
301}
302
b35ba30f
MT
303/* Compact a non leaf page entry. Simply detect that the entry has a single child,
304 * and update our entry so we can skip it and go directly to the destination.
305 */
efee678d 306static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
307{
308 unsigned valid_ptr = P_L2_SIZE;
309 int valid = 0;
310 PhysPageEntry *p;
311 int i;
312
313 if (lp->ptr == PHYS_MAP_NODE_NIL) {
314 return;
315 }
316
317 p = nodes[lp->ptr];
318 for (i = 0; i < P_L2_SIZE; i++) {
319 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
320 continue;
321 }
322
323 valid_ptr = i;
324 valid++;
325 if (p[i].skip) {
efee678d 326 phys_page_compact(&p[i], nodes);
b35ba30f
MT
327 }
328 }
329
330 /* We can only compress if there's only one child. */
331 if (valid != 1) {
332 return;
333 }
334
335 assert(valid_ptr < P_L2_SIZE);
336
337 /* Don't compress if it won't fit in the # of bits we have. */
338 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
339 return;
340 }
341
342 lp->ptr = p[valid_ptr].ptr;
343 if (!p[valid_ptr].skip) {
344 /* If our only child is a leaf, make this a leaf. */
345 /* By design, we should have made this node a leaf to begin with so we
346 * should never reach here.
347 * But since it's so simple to handle this, let's do it just in case we
348 * change this rule.
349 */
350 lp->skip = 0;
351 } else {
352 lp->skip += p[valid_ptr].skip;
353 }
354}
355
8629d3fc 356void address_space_dispatch_compact(AddressSpaceDispatch *d)
b35ba30f 357{
b35ba30f 358 if (d->phys_map.skip) {
efee678d 359 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
360 }
361}
362
29cb533d
FZ
363static inline bool section_covers_addr(const MemoryRegionSection *section,
364 hwaddr addr)
365{
366 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
367 * the section must cover the entire address space.
368 */
258dfaaa 369 return int128_gethi(section->size) ||
29cb533d 370 range_covers_byte(section->offset_within_address_space,
258dfaaa 371 int128_getlo(section->size), addr);
29cb533d
FZ
372}
373
003a0cf2 374static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
92e873b9 375{
003a0cf2
PX
376 PhysPageEntry lp = d->phys_map, *p;
377 Node *nodes = d->map.nodes;
378 MemoryRegionSection *sections = d->map.sections;
97115a8d 379 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 380 int i;
f1f6e3b8 381
9736e55b 382 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 383 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 384 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 385 }
9affd6fc 386 p = nodes[lp.ptr];
03f49957 387 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 388 }
b35ba30f 389
29cb533d 390 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
391 return &sections[lp.ptr];
392 } else {
393 return &sections[PHYS_SECTION_UNASSIGNED];
394 }
f3705d53
AK
395}
396
e5548617
BS
397bool memory_region_is_unassigned(MemoryRegion *mr)
398{
2a8e7499 399 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 400 && mr != &io_mem_watch;
fd6ce8f6 401}
149f54b5 402
79e2b9ae 403/* Called from RCU critical section */
c7086b4a 404static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
405 hwaddr addr,
406 bool resolve_subpage)
9f029603 407{
729633c2 408 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c
JK
409 subpage_t *subpage;
410
07c114bb
PB
411 if (!section || section == &d->map.sections[PHYS_SECTION_UNASSIGNED] ||
412 !section_covers_addr(section, addr)) {
003a0cf2 413 section = phys_page_find(d, addr);
07c114bb 414 atomic_set(&d->mru_section, section);
729633c2 415 }
90260c6c
JK
416 if (resolve_subpage && section->mr->subpage) {
417 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 418 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c
JK
419 }
420 return section;
9f029603
JK
421}
422
79e2b9ae 423/* Called from RCU critical section */
90260c6c 424static MemoryRegionSection *
c7086b4a 425address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 426 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
427{
428 MemoryRegionSection *section;
965eb2fc 429 MemoryRegion *mr;
a87f3954 430 Int128 diff;
149f54b5 431
c7086b4a 432 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
433 /* Compute offset within MemoryRegionSection */
434 addr -= section->offset_within_address_space;
435
436 /* Compute offset within MemoryRegion */
437 *xlat = addr + section->offset_within_region;
438
965eb2fc 439 mr = section->mr;
b242e0e0
PB
440
441 /* MMIO registers can be expected to perform full-width accesses based only
442 * on their address, without considering adjacent registers that could
443 * decode to completely different MemoryRegions. When such registers
444 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
445 * regions overlap wildly. For this reason we cannot clamp the accesses
446 * here.
447 *
448 * If the length is small (as is the case for address_space_ldl/stl),
449 * everything works fine. If the incoming length is large, however,
450 * the caller really has to do the clamping through memory_access_size.
451 */
965eb2fc 452 if (memory_region_is_ram(mr)) {
e4a511f8 453 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
454 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
455 }
149f54b5
PB
456 return section;
457}
90260c6c 458
d5e5fafd
PX
459/**
460 * flatview_do_translate - translate an address in FlatView
461 *
462 * @fv: the flat view that we want to translate on
463 * @addr: the address to be translated in above address space
464 * @xlat: the translated address offset within memory region. It
465 * cannot be @NULL.
466 * @plen_out: valid read/write length of the translated address. It
467 * can be @NULL when we don't care about it.
468 * @page_mask_out: page mask for the translated address. This
469 * should only be meaningful for IOMMU translated
470 * addresses, since there may be huge pages that this bit
471 * would tell. It can be @NULL if we don't care about it.
472 * @is_write: whether the translation operation is for write
473 * @is_mmio: whether this can be MMIO, set true if it can
474 *
475 * This function is called from RCU critical section
476 */
16620684
AK
477static MemoryRegionSection flatview_do_translate(FlatView *fv,
478 hwaddr addr,
479 hwaddr *xlat,
d5e5fafd
PX
480 hwaddr *plen_out,
481 hwaddr *page_mask_out,
16620684
AK
482 bool is_write,
483 bool is_mmio,
484 AddressSpace **target_as)
052c8fa9 485{
a764040c 486 IOMMUTLBEntry iotlb;
052c8fa9 487 MemoryRegionSection *section;
3df9d748 488 IOMMUMemoryRegion *iommu_mr;
1221a474 489 IOMMUMemoryRegionClass *imrc;
d5e5fafd
PX
490 hwaddr page_mask = (hwaddr)(-1);
491 hwaddr plen = (hwaddr)(-1);
492
493 if (plen_out) {
494 plen = *plen_out;
495 }
052c8fa9
JW
496
497 for (;;) {
16620684
AK
498 section = address_space_translate_internal(
499 flatview_to_dispatch(fv), addr, &addr,
d5e5fafd 500 &plen, is_mmio);
052c8fa9 501
3df9d748
AK
502 iommu_mr = memory_region_get_iommu(section->mr);
503 if (!iommu_mr) {
052c8fa9
JW
504 break;
505 }
1221a474 506 imrc = memory_region_get_iommu_class_nocheck(iommu_mr);
052c8fa9 507
1221a474
AK
508 iotlb = imrc->translate(iommu_mr, addr, is_write ?
509 IOMMU_WO : IOMMU_RO);
a764040c
PX
510 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
511 | (addr & iotlb.addr_mask));
d5e5fafd
PX
512 page_mask &= iotlb.addr_mask;
513 plen = MIN(plen, (addr | iotlb.addr_mask) - addr + 1);
052c8fa9 514 if (!(iotlb.perm & (1 << is_write))) {
a764040c 515 goto translate_fail;
052c8fa9
JW
516 }
517
16620684 518 fv = address_space_to_flatview(iotlb.target_as);
e76bb18f 519 *target_as = iotlb.target_as;
052c8fa9
JW
520 }
521
a764040c
PX
522 *xlat = addr;
523
d5e5fafd
PX
524 if (page_mask == (hwaddr)(-1)) {
525 /* Not behind an IOMMU, use default page size. */
526 page_mask = ~TARGET_PAGE_MASK;
527 }
528
529 if (page_mask_out) {
530 *page_mask_out = page_mask;
531 }
532
533 if (plen_out) {
534 *plen_out = plen;
535 }
536
a764040c
PX
537 return *section;
538
539translate_fail:
540 return (MemoryRegionSection) { .mr = &io_mem_unassigned };
052c8fa9
JW
541}
542
543/* Called from RCU critical section */
a764040c
PX
544IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
545 bool is_write)
90260c6c 546{
a764040c 547 MemoryRegionSection section;
076a93d7 548 hwaddr xlat, page_mask;
30951157 549
076a93d7
PX
550 /*
551 * This can never be MMIO, and we don't really care about plen,
552 * but page mask.
553 */
554 section = flatview_do_translate(address_space_to_flatview(as), addr, &xlat,
555 NULL, &page_mask, is_write, false, &as);
30951157 556
a764040c
PX
557 /* Illegal translation */
558 if (section.mr == &io_mem_unassigned) {
559 goto iotlb_fail;
560 }
30951157 561
a764040c
PX
562 /* Convert memory region offset into address space offset */
563 xlat += section.offset_within_address_space -
564 section.offset_within_region;
565
a764040c 566 return (IOMMUTLBEntry) {
e76bb18f 567 .target_as = as,
076a93d7
PX
568 .iova = addr & ~page_mask,
569 .translated_addr = xlat & ~page_mask,
570 .addr_mask = page_mask,
a764040c
PX
571 /* IOTLBs are for DMAs, and DMA only allows on RAMs. */
572 .perm = IOMMU_RW,
573 };
574
575iotlb_fail:
576 return (IOMMUTLBEntry) {0};
577}
578
579/* Called from RCU critical section */
16620684
AK
580MemoryRegion *flatview_translate(FlatView *fv, hwaddr addr, hwaddr *xlat,
581 hwaddr *plen, bool is_write)
a764040c
PX
582{
583 MemoryRegion *mr;
584 MemoryRegionSection section;
16620684 585 AddressSpace *as = NULL;
a764040c
PX
586
587 /* This can be MMIO, so setup MMIO bit. */
d5e5fafd
PX
588 section = flatview_do_translate(fv, addr, xlat, plen, NULL,
589 is_write, true, &as);
a764040c
PX
590 mr = section.mr;
591
fe680d0d 592 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 593 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 594 *plen = MIN(page, *plen);
a87f3954
PB
595 }
596
30951157 597 return mr;
90260c6c
JK
598}
599
79e2b9ae 600/* Called from RCU critical section */
90260c6c 601MemoryRegionSection *
d7898cda 602address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 603 hwaddr *xlat, hwaddr *plen)
90260c6c 604{
30951157 605 MemoryRegionSection *section;
f35e44e7 606 AddressSpaceDispatch *d = atomic_rcu_read(&cpu->cpu_ases[asidx].memory_dispatch);
d7898cda
PM
607
608 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157 609
3df9d748 610 assert(!memory_region_is_iommu(section->mr));
30951157 611 return section;
90260c6c 612}
5b6dd868 613#endif
fd6ce8f6 614
b170fce3 615#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
616
617static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 618{
259186a7 619 CPUState *cpu = opaque;
a513fe19 620
5b6dd868
BS
621 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
622 version_id is increased. */
259186a7 623 cpu->interrupt_request &= ~0x01;
d10eb08f 624 tlb_flush(cpu);
5b6dd868
BS
625
626 return 0;
a513fe19 627}
7501267e 628
6c3bff0e
PD
629static int cpu_common_pre_load(void *opaque)
630{
631 CPUState *cpu = opaque;
632
adee6424 633 cpu->exception_index = -1;
6c3bff0e
PD
634
635 return 0;
636}
637
638static bool cpu_common_exception_index_needed(void *opaque)
639{
640 CPUState *cpu = opaque;
641
adee6424 642 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
643}
644
645static const VMStateDescription vmstate_cpu_common_exception_index = {
646 .name = "cpu_common/exception_index",
647 .version_id = 1,
648 .minimum_version_id = 1,
5cd8cada 649 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
650 .fields = (VMStateField[]) {
651 VMSTATE_INT32(exception_index, CPUState),
652 VMSTATE_END_OF_LIST()
653 }
654};
655
bac05aa9
AS
656static bool cpu_common_crash_occurred_needed(void *opaque)
657{
658 CPUState *cpu = opaque;
659
660 return cpu->crash_occurred;
661}
662
663static const VMStateDescription vmstate_cpu_common_crash_occurred = {
664 .name = "cpu_common/crash_occurred",
665 .version_id = 1,
666 .minimum_version_id = 1,
667 .needed = cpu_common_crash_occurred_needed,
668 .fields = (VMStateField[]) {
669 VMSTATE_BOOL(crash_occurred, CPUState),
670 VMSTATE_END_OF_LIST()
671 }
672};
673
1a1562f5 674const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
675 .name = "cpu_common",
676 .version_id = 1,
677 .minimum_version_id = 1,
6c3bff0e 678 .pre_load = cpu_common_pre_load,
5b6dd868 679 .post_load = cpu_common_post_load,
35d08458 680 .fields = (VMStateField[]) {
259186a7
AF
681 VMSTATE_UINT32(halted, CPUState),
682 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 683 VMSTATE_END_OF_LIST()
6c3bff0e 684 },
5cd8cada
JQ
685 .subsections = (const VMStateDescription*[]) {
686 &vmstate_cpu_common_exception_index,
bac05aa9 687 &vmstate_cpu_common_crash_occurred,
5cd8cada 688 NULL
5b6dd868
BS
689 }
690};
1a1562f5 691
5b6dd868 692#endif
ea041c0e 693
38d8f5c8 694CPUState *qemu_get_cpu(int index)
ea041c0e 695{
bdc44640 696 CPUState *cpu;
ea041c0e 697
bdc44640 698 CPU_FOREACH(cpu) {
55e5c285 699 if (cpu->cpu_index == index) {
bdc44640 700 return cpu;
55e5c285 701 }
ea041c0e 702 }
5b6dd868 703
bdc44640 704 return NULL;
ea041c0e
FB
705}
706
09daed84 707#if !defined(CONFIG_USER_ONLY)
80ceb07a
PX
708void cpu_address_space_init(CPUState *cpu, int asidx,
709 const char *prefix, MemoryRegion *mr)
09daed84 710{
12ebc9a7 711 CPUAddressSpace *newas;
80ceb07a 712 AddressSpace *as = g_new0(AddressSpace, 1);
87a621d8 713 char *as_name;
80ceb07a
PX
714
715 assert(mr);
87a621d8
PX
716 as_name = g_strdup_printf("%s-%d", prefix, cpu->cpu_index);
717 address_space_init(as, mr, as_name);
718 g_free(as_name);
12ebc9a7
PM
719
720 /* Target code should have set num_ases before calling us */
721 assert(asidx < cpu->num_ases);
722
56943e8c
PM
723 if (asidx == 0) {
724 /* address space 0 gets the convenience alias */
725 cpu->as = as;
726 }
727
12ebc9a7
PM
728 /* KVM cannot currently support multiple address spaces. */
729 assert(asidx == 0 || !kvm_enabled());
09daed84 730
12ebc9a7
PM
731 if (!cpu->cpu_ases) {
732 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 733 }
32857f4d 734
12ebc9a7
PM
735 newas = &cpu->cpu_ases[asidx];
736 newas->cpu = cpu;
737 newas->as = as;
56943e8c 738 if (tcg_enabled()) {
12ebc9a7
PM
739 newas->tcg_as_listener.commit = tcg_commit;
740 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 741 }
09daed84 742}
651a5bc0
PM
743
744AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
745{
746 /* Return the AddressSpace corresponding to the specified index */
747 return cpu->cpu_ases[asidx].as;
748}
09daed84
EI
749#endif
750
7bbc124e 751void cpu_exec_unrealizefn(CPUState *cpu)
1c59eb39 752{
9dfeca7c
BR
753 CPUClass *cc = CPU_GET_CLASS(cpu);
754
267f685b 755 cpu_list_remove(cpu);
9dfeca7c
BR
756
757 if (cc->vmsd != NULL) {
758 vmstate_unregister(NULL, cc->vmsd, cpu);
759 }
760 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
761 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
762 }
1c59eb39
BR
763}
764
c7e002c5
FZ
765Property cpu_common_props[] = {
766#ifndef CONFIG_USER_ONLY
767 /* Create a memory property for softmmu CPU object,
768 * so users can wire up its memory. (This can't go in qom/cpu.c
769 * because that file is compiled only once for both user-mode
770 * and system builds.) The default if no link is set up is to use
771 * the system address space.
