]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
vmstate: Add pre/post_save() hooks
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004
FB
26#include <stdlib.h>
27#include <stdio.h>
28#include <stdarg.h>
29#include <string.h>
30#include <errno.h>
31#include <unistd.h>
32#include <inttypes.h>
33
6180a181
FB
34#include "cpu.h"
35#include "exec-all.h"
ca10f867 36#include "qemu-common.h"
b67d9a52 37#include "tcg.h"
b3c7724c 38#include "hw/hw.h"
74576198 39#include "osdep.h"
7ba1e619 40#include "kvm.h"
53a5960a
PB
41#if defined(CONFIG_USER_ONLY)
42#include <qemu.h>
43#endif
54936004 44
fd6ce8f6 45//#define DEBUG_TB_INVALIDATE
66e85a21 46//#define DEBUG_FLUSH
9fa3e853 47//#define DEBUG_TLB
67d3b957 48//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
49
50/* make various TB consistency checks */
5fafdf24
TS
51//#define DEBUG_TB_CHECK
52//#define DEBUG_TLB_CHECK
fd6ce8f6 53
1196be37 54//#define DEBUG_IOPORT
db7b5426 55//#define DEBUG_SUBPAGE
1196be37 56
99773bd4
PB
57#if !defined(CONFIG_USER_ONLY)
58/* TB consistency checks only implemented for usermode emulation. */
59#undef DEBUG_TB_CHECK
60#endif
61
9fa3e853
FB
62#define SMC_BITMAP_USE_THRESHOLD 10
63
108c49b8
FB
64#if defined(TARGET_SPARC64)
65#define TARGET_PHYS_ADDR_SPACE_BITS 41
5dcb6b91
BS
66#elif defined(TARGET_SPARC)
67#define TARGET_PHYS_ADDR_SPACE_BITS 36
bedb69ea
JM
68#elif defined(TARGET_ALPHA)
69#define TARGET_PHYS_ADDR_SPACE_BITS 42
70#define TARGET_VIRT_ADDR_SPACE_BITS 42
108c49b8
FB
71#elif defined(TARGET_PPC64)
72#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 73#elif defined(TARGET_X86_64)
00f82b8a 74#define TARGET_PHYS_ADDR_SPACE_BITS 42
4a1418e0 75#elif defined(TARGET_I386)
00f82b8a 76#define TARGET_PHYS_ADDR_SPACE_BITS 36
108c49b8 77#else
108c49b8
FB
78#define TARGET_PHYS_ADDR_SPACE_BITS 32
79#endif
80
bdaf78e0 81static TranslationBlock *tbs;
26a5f13b 82int code_gen_max_blocks;
9fa3e853 83TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 84static int nb_tbs;
eb51d102
FB
85/* any access to the tbs or the page table must use this lock */
86spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 87
141ac468
BS
88#if defined(__arm__) || defined(__sparc_v9__)
89/* The prologue must be reachable with a direct jump. ARM and Sparc64
90 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
91 section close to code segment. */
92#define code_gen_section \
93 __attribute__((__section__(".gen_code"))) \
94 __attribute__((aligned (32)))
f8e2af11
SW
95#elif defined(_WIN32)
96/* Maximum alignment for Win32 is 16. */
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
fd6ce8f6
FB
109uint8_t *code_gen_ptr;
110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
1ccde1cb 113uint8_t *phys_ram_dirty;
74576198 114static int in_migration;
94a6b54f
PB
115
116typedef struct RAMBlock {
117 uint8_t *host;
118 ram_addr_t offset;
119 ram_addr_t length;
120 struct RAMBlock *next;
121} RAMBlock;
122
123static RAMBlock *ram_blocks;
124/* TODO: When we implement (and use) ram deallocation (e.g. for hotplug)
ccbb4d44 125 then we can no longer assume contiguous ram offsets, and external uses
94a6b54f
PB
126 of this variable will break. */
127ram_addr_t last_ram_offset;
e2eef170 128#endif
9fa3e853 129
6a00d601
FB
130CPUState *first_cpu;
131/* current CPU in the current thread. It is only valid inside
132 cpu_exec() */
5fafdf24 133CPUState *cpu_single_env;
2e70f6ef 134/* 0 = Do not count executed instructions.
bf20dc07 135 1 = Precise instruction counting.
2e70f6ef
PB
136 2 = Adaptive rate instruction counting. */
137int use_icount = 0;
138/* Current instruction counter. While executing translated code this may
139 include some instructions that have not yet been executed. */
140int64_t qemu_icount;
6a00d601 141
54936004 142typedef struct PageDesc {
92e873b9 143 /* list of TBs intersecting this ram page */
fd6ce8f6 144 TranslationBlock *first_tb;
9fa3e853
FB
145 /* in order to optimize self modifying code, we count the number
146 of lookups we do to a given page to use a bitmap */
147 unsigned int code_write_count;
148 uint8_t *code_bitmap;
149#if defined(CONFIG_USER_ONLY)
150 unsigned long flags;
151#endif
54936004
FB
152} PageDesc;
153
92e873b9 154typedef struct PhysPageDesc {
0f459d16 155 /* offset in host memory of the page + io_index in the low bits */
00f82b8a 156 ram_addr_t phys_offset;
8da3ff18 157 ram_addr_t region_offset;
92e873b9
FB
158} PhysPageDesc;
159
54936004 160#define L2_BITS 10
bedb69ea
JM
161#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
162/* XXX: this is a temporary hack for alpha target.