772 */
773 DEFINE_PROP_LINK("memory", CPUState, memory, TYPE_MEMORY_REGION,
774 MemoryRegion *),
775#endif
776 DEFINE_PROP_END_OF_LIST(),
777};
778
39e329e3 779void cpu_exec_initfn(CPUState *cpu)
ea041c0e 780{
56943e8c 781 cpu->as = NULL;
12ebc9a7 782 cpu->num_ases = 0;
56943e8c 783
291135b5 784#ifndef CONFIG_USER_ONLY
291135b5 785 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
786 cpu->memory = system_memory;
787 object_ref(OBJECT(cpu->memory));
291135b5 788#endif
39e329e3
LV
789}
790
ce5b1bbf 791void cpu_exec_realizefn(CPUState *cpu, Error **errp)
39e329e3 792{
55c3ceef 793 CPUClass *cc = CPU_GET_CLASS(cpu);
2dda6354 794 static bool tcg_target_initialized;
291135b5 795
267f685b 796 cpu_list_add(cpu);
1bc7e522 797
2dda6354
EC
798 if (tcg_enabled() && !tcg_target_initialized) {
799 tcg_target_initialized = true;
55c3ceef
RH
800 cc->tcg_initialize();
801 }
802
1bc7e522 803#ifndef CONFIG_USER_ONLY
e0d47944 804 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 805 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 806 }
b170fce3 807 if (cc->vmsd != NULL) {
741da0d3 808 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 809 }
741da0d3 810#endif
ea041c0e
FB
811}
812
406bc339 813#if defined(CONFIG_USER_ONLY)
00b941e5 814static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 815{
406bc339
PK
816 mmap_lock();
817 tb_lock();
818 tb_invalidate_phys_page_range(pc, pc + 1, 0);
819 tb_unlock();
820 mmap_unlock();
821}
822#else
823static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
824{
825 MemTxAttrs attrs;
826 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
827 int asidx = cpu_asidx_from_attrs(cpu, attrs);
828 if (phys != -1) {
829 /* Locks grabbed by tb_invalidate_phys_addr */
830 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
831 phys | (pc & ~TARGET_PAGE_MASK));
832 }
1e7855a5 833}
406bc339 834#endif
d720b93d 835
c527ee8f 836#if defined(CONFIG_USER_ONLY)
75a34036 837void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
838
839{
840}
841
3ee887e8
PM
842int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
843 int flags)
844{
845 return -ENOSYS;
846}
847
848void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
849{
850}
851
75a34036 852int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
853 int flags, CPUWatchpoint **watchpoint)
854{
855 return -ENOSYS;
856}
857#else
6658ffb8 858/* Add a watchpoint. */
75a34036 859int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 860 int flags, CPUWatchpoint **watchpoint)
6658ffb8 861{
c0ce998e 862 CPUWatchpoint *wp;
6658ffb8 863
05068c0d 864 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 865 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
866 error_report("tried to set invalid watchpoint at %"
867 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
868 return -EINVAL;
869 }
7267c094 870 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
871
872 wp->vaddr = addr;
05068c0d 873 wp->len = len;
a1d1bb31
AL
874 wp->flags = flags;
875
2dc9f411 876 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
877 if (flags & BP_GDB) {
878 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
879 } else {
880 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
881 }
6658ffb8 882
31b030d4 883 tlb_flush_page(cpu, addr);
a1d1bb31
AL
884
885 if (watchpoint)
886 *watchpoint = wp;
887 return 0;
6658ffb8
PB
888}
889
a1d1bb31 890/* Remove a specific watchpoint. */
75a34036 891int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 892 int flags)
6658ffb8 893{
a1d1bb31 894 CPUWatchpoint *wp;
6658ffb8 895
ff4700b0 896 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 897 if (addr == wp->vaddr && len == wp->len
6e140f28 898 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 899 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
900 return 0;
901 }
902 }
a1d1bb31 903 return -ENOENT;
6658ffb8
PB
904}
905
a1d1bb31 906/* Remove a specific watchpoint by reference. */
75a34036 907void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 908{
ff4700b0 909 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 910
31b030d4 911 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 912
7267c094 913 g_free(watchpoint);
a1d1bb31
AL
914}
915
916/* Remove all matching watchpoints. */
75a34036 917void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 918{
c0ce998e 919 CPUWatchpoint *wp, *next;
a1d1bb31 920
ff4700b0 921 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
922 if (wp->flags & mask) {
923 cpu_watchpoint_remove_by_ref(cpu, wp);
924 }
c0ce998e 925 }
7d03f82f 926}
05068c0d
PM
927
928/* Return true if this watchpoint address matches the specified
929 * access (ie the address range covered by the watchpoint overlaps
930 * partially or completely with the address range covered by the
931 * access).
932 */
933static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
934 vaddr addr,
935 vaddr len)
936{
937 /* We know the lengths are non-zero, but a little caution is
938 * required to avoid errors in the case where the range ends
939 * exactly at the top of the address space and so addr + len
940 * wraps round to zero.
941 */
942 vaddr wpend = wp->vaddr + wp->len - 1;
943 vaddr addrend = addr + len - 1;
944
945 return !(addr > wpend || wp->vaddr > addrend);
946}
947
c527ee8f 948#endif
7d03f82f 949
a1d1bb31 950/* Add a breakpoint. */
b3310ab3 951int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 952 CPUBreakpoint **breakpoint)
4c3a88a2 953{
c0ce998e 954 CPUBreakpoint *bp;
3b46e624 955
7267c094 956 bp = g_malloc(sizeof(*bp));
4c3a88a2 957
a1d1bb31
AL
958 bp->pc = pc;
959 bp->flags = flags;
960
2dc9f411 961 /* keep all GDB-injected breakpoints in front */
00b941e5 962 if (flags & BP_GDB) {
f0c3c505 963 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 964 } else {
f0c3c505 965 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 966 }
3b46e624 967
f0c3c505 968 breakpoint_invalidate(cpu, pc);
a1d1bb31 969
00b941e5 970 if (breakpoint) {
a1d1bb31 971 *breakpoint = bp;
00b941e5 972 }
4c3a88a2 973 return 0;
4c3a88a2
FB
974}
975
a1d1bb31 976/* Remove a specific breakpoint. */
b3310ab3 977int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 978{
a1d1bb31
AL
979 CPUBreakpoint *bp;
980
f0c3c505 981 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 982 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 983 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
984 return 0;
985 }
7d03f82f 986 }
a1d1bb31 987 return -ENOENT;
7d03f82f
EI
988}
989
a1d1bb31 990/* Remove a specific breakpoint by reference. */
b3310ab3 991void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 992{
f0c3c505
AF
993 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
994
995 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 996
7267c094 997 g_free(breakpoint);
a1d1bb31
AL
998}
999
1000/* Remove all matching breakpoints. */
b3310ab3 1001void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 1002{
c0ce998e 1003 CPUBreakpoint *bp, *next;
a1d1bb31 1004
f0c3c505 1005 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
1006 if (bp->flags & mask) {
1007 cpu_breakpoint_remove_by_ref(cpu, bp);
1008 }
c0ce998e 1009 }
4c3a88a2
FB
1010}
1011
c33a346e
FB
1012/* enable or disable single step mode. EXCP_DEBUG is returned by the
1013 CPU loop after each instruction */
3825b28f 1014void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 1015{
ed2803da
AF
1016 if (cpu->singlestep_enabled != enabled) {
1017 cpu->singlestep_enabled = enabled;
1018 if (kvm_enabled()) {
38e478ec 1019 kvm_update_guest_debug(cpu, 0);
ed2803da 1020 } else {
ccbb4d44 1021 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 1022 /* XXX: only flush what is necessary */
bbd77c18 1023 tb_flush(cpu);
e22a25c9 1024 }
c33a346e 1025 }
c33a346e
FB
1026}
1027
a47dddd7 1028void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
1029{
1030 va_list ap;
493ae1f0 1031 va_list ap2;
7501267e
FB
1032
1033 va_start(ap, fmt);
493ae1f0 1034 va_copy(ap2, ap);
7501267e
FB
1035 fprintf(stderr, "qemu: fatal: ");
1036 vfprintf(stderr, fmt, ap);
1037 fprintf(stderr, "\n");
878096ee 1038 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 1039 if (qemu_log_separate()) {
1ee73216 1040 qemu_log_lock();
93fcfe39
AL
1041 qemu_log("qemu: fatal: ");
1042 qemu_log_vprintf(fmt, ap2);
1043 qemu_log("\n");
a0762859 1044 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1045 qemu_log_flush();
1ee73216 1046 qemu_log_unlock();
93fcfe39 1047 qemu_log_close();
924edcae 1048 }
493ae1f0 1049 va_end(ap2);
f9373291 1050 va_end(ap);
7615936e 1051 replay_finish();
fd052bf6
RV
1052#if defined(CONFIG_USER_ONLY)
1053 {
1054 struct sigaction act;
1055 sigfillset(&act.sa_mask);
1056 act.sa_handler = SIG_DFL;
1057 sigaction(SIGABRT, &act, NULL);
1058 }
1059#endif
7501267e
FB
1060 abort();
1061}
1062
0124311e 1063#if !defined(CONFIG_USER_ONLY)
0dc3f44a 1064/* Called from RCU critical section */
041603fe
PB
1065static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
1066{
1067 RAMBlock *block;
1068
43771539 1069 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1070 if (block && addr - block->offset < block->max_length) {
68851b98 1071 return block;
041603fe 1072 }
99e15582 1073 RAMBLOCK_FOREACH(block) {
9b8424d5 1074 if (addr - block->offset < block->max_length) {
041603fe
PB
1075 goto found;
1076 }
1077 }
1078
1079 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1080 abort();
1081
1082found:
43771539
PB
1083 /* It is safe to write mru_block outside the iothread lock. This
1084 * is what happens:
1085 *
1086 * mru_block = xxx
1087 * rcu_read_unlock()
1088 * xxx removed from list
1089 * rcu_read_lock()
1090 * read mru_block
1091 * mru_block = NULL;
1092 * call_rcu(reclaim_ramblock, xxx);
1093 * rcu_read_unlock()
1094 *
1095 * atomic_rcu_set is not needed here. The block was already published
1096 * when it was placed into the list. Here we're just making an extra
1097 * copy of the pointer.
1098 */
041603fe
PB
1099 ram_list.mru_block = block;
1100 return block;
1101}
1102
a2f4d5be 1103static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 1104{
9a13565d 1105 CPUState *cpu;
041603fe 1106 ram_addr_t start1;
a2f4d5be
JQ
1107 RAMBlock *block;
1108 ram_addr_t end;
1109
1110 end = TARGET_PAGE_ALIGN(start + length);
1111 start &= TARGET_PAGE_MASK;
d24981d3 1112
0dc3f44a 1113 rcu_read_lock();
041603fe
PB
1114 block = qemu_get_ram_block(start);
1115 assert(block == qemu_get_ram_block(end - 1));
1240be24 1116 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
1117 CPU_FOREACH(cpu) {
1118 tlb_reset_dirty(cpu, start1, length);
1119 }
0dc3f44a 1120 rcu_read_unlock();
d24981d3
JQ
1121}
1122
5579c7f3 1123/* Note: start and end must be within the same ram block. */
03eebc9e
SH
1124bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
1125 ram_addr_t length,
1126 unsigned client)
1ccde1cb 1127{
5b82b703 1128 DirtyMemoryBlocks *blocks;
03eebc9e 1129 unsigned long end, page;
5b82b703 1130 bool dirty = false;
03eebc9e
SH
1131
1132 if (length == 0) {
1133 return false;
1134 }
f23db169 1135
03eebc9e
SH
1136 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
1137 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
1138
1139 rcu_read_lock();
1140
1141 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1142
1143 while (page < end) {
1144 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1145 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1146 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1147
1148 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
1149 offset, num);
1150 page += num;
1151 }
1152
1153 rcu_read_unlock();
03eebc9e
SH
1154
1155 if (dirty && tcg_enabled()) {
a2f4d5be 1156 tlb_reset_dirty_range_all(start, length);
5579c7f3 1157 }
03eebc9e
SH
1158
1159 return dirty;
1ccde1cb
FB
1160}
1161
8deaf12c
GH
1162DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
1163 (ram_addr_t start, ram_addr_t length, unsigned client)
1164{
1165 DirtyMemoryBlocks *blocks;
1166 unsigned long align = 1UL << (TARGET_PAGE_BITS + BITS_PER_LEVEL);
1167 ram_addr_t first = QEMU_ALIGN_DOWN(start, align);
1168 ram_addr_t last = QEMU_ALIGN_UP(start + length, align);
1169 DirtyBitmapSnapshot *snap;
1170 unsigned long page, end, dest;
1171
1172 snap = g_malloc0(sizeof(*snap) +
1173 ((last - first) >> (TARGET_PAGE_BITS + 3)));
1174 snap->start = first;
1175 snap->end = last;
1176
1177 page = first >> TARGET_PAGE_BITS;
1178 end = last >> TARGET_PAGE_BITS;
1179 dest = 0;
1180
1181 rcu_read_lock();
1182
1183 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
1184
1185 while (page < end) {
1186 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
1187 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
1188 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
1189
1190 assert(QEMU_IS_ALIGNED(offset, (1 << BITS_PER_LEVEL)));
1191 assert(QEMU_IS_ALIGNED(num, (1 << BITS_PER_LEVEL)));
1192 offset >>= BITS_PER_LEVEL;
1193
1194 bitmap_copy_and_clear_atomic(snap->dirty + dest,
1195 blocks->blocks[idx] + offset,
1196 num);
1197 page += num;
1198 dest += num >> BITS_PER_LEVEL;
1199 }
1200
1201 rcu_read_unlock();
1202
1203 if (tcg_enabled()) {
1204 tlb_reset_dirty_range_all(start, length);
1205 }
1206
1207 return snap;
1208}
1209
1210bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
1211 ram_addr_t start,
1212 ram_addr_t length)
1213{
1214 unsigned long page, end;
1215
1216 assert(start >= snap->start);
1217 assert(start + length <= snap->end);
1218
1219 end = TARGET_PAGE_ALIGN(start + length - snap->start) >> TARGET_PAGE_BITS;
1220 page = (start - snap->start) >> TARGET_PAGE_BITS;
1221
1222 while (page < end) {
1223 if (test_bit(page, snap->dirty)) {
1224 return true;
1225 }
1226 page++;
1227 }
1228 return false;
1229}
1230
79e2b9ae 1231/* Called from RCU critical section */
bb0e627a 1232hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
1233 MemoryRegionSection *section,
1234 target_ulong vaddr,
1235 hwaddr paddr, hwaddr xlat,
1236 int prot,
1237 target_ulong *address)
e5548617 1238{
a8170e5e 1239 hwaddr iotlb;
e5548617
BS
1240 CPUWatchpoint *wp;
1241
cc5bea60 1242 if (memory_region_is_ram(section->mr)) {
e5548617 1243 /* Normal RAM. */
e4e69794 1244 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1245 if (!section->readonly) {
b41aac4f 1246 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1247 } else {
b41aac4f 1248 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1249 }
1250 } else {
0b8e2c10
PM
1251 AddressSpaceDispatch *d;
1252
16620684 1253 d = flatview_to_dispatch(section->fv);
0b8e2c10 1254 iotlb = section - d->map.sections;
149f54b5 1255 iotlb += xlat;
e5548617
BS
1256 }
1257
1258 /* Make accesses to pages with watchpoints go via the
1259 watchpoint trap routines. */
ff4700b0 1260 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1261 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1262 /* Avoid trapping reads of pages with a write breakpoint. */
1263 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1264 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1265 *address |= TLB_MMIO;
1266 break;
1267 }
1268 }
1269 }
1270
1271 return iotlb;
1272}
9fa3e853
FB
1273#endif /* defined(CONFIG_USER_ONLY) */
1274
e2eef170 1275#if !defined(CONFIG_USER_ONLY)
8da3ff18 1276
c227f099 1277static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1278 uint16_t section);
16620684 1279static subpage_t *subpage_init(FlatView *fv, hwaddr base);
54688b1e 1280
a2b257d6
IM
1281static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1282 qemu_anon_ram_alloc;
91138037
MA
1283
1284/*
1285 * Set a custom physical guest memory alloator.
1286 * Accelerators with unusual needs may need this. Hopefully, we can
1287 * get rid of it eventually.
1288 */
a2b257d6 1289void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1290{
1291 phys_mem_alloc = alloc;
1292}
1293
53cb28cb
MA
1294static uint16_t phys_section_add(PhysPageMap *map,
1295 MemoryRegionSection *section)
5312bd8b 1296{
68f3f65b
PB
1297 /* The physical section number is ORed with a page-aligned
1298 * pointer to produce the iotlb entries. Thus it should
1299 * never overflow into the page-aligned value.
1300 */
53cb28cb 1301 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1302
53cb28cb
MA
1303 if (map->sections_nb == map->sections_nb_alloc) {
1304 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1305 map->sections = g_renew(MemoryRegionSection, map->sections,
1306 map->sections_nb_alloc);
5312bd8b 1307 }
53cb28cb 1308 map->sections[map->sections_nb] = *section;
dfde4e6e 1309 memory_region_ref(section->mr);
53cb28cb 1310 return map->sections_nb++;
5312bd8b
AK
1311}
1312
058bc4b5
PB
1313static void phys_section_destroy(MemoryRegion *mr)
1314{
55b4e80b
DS
1315 bool have_sub_page = mr->subpage;
1316
dfde4e6e
PB
1317 memory_region_unref(mr);
1318
55b4e80b 1319 if (have_sub_page) {
058bc4b5 1320 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1321 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1322 g_free(subpage);
1323 }
1324}
1325
6092666e 1326static void phys_sections_free(PhysPageMap *map)
5312bd8b 1327{
9affd6fc
PB
1328 while (map->sections_nb > 0) {
1329 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1330 phys_section_destroy(section->mr);
1331 }
9affd6fc
PB
1332 g_free(map->sections);
1333 g_free(map->nodes);
5312bd8b
AK
1334}
1335
9950322a 1336static void register_subpage(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1337{
9950322a 1338 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
0f0cb164 1339 subpage_t *subpage;
a8170e5e 1340 hwaddr base = section->offset_within_address_space
0f0cb164 1341 & TARGET_PAGE_MASK;
003a0cf2 1342 MemoryRegionSection *existing = phys_page_find(d, base);
0f0cb164
AK
1343 MemoryRegionSection subsection = {
1344 .offset_within_address_space = base,
052e87b0 1345 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1346 };
a8170e5e 1347 hwaddr start, end;
0f0cb164 1348
f3705d53 1349 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1350
f3705d53 1351 if (!(existing->mr->subpage)) {
16620684
AK
1352 subpage = subpage_init(fv, base);
1353 subsection.fv = fv;
0f0cb164 1354 subsection.mr = &subpage->iomem;
ac1970fb 1355 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1356 phys_section_add(&d->map, &subsection));
0f0cb164 1357 } else {
f3705d53 1358 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1359 }
1360 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1361 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1362 subpage_register(subpage, start, end,
1363 phys_section_add(&d->map, section));
0f0cb164
AK
1364}
1365
1366
9950322a 1367static void register_multipage(FlatView *fv,
052e87b0 1368 MemoryRegionSection *section)
33417e70 1369{
9950322a 1370 AddressSpaceDispatch *d = flatview_to_dispatch(fv);
a8170e5e 1371 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1372 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1373 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1374 TARGET_PAGE_BITS));
dd81124b 1375
733d5ef5
PB
1376 assert(num_pages);
1377 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1378}
1379
8629d3fc 1380void flatview_add_to_dispatch(FlatView *fv, MemoryRegionSection *section)
0f0cb164 1381{
99b9cc06 1382 MemoryRegionSection now = *section, remain = *section;
052e87b0 1383 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1384
733d5ef5
PB
1385 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1386 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1387 - now.offset_within_address_space;
1388
052e87b0 1389 now.size = int128_min(int128_make64(left), now.size);
9950322a 1390 register_subpage(fv, &now);
733d5ef5 1391 } else {
052e87b0 1392 now.size = int128_zero();
733d5ef5 1393 }
052e87b0
PB
1394 while (int128_ne(remain.size, now.size)) {
1395 remain.size = int128_sub(remain.size, now.size);
1396 remain.offset_within_address_space += int128_get64(now.size);
1397 remain.offset_within_region += int128_get64(now.size);
69b67646 1398 now = remain;
052e87b0 1399 if (int128_lt(remain.size, page_size)) {
9950322a 1400 register_subpage(fv, &now);
88266249 1401 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1402 now.size = page_size;
9950322a 1403 register_subpage(fv, &now);
69b67646 1404 } else {
052e87b0 1405 now.size = int128_and(now.size, int128_neg(page_size));
9950322a 1406 register_multipage(fv, &now);
69b67646 1407 }
0f0cb164
AK
1408 }
1409}
1410
62a2744c
SY
1411void qemu_flush_coalesced_mmio_buffer(void)
1412{
1413 if (kvm_enabled())
1414 kvm_flush_coalesced_mmio_buffer();
1415}
1416
b2a8658e
UD
1417void qemu_mutex_lock_ramlist(void)
1418{
1419 qemu_mutex_lock(&ram_list.mutex);
1420}
1421
1422void qemu_mutex_unlock_ramlist(void)
1423{
1424 qemu_mutex_unlock(&ram_list.mutex);
1425}
1426
be9b23c4
PX
1427void ram_block_dump(Monitor *mon)
1428{
1429 RAMBlock *block;
1430 char *psize;
1431
1432 rcu_read_lock();
1433 monitor_printf(mon, "%24s %8s %18s %18s %18s\n",
1434 "Block Name", "PSize", "Offset", "Used", "Total");
1435 RAMBLOCK_FOREACH(block) {
1436 psize = size_to_str(block->page_size);
1437 monitor_printf(mon, "%24s %8s 0x%016" PRIx64 " 0x%016" PRIx64
1438 " 0x%016" PRIx64 "\n", block->idstr, psize,
1439 (uint64_t)block->offset,
1440 (uint64_t)block->used_length,
1441 (uint64_t)block->max_length);
1442 g_free(psize);
1443 }
1444 rcu_read_unlock();
1445}
1446
9c607668
AK
1447#ifdef __linux__
1448/*
1449 * FIXME TOCTTOU: this iterates over memory backends' mem-path, which
1450 * may or may not name the same files / on the same filesystem now as
1451 * when we actually open and map them. Iterate over the file
1452 * descriptors instead, and use qemu_fd_getpagesize().
1453 */
1454static int find_max_supported_pagesize(Object *obj, void *opaque)
1455{
1456 char *mem_path;
1457 long *hpsize_min = opaque;
1458
1459 if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
1460 mem_path = object_property_get_str(obj, "mem-path", NULL);
1461 if (mem_path) {
1462 long hpsize = qemu_mempath_getpagesize(mem_path);
1463 if (hpsize < *hpsize_min) {
1464 *hpsize_min = hpsize;
1465 }
1466 } else {
1467 *hpsize_min = getpagesize();
1468 }
1469 }
1470
1471 return 0;
1472}
1473
1474long qemu_getrampagesize(void)
1475{
1476 long hpsize = LONG_MAX;
1477 long mainrampagesize;
1478 Object *memdev_root;
1479
1480 if (mem_path) {
1481 mainrampagesize = qemu_mempath_getpagesize(mem_path);
1482 } else {
1483 mainrampagesize = getpagesize();
1484 }
1485
1486 /* it's possible we have memory-backend objects with
1487 * hugepage-backed RAM. these may get mapped into system
1488 * address space via -numa parameters or memory hotplug
1489 * hooks. we want to take these into account, but we
1490 * also want to make sure these supported hugepage
1491 * sizes are applicable across the entire range of memory
1492 * we may boot from, so we take the min across all
1493 * backends, and assume normal pages in cases where a
1494 * backend isn't backed by hugepages.
1495 */
1496 memdev_root = object_resolve_path("/objects", NULL);
1497 if (memdev_root) {
1498 object_child_foreach(memdev_root, find_max_supported_pagesize, &hpsize);
1499 }
1500 if (hpsize == LONG_MAX) {
1501 /* No additional memory regions found ==> Report main RAM page size */
1502 return mainrampagesize;
1503 }
1504
1505 /* If NUMA is disabled or the NUMA nodes are not backed with a
1506 * memory-backend, then there is at least one node using "normal" RAM,
1507 * so if its page size is smaller we have got to report that size instead.
1508 */
1509 if (hpsize > mainrampagesize &&
1510 (nb_numa_nodes == 0 || numa_info[0].node_memdev == NULL)) {
1511 static bool warned;
1512 if (!warned) {
1513 error_report("Huge page support disabled (n/a for main memory).");
1514 warned = true;
1515 }
1516 return mainrampagesize;
1517 }
1518
1519 return hpsize;
1520}
1521#else
1522long qemu_getrampagesize(void)
1523{
1524 return getpagesize();
1525}
1526#endif
1527
e1e84ba0 1528#ifdef __linux__
d6af99c9
HZ
1529static int64_t get_file_size(int fd)
1530{
1531 int64_t size = lseek(fd, 0, SEEK_END);
1532 if (size < 0) {
1533 return -errno;
1534 }
1535 return size;
1536}
1537
8d37b030
MAL
1538static int file_ram_open(const char *path,
1539 const char *region_name,
1540 bool *created,
1541 Error **errp)
c902760f
MT
1542{
1543 char *filename;
8ca761f6
PF
1544 char *sanitized_name;
1545 char *c;
5c3ece79 1546 int fd = -1;
c902760f 1547
8d37b030 1548 *created = false;
fd97fd44
MA
1549 for (;;) {
1550 fd = open(path, O_RDWR);
1551 if (fd >= 0) {
1552 /* @path names an existing file, use it */
1553 break;
8d31d6b6 1554 }
fd97fd44
MA
1555 if (errno == ENOENT) {
1556 /* @path names a file that doesn't exist, create it */
1557 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1558 if (fd >= 0) {
8d37b030 1559 *created = true;
fd97fd44
MA
1560 break;
1561 }
1562 } else if (errno == EISDIR) {
1563 /* @path names a directory, create a file there */
1564 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
8d37b030 1565 sanitized_name = g_strdup(region_name);
fd97fd44
MA
1566 for (c = sanitized_name; *c != '\0'; c++) {
1567 if (*c == '/') {
1568 *c = '_';
1569 }
1570 }
8ca761f6 1571
fd97fd44
MA
1572 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1573 sanitized_name);
1574 g_free(sanitized_name);
8d31d6b6 1575
fd97fd44
MA
1576 fd = mkstemp(filename);
1577 if (fd >= 0) {
1578 unlink(filename);
1579 g_free(filename);
1580 break;
1581 }
1582 g_free(filename);
8d31d6b6 1583 }
fd97fd44
MA
1584 if (errno != EEXIST && errno != EINTR) {
1585 error_setg_errno(errp, errno,
1586 "can't open backing store %s for guest RAM",
1587 path);
8d37b030 1588 return -1;
fd97fd44
MA
1589 }
1590 /*
1591 * Try again on EINTR and EEXIST. The latter happens when
1592 * something else creates the file between our two open().
1593 */
8d31d6b6 1594 }
c902760f 1595
8d37b030
MAL
1596 return fd;
1597}
1598
1599static void *file_ram_alloc(RAMBlock *block,
1600 ram_addr_t memory,
1601 int fd,
1602 bool truncate,
1603 Error **errp)
1604{
1605 void *area;
1606
863e9621 1607 block->page_size = qemu_fd_getpagesize(fd);
8360668e
HZ
1608 block->mr->align = block->page_size;
1609#if defined(__s390x__)
1610 if (kvm_enabled()) {
1611 block->mr->align = MAX(block->mr->align, QEMU_VMALLOC_ALIGN);
1612 }
1613#endif
fd97fd44 1614
863e9621 1615 if (memory < block->page_size) {
fd97fd44 1616 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
863e9621
DDAG
1617 "or larger than page size 0x%zx",
1618 memory, block->page_size);
8d37b030 1619 return NULL;
1775f111
HZ
1620 }
1621
863e9621 1622 memory = ROUND_UP(memory, block->page_size);
c902760f
MT
1623
1624 /*
1625 * ftruncate is not supported by hugetlbfs in older
1626 * hosts, so don't bother bailing out on errors.