163 * In the future, this is to be replaced by a multi-level table
164 * to actually be able to handle the complete 64 bits address space.
165 */
166#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
167#else
03875444 168#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
bedb69ea 169#endif
54936004
FB
170
171#define L1_SIZE (1 << L1_BITS)
172#define L2_SIZE (1 << L2_BITS)
173
83fb7adf
FB
174unsigned long qemu_real_host_page_size;
175unsigned long qemu_host_page_bits;
176unsigned long qemu_host_page_size;
177unsigned long qemu_host_page_mask;
54936004 178
92e873b9 179/* XXX: for system emulation, it could just be an array */
54936004 180static PageDesc *l1_map[L1_SIZE];
bdaf78e0 181static PhysPageDesc **l1_phys_map;
54936004 182
e2eef170
PB
183#if !defined(CONFIG_USER_ONLY)
184static void io_mem_init(void);
185
33417e70 186/* io memory support */
33417e70
FB
187CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
188CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
a4193c8a 189void *io_mem_opaque[IO_MEM_NB_ENTRIES];
511d2b14 190static char io_mem_used[IO_MEM_NB_ENTRIES];
6658ffb8
PB
191static int io_mem_watch;
192#endif
33417e70 193
34865134 194/* log support */
d9b630fd 195static const char *logfilename = "/tmp/qemu.log";
34865134
FB
196FILE *logfile;
197int loglevel;
e735b91c 198static int log_append = 0;
34865134 199
e3db7226
FB
200/* statistics */
201static int tlb_flush_count;
202static int tb_flush_count;
203static int tb_phys_invalidate_count;
204
db7b5426
BS
205#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
206typedef struct subpage_t {
207 target_phys_addr_t base;
d60efc6b
BS
208 CPUReadMemoryFunc * const *mem_read[TARGET_PAGE_SIZE][4];
209 CPUWriteMemoryFunc * const *mem_write[TARGET_PAGE_SIZE][4];
3ee89922 210 void *opaque[TARGET_PAGE_SIZE][2][4];
8da3ff18 211 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
db7b5426
BS
212} subpage_t;
213
7cb69cae
FB
214#ifdef _WIN32
215static void map_exec(void *addr, long size)
216{
217 DWORD old_protect;
218 VirtualProtect(addr, size,
219 PAGE_EXECUTE_READWRITE, &old_protect);
220
221}
222#else
223static void map_exec(void *addr, long size)
224{
4369415f 225 unsigned long start, end, page_size;
7cb69cae 226
4369415f 227 page_size = getpagesize();
7cb69cae 228 start = (unsigned long)addr;
4369415f 229 start &= ~(page_size - 1);
7cb69cae
FB
230
231 end = (unsigned long)addr + size;
4369415f
FB
232 end += page_size - 1;
233 end &= ~(page_size - 1);
7cb69cae
FB
234
235 mprotect((void *)start, end - start,
236 PROT_READ | PROT_WRITE | PROT_EXEC);
237}
238#endif
239
b346ff46 240static void page_init(void)
54936004 241{
83fb7adf 242 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 243 TARGET_PAGE_SIZE */
c2b48b69
AL
244#ifdef _WIN32
245 {
246 SYSTEM_INFO system_info;
247
248 GetSystemInfo(&system_info);
249 qemu_real_host_page_size = system_info.dwPageSize;
250 }
251#else
252 qemu_real_host_page_size = getpagesize();
253#endif
83fb7adf
FB
254 if (qemu_host_page_size == 0)
255 qemu_host_page_size = qemu_real_host_page_size;
256 if (qemu_host_page_size < TARGET_PAGE_SIZE)
257 qemu_host_page_size = TARGET_PAGE_SIZE;
258 qemu_host_page_bits = 0;
259 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
260 qemu_host_page_bits++;
261 qemu_host_page_mask = ~(qemu_host_page_size - 1);
108c49b8
FB
262 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
263 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
50a9569b
AZ
264
265#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
266 {
267 long long startaddr, endaddr;
268 FILE *f;
269 int n;
270
c8a706fe 271 mmap_lock();
0776590d 272 last_brk = (unsigned long)sbrk(0);
50a9569b
AZ
273 f = fopen("/proc/self/maps", "r");
274 if (f) {
275 do {
276 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
277 if (n == 2) {
e0b8d65a
BS
278 startaddr = MIN(startaddr,
279 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
280 endaddr = MIN(endaddr,
281 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
b5fc909e 282 page_set_flags(startaddr & TARGET_PAGE_MASK,
50a9569b
AZ
283 TARGET_PAGE_ALIGN(endaddr),
284 PAGE_RESERVED);
285 }
286 } while (!feof(f));
287 fclose(f);
288 }
c8a706fe 289 mmap_unlock();
50a9569b
AZ
290 }
291#endif
54936004
FB
292}
293
434929bf 294static inline PageDesc **page_l1_map(target_ulong index)
54936004 295{
17e2377a
PB
296#if TARGET_LONG_BITS > 32
297 /* Host memory outside guest VM. For 32-bit targets we have already
298 excluded high addresses. */
d8173e0f 299 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
17e2377a
PB
300 return NULL;
301#endif
434929bf
AL
302 return &l1_map[index >> L2_BITS];
303}
304
305static inline PageDesc *page_find_alloc(target_ulong index)
306{
307 PageDesc **lp, *p;
308 lp = page_l1_map(index);
309 if (!lp)
310 return NULL;
311
54936004
FB
312 p = *lp;
313 if (!p) {
314 /* allocate if not found */
17e2377a 315#if defined(CONFIG_USER_ONLY)
17e2377a
PB
316 size_t len = sizeof(PageDesc) * L2_SIZE;
317 /* Don't use qemu_malloc because it may recurse. */
660f11be 318 p = mmap(NULL, len, PROT_READ | PROT_WRITE,
17e2377a 319 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
54936004 320 *lp = p;
fb1c2cd7
AJ
321 if (h2g_valid(p)) {
322 unsigned long addr = h2g(p);
17e2377a
PB
323 page_set_flags(addr & TARGET_PAGE_MASK,
324 TARGET_PAGE_ALIGN(addr + len),
325 PAGE_RESERVED);
326 }
327#else
328 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
329 *lp = p;
330#endif
54936004
FB
331 }
332 return p + (index & (L2_SIZE - 1));
333}
334
00f82b8a 335static inline PageDesc *page_find(target_ulong index)
54936004 336{
434929bf
AL
337 PageDesc **lp, *p;
338 lp = page_l1_map(index);
339 if (!lp)
340 return NULL;
54936004 341
434929bf 342 p = *lp;
660f11be
BS
343 if (!p) {
344 return NULL;
345 }
fd6ce8f6
FB
346 return p + (index & (L2_SIZE - 1));
347}
348
108c49b8 349static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
92e873b9 350{
108c49b8 351 void **lp, **p;
e3f4e2a4 352 PhysPageDesc *pd;
92e873b9 353
108c49b8
FB
354 p = (void **)l1_phys_map;
355#if TARGET_PHYS_ADDR_SPACE_BITS > 32
356
357#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
358#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
359#endif
360 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
92e873b9
FB
361 p = *lp;
362 if (!p) {
363 /* allocate if not found */
108c49b8
FB
364 if (!alloc)
365 return NULL;
366 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
367 memset(p, 0, sizeof(void *) * L1_SIZE);
368 *lp = p;
369 }
370#endif
371 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
e3f4e2a4
PB
372 pd = *lp;
373 if (!pd) {
374 int i;
108c49b8
FB
375 /* allocate if not found */
376 if (!alloc)
377 return NULL;
e3f4e2a4
PB
378 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
379 *lp = pd;
67c4d23c 380 for (i = 0; i < L2_SIZE; i++) {
e3f4e2a4 381 pd[i].phys_offset = IO_MEM_UNASSIGNED;
67c4d23c
PB
382 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
383 }
92e873b9 384 }
e3f4e2a4 385 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
92e873b9
FB
386}
387
108c49b8 388static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
92e873b9 389{
108c49b8 390 return phys_page_find_alloc(index, 0);
92e873b9
FB
391}
392
9fa3e853 393#if !defined(CONFIG_USER_ONLY)
6a00d601 394static void tlb_protect_code(ram_addr_t ram_addr);
5fafdf24 395static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 396 target_ulong vaddr);
c8a706fe
PB
397#define mmap_lock() do { } while(0)
398#define mmap_unlock() do { } while(0)
9fa3e853 399#endif
fd6ce8f6 400
4369415f
FB
401#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
402
403#if defined(CONFIG_USER_ONLY)
ccbb4d44 404/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
405 user mode. It will change when a dedicated libc will be used */
406#define USE_STATIC_CODE_GEN_BUFFER
407#endif
408
409#ifdef USE_STATIC_CODE_GEN_BUFFER
410static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
411#endif
412
8fcd3692 413static void code_gen_alloc(unsigned long tb_size)
26a5f13b 414{
4369415f
FB
415#ifdef USE_STATIC_CODE_GEN_BUFFER
416 code_gen_buffer = static_code_gen_buffer;
417 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
418 map_exec(code_gen_buffer, code_gen_buffer_size);
419#else
26a5f13b
FB
420 code_gen_buffer_size = tb_size;
421 if (code_gen_buffer_size == 0) {
4369415f
FB
422#if defined(CONFIG_USER_ONLY)
423 /* in user mode, phys_ram_size is not meaningful */
424 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
425#else
ccbb4d44 426 /* XXX: needs adjustments */
94a6b54f 427 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 428#endif
26a5f13b
FB
429 }
430 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
431 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
432 /* The code gen buffer location may have constraints depending on
433 the host cpu and OS */