1627 * If anything goes wrong with it under other filesystems,
1628 * mmap will fail.
d6af99c9
HZ
1629 *
1630 * Do not truncate the non-empty backend file to avoid corrupting
1631 * the existing data in the file. Disabling shrinking is not
1632 * enough. For example, the current vNVDIMM implementation stores
1633 * the guest NVDIMM labels at the end of the backend file. If the
1634 * backend file is later extended, QEMU will not be able to find
1635 * those labels. Therefore, extending the non-empty backend file
1636 * is disabled as well.
c902760f 1637 */
8d37b030 1638 if (truncate && ftruncate(fd, memory)) {
9742bf26 1639 perror("ftruncate");
7f56e740 1640 }
c902760f 1641
d2f39add
DD
1642 area = qemu_ram_mmap(fd, memory, block->mr->align,
1643 block->flags & RAM_SHARED);
c902760f 1644 if (area == MAP_FAILED) {
7f56e740 1645 error_setg_errno(errp, errno,
fd97fd44 1646 "unable to map backing store for guest RAM");
8d37b030 1647 return NULL;
c902760f 1648 }
ef36fa14
MT
1649
1650 if (mem_prealloc) {
1e356fc1 1651 os_mem_prealloc(fd, area, memory, smp_cpus, errp);
056b68af 1652 if (errp && *errp) {
8d37b030
MAL
1653 qemu_ram_munmap(area, memory);
1654 return NULL;
056b68af 1655 }
ef36fa14
MT
1656 }
1657
04b16653 1658 block->fd = fd;
c902760f
MT
1659 return area;
1660}
1661#endif
1662
154cc9ea
DDAG
1663/* Allocate space within the ram_addr_t space that governs the
1664 * dirty bitmaps.
1665 * Called with the ramlist lock held.
1666 */
d17b5288 1667static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1668{
1669 RAMBlock *block, *next_block;
3e837b2c 1670 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1671
49cd9ac6
SH
1672 assert(size != 0); /* it would hand out same offset multiple times */
1673
0dc3f44a 1674 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1675 return 0;
0d53d9fe 1676 }
04b16653 1677
99e15582 1678 RAMBLOCK_FOREACH(block) {
154cc9ea 1679 ram_addr_t candidate, next = RAM_ADDR_MAX;
04b16653 1680
801110ab
DDAG
1681 /* Align blocks to start on a 'long' in the bitmap
1682 * which makes the bitmap sync'ing take the fast path.
1683 */
154cc9ea 1684 candidate = block->offset + block->max_length;
801110ab 1685 candidate = ROUND_UP(candidate, BITS_PER_LONG << TARGET_PAGE_BITS);
04b16653 1686
154cc9ea
DDAG
1687 /* Search for the closest following block
1688 * and find the gap.
1689 */
99e15582 1690 RAMBLOCK_FOREACH(next_block) {
154cc9ea 1691 if (next_block->offset >= candidate) {
04b16653
AW
1692 next = MIN(next, next_block->offset);
1693 }
1694 }
154cc9ea
DDAG
1695
1696 /* If it fits remember our place and remember the size
1697 * of gap, but keep going so that we might find a smaller
1698 * gap to fill so avoiding fragmentation.
1699 */
1700 if (next - candidate >= size && next - candidate < mingap) {
1701 offset = candidate;
1702 mingap = next - candidate;
04b16653 1703 }
154cc9ea
DDAG
1704
1705 trace_find_ram_offset_loop(size, candidate, offset, next, mingap);
04b16653 1706 }
3e837b2c
AW
1707
1708 if (offset == RAM_ADDR_MAX) {
1709 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1710 (uint64_t)size);
1711 abort();
1712 }
1713
154cc9ea
DDAG
1714 trace_find_ram_offset(size, offset);
1715
04b16653
AW
1716 return offset;
1717}
1718
b8c48993 1719unsigned long last_ram_page(void)
d17b5288
AW
1720{
1721 RAMBlock *block;
1722 ram_addr_t last = 0;
1723
0dc3f44a 1724 rcu_read_lock();
99e15582 1725 RAMBLOCK_FOREACH(block) {
62be4e3a 1726 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1727 }
0dc3f44a 1728 rcu_read_unlock();
b8c48993 1729 return last >> TARGET_PAGE_BITS;
d17b5288
AW
1730}
1731
ddb97f1d
JB
1732static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1733{
1734 int ret;
ddb97f1d
JB
1735
1736 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1737 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1738 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1739 if (ret) {
1740 perror("qemu_madvise");
1741 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1742 "but dump_guest_core=off specified\n");
1743 }
1744 }
1745}
1746
422148d3
DDAG
1747const char *qemu_ram_get_idstr(RAMBlock *rb)
1748{
1749 return rb->idstr;
1750}
1751
463a4ac2
DDAG
1752bool qemu_ram_is_shared(RAMBlock *rb)
1753{
1754 return rb->flags & RAM_SHARED;
1755}
1756
ae3a7047 1757/* Called with iothread lock held. */
fa53a0e5 1758void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1759{
fa53a0e5 1760 RAMBlock *block;
20cfe881 1761
c5705a77
AK
1762 assert(new_block);
1763 assert(!new_block->idstr[0]);
84b89d78 1764
09e5ab63
AL
1765 if (dev) {
1766 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1767 if (id) {
1768 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1769 g_free(id);
84b89d78
CM
1770 }
1771 }
1772 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1773
ab0a9956 1774 rcu_read_lock();
99e15582 1775 RAMBLOCK_FOREACH(block) {
fa53a0e5
GA
1776 if (block != new_block &&
1777 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1778 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1779 new_block->idstr);
1780 abort();
1781 }
1782 }
0dc3f44a 1783 rcu_read_unlock();
c5705a77
AK
1784}
1785
ae3a7047 1786/* Called with iothread lock held. */
fa53a0e5 1787void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1788{
ae3a7047
MD
1789 /* FIXME: arch_init.c assumes that this is not called throughout
1790 * migration. Ignore the problem since hot-unplug during migration
1791 * does not work anyway.
1792 */
20cfe881
HT
1793 if (block) {
1794 memset(block->idstr, 0, sizeof(block->idstr));
1795 }
1796}
1797
863e9621
DDAG
1798size_t qemu_ram_pagesize(RAMBlock *rb)
1799{
1800 return rb->page_size;
1801}
1802
67f11b5c
DDAG
1803/* Returns the largest size of page in use */
1804size_t qemu_ram_pagesize_largest(void)
1805{
1806 RAMBlock *block;
1807 size_t largest = 0;
1808
99e15582 1809 RAMBLOCK_FOREACH(block) {
67f11b5c
DDAG
1810 largest = MAX(largest, qemu_ram_pagesize(block));
1811 }
1812
1813 return largest;
1814}
1815
8490fc78
LC
1816static int memory_try_enable_merging(void *addr, size_t len)
1817{
75cc7f01 1818 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1819 /* disabled by the user */
1820 return 0;
1821 }
1822
1823 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1824}
1825
62be4e3a
MT
1826/* Only legal before guest might have detected the memory size: e.g. on
1827 * incoming migration, or right after reset.
1828 *
1829 * As memory core doesn't know how is memory accessed, it is up to
1830 * resize callback to update device state and/or add assertions to detect
1831 * misuse, if necessary.
1832 */
fa53a0e5 1833int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1834{
62be4e3a
MT
1835 assert(block);
1836
4ed023ce 1837 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1838
62be4e3a
MT
1839 if (block->used_length == newsize) {
1840 return 0;
1841 }
1842
1843 if (!(block->flags & RAM_RESIZEABLE)) {
1844 error_setg_errno(errp, EINVAL,
1845 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1846 " in != 0x" RAM_ADDR_FMT, block->idstr,
1847 newsize, block->used_length);
1848 return -EINVAL;
1849 }
1850
1851 if (block->max_length < newsize) {
1852 error_setg_errno(errp, EINVAL,
1853 "Length too large: %s: 0x" RAM_ADDR_FMT
1854 " > 0x" RAM_ADDR_FMT, block->idstr,
1855 newsize, block->max_length);
1856 return -EINVAL;
1857 }
1858
1859 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1860 block->used_length = newsize;
58d2707e
PB
1861 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1862 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1863 memory_region_set_size(block->mr, newsize);
1864 if (block->resized) {
1865 block->resized(block->idstr, newsize, block->host);
1866 }
1867 return 0;
1868}
1869
5b82b703
SH
1870/* Called with ram_list.mutex held */
1871static void dirty_memory_extend(ram_addr_t old_ram_size,
1872 ram_addr_t new_ram_size)
1873{
1874 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1875 DIRTY_MEMORY_BLOCK_SIZE);
1876 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1877 DIRTY_MEMORY_BLOCK_SIZE);
1878 int i;
1879
1880 /* Only need to extend if block count increased */
1881 if (new_num_blocks <= old_num_blocks) {
1882 return;
1883 }
1884
1885 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1886 DirtyMemoryBlocks *old_blocks;
1887 DirtyMemoryBlocks *new_blocks;
1888 int j;
1889
1890 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1891 new_blocks = g_malloc(sizeof(*new_blocks) +
1892 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1893
1894 if (old_num_blocks) {
1895 memcpy(new_blocks->blocks, old_blocks->blocks,
1896 old_num_blocks * sizeof(old_blocks->blocks[0]));
1897 }
1898
1899 for (j = old_num_blocks; j < new_num_blocks; j++) {
1900 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1901 }
1902
1903 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1904
1905 if (old_blocks) {
1906 g_free_rcu(old_blocks, rcu);
1907 }
1908 }
1909}
1910
528f46af 1911static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1912{
e1c57ab8 1913 RAMBlock *block;
0d53d9fe 1914 RAMBlock *last_block = NULL;
2152f5ca 1915 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1916 Error *err = NULL;
2152f5ca 1917
b8c48993 1918 old_ram_size = last_ram_page();
c5705a77 1919
b2a8658e 1920 qemu_mutex_lock_ramlist();
9b8424d5 1921 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1922
1923 if (!new_block->host) {
1924 if (xen_enabled()) {
9b8424d5 1925 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1926 new_block->mr, &err);
1927 if (err) {
1928 error_propagate(errp, err);
1929 qemu_mutex_unlock_ramlist();
39c350ee 1930 return;
37aa7a0e 1931 }
e1c57ab8 1932 } else {
9b8424d5 1933 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1934 &new_block->mr->align);
39228250 1935 if (!new_block->host) {
ef701d7b
HT
1936 error_setg_errno(errp, errno,
1937 "cannot set up guest memory '%s'",
1938 memory_region_name(new_block->mr));
1939 qemu_mutex_unlock_ramlist();
39c350ee 1940 return;
39228250 1941 }
9b8424d5 1942 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1943 }
c902760f 1944 }
94a6b54f 1945
dd631697
LZ
1946 new_ram_size = MAX(old_ram_size,
1947 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1948 if (new_ram_size > old_ram_size) {
5b82b703 1949 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1950 }
0d53d9fe
MD
1951 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1952 * QLIST (which has an RCU-friendly variant) does not have insertion at
1953 * tail, so save the last element in last_block.
1954 */
99e15582 1955 RAMBLOCK_FOREACH(block) {
0d53d9fe 1956 last_block = block;
9b8424d5 1957 if (block->max_length < new_block->max_length) {
abb26d63
PB
1958 break;
1959 }
1960 }
1961 if (block) {
0dc3f44a 1962 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1963 } else if (last_block) {
0dc3f44a 1964 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1965 } else { /* list is empty */
0dc3f44a 1966 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1967 }
0d6d3c87 1968 ram_list.mru_block = NULL;
94a6b54f 1969
0dc3f44a
MD
1970 /* Write list before version */
1971 smp_wmb();
f798b07f 1972 ram_list.version++;
b2a8658e 1973 qemu_mutex_unlock_ramlist();
f798b07f 1974
9b8424d5 1975 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1976 new_block->used_length,
1977 DIRTY_CLIENTS_ALL);
94a6b54f 1978
a904c911
PB
1979 if (new_block->host) {
1980 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1981 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1982 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1983 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
0987d735 1984 ram_block_notify_add(new_block->host, new_block->max_length);
e1c57ab8 1985 }
94a6b54f 1986}
e9a1ab19 1987
0b183fc8 1988#ifdef __linux__
38b3362d
MAL
1989RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
1990 bool share, int fd,
1991 Error **errp)
e1c57ab8
PB
1992{
1993 RAMBlock *new_block;
ef701d7b 1994 Error *local_err = NULL;
8d37b030 1995 int64_t file_size;
e1c57ab8
PB
1996
1997 if (xen_enabled()) {
7f56e740 1998 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1999 return NULL;
e1c57ab8
PB
2000 }
2001
e45e7ae2
MAL
2002 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2003 error_setg(errp,
2004 "host lacks kvm mmu notifiers, -mem-path unsupported");
2005 return NULL;
2006 }
2007
e1c57ab8
PB
2008 if (phys_mem_alloc != qemu_anon_ram_alloc) {
2009 /*
2010 * file_ram_alloc() needs to allocate just like
2011 * phys_mem_alloc, but we haven't bothered to provide
2012 * a hook there.
2013 */
7f56e740
PB
2014 error_setg(errp,
2015 "-mem-path not supported with this accelerator");
528f46af 2016 return NULL;
e1c57ab8
PB
2017 }
2018
4ed023ce 2019 size = HOST_PAGE_ALIGN(size);
8d37b030
MAL
2020 file_size = get_file_size(fd);
2021 if (file_size > 0 && file_size < size) {
2022 error_setg(errp, "backing store %s size 0x%" PRIx64
2023 " does not match 'size' option 0x" RAM_ADDR_FMT,
2024 mem_path, file_size, size);
8d37b030
MAL
2025 return NULL;
2026 }
2027
e1c57ab8
PB
2028 new_block = g_malloc0(sizeof(*new_block));
2029 new_block->mr = mr;
9b8424d5
MT
2030 new_block->used_length = size;
2031 new_block->max_length = size;
dbcb8981 2032 new_block->flags = share ? RAM_SHARED : 0;
8d37b030 2033 new_block->host = file_ram_alloc(new_block, size, fd, !file_size, errp);
7f56e740
PB
2034 if (!new_block->host) {
2035 g_free(new_block);
528f46af 2036 return NULL;
7f56e740
PB
2037 }
2038
528f46af 2039 ram_block_add(new_block, &local_err);
ef701d7b
HT
2040 if (local_err) {
2041 g_free(new_block);
2042 error_propagate(errp, local_err);
528f46af 2043 return NULL;
ef701d7b 2044 }
528f46af 2045 return new_block;
38b3362d
MAL
2046
2047}
2048
2049
2050RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
2051 bool share, const char *mem_path,
2052 Error **errp)
2053{
2054 int fd;
2055 bool created;
2056 RAMBlock *block;
2057
2058 fd = file_ram_open(mem_path, memory_region_name(mr), &created, errp);
2059 if (fd < 0) {
2060 return NULL;
2061 }
2062
2063 block = qemu_ram_alloc_from_fd(size, mr, share, fd, errp);
2064 if (!block) {
2065 if (created) {
2066 unlink(mem_path);
2067 }
2068 close(fd);
2069 return NULL;
2070 }
2071
2072 return block;
e1c57ab8 2073}
0b183fc8 2074#endif
e1c57ab8 2075
62be4e3a 2076static
528f46af
FZ
2077RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
2078 void (*resized)(const char*,
2079 uint64_t length,
2080 void *host),
2081 void *host, bool resizeable,
2082 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
2083{
2084 RAMBlock *new_block;
ef701d7b 2085 Error *local_err = NULL;
e1c57ab8 2086
4ed023ce
DDAG
2087 size = HOST_PAGE_ALIGN(size);
2088 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
2089 new_block = g_malloc0(sizeof(*new_block));
2090 new_block->mr = mr;
62be4e3a 2091 new_block->resized = resized;
9b8424d5
MT
2092 new_block->used_length = size;
2093 new_block->max_length = max_size;
62be4e3a 2094 assert(max_size >= size);
e1c57ab8 2095 new_block->fd = -1;
863e9621 2096 new_block->page_size = getpagesize();
e1c57ab8
PB
2097 new_block->host = host;
2098 if (host) {
7bd4f430 2099 new_block->flags |= RAM_PREALLOC;
e1c57ab8 2100 }
62be4e3a
MT
2101 if (resizeable) {
2102 new_block->flags |= RAM_RESIZEABLE;
2103 }
528f46af 2104 ram_block_add(new_block, &local_err);
ef701d7b
HT
2105 if (local_err) {
2106 g_free(new_block);
2107 error_propagate(errp, local_err);
528f46af 2108 return NULL;
ef701d7b 2109 }
528f46af 2110 return new_block;
e1c57ab8
PB
2111}
2112
528f46af 2113RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
2114 MemoryRegion *mr, Error **errp)
2115{
2116 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
2117}
2118
528f46af 2119RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 2120{
62be4e3a
MT
2121 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
2122}
2123
528f46af 2124RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
2125 void (*resized)(const char*,
2126 uint64_t length,
2127 void *host),
2128 MemoryRegion *mr, Error **errp)
2129{
2130 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
2131}
2132
43771539
PB
2133static void reclaim_ramblock(RAMBlock *block)
2134{
2135 if (block->flags & RAM_PREALLOC) {
2136 ;
2137 } else if (xen_enabled()) {
2138 xen_invalidate_map_cache_entry(block->host);
2139#ifndef _WIN32
2140 } else if (block->fd >= 0) {
2f3a2bb1 2141 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
2142 close(block->fd);
2143#endif
2144 } else {
2145 qemu_anon_ram_free(block->host, block->max_length);
2146 }
2147 g_free(block);
2148}
2149
f1060c55 2150void qemu_ram_free(RAMBlock *block)
e9a1ab19 2151{
85bc2a15
MAL
2152 if (!block) {
2153 return;
2154 }
2155
0987d735
PB
2156 if (block->host) {
2157 ram_block_notify_remove(block->host, block->max_length);
2158 }
2159
b2a8658e 2160 qemu_mutex_lock_ramlist();
f1060c55
FZ
2161 QLIST_REMOVE_RCU(block, next);
2162 ram_list.mru_block = NULL;
2163 /* Write list before version */
2164 smp_wmb();
2165 ram_list.version++;
2166 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 2167 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
2168}
2169
cd19cfa2
HY
2170#ifndef _WIN32
2171void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2172{
2173 RAMBlock *block;
2174 ram_addr_t offset;
2175 int flags;
2176 void *area, *vaddr;
2177
99e15582 2178 RAMBLOCK_FOREACH(block) {
cd19cfa2 2179 offset = addr - block->offset;
9b8424d5 2180 if (offset < block->max_length) {
1240be24 2181 vaddr = ramblock_ptr(block, offset);
7bd4f430 2182 if (block->flags & RAM_PREALLOC) {
cd19cfa2 2183 ;
dfeaf2ab
MA
2184 } else if (xen_enabled()) {
2185 abort();
cd19cfa2
HY
2186 } else {
2187 flags = MAP_FIXED;
3435f395 2188 if (block->fd >= 0) {
dbcb8981
PB
2189 flags |= (block->flags & RAM_SHARED ?
2190 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
2191 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2192 flags, block->fd, offset);
cd19cfa2 2193 } else {
2eb9fbaa
MA
2194 /*
2195 * Remap needs to match alloc. Accelerators that
2196 * set phys_mem_alloc never remap. If they did,
2197 * we'd need a remap hook here.
2198 */
2199 assert(phys_mem_alloc == qemu_anon_ram_alloc);
2200
cd19cfa2
HY
2201 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2202 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2203 flags, -1, 0);
cd19cfa2
HY
2204 }
2205 if (area != vaddr) {
f15fbc4b
AP
2206 fprintf(stderr, "Could not remap addr: "
2207 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2208 length, addr);
2209 exit(1);
2210 }
8490fc78 2211 memory_try_enable_merging(vaddr, length);
ddb97f1d 2212 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 2213 }
cd19cfa2
HY
2214 }
2215 }
2216}
2217#endif /* !_WIN32 */
2218
1b5ec234 2219/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
2220 * This should not be used for general purpose DMA. Use address_space_map
2221 * or address_space_rw instead. For local memory (e.g. video ram) that the
2222 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 2223 *
49b24afc 2224 * Called within RCU critical section.
1b5ec234 2225 */
0878d0e1 2226void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 2227{
3655cb9c
GA
2228 RAMBlock *block = ram_block;
2229
2230 if (block == NULL) {
2231 block = qemu_get_ram_block(addr);
0878d0e1 2232 addr -= block->offset;
3655cb9c 2233 }
ae3a7047
MD
2234
2235 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
2236 /* We need to check if the requested address is in the RAM
2237 * because we don't want to map the entire memory in QEMU.
2238 * In that case just map until the end of the page.
2239 */
2240 if (block->offset == 0) {
1ff7c598 2241 return xen_map_cache(addr, 0, 0, false);
0d6d3c87 2242 }
ae3a7047 2243
1ff7c598 2244 block->host = xen_map_cache(block->offset, block->max_length, 1, false);
0d6d3c87 2245 }
0878d0e1 2246 return ramblock_ptr(block, addr);
dc828ca1
PB
2247}
2248
0878d0e1 2249/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 2250 * but takes a size argument.
0dc3f44a 2251 *
e81bcda5 2252 * Called within RCU critical section.
ae3a7047 2253 */
3655cb9c 2254static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
f5aa69bd 2255 hwaddr *size, bool lock)
38bee5dc 2256{
3655cb9c 2257 RAMBlock *block = ram_block;
8ab934f9
SS
2258 if (*size == 0) {
2259 return NULL;
2260 }
e81bcda5 2261
3655cb9c
GA
2262 if (block == NULL) {
2263 block = qemu_get_ram_block(addr);
0878d0e1 2264 addr -= block->offset;
3655cb9c 2265 }
0878d0e1 2266 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
2267
2268 if (xen_enabled() && block->host == NULL) {
2269 /* We need to check if the requested address is in the RAM
2270 * because we don't want to map the entire memory in QEMU.
2271 * In that case just map the requested area.
2272 */
2273 if (block->offset == 0) {
f5aa69bd 2274 return xen_map_cache(addr, *size, lock, lock);
38bee5dc
SS
2275 }
2276
f5aa69bd 2277 block->host = xen_map_cache(block->offset, block->max_length, 1, lock);
38bee5dc 2278 }
e81bcda5 2279
0878d0e1 2280 return ramblock_ptr(block, addr);
38bee5dc
SS
2281}
2282
422148d3
DDAG
2283/*
2284 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
2285 * in that RAMBlock.
2286 *
2287 * ptr: Host pointer to look up
2288 * round_offset: If true round the result offset down to a page boundary
2289 * *ram_addr: set to result ram_addr
2290 * *offset: set to result offset within the RAMBlock
2291 *
2292 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
2293 *
2294 * By the time this function returns, the returned pointer is not protected
2295 * by RCU anymore. If the caller is not within an RCU critical section and
2296 * does not hold the iothread lock, it must have other means of protecting the
2297 * pointer, such as a reference to the region that includes the incoming
2298 * ram_addr_t.
2299 */
422148d3 2300RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 2301 ram_addr_t *offset)
5579c7f3 2302{
94a6b54f
PB
2303 RAMBlock *block;
2304 uint8_t *host = ptr;
2305
868bb33f 2306 if (xen_enabled()) {
f615f396 2307 ram_addr_t ram_addr;
0dc3f44a 2308 rcu_read_lock();
f615f396
PB
2309 ram_addr = xen_ram_addr_from_mapcache(ptr);
2310 block = qemu_get_ram_block(ram_addr);
422148d3 2311 if (block) {
d6b6aec4 2312 *offset = ram_addr - block->offset;
422148d3 2313 }
0dc3f44a 2314 rcu_read_unlock();
422148d3 2315 return block;
712c2b41
SS
2316 }
2317
0dc3f44a
MD
2318 rcu_read_lock();
2319 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 2320 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
2321 goto found;
2322 }
2323
99e15582 2324 RAMBLOCK_FOREACH(block) {
432d268c
JN
2325 /* This case append when the block is not mapped. */
2326 if (block->host == NULL) {
2327 continue;
2328 }
9b8424d5 2329 if (host - block->host < block->max_length) {
23887b79 2330 goto found;
f471a17e 2331 }
94a6b54f 2332 }
432d268c 2333
0dc3f44a 2334 rcu_read_unlock();
1b5ec234 2335 return NULL;
23887b79
PB
2336
2337found:
422148d3
DDAG
2338 *offset = (host - block->host);
2339 if (round_offset) {
2340 *offset &= TARGET_PAGE_MASK;
2341 }
0dc3f44a 2342 rcu_read_unlock();
422148d3
DDAG
2343 return block;
2344}
2345
e3dd7493
DDAG
2346/*
2347 * Finds the named RAMBlock
2348 *
2349 * name: The name of RAMBlock to find
2350 *
2351 * Returns: RAMBlock (or NULL if not found)
2352 */
2353RAMBlock *qemu_ram_block_by_name(const char *name)
2354{
2355 RAMBlock *block;
2356
99e15582 2357 RAMBLOCK_FOREACH(block) {
e3dd7493
DDAG
2358 if (!strcmp(name, block->idstr)) {
2359 return block;
2360 }
2361 }
2362
2363 return NULL;
2364}
2365
422148d3
DDAG
2366/* Some of the softmmu routines need to translate from a host pointer
2367 (typically a TLB entry) back to a ram offset. */
07bdaa41 2368ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
2369{
2370 RAMBlock *block;
f615f396 2371 ram_addr_t offset;
422148d3 2372
f615f396 2373 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 2374 if (!block) {
07bdaa41 2375 return RAM_ADDR_INVALID;
422148d3
DDAG
2376 }
2377
07bdaa41 2378 return block->offset + offset;
e890261f 2379}
f471a17e 2380
27266271
PM
2381/* Called within RCU critical section. */
2382void memory_notdirty_write_prepare(NotDirtyInfo *ndi,
2383 CPUState *cpu,
2384 vaddr mem_vaddr,
2385 ram_addr_t ram_addr,
2386 unsigned size)
2387{
2388 ndi->cpu = cpu;
2389 ndi->ram_addr = ram_addr;
2390 ndi->mem_vaddr = mem_vaddr;
2391 ndi->size = size;
2392 ndi->locked = false;
ba051fb5 2393
5aa1ef71 2394 assert(tcg_enabled());
52159192 2395 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
27266271 2396 ndi->locked = true;
ba051fb5 2397 tb_lock();
0e0df1e2 2398 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 2399 }
27266271
PM
2400}
2401
2402/* Called within RCU critical section. */
2403void memory_notdirty_write_complete(NotDirtyInfo *ndi)
2404{
2405 if (ndi->locked) {
2406 tb_unlock();
2407 }
2408
2409 /* Set both VGA and migration bits for simplicity and to remove
2410 * the notdirty callback faster.
2411 */
2412 cpu_physical_memory_set_dirty_range(ndi->ram_addr, ndi->size,
2413 DIRTY_CLIENTS_NOCODE);
2414 /* we remove the notdirty callback only if the code has been
2415 flushed */
2416 if (!cpu_physical_memory_is_clean(ndi->ram_addr)) {
2417 tlb_set_dirty(ndi->cpu, ndi->mem_vaddr);
2418 }
2419}
2420
2421/* Called within RCU critical section. */
2422static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
2423 uint64_t val, unsigned size)
2424{
2425 NotDirtyInfo ndi;
2426
2427 memory_notdirty_write_prepare(&ndi, current_cpu, current_cpu->mem_io_vaddr,
2428 ram_addr, size);
2429
0e0df1e2
AK
2430 switch (size) {
2431 case 1:
0878d0e1 2432 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2433 break;
2434 case 2:
0878d0e1 2435 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
2436 break;
2437 case 4:
0878d0e1 2438 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2 2439 break;
ad52878f
AB
2440 case 8:
2441 stq_p(qemu_map_ram_ptr(NULL, ram_addr), val);
2442 break;
0e0df1e2
AK
2443 default:
2444 abort();
3a7d929e 2445 }
27266271 2446 memory_notdirty_write_complete(&ndi);
9fa3e853
FB
2447}
2448
b018ddf6
PB
2449static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
2450 unsigned size, bool is_write)
2451{
2452 return is_write;
2453}
2454
0e0df1e2 2455static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 2456 .write = notdirty_mem_write,
b018ddf6 2457 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 2458 .endianness = DEVICE_NATIVE_ENDIAN,
ad52878f
AB
2459 .valid = {
2460 .min_access_size = 1,
2461 .max_access_size = 8,
2462 .unaligned = false,
2463 },
2464 .impl = {
2465 .min_access_size = 1,
2466 .max_access_size = 8,
2467 .unaligned = false,
2468 },
1ccde1cb
FB
2469};
2470
0f459d16 2471/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 2472static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 2473{
93afeade 2474 CPUState *cpu = current_cpu;
568496c0 2475 CPUClass *cc = CPU_GET_CLASS(cpu);
0f459d16 2476 target_ulong vaddr;
a1d1bb31 2477 CPUWatchpoint *wp;
0f459d16 2478
5aa1ef71 2479 assert(tcg_enabled());
ff4700b0 2480 if (cpu->watchpoint_hit) {
06d55cc1
AL
2481 /* We re-entered the check after replacing the TB. Now raise
2482 * the debug interrupt so that is will trigger after the
2483 * current instruction. */
93afeade 2484 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2485 return;
2486 }
93afeade 2487 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
40612000 2488 vaddr = cc->adjust_watchpoint_address(cpu, vaddr, len);
ff4700b0 2489 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2490 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2491 && (wp->flags & flags)) {
08225676
PM
2492 if (flags == BP_MEM_READ) {
2493 wp->flags |= BP_WATCHPOINT_HIT_READ;
2494 } else {
2495 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2496 }
2497 wp->hitaddr = vaddr;
66b9b43c 2498 wp->hitattrs = attrs;
ff4700b0 2499 if (!cpu->watchpoint_hit) {
568496c0
SF
2500 if (wp->flags & BP_CPU &&
2501 !cc->debug_check_watchpoint(cpu, wp)) {
2502 wp->flags &= ~BP_WATCHPOINT_HIT;
2503 continue;
2504 }
ff4700b0 2505 cpu->watchpoint_hit = wp;
a5e99826 2506
8d04fb55
JK
2507 /* Both tb_lock and iothread_mutex will be reset when
2508 * cpu_loop_exit or cpu_loop_exit_noexc longjmp
2509 * back into the cpu_exec main loop.