434#if defined(__linux__)
435 {
436 int flags;
141ac468
BS
437 void *start = NULL;
438
26a5f13b
FB
439 flags = MAP_PRIVATE | MAP_ANONYMOUS;
440#if defined(__x86_64__)
441 flags |= MAP_32BIT;
442 /* Cannot map more than that */
443 if (code_gen_buffer_size > (800 * 1024 * 1024))
444 code_gen_buffer_size = (800 * 1024 * 1024);
141ac468
BS
445#elif defined(__sparc_v9__)
446 // Map the buffer below 2G, so we can use direct calls and branches
447 flags |= MAP_FIXED;
448 start = (void *) 0x60000000UL;
449 if (code_gen_buffer_size > (512 * 1024 * 1024))
450 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 451#elif defined(__arm__)
63d41246 452 /* Map the buffer below 32M, so we can use direct calls and branches */
1cb0661e
AZ
453 flags |= MAP_FIXED;
454 start = (void *) 0x01000000UL;
455 if (code_gen_buffer_size > 16 * 1024 * 1024)
456 code_gen_buffer_size = 16 * 1024 * 1024;
26a5f13b 457#endif
141ac468
BS
458 code_gen_buffer = mmap(start, code_gen_buffer_size,
459 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
460 flags, -1, 0);
461 if (code_gen_buffer == MAP_FAILED) {
462 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
463 exit(1);
464 }
465 }
c5e97233 466#elif defined(__FreeBSD__) || defined(__DragonFly__)
06e67a82
AL
467 {
468 int flags;
469 void *addr = NULL;
470 flags = MAP_PRIVATE | MAP_ANONYMOUS;
471#if defined(__x86_64__)
472 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
473 * 0x40000000 is free */
474 flags |= MAP_FIXED;
475 addr = (void *)0x40000000;
476 /* Cannot map more than that */
477 if (code_gen_buffer_size > (800 * 1024 * 1024))
478 code_gen_buffer_size = (800 * 1024 * 1024);
479#endif
480 code_gen_buffer = mmap(addr, code_gen_buffer_size,
481 PROT_WRITE | PROT_READ | PROT_EXEC,
482 flags, -1, 0);
483 if (code_gen_buffer == MAP_FAILED) {
484 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
485 exit(1);
486 }
487 }
26a5f13b
FB
488#else
489 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
26a5f13b
FB
490 map_exec(code_gen_buffer, code_gen_buffer_size);
491#endif
4369415f 492#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b
FB
493 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
494 code_gen_buffer_max_size = code_gen_buffer_size -
495 code_gen_max_block_size();
496 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
497 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
498}
499
500/* Must be called before using the QEMU cpus. 'tb_size' is the size
501 (in bytes) allocated to the translation buffer. Zero means default
502 size. */
503void cpu_exec_init_all(unsigned long tb_size)
504{
26a5f13b
FB
505 cpu_gen_init();
506 code_gen_alloc(tb_size);
507 code_gen_ptr = code_gen_buffer;
4369415f 508 page_init();
e2eef170 509#if !defined(CONFIG_USER_ONLY)
26a5f13b 510 io_mem_init();
e2eef170 511#endif
26a5f13b
FB
512}
513
9656f324
PB
514#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
515
516#define CPU_COMMON_SAVE_VERSION 1
517
518static void cpu_common_save(QEMUFile *f, void *opaque)
519{
520 CPUState *env = opaque;
521
4c0960c0 522 cpu_synchronize_state(env);
b0a46a33 523
9656f324
PB
524 qemu_put_be32s(f, &env->halted);
525 qemu_put_be32s(f, &env->interrupt_request);
526}
527
528static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
529{
530 CPUState *env = opaque;
531
4c0960c0 532 cpu_synchronize_state(env);
9656f324
PB
533 if (version_id != CPU_COMMON_SAVE_VERSION)
534 return -EINVAL;
535
536 qemu_get_be32s(f, &env->halted);
75f482ae 537 qemu_get_be32s(f, &env->interrupt_request);
3098dba0
AJ
538 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
539 version_id is increased. */
540 env->interrupt_request &= ~0x01;
9656f324
PB
541 tlb_flush(env, 1);
542
543 return 0;
544}
545#endif
546
950f1472
GC
547CPUState *qemu_get_cpu(int cpu)
548{
549 CPUState *env = first_cpu;
550
551 while (env) {
552 if (env->cpu_index == cpu)
553 break;
554 env = env->next_cpu;
555 }
556
557 return env;
558}
559
6a00d601 560void cpu_exec_init(CPUState *env)
fd6ce8f6 561{
6a00d601
FB
562 CPUState **penv;
563 int cpu_index;
564
c2764719
PB
565#if defined(CONFIG_USER_ONLY)
566 cpu_list_lock();
567#endif
6a00d601
FB
568 env->next_cpu = NULL;
569 penv = &first_cpu;
570 cpu_index = 0;
571 while (*penv != NULL) {
1e9fa730 572 penv = &(*penv)->next_cpu;
6a00d601
FB
573 cpu_index++;
574 }
575 env->cpu_index = cpu_index;
268a362c 576 env->numa_node = 0;
c0ce998e
AL
577 TAILQ_INIT(&env->breakpoints);