a5e99826
FK
2510 */
2511 tb_lock();
239c51a5 2512 tb_check_watchpoint(cpu);
6e140f28 2513 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2514 cpu->exception_index = EXCP_DEBUG;
5638d180 2515 cpu_loop_exit(cpu);
6e140f28 2516 } else {
9b990ee5
RH
2517 /* Force execution of one insn next time. */
2518 cpu->cflags_next_tb = 1 | curr_cflags();
6886b980 2519 cpu_loop_exit_noexc(cpu);
6e140f28 2520 }
06d55cc1 2521 }
6e140f28
AL
2522 } else {
2523 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2524 }
2525 }
2526}
2527
6658ffb8
PB
2528/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2529 so these check for a hit then pass through to the normal out-of-line
2530 phys routines. */
66b9b43c
PM
2531static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2532 unsigned size, MemTxAttrs attrs)
6658ffb8 2533{
66b9b43c
PM
2534 MemTxResult res;
2535 uint64_t data;
79ed0416
PM
2536 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2537 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2538
2539 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2540 switch (size) {
66b9b43c 2541 case 1:
79ed0416 2542 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2543 break;
2544 case 2:
79ed0416 2545 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2546 break;
2547 case 4:
79ed0416 2548 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2549 break;
306526b5
PB
2550 case 8:
2551 data = address_space_ldq(as, addr, attrs, &res);
2552 break;
1ec9b909
AK
2553 default: abort();
2554 }
66b9b43c
PM
2555 *pdata = data;
2556 return res;
6658ffb8
PB
2557}
2558
66b9b43c
PM
2559static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2560 uint64_t val, unsigned size,
2561 MemTxAttrs attrs)
6658ffb8 2562{
66b9b43c 2563 MemTxResult res;
79ed0416
PM
2564 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2565 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2566
2567 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2568 switch (size) {
67364150 2569 case 1:
79ed0416 2570 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2571 break;
2572 case 2:
79ed0416 2573 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2574 break;
2575 case 4:
79ed0416 2576 address_space_stl(as, addr, val, attrs, &res);
67364150 2577 break;
306526b5
PB
2578 case 8:
2579 address_space_stq(as, addr, val, attrs, &res);
2580 break;
1ec9b909
AK
2581 default: abort();
2582 }
66b9b43c 2583 return res;
6658ffb8
PB
2584}
2585
1ec9b909 2586static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2587 .read_with_attrs = watch_mem_read,
2588 .write_with_attrs = watch_mem_write,
1ec9b909 2589 .endianness = DEVICE_NATIVE_ENDIAN,
306526b5
PB
2590 .valid = {
2591 .min_access_size = 1,
2592 .max_access_size = 8,
2593 .unaligned = false,
2594 },
2595 .impl = {
2596 .min_access_size = 1,
2597 .max_access_size = 8,
2598 .unaligned = false,
2599 },
6658ffb8 2600};
6658ffb8 2601
16620684
AK
2602static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
2603 const uint8_t *buf, int len);
2604static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
2605 bool is_write);
2606
f25a49e0
PM
2607static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2608 unsigned len, MemTxAttrs attrs)
db7b5426 2609{
acc9d80b 2610 subpage_t *subpage = opaque;
ff6cff75 2611 uint8_t buf[8];
5c9eb028 2612 MemTxResult res;
791af8c8 2613
db7b5426 2614#if defined(DEBUG_SUBPAGE)
016e9d62 2615 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2616 subpage, len, addr);
db7b5426 2617#endif
16620684 2618 res = flatview_read(subpage->fv, addr + subpage->base, attrs, buf, len);
5c9eb028
PM
2619 if (res) {
2620 return res;
f25a49e0 2621 }
acc9d80b
JK
2622 switch (len) {
2623 case 1:
f25a49e0
PM
2624 *data = ldub_p(buf);
2625 return MEMTX_OK;
acc9d80b 2626 case 2:
f25a49e0
PM
2627 *data = lduw_p(buf);
2628 return MEMTX_OK;
acc9d80b 2629 case 4:
f25a49e0
PM
2630 *data = ldl_p(buf);
2631 return MEMTX_OK;
ff6cff75 2632 case 8:
f25a49e0
PM
2633 *data = ldq_p(buf);
2634 return MEMTX_OK;
acc9d80b
JK
2635 default:
2636 abort();
2637 }
db7b5426
BS
2638}
2639
f25a49e0
PM
2640static MemTxResult subpage_write(void *opaque, hwaddr addr,
2641 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2642{
acc9d80b 2643 subpage_t *subpage = opaque;
ff6cff75 2644 uint8_t buf[8];
acc9d80b 2645
db7b5426 2646#if defined(DEBUG_SUBPAGE)
016e9d62 2647 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2648 " value %"PRIx64"\n",
2649 __func__, subpage, len, addr, value);
db7b5426 2650#endif
acc9d80b
JK
2651 switch (len) {
2652 case 1:
2653 stb_p(buf, value);
2654 break;
2655 case 2:
2656 stw_p(buf, value);
2657 break;
2658 case 4:
2659 stl_p(buf, value);
2660 break;
ff6cff75
PB
2661 case 8:
2662 stq_p(buf, value);
2663 break;
acc9d80b
JK
2664 default:
2665 abort();
2666 }
16620684 2667 return flatview_write(subpage->fv, addr + subpage->base, attrs, buf, len);
db7b5426
BS
2668}
2669
c353e4cc 2670static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2671 unsigned len, bool is_write)
c353e4cc 2672{
acc9d80b 2673 subpage_t *subpage = opaque;
c353e4cc 2674#if defined(DEBUG_SUBPAGE)
016e9d62 2675 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2676 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2677#endif
2678
16620684
AK
2679 return flatview_access_valid(subpage->fv, addr + subpage->base,
2680 len, is_write);
c353e4cc
PB
2681}
2682
70c68e44 2683static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2684 .read_with_attrs = subpage_read,
2685 .write_with_attrs = subpage_write,
ff6cff75
PB
2686 .impl.min_access_size = 1,
2687 .impl.max_access_size = 8,
2688 .valid.min_access_size = 1,
2689 .valid.max_access_size = 8,
c353e4cc 2690 .valid.accepts = subpage_accepts,
70c68e44 2691 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2692};
2693
c227f099 2694static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2695 uint16_t section)
db7b5426
BS
2696{
2697 int idx, eidx;
2698
2699 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2700 return -1;
2701 idx = SUBPAGE_IDX(start);
2702 eidx = SUBPAGE_IDX(end);
2703#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2704 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2705 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2706#endif
db7b5426 2707 for (; idx <= eidx; idx++) {
5312bd8b 2708 mmio->sub_section[idx] = section;
db7b5426
BS
2709 }
2710
2711 return 0;
2712}
2713
16620684 2714static subpage_t *subpage_init(FlatView *fv, hwaddr base)
db7b5426 2715{
c227f099 2716 subpage_t *mmio;
db7b5426 2717
2615fabd 2718 mmio = g_malloc0(sizeof(subpage_t) + TARGET_PAGE_SIZE * sizeof(uint16_t));
16620684 2719 mmio->fv = fv;
1eec614b 2720 mmio->base = base;
2c9b15ca 2721 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2722 NULL, TARGET_PAGE_SIZE);
b3b00c78 2723 mmio->iomem.subpage = true;
db7b5426 2724#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2725 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2726 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2727#endif
b41aac4f 2728 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2729
2730 return mmio;
2731}
2732
16620684 2733static uint16_t dummy_section(PhysPageMap *map, FlatView *fv, MemoryRegion *mr)
5312bd8b 2734{
16620684 2735 assert(fv);
5312bd8b 2736 MemoryRegionSection section = {
16620684 2737 .fv = fv,
5312bd8b
AK
2738 .mr = mr,
2739 .offset_within_address_space = 0,
2740 .offset_within_region = 0,
052e87b0 2741 .size = int128_2_64(),
5312bd8b
AK
2742 };
2743
53cb28cb 2744 return phys_section_add(map, &section);
5312bd8b
AK
2745}
2746
8af36743
PM
2747static void readonly_mem_write(void *opaque, hwaddr addr,
2748 uint64_t val, unsigned size)
2749{
2750 /* Ignore any write to ROM. */
2751}
2752
2753static bool readonly_mem_accepts(void *opaque, hwaddr addr,
2754 unsigned size, bool is_write)
2755{
2756 return is_write;
2757}
2758
2759/* This will only be used for writes, because reads are special cased
2760 * to directly access the underlying host ram.
2761 */
2762static const MemoryRegionOps readonly_mem_ops = {
2763 .write = readonly_mem_write,
2764 .valid.accepts = readonly_mem_accepts,
2765 .endianness = DEVICE_NATIVE_ENDIAN,
2766 .valid = {
2767 .min_access_size = 1,
2768 .max_access_size = 8,
2769 .unaligned = false,
2770 },
2771 .impl = {
2772 .min_access_size = 1,
2773 .max_access_size = 8,
2774 .unaligned = false,
2775 },
2776};
2777
a54c87b6 2778MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2779{
a54c87b6
PM
2780 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2781 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2782 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2783 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2784
2785 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2786}
2787
e9179ce1
AK
2788static void io_mem_init(void)
2789{
8af36743
PM
2790 memory_region_init_io(&io_mem_rom, NULL, &readonly_mem_ops,
2791 NULL, NULL, UINT64_MAX);
2c9b15ca 2792 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2793 NULL, UINT64_MAX);
8d04fb55
JK
2794
2795 /* io_mem_notdirty calls tb_invalidate_phys_page_fast,
2796 * which can be called without the iothread mutex.
2797 */
2c9b15ca 2798 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2799 NULL, UINT64_MAX);
8d04fb55
JK
2800 memory_region_clear_global_locking(&io_mem_notdirty);
2801
2c9b15ca 2802 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2803 NULL, UINT64_MAX);
e9179ce1
AK
2804}
2805
8629d3fc 2806AddressSpaceDispatch *address_space_dispatch_new(FlatView *fv)
00752703 2807{
53cb28cb
MA
2808 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2809 uint16_t n;
2810
16620684 2811 n = dummy_section(&d->map, fv, &io_mem_unassigned);
53cb28cb 2812 assert(n == PHYS_SECTION_UNASSIGNED);
16620684 2813 n = dummy_section(&d->map, fv, &io_mem_notdirty);
53cb28cb 2814 assert(n == PHYS_SECTION_NOTDIRTY);
16620684 2815 n = dummy_section(&d->map, fv, &io_mem_rom);
53cb28cb 2816 assert(n == PHYS_SECTION_ROM);
16620684 2817 n = dummy_section(&d->map, fv, &io_mem_watch);
53cb28cb 2818 assert(n == PHYS_SECTION_WATCH);
00752703 2819
9736e55b 2820 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
66a6df1d
AK
2821
2822 return d;
00752703
PB
2823}
2824
66a6df1d 2825void address_space_dispatch_free(AddressSpaceDispatch *d)
79e2b9ae
PB
2826{
2827 phys_sections_free(&d->map);
2828 g_free(d);
2829}
2830
1d71148e 2831static void tcg_commit(MemoryListener *listener)
50c1e149 2832{
32857f4d
PM
2833 CPUAddressSpace *cpuas;
2834 AddressSpaceDispatch *d;
117712c3
AK
2835
2836 /* since each CPU stores ram addresses in its TLB cache, we must
2837 reset the modified entries */
32857f4d
PM
2838 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2839 cpu_reloading_memory_map();
2840 /* The CPU and TLB are protected by the iothread lock.
2841 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2842 * may have split the RCU critical section.
2843 */
66a6df1d 2844 d = address_space_to_dispatch(cpuas->as);
f35e44e7 2845 atomic_rcu_set(&cpuas->memory_dispatch, d);
d10eb08f 2846 tlb_flush(cpuas->cpu);
50c1e149
AK
2847}
2848
62152b8a
AK
2849static void memory_map_init(void)
2850{
7267c094 2851 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2852
57271d63 2853 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2854 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2855
7267c094 2856 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2857 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2858 65536);
7dca8043 2859 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2860}
2861
2862MemoryRegion *get_system_memory(void)
2863{
2864 return system_memory;
2865}
2866
309cb471
AK
2867MemoryRegion *get_system_io(void)
2868{
2869 return system_io;
2870}
2871
e2eef170
PB
2872#endif /* !defined(CONFIG_USER_ONLY) */
2873
13eb76e0
FB
2874/* physical memory access (slow version, mainly for debug) */
2875#if defined(CONFIG_USER_ONLY)
f17ec444 2876int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2877 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2878{
2879 int l, flags;
2880 target_ulong page;
53a5960a 2881 void * p;
13eb76e0
FB
2882
2883 while (len > 0) {
2884 page = addr & TARGET_PAGE_MASK;
2885 l = (page + TARGET_PAGE_SIZE) - addr;
2886 if (l > len)
2887 l = len;
2888 flags = page_get_flags(page);
2889 if (!(flags & PAGE_VALID))
a68fe89c 2890 return -1;
13eb76e0
FB
2891 if (is_write) {
2892 if (!(flags & PAGE_WRITE))
a68fe89c 2893 return -1;
579a97f7 2894 /* XXX: this code should not depend on lock_user */
72fb7daa 2895 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2896 return -1;
72fb7daa
AJ
2897 memcpy(p, buf, l);
2898 unlock_user(p, addr, l);
13eb76e0
FB
2899 } else {
2900 if (!(flags & PAGE_READ))
a68fe89c 2901 return -1;
579a97f7 2902 /* XXX: this code should not depend on lock_user */
72fb7daa 2903 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2904 return -1;
72fb7daa 2905 memcpy(buf, p, l);
5b257578 2906 unlock_user(p, addr, 0);
13eb76e0
FB
2907 }
2908 len -= l;
2909 buf += l;
2910 addr += l;
2911 }
a68fe89c 2912 return 0;
13eb76e0 2913}
8df1cd07 2914
13eb76e0 2915#else
51d7a9eb 2916
845b6214 2917static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2918 hwaddr length)
51d7a9eb 2919{
e87f7778 2920 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2921 addr += memory_region_get_ram_addr(mr);
2922
e87f7778
PB
2923 /* No early return if dirty_log_mask is or becomes 0, because
2924 * cpu_physical_memory_set_dirty_range will still call
2925 * xen_modified_memory.