578 TAILQ_INIT(&env->watchpoints);
6a00d601 579 *penv = env;
c2764719
PB
580#if defined(CONFIG_USER_ONLY)
581 cpu_list_unlock();
582#endif
b3c7724c 583#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
9656f324
PB
584 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
585 cpu_common_save, cpu_common_load, env);
b3c7724c
PB
586 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
587 cpu_save, cpu_load, env);
588#endif
fd6ce8f6
FB
589}
590
9fa3e853
FB
591static inline void invalidate_page_bitmap(PageDesc *p)
592{
593 if (p->code_bitmap) {
59817ccb 594 qemu_free(p->code_bitmap);
9fa3e853
FB
595 p->code_bitmap = NULL;
596 }
597 p->code_write_count = 0;
598}
599
fd6ce8f6
FB
600/* set to NULL all the 'first_tb' fields in all PageDescs */
601static void page_flush_tb(void)
602{
603 int i, j;
604 PageDesc *p;
605
606 for(i = 0; i < L1_SIZE; i++) {
607 p = l1_map[i];
608 if (p) {
9fa3e853
FB
609 for(j = 0; j < L2_SIZE; j++) {
610 p->first_tb = NULL;
611 invalidate_page_bitmap(p);
612 p++;
613 }
fd6ce8f6
FB
614 }
615 }
616}
617
618/* flush all the translation blocks */
d4e8164f 619/* XXX: tb_flush is currently not thread safe */
6a00d601 620void tb_flush(CPUState *env1)
fd6ce8f6 621{
6a00d601 622 CPUState *env;
0124311e 623#if defined(DEBUG_FLUSH)
ab3d1727
BS
624 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
625 (unsigned long)(code_gen_ptr - code_gen_buffer),
626 nb_tbs, nb_tbs > 0 ?
627 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 628#endif
26a5f13b 629 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
630 cpu_abort(env1, "Internal error: code buffer overflow\n");
631
fd6ce8f6 632 nb_tbs = 0;
3b46e624 633
6a00d601
FB
634 for(env = first_cpu; env != NULL; env = env->next_cpu) {
635 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
636 }
9fa3e853 637
8a8a608f 638 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 639 page_flush_tb();
9fa3e853 640
fd6ce8f6 641 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
642 /* XXX: flush processor icache at this point if cache flush is
643 expensive */
e3db7226 644 tb_flush_count++;
fd6ce8f6
FB
645}
646
647#ifdef DEBUG_TB_CHECK
648
bc98a7ef 649static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
650{
651 TranslationBlock *tb;
652 int i;
653 address &= TARGET_PAGE_MASK;
99773bd4
PB
654 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
655 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
656 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
657 address >= tb->pc + tb->size)) {
0bf9e31a
BS
658 printf("ERROR invalidate: address=" TARGET_FMT_lx
659 " PC=%08lx size=%04x\n",
99773bd4 660 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
661 }
662 }
663 }
664}
665
666/* verify that all the pages have correct rights for code */
667static void tb_page_check(void)
668{
669 TranslationBlock *tb;
670 int i, flags1, flags2;
3b46e624 671
99773bd4
PB
672 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
673 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
674 flags1 = page_get_flags(tb->pc);
675 flags2 = page_get_flags(tb->pc + tb->size - 1);
676 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
677 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 678 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
679 }
680 }
681 }
682}
683
684#endif
685
686/* invalidate one TB */
687static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
688 int next_offset)
689{
690 TranslationBlock *tb1;
691 for(;;) {
692 tb1 = *ptb;
693 if (tb1 == tb) {
694 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
695 break;
696 }
697 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
698 }
699}
700
9fa3e853
FB
701static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
702{
703 TranslationBlock *tb1;
704 unsigned int n1;
705
706 for(;;) {
707 tb1 = *ptb;
708 n1 = (long)tb1 & 3;
709 tb1 = (TranslationBlock *)((long)tb1 & ~3);
710 if (tb1 == tb) {
711 *ptb = tb1->page_next[n1];
712 break;
713 }
714 ptb = &tb1->page_next[n1];
715 }
716}
717
d4e8164f
FB
718static inline void tb_jmp_remove(TranslationBlock *tb, int n)
719{
720 TranslationBlock *tb1, **ptb;
721 unsigned int n1;
722
723 ptb = &tb->jmp_next[n];
724 tb1 = *ptb;
725 if (tb1) {
726 /* find tb(n) in circular list */
727 for(;;) {
728 tb1 = *ptb;
729 n1 = (long)tb1 & 3;
730 tb1 = (TranslationBlock *)((long)tb1 & ~3);
731 if (n1 == n && tb1 == tb)
732 break;
733 if (n1 == 2) {
734 ptb = &tb1->jmp_first;
735 } else {
736 ptb = &tb1->jmp_next[n1];
737 }
738 }
739 /* now we can suppress tb(n) from the list */
740 *ptb = tb->jmp_next[n];
741
742 tb->jmp_next[n] = NULL;
743 }
744}
745
746/* reset the jump entry 'n' of a TB so that it is not chained to
747 another TB */
748static inline void tb_reset_jump(TranslationBlock *tb, int n)
749{
750 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
751}
752
2e70f6ef 753void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
fd6ce8f6 754{
6a00d601 755 CPUState *env;
8a40a180 756 PageDesc *p;
d4e8164f 757 unsigned int h, n1;
00f82b8a 758 target_phys_addr_t phys_pc;
8a40a180 759 TranslationBlock *tb1, *tb2;
3b46e624 760
8a40a180
FB
761 /* remove the TB from the hash list */
762 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
763 h = tb_phys_hash_func(phys_pc);
5fafdf24 764 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
765 offsetof(TranslationBlock, phys_hash_next));
766
767 /* remove the TB from the page list */
768 if (tb->page_addr[0] != page_addr) {
769 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
770 tb_page_remove(&p->first_tb, tb);
771 invalidate_page_bitmap(p);
772 }
773 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
774 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
775 tb_page_remove(&p->first_tb, tb);
776 invalidate_page_bitmap(p);
777 }
778
36bdbe54 779 tb_invalidated_flag = 1;
59817ccb 780
fd6ce8f6 781 /* remove the TB from the hash list */
8a40a180 782 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
783 for(env = first_cpu; env != NULL; env = env->next_cpu) {
784 if (env->tb_jmp_cache[h] == tb)
785 env->tb_jmp_cache[h] = NULL;
786 }
d4e8164f
FB
787
788 /* suppress this TB from the two jump lists */
789 tb_jmp_remove(tb, 0);
790 tb_jmp_remove(tb, 1);
791
792 /* suppress any remaining jumps to this TB */
793 tb1 = tb->jmp_first;
794 for(;;) {
795 n1 = (long)tb1 & 3;
796 if (n1 == 2)
797 break;
798 tb1 = (TranslationBlock *)((long)tb1 & ~3);
799 tb2 = tb1->jmp_next[n1];
800 tb_reset_jump(tb1, n1);
801 tb1->jmp_next[n1] = NULL;
802 tb1 = tb2;
803 }
804 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
9fa3e853 805
e3db7226 806 tb_phys_invalidate_count++;
9fa3e853
FB
807}
808
809static inline void set_bits(uint8_t *tab, int start, int len)
810{
811 int end, mask, end1;
812
813 end = start + len;
814 tab += start >> 3;
815 mask = 0xff << (start & 7);
816 if ((start & ~7) == (end & ~7)) {
817 if (start < end) {
818 mask &= ~(0xff << (end & 7));
819 *tab |= mask;
820 }
821 } else {
822 *tab++ |= mask;
823 start = (start + 8) & ~7;
824 end1 = end & ~7;
825 while (start < end1) {
826 *tab++ = 0xff;
827 start += 8;
828 }
829 if (start < end) {
830 mask = ~(0xff << (end & 7));
831 *tab |= mask;
832 }
833 }
834}
835
836static void build_page_bitmap(PageDesc *p)
837{
838 int n, tb_start, tb_end;
839 TranslationBlock *tb;
3b46e624 840
b2a7081a 841 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
842
843 tb = p->first_tb;
844 while (tb != NULL) {
845 n = (long)tb & 3;
846 tb = (TranslationBlock *)((long)tb & ~3);
847 /* NOTE: this is subtle as a TB may span two physical pages */
848 if (n == 0) {
849 /* NOTE: tb_end may be after the end of the page, but
850 it is not a problem */
851 tb_start = tb->pc & ~TARGET_PAGE_MASK;
852 tb_end = tb_start + tb->size;
853 if (tb_end > TARGET_PAGE_SIZE)
854 tb_end = TARGET_PAGE_SIZE;
855 } else {
856 tb_start = 0;
857 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
858 }
859 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
860 tb = tb->page_next[n];
861 }
862}
863
2e70f6ef
PB
864TranslationBlock *tb_gen_code(CPUState *env,
865 target_ulong pc, target_ulong cs_base,
866 int flags, int cflags)
d720b93d
FB
867{
868 TranslationBlock *tb;
869 uint8_t *tc_ptr;
870 target_ulong phys_pc, phys_page2, virt_page2;
871 int code_gen_size;
872
c27004ec
FB
873 phys_pc = get_phys_addr_code(env, pc);
874 tb = tb_alloc(pc);
d720b93d
FB
875 if (!tb) {
876 /* flush must be done */
877 tb_flush(env);
878 /* cannot fail at this point */
c27004ec 879 tb = tb_alloc(pc);
2e70f6ef
PB
880 /* Don't forget to invalidate previous TB info. */
881 tb_invalidated_flag = 1;
d720b93d
FB
882 }
883 tc_ptr = code_gen_ptr;
884 tb->tc_ptr = tc_ptr;
885 tb->cs_base = cs_base;
886 tb->flags = flags;
887 tb->cflags = cflags;
d07bde88 888 cpu_gen_code(env, tb, &code_gen_size);
d720b93d 889 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 890