2926 */
2927 if (dirty_log_mask) {
2928 dirty_log_mask =
2929 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2930 }
2931 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
5aa1ef71 2932 assert(tcg_enabled());
ba051fb5 2933 tb_lock();
e87f7778 2934 tb_invalidate_phys_range(addr, addr + length);
ba051fb5 2935 tb_unlock();
e87f7778 2936 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2937 }
e87f7778 2938 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2939}
2940
23326164 2941static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2942{
e1622f4b 2943 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2944
2945 /* Regions are assumed to support 1-4 byte accesses unless
2946 otherwise specified. */
23326164
RH
2947 if (access_size_max == 0) {
2948 access_size_max = 4;
2949 }
2950
2951 /* Bound the maximum access by the alignment of the address. */
2952 if (!mr->ops->impl.unaligned) {
2953 unsigned align_size_max = addr & -addr;
2954 if (align_size_max != 0 && align_size_max < access_size_max) {
2955 access_size_max = align_size_max;
2956 }
82f2563f 2957 }
23326164
RH
2958
2959 /* Don't attempt accesses larger than the maximum. */
2960 if (l > access_size_max) {
2961 l = access_size_max;
82f2563f 2962 }
6554f5c0 2963 l = pow2floor(l);
23326164
RH
2964
2965 return l;
82f2563f
PB
2966}
2967
4840f10e 2968static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2969{
4840f10e
JK
2970 bool unlocked = !qemu_mutex_iothread_locked();
2971 bool release_lock = false;
2972
2973 if (unlocked && mr->global_locking) {
2974 qemu_mutex_lock_iothread();
2975 unlocked = false;
2976 release_lock = true;
2977 }
125b3806 2978 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2979 if (unlocked) {
2980 qemu_mutex_lock_iothread();
2981 }
125b3806 2982 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2983 if (unlocked) {
2984 qemu_mutex_unlock_iothread();
2985 }
125b3806 2986 }
4840f10e
JK
2987
2988 return release_lock;
125b3806
PB
2989}
2990
a203ac70 2991/* Called within RCU critical section. */
16620684
AK
2992static MemTxResult flatview_write_continue(FlatView *fv, hwaddr addr,
2993 MemTxAttrs attrs,
2994 const uint8_t *buf,
2995 int len, hwaddr addr1,
2996 hwaddr l, MemoryRegion *mr)
13eb76e0 2997{
13eb76e0 2998 uint8_t *ptr;
791af8c8 2999 uint64_t val;
3b643495 3000 MemTxResult result = MEMTX_OK;
4840f10e 3001 bool release_lock = false;
3b46e624 3002
a203ac70 3003 for (;;) {
eb7eeb88
PB
3004 if (!memory_access_is_direct(mr, true)) {
3005 release_lock |= prepare_mmio_access(mr);
3006 l = memory_access_size(mr, l, addr1);
3007 /* XXX: could force current_cpu to NULL to avoid
3008 potential bugs */
3009 switch (l) {
3010 case 8:
3011 /* 64 bit write access */
3012 val = ldq_p(buf);
3013 result |= memory_region_dispatch_write(mr, addr1, val, 8,
3014 attrs);
3015 break;
3016 case 4:
3017 /* 32 bit write access */
6da67de6 3018 val = (uint32_t)ldl_p(buf);
eb7eeb88
PB
3019 result |= memory_region_dispatch_write(mr, addr1, val, 4,
3020 attrs);
3021 break;
3022 case 2:
3023 /* 16 bit write access */
3024 val = lduw_p(buf);
3025 result |= memory_region_dispatch_write(mr, addr1, val, 2,
3026 attrs);
3027 break;
3028 case 1:
3029 /* 8 bit write access */
3030 val = ldub_p(buf);
3031 result |= memory_region_dispatch_write(mr, addr1, val, 1,
3032 attrs);
3033 break;
3034 default:
3035 abort();
13eb76e0
FB
3036 }
3037 } else {
eb7eeb88 3038 /* RAM case */
f5aa69bd 3039 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3040 memcpy(ptr, buf, l);
3041 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 3042 }
4840f10e
JK
3043
3044 if (release_lock) {
3045 qemu_mutex_unlock_iothread();
3046 release_lock = false;
3047 }
3048
13eb76e0
FB
3049 len -= l;
3050 buf += l;
3051 addr += l;
a203ac70
PB
3052
3053 if (!len) {
3054 break;
3055 }
3056
3057 l = len;
16620684 3058 mr = flatview_translate(fv, addr, &addr1, &l, true);
13eb76e0 3059 }
fd8aaa76 3060
3b643495 3061 return result;
13eb76e0 3062}
8df1cd07 3063
16620684
AK
3064static MemTxResult flatview_write(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3065 const uint8_t *buf, int len)
ac1970fb 3066{
eb7eeb88 3067 hwaddr l;
eb7eeb88
PB
3068 hwaddr addr1;
3069 MemoryRegion *mr;
3070 MemTxResult result = MEMTX_OK;
eb7eeb88 3071
a203ac70
PB
3072 if (len > 0) {
3073 rcu_read_lock();
eb7eeb88 3074 l = len;
16620684
AK
3075 mr = flatview_translate(fv, addr, &addr1, &l, true);
3076 result = flatview_write_continue(fv, addr, attrs, buf, len,
3077 addr1, l, mr);
a203ac70
PB
3078 rcu_read_unlock();
3079 }
3080
3081 return result;
3082}
3083
16620684
AK
3084MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
3085 MemTxAttrs attrs,
3086 const uint8_t *buf, int len)
3087{
3088 return flatview_write(address_space_to_flatview(as), addr, attrs, buf, len);
3089}
3090
a203ac70 3091/* Called within RCU critical section. */
16620684
AK
3092MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
3093 MemTxAttrs attrs, uint8_t *buf,
3094 int len, hwaddr addr1, hwaddr l,
3095 MemoryRegion *mr)
a203ac70
PB
3096{
3097 uint8_t *ptr;
3098 uint64_t val;
3099 MemTxResult result = MEMTX_OK;
3100 bool release_lock = false;
eb7eeb88 3101
a203ac70 3102 for (;;) {
eb7eeb88
PB
3103 if (!memory_access_is_direct(mr, false)) {
3104 /* I/O case */
3105 release_lock |= prepare_mmio_access(mr);
3106 l = memory_access_size(mr, l, addr1);
3107 switch (l) {
3108 case 8:
3109 /* 64 bit read access */
3110 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
3111 attrs);
3112 stq_p(buf, val);
3113 break;
3114 case 4:
3115 /* 32 bit read access */
3116 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
3117 attrs);
3118 stl_p(buf, val);
3119 break;
3120 case 2:
3121 /* 16 bit read access */
3122 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
3123 attrs);
3124 stw_p(buf, val);
3125 break;
3126 case 1:
3127 /* 8 bit read access */
3128 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
3129 attrs);
3130 stb_p(buf, val);
3131 break;
3132 default:
3133 abort();
3134 }
3135 } else {
3136 /* RAM case */
f5aa69bd 3137 ptr = qemu_ram_ptr_length(mr->ram_block, addr1, &l, false);
eb7eeb88
PB
3138 memcpy(buf, ptr, l);
3139 }
3140
3141 if (release_lock) {
3142 qemu_mutex_unlock_iothread();
3143 release_lock = false;
3144 }
3145
3146 len -= l;
3147 buf += l;
3148 addr += l;
a203ac70
PB
3149
3150 if (!len) {
3151 break;
3152 }
3153
3154 l = len;
16620684 3155 mr = flatview_translate(fv, addr, &addr1, &l, false);
a203ac70
PB
3156 }
3157
3158 return result;
3159}
3160
16620684
AK
3161MemTxResult flatview_read_full(FlatView *fv, hwaddr addr,
3162 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
3163{
3164 hwaddr l;
3165 hwaddr addr1;
3166 MemoryRegion *mr;
3167 MemTxResult result = MEMTX_OK;
3168
3169 if (len > 0) {
3170 rcu_read_lock();
3171 l = len;
16620684
AK
3172 mr = flatview_translate(fv, addr, &addr1, &l, false);
3173 result = flatview_read_continue(fv, addr, attrs, buf, len,
3174 addr1, l, mr);
a203ac70 3175 rcu_read_unlock();
eb7eeb88 3176 }
eb7eeb88
PB
3177
3178 return result;
ac1970fb
AK
3179}
3180
16620684
AK
3181static MemTxResult flatview_rw(FlatView *fv, hwaddr addr, MemTxAttrs attrs,
3182 uint8_t *buf, int len, bool is_write)
eb7eeb88
PB
3183{
3184 if (is_write) {
16620684 3185 return flatview_write(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88 3186 } else {
16620684 3187 return flatview_read(fv, addr, attrs, (uint8_t *)buf, len);
eb7eeb88
PB
3188 }
3189}
ac1970fb 3190
16620684
AK
3191MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
3192 MemTxAttrs attrs, uint8_t *buf,
3193 int len, bool is_write)
3194{
3195 return flatview_rw(address_space_to_flatview(as),
3196 addr, attrs, buf, len, is_write);
3197}
3198
a8170e5e 3199void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
3200 int len, int is_write)
3201{
5c9eb028
PM
3202 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
3203 buf, len, is_write);
ac1970fb
AK
3204}
3205
582b55a9
AG
3206enum write_rom_type {
3207 WRITE_DATA,
3208 FLUSH_CACHE,
3209};
3210
2a221651 3211static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 3212 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 3213{
149f54b5 3214 hwaddr l;
d0ecd2aa 3215 uint8_t *ptr;
149f54b5 3216 hwaddr addr1;
5c8a00ce 3217 MemoryRegion *mr;
3b46e624 3218
41063e1e 3219 rcu_read_lock();
d0ecd2aa 3220 while (len > 0) {
149f54b5 3221 l = len;
2a221651 3222 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 3223
5c8a00ce
PB
3224 if (!(memory_region_is_ram(mr) ||
3225 memory_region_is_romd(mr))) {
b242e0e0 3226 l = memory_access_size(mr, l, addr1);
d0ecd2aa 3227 } else {
d0ecd2aa 3228 /* ROM/RAM case */
0878d0e1 3229 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
3230 switch (type) {
3231 case WRITE_DATA:
3232 memcpy(ptr, buf, l);
845b6214 3233 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
3234 break;
3235 case FLUSH_CACHE:
3236 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
3237 break;
3238 }
d0ecd2aa
FB
3239 }
3240 len -= l;
3241 buf += l;
3242 addr += l;
3243 }
41063e1e 3244 rcu_read_unlock();
d0ecd2aa
FB
3245}
3246
582b55a9 3247/* used for ROM loading : can write in RAM and ROM */
2a221651 3248void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
3249 const uint8_t *buf, int len)
3250{
2a221651 3251 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
3252}
3253
3254void cpu_flush_icache_range(hwaddr start, int len)
3255{
3256 /*
3257 * This function should do the same thing as an icache flush that was
3258 * triggered from within the guest. For TCG we are always cache coherent,
3259 * so there is no need to flush anything. For KVM / Xen we need to flush
3260 * the host's instruction cache at least.
3261 */
3262 if (tcg_enabled()) {
3263 return;
3264 }
3265
2a221651
EI
3266 cpu_physical_memory_write_rom_internal(&address_space_memory,
3267 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
3268}
3269
6d16c2f8 3270typedef struct {
d3e71559 3271 MemoryRegion *mr;
6d16c2f8 3272 void *buffer;
a8170e5e
AK
3273 hwaddr addr;
3274 hwaddr len;
c2cba0ff 3275 bool in_use;
6d16c2f8
AL
3276} BounceBuffer;
3277
3278static BounceBuffer bounce;
3279
ba223c29 3280typedef struct MapClient {
e95205e1 3281 QEMUBH *bh;
72cf2d4f 3282 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3283} MapClient;
3284
38e047b5 3285QemuMutex map_client_list_lock;
72cf2d4f
BS
3286static QLIST_HEAD(map_client_list, MapClient) map_client_list
3287 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 3288
e95205e1
FZ
3289static void cpu_unregister_map_client_do(MapClient *client)
3290{
3291 QLIST_REMOVE(client, link);
3292 g_free(client);
3293}
3294
33b6c2ed
FZ
3295static void cpu_notify_map_clients_locked(void)
3296{
3297 MapClient *client;
3298
3299 while (!QLIST_EMPTY(&map_client_list)) {
3300 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
3301 qemu_bh_schedule(client->bh);
3302 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
3303 }
3304}
3305
e95205e1 3306void cpu_register_map_client(QEMUBH *bh)
ba223c29 3307{
7267c094 3308 MapClient *client = g_malloc(sizeof(*client));
ba223c29 3309
38e047b5 3310 qemu_mutex_lock(&map_client_list_lock);
e95205e1 3311 client->bh = bh;
72cf2d4f 3312 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
3313 if (!atomic_read(&bounce.in_use)) {
3314 cpu_notify_map_clients_locked();
3315 }
38e047b5 3316 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3317}
3318
38e047b5 3319void cpu_exec_init_all(void)
ba223c29 3320{
38e047b5 3321 qemu_mutex_init(&ram_list.mutex);
20bccb82
PM
3322 /* The data structures we set up here depend on knowing the page size,
3323 * so no more changes can be made after this point.
3324 * In an ideal world, nothing we did before we had finished the
3325 * machine setup would care about the target page size, and we could
3326 * do this much later, rather than requiring board models to state
3327 * up front what their requirements are.
3328 */
3329 finalize_target_page_bits();
38e047b5 3330 io_mem_init();
680a4783 3331 memory_map_init();
38e047b5 3332 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
3333}
3334
e95205e1 3335void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
3336{
3337 MapClient *client;
3338
e95205e1
FZ
3339 qemu_mutex_lock(&map_client_list_lock);
3340 QLIST_FOREACH(client, &map_client_list, link) {
3341 if (client->bh == bh) {
3342 cpu_unregister_map_client_do(client);
3343 break;
3344 }
ba223c29 3345 }
e95205e1 3346 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3347}
3348
3349static void cpu_notify_map_clients(void)
3350{
38e047b5 3351 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 3352 cpu_notify_map_clients_locked();
38e047b5 3353 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
3354}
3355
16620684
AK
3356static bool flatview_access_valid(FlatView *fv, hwaddr addr, int len,
3357 bool is_write)
51644ab7 3358{
5c8a00ce 3359 MemoryRegion *mr;
51644ab7
PB
3360 hwaddr l, xlat;
3361
41063e1e 3362 rcu_read_lock();
51644ab7
PB
3363 while (len > 0) {
3364 l = len;
16620684 3365 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
5c8a00ce
PB
3366 if (!memory_access_is_direct(mr, is_write)) {
3367 l = memory_access_size(mr, l, addr);
3368 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
5ad4a2b7 3369 rcu_read_unlock();
51644ab7
PB
3370 return false;
3371 }
3372 }
3373
3374 len -= l;
3375 addr += l;
3376 }
41063e1e 3377 rcu_read_unlock();
51644ab7
PB
3378 return true;
3379}
3380
16620684
AK
3381bool address_space_access_valid(AddressSpace *as, hwaddr addr,
3382 int len, bool is_write)
3383{
3384 return flatview_access_valid(address_space_to_flatview(as),
3385 addr, len, is_write);
3386}
3387
715c31ec 3388static hwaddr
16620684
AK
3389flatview_extend_translation(FlatView *fv, hwaddr addr,
3390 hwaddr target_len,
715c31ec
PB
3391 MemoryRegion *mr, hwaddr base, hwaddr len,
3392 bool is_write)
3393{
3394 hwaddr done = 0;
3395 hwaddr xlat;
3396 MemoryRegion *this_mr;
3397
3398 for (;;) {
3399 target_len -= len;
3400 addr += len;
3401 done += len;
3402 if (target_len == 0) {
3403 return done;
3404 }
3405
3406 len = target_len;
16620684
AK
3407 this_mr = flatview_translate(fv, addr, &xlat,
3408 &len, is_write);
715c31ec
PB
3409 if (this_mr != mr || xlat != base + done) {
3410 return done;
3411 }
3412 }
3413}
3414
6d16c2f8
AL
3415/* Map a physical memory region into a host virtual address.
3416 * May map a subset of the requested range, given by and returned in *plen.
3417 * May return NULL if resources needed to perform the mapping are exhausted.
3418 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3419 * Use cpu_register_map_client() to know when retrying the map operation is
3420 * likely to succeed.