d720b93d 891 /* check next page if needed */
c27004ec 892 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 893 phys_page2 = -1;
c27004ec 894 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
d720b93d
FB
895 phys_page2 = get_phys_addr_code(env, virt_page2);
896 }
897 tb_link_phys(tb, phys_pc, phys_page2);
2e70f6ef 898 return tb;
d720b93d 899}
3b46e624 900
9fa3e853
FB
901/* invalidate all TBs which intersect with the target physical page
902 starting in range [start;end[. NOTE: start and end must refer to
d720b93d
FB
903 the same physical page. 'is_cpu_write_access' should be true if called
904 from a real cpu write access: the virtual CPU will exit the current
905 TB if code is modified inside this TB. */
00f82b8a 906void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
d720b93d
FB
907 int is_cpu_write_access)
908{
6b917547 909 TranslationBlock *tb, *tb_next, *saved_tb;
d720b93d 910 CPUState *env = cpu_single_env;
9fa3e853 911 target_ulong tb_start, tb_end;
6b917547
AL
912 PageDesc *p;
913 int n;
914#ifdef TARGET_HAS_PRECISE_SMC
915 int current_tb_not_found = is_cpu_write_access;
916 TranslationBlock *current_tb = NULL;
917 int current_tb_modified = 0;
918 target_ulong current_pc = 0;
919 target_ulong current_cs_base = 0;
920 int current_flags = 0;
921#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
922
923 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 924 if (!p)
9fa3e853 925 return;
5fafdf24 926 if (!p->code_bitmap &&
d720b93d
FB
927 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
928 is_cpu_write_access) {
9fa3e853
FB
929 /* build code bitmap */
930 build_page_bitmap(p);
931 }
932
933 /* we remove all the TBs in the range [start, end[ */
934 /* XXX: see if in some cases it could be faster to invalidate all the code */
935 tb = p->first_tb;
936 while (tb != NULL) {
937 n = (long)tb & 3;
938 tb = (TranslationBlock *)((long)tb & ~3);
939 tb_next = tb->page_next[n];
940 /* NOTE: this is subtle as a TB may span two physical pages */
941 if (n == 0) {
942 /* NOTE: tb_end may be after the end of the page, but
943 it is not a problem */
944 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
945 tb_end = tb_start + tb->size;
946 } else {
947 tb_start = tb->page_addr[1];
948 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
949 }
950 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
951#ifdef TARGET_HAS_PRECISE_SMC
952 if (current_tb_not_found) {
953 current_tb_not_found = 0;
954 current_tb = NULL;
2e70f6ef 955 if (env->mem_io_pc) {
d720b93d 956 /* now we have a real cpu fault */
2e70f6ef 957 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
958 }
959 }
960 if (current_tb == tb &&
2e70f6ef 961 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
962 /* If we are modifying the current TB, we must stop
963 its execution. We could be more precise by checking
964 that the modification is after the current PC, but it
965 would require a specialized function to partially
966 restore the CPU state */
3b46e624 967
d720b93d 968 current_tb_modified = 1;
5fafdf24 969 cpu_restore_state(current_tb, env,
2e70f6ef 970 env->mem_io_pc, NULL);
6b917547
AL
971 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
972 &current_flags);
d720b93d
FB
973 }
974#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
975 /* we need to do that to handle the case where a signal
976 occurs while doing tb_phys_invalidate() */
977 saved_tb = NULL;
978 if (env) {
979 saved_tb = env->current_tb;
980 env->current_tb = NULL;
981 }
9fa3e853 982 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
983 if (env) {
984 env->current_tb = saved_tb;
985 if (env->interrupt_request && env->current_tb)
986 cpu_interrupt(env, env->interrupt_request);
987 }
9fa3e853
FB
988 }
989 tb = tb_next;
990 }
991#if !defined(CONFIG_USER_ONLY)
992 /* if no code remaining, no need to continue to use slow writes */
993 if (!p->first_tb) {
994 invalidate_page_bitmap(p);
d720b93d 995 if (is_cpu_write_access) {
2e70f6ef 996 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
997 }
998 }
999#endif
1000#ifdef TARGET_HAS_PRECISE_SMC
1001 if (current_tb_modified) {
1002 /* we generate a block containing just the instruction
1003 modifying the memory. It will ensure that it cannot modify
1004 itself */
ea1c1802 1005 env->current_tb = NULL;
2e70f6ef 1006 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1007 cpu_resume_from_signal(env, NULL);