6d16c2f8 3421 */
ac1970fb 3422void *address_space_map(AddressSpace *as,
a8170e5e
AK
3423 hwaddr addr,
3424 hwaddr *plen,
ac1970fb 3425 bool is_write)
6d16c2f8 3426{
a8170e5e 3427 hwaddr len = *plen;
715c31ec
PB
3428 hwaddr l, xlat;
3429 MemoryRegion *mr;
e81bcda5 3430 void *ptr;
16620684 3431 FlatView *fv = address_space_to_flatview(as);
6d16c2f8 3432
e3127ae0
PB
3433 if (len == 0) {
3434 return NULL;
3435 }
38bee5dc 3436
e3127ae0 3437 l = len;
41063e1e 3438 rcu_read_lock();
16620684 3439 mr = flatview_translate(fv, addr, &xlat, &l, is_write);
41063e1e 3440
e3127ae0 3441 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 3442 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 3443 rcu_read_unlock();
e3127ae0 3444 return NULL;
6d16c2f8 3445 }
e85d9db5
KW
3446 /* Avoid unbounded allocations */
3447 l = MIN(l, TARGET_PAGE_SIZE);
3448 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
3449 bounce.addr = addr;
3450 bounce.len = l;
d3e71559
PB
3451
3452 memory_region_ref(mr);
3453 bounce.mr = mr;
e3127ae0 3454 if (!is_write) {
16620684 3455 flatview_read(fv, addr, MEMTXATTRS_UNSPECIFIED,
5c9eb028 3456 bounce.buffer, l);
8ab934f9 3457 }
6d16c2f8 3458
41063e1e 3459 rcu_read_unlock();
e3127ae0
PB
3460 *plen = l;
3461 return bounce.buffer;
3462 }
3463
e3127ae0 3464
d3e71559 3465 memory_region_ref(mr);
16620684
AK
3466 *plen = flatview_extend_translation(fv, addr, len, mr, xlat,
3467 l, is_write);
f5aa69bd 3468 ptr = qemu_ram_ptr_length(mr->ram_block, xlat, plen, true);
e81bcda5
PB
3469 rcu_read_unlock();
3470
3471 return ptr;
6d16c2f8
AL
3472}
3473
ac1970fb 3474/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
3475 * Will also mark the memory as dirty if is_write == 1. access_len gives
3476 * the amount of memory that was actually read or written by the caller.
3477 */
a8170e5e
AK
3478void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
3479 int is_write, hwaddr access_len)
6d16c2f8
AL
3480{
3481 if (buffer != bounce.buffer) {
d3e71559
PB
3482 MemoryRegion *mr;
3483 ram_addr_t addr1;
3484
07bdaa41 3485 mr = memory_region_from_host(buffer, &addr1);
d3e71559 3486 assert(mr != NULL);
6d16c2f8 3487 if (is_write) {
845b6214 3488 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 3489 }
868bb33f 3490 if (xen_enabled()) {
e41d7c69 3491 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3492 }
d3e71559 3493 memory_region_unref(mr);
6d16c2f8
AL
3494 return;
3495 }
3496 if (is_write) {
5c9eb028
PM
3497 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
3498 bounce.buffer, access_len);
6d16c2f8 3499 }
f8a83245 3500 qemu_vfree(bounce.buffer);
6d16c2f8 3501 bounce.buffer = NULL;
d3e71559 3502 memory_region_unref(bounce.mr);
c2cba0ff 3503 atomic_mb_set(&bounce.in_use, false);
ba223c29 3504 cpu_notify_map_clients();
6d16c2f8 3505}
d0ecd2aa 3506
a8170e5e
AK
3507void *cpu_physical_memory_map(hwaddr addr,
3508 hwaddr *plen,
ac1970fb
AK
3509 int is_write)
3510{
3511 return address_space_map(&address_space_memory, addr, plen, is_write);
3512}
3513
a8170e5e
AK
3514void cpu_physical_memory_unmap(void *buffer, hwaddr len,
3515 int is_write, hwaddr access_len)
ac1970fb
AK
3516{
3517 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
3518}
3519
0ce265ff
PB
3520#define ARG1_DECL AddressSpace *as
3521#define ARG1 as
3522#define SUFFIX
3523#define TRANSLATE(...) address_space_translate(as, __VA_ARGS__)
3524#define IS_DIRECT(mr, is_write) memory_access_is_direct(mr, is_write)
3525#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3526#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3527#define RCU_READ_LOCK(...) rcu_read_lock()
3528#define RCU_READ_UNLOCK(...) rcu_read_unlock()
3529#include "memory_ldst.inc.c"
1e78bcc1 3530
1f4e496e
PB
3531int64_t address_space_cache_init(MemoryRegionCache *cache,
3532 AddressSpace *as,
3533 hwaddr addr,
3534 hwaddr len,
3535 bool is_write)
3536{
90c4fe5f
PB
3537 cache->len = len;
3538 cache->as = as;
3539 cache->xlat = addr;
3540 return len;
1f4e496e
PB
3541}
3542
3543void address_space_cache_invalidate(MemoryRegionCache *cache,
3544 hwaddr addr,
3545 hwaddr access_len)
3546{
1f4e496e
PB
3547}
3548
3549void address_space_cache_destroy(MemoryRegionCache *cache)
3550{
90c4fe5f 3551 cache->as = NULL;
1f4e496e
PB
3552}
3553
3554#define ARG1_DECL MemoryRegionCache *cache
3555#define ARG1 cache
3556#define SUFFIX _cached
90c4fe5f
PB
3557#define TRANSLATE(addr, ...) \
3558 address_space_translate(cache->as, cache->xlat + (addr), __VA_ARGS__)
1f4e496e 3559#define IS_DIRECT(mr, is_write) true
90c4fe5f
PB
3560#define MAP_RAM(mr, ofs) qemu_map_ram_ptr((mr)->ram_block, ofs)
3561#define INVALIDATE(mr, ofs, len) invalidate_and_set_dirty(mr, ofs, len)
3562#define RCU_READ_LOCK() rcu_read_lock()
3563#define RCU_READ_UNLOCK() rcu_read_unlock()
1f4e496e
PB
3564#include "memory_ldst.inc.c"
3565
5e2972fd 3566/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3567int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3568 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3569{
3570 int l;
a8170e5e 3571 hwaddr phys_addr;
9b3c35e0 3572 target_ulong page;
13eb76e0 3573
79ca7a1b 3574 cpu_synchronize_state(cpu);
13eb76e0 3575 while (len > 0) {
5232e4c7
PM
3576 int asidx;
3577 MemTxAttrs attrs;
3578
13eb76e0 3579 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3580 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3581 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3582 /* if no physical page mapped, return an error */
3583 if (phys_addr == -1)
3584 return -1;
3585 l = (page + TARGET_PAGE_SIZE) - addr;
3586 if (l > len)
3587 l = len;
5e2972fd 3588 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3589 if (is_write) {
5232e4c7
PM
3590 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3591 phys_addr, buf, l);
2e38847b 3592 } else {
5232e4c7
PM
3593 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3594 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3595 buf, l, 0);
2e38847b 3596 }
13eb76e0
FB
3597 len -= l;
3598 buf += l;
3599 addr += l;
3600 }
3601 return 0;
3602}
038629a6
DDAG
3603
3604/*
3605 * Allows code that needs to deal with migration bitmaps etc to still be built
3606 * target independent.
3607 */
20afaed9 3608size_t qemu_target_page_size(void)
038629a6 3609{
20afaed9 3610 return TARGET_PAGE_SIZE;
038629a6
DDAG
3611}
3612
46d702b1
JQ
3613int qemu_target_page_bits(void)
3614{
3615 return TARGET_PAGE_BITS;
3616}
3617
3618int qemu_target_page_bits_min(void)
3619{
3620 return TARGET_PAGE_BITS_MIN;
3621}
a68fe89c 3622#endif
13eb76e0 3623
8e4a424b
BS
3624/*
3625 * A helper function for the _utterly broken_ virtio device model to find out if
3626 * it's running on a big endian machine. Don't do this at home kids!
3627 */
98ed8ecf
GK
3628bool target_words_bigendian(void);
3629bool target_words_bigendian(void)
8e4a424b
BS
3630{
3631#if defined(TARGET_WORDS_BIGENDIAN)
3632 return true;
3633#else
3634 return false;
3635#endif
3636}
3637
76f35538 3638#ifndef CONFIG_USER_ONLY
a8170e5e 3639bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3640{
5c8a00ce 3641 MemoryRegion*mr;
149f54b5 3642 hwaddr l = 1;
41063e1e 3643 bool res;
76f35538 3644
41063e1e 3645 rcu_read_lock();
5c8a00ce
PB
3646 mr = address_space_translate(&address_space_memory,
3647 phys_addr, &phys_addr, &l, false);
76f35538 3648
41063e1e
PB
3649 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3650 rcu_read_unlock();
3651 return res;
76f35538 3652}
bd2fa51f 3653
e3807054 3654int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3655{
3656 RAMBlock *block;
e3807054 3657 int ret = 0;
bd2fa51f 3658
0dc3f44a 3659 rcu_read_lock();
99e15582 3660 RAMBLOCK_FOREACH(block) {
e3807054
DDAG
3661 ret = func(block->idstr, block->host, block->offset,
3662 block->used_length, opaque);
3663 if (ret) {
3664 break;
3665 }
bd2fa51f 3666 }
0dc3f44a 3667 rcu_read_unlock();
e3807054 3668 return ret;
bd2fa51f 3669}
d3a5038c
DDAG
3670
3671/*
3672 * Unmap pages of memory from start to start+length such that
3673 * they a) read as 0, b) Trigger whatever fault mechanism
3674 * the OS provides for postcopy.
3675 * The pages must be unmapped by the end of the function.
3676 * Returns: 0 on success, none-0 on failure
3677 *
3678 */
3679int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length)
3680{
3681 int ret = -1;
3682
3683 uint8_t *host_startaddr = rb->host + start;
3684
3685 if ((uintptr_t)host_startaddr & (rb->page_size - 1)) {
3686 error_report("ram_block_discard_range: Unaligned start address: %p",
3687 host_startaddr);
3688 goto err;
3689 }
3690
3691 if ((start + length) <= rb->used_length) {
3692 uint8_t *host_endaddr = host_startaddr + length;
3693 if ((uintptr_t)host_endaddr & (rb->page_size - 1)) {
3694 error_report("ram_block_discard_range: Unaligned end address: %p",
3695 host_endaddr);
3696 goto err;
3697 }
3698
3699 errno = ENOTSUP; /* If we are missing MADVISE etc */
3700
e2fa71f5 3701 if (rb->page_size == qemu_host_page_size) {
d3a5038c 3702#if defined(CONFIG_MADVISE)
e2fa71f5
DDAG
3703 /* Note: We need the madvise MADV_DONTNEED behaviour of definitely
3704 * freeing the page.
3705 */
3706 ret = madvise(host_startaddr, length, MADV_DONTNEED);
d3a5038c 3707#endif
e2fa71f5
DDAG
3708 } else {
3709 /* Huge page case - unfortunately it can't do DONTNEED, but
3710 * it can do the equivalent by FALLOC_FL_PUNCH_HOLE in the
3711 * huge page file.
3712 */
3713#ifdef CONFIG_FALLOCATE_PUNCH_HOLE
3714 ret = fallocate(rb->fd, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE,
3715 start, length);
3716#endif
3717 }
d3a5038c
DDAG
3718 if (ret) {
3719 ret = -errno;
3720 error_report("ram_block_discard_range: Failed to discard range "
3721 "%s:%" PRIx64 " +%zx (%d)",
3722 rb->idstr, start, length, ret);
3723 }
3724 } else {
3725 error_report("ram_block_discard_range: Overrun block '%s' (%" PRIu64
3726 "/%zx/" RAM_ADDR_FMT")",
3727 rb->idstr, start, length, rb->used_length);
3728 }
3729
3730err:
3731 return ret;
3732}
3733
ec3f8c99 3734#endif
a0be0c58
YZ
3735
3736void page_size_init(void)
3737{
3738 /* NOTE: we can always suppose that qemu_host_page_size >=
3739 TARGET_PAGE_SIZE */
a0be0c58
YZ
3740 if (qemu_host_page_size == 0) {
3741 qemu_host_page_size = qemu_real_host_page_size;
3742 }
3743 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
3744 qemu_host_page_size = TARGET_PAGE_SIZE;
3745 }
3746 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
3747}
5e8fd947
AK
3748
3749#if !defined(CONFIG_USER_ONLY)
3750
3751static void mtree_print_phys_entries(fprintf_function mon, void *f,
3752 int start, int end, int skip, int ptr)
3753{
3754 if (start == end - 1) {
3755 mon(f, "\t%3d ", start);
3756 } else {
3757 mon(f, "\t%3d..%-3d ", start, end - 1);
3758 }
3759 mon(f, " skip=%d ", skip);
3760 if (ptr == PHYS_MAP_NODE_NIL) {
3761 mon(f, " ptr=NIL");
3762 } else if (!skip) {
3763 mon(f, " ptr=#%d", ptr);
3764 } else {
3765 mon(f, " ptr=[%d]", ptr);
3766 }
3767 mon(f, "\n");
3768}
3769
3770#define MR_SIZE(size) (int128_nz(size) ? (hwaddr)int128_get64( \
3771 int128_sub((size), int128_one())) : 0)
3772
3773void mtree_print_dispatch(fprintf_function mon, void *f,
3774 AddressSpaceDispatch *d, MemoryRegion *root)
3775{
3776 int i;
3777
3778 mon(f, " Dispatch\n");
3779 mon(f, " Physical sections\n");
3780
3781 for (i = 0; i < d->map.sections_nb; ++i) {
3782 MemoryRegionSection *s = d->map.sections + i;
3783 const char *names[] = { " [unassigned]", " [not dirty]",
3784 " [ROM]", " [watch]" };
3785
3786 mon(f, " #%d @" TARGET_FMT_plx ".." TARGET_FMT_plx " %s%s%s%s%s",
3787 i,
3788 s->offset_within_address_space,
3789 s->offset_within_address_space + MR_SIZE(s->mr->size),
3790 s->mr->name ? s->mr->name : "(noname)",
3791 i < ARRAY_SIZE(names) ? names[i] : "",
3792 s->mr == root ? " [ROOT]" : "",
3793 s == d->mru_section ? " [MRU]" : "",
3794 s->mr->is_iommu ? " [iommu]" : "");
3795
3796 if (s->mr->alias) {
3797 mon(f, " alias=%s", s->mr->alias->name ?
3798 s->mr->alias->name : "noname");
3799 }
3800 mon(f, "\n");
3801 }
3802
3803 mon(f, " Nodes (%d bits per level, %d levels) ptr=[%d] skip=%d\n",
3804 P_L2_BITS, P_L2_LEVELS, d->phys_map.ptr, d->phys_map.skip);
3805 for (i = 0; i < d->map.nodes_nb; ++i) {
3806 int j, jprev;
3807 PhysPageEntry prev;
3808 Node *n = d->map.nodes + i;
3809
3810 mon(f, " [%d]\n", i);
3811
3812 for (j = 0, jprev = 0, prev = *n[0]; j < ARRAY_SIZE(*n); ++j) {
3813 PhysPageEntry *pe = *n + j;
3814
3815 if (pe->ptr == prev.ptr && pe->skip == prev.skip) {
3816 continue;
3817 }
3818
3819 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3820
3821 jprev = j;
3822 prev = *pe;
3823 }
3824
3825 if (jprev != ARRAY_SIZE(*n)) {
3826 mtree_print_phys_entries(mon, f, jprev, j, prev.skip, prev.ptr);
3827 }
3828 }
3829}
3830
3831#endif