9fa3e853 1008 }
fd6ce8f6 1009#endif
9fa3e853 1010}
fd6ce8f6 1011
9fa3e853 1012/* len must be <= 8 and start must be a multiple of len */
00f82b8a 1013static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
9fa3e853
FB
1014{
1015 PageDesc *p;
1016 int offset, b;
59817ccb 1017#if 0
a4193c8a 1018 if (1) {
93fcfe39
AL
1019 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1020 cpu_single_env->mem_io_vaddr, len,
1021 cpu_single_env->eip,
1022 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1023 }
1024#endif
9fa3e853 1025 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1026 if (!p)
9fa3e853
FB
1027 return;
1028 if (p->code_bitmap) {
1029 offset = start & ~TARGET_PAGE_MASK;
1030 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1031 if (b & ((1 << len) - 1))
1032 goto do_invalidate;
1033 } else {
1034 do_invalidate:
d720b93d 1035 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1036 }
1037}
1038
9fa3e853 1039#if !defined(CONFIG_SOFTMMU)
00f82b8a 1040static void tb_invalidate_phys_page(target_phys_addr_t addr,
d720b93d 1041 unsigned long pc, void *puc)
9fa3e853 1042{
6b917547 1043 TranslationBlock *tb;
9fa3e853 1044 PageDesc *p;
6b917547 1045 int n;
d720b93d 1046#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1047 TranslationBlock *current_tb = NULL;
d720b93d 1048 CPUState *env = cpu_single_env;
6b917547
AL
1049 int current_tb_modified = 0;
1050 target_ulong current_pc = 0;
1051 target_ulong current_cs_base = 0;
1052 int current_flags = 0;
d720b93d 1053#endif
9fa3e853
FB
1054
1055 addr &= TARGET_PAGE_MASK;
1056 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1057 if (!p)
9fa3e853
FB
1058 return;
1059 tb = p->first_tb;
d720b93d
FB
1060#ifdef TARGET_HAS_PRECISE_SMC
1061 if (tb && pc != 0) {
1062 current_tb = tb_find_pc(pc);
1063 }
1064#endif
9fa3e853
FB
1065 while (tb != NULL) {
1066 n = (long)tb & 3;
1067 tb = (TranslationBlock *)((long)tb & ~3);
d720b93d
FB
1068#ifdef TARGET_HAS_PRECISE_SMC
1069 if (current_tb == tb &&
2e70f6ef 1070 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1071 /* If we are modifying the current TB, we must stop
1072 its execution. We could be more precise by checking
1073 that the modification is after the current PC, but it
1074 would require a specialized function to partially
1075 restore the CPU state */
3b46e624 1076
d720b93d
FB
1077 current_tb_modified = 1;
1078 cpu_restore_state(current_tb, env, pc, puc);
6b917547
AL
1079 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1080 &current_flags);
d720b93d
FB
1081 }
1082#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1083 tb_phys_invalidate(tb, addr);
1084 tb = tb->page_next[n];
1085 }
fd6ce8f6 1086 p->first_tb = NULL;
d720b93d
FB
1087#ifdef TARGET_HAS_PRECISE_SMC
1088 if (current_tb_modified) {
1089 /* we generate a block containing just the instruction
1090 modifying the memory. It will ensure that it cannot modify
1091 itself */
ea1c1802 1092 env->current_tb = NULL;
2e70f6ef 1093 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1094 cpu_resume_from_signal(env, puc);
1095 }
1096#endif
fd6ce8f6 1097}
9fa3e853 1098#endif
fd6ce8f6
FB
1099
1100/* add the tb in the target page and protect it if necessary */
5fafdf24 1101static inline void tb_alloc_page(TranslationBlock *tb,
53a5960a 1102 unsigned int n, target_ulong page_addr)
fd6ce8f6
FB
1103{
1104 PageDesc *p;
9fa3e853
FB
1105 TranslationBlock *last_first_tb;
1106
1107 tb->page_addr[n] = page_addr;
3a7d929e 1108 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
9fa3e853
FB
1109 tb->page_next[n] = p->first_tb;
1110 last_first_tb = p->first_tb;
1111 p->first_tb = (TranslationBlock *)((long)tb | n);
1112 invalidate_page_bitmap(p);
fd6ce8f6 1113
107db443 1114#if defined(TARGET_HAS_SMC) || 1
d720b93d 1115
9fa3e853 1116#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1117 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1118 target_ulong addr;
1119 PageDesc *p2;
9fa3e853
FB
1120 int prot;
1121
fd6ce8f6
FB
1122 /* force the host page as non writable (writes will have a
1123 page fault + mprotect overhead) */
53a5960a 1124 page_addr &= qemu_host_page_mask;
fd6ce8f6 1125 prot = 0;
53a5960a
PB
1126 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1127 addr += TARGET_PAGE_SIZE) {
1128
1129 p2 = page_find (addr >> TARGET_PAGE_BITS);
1130 if (!p2)
1131 continue;
1132 prot |= p2->flags;
1133 p2->flags &= ~PAGE_WRITE;
1134 page_get_flags(addr);
1135 }
5fafdf24 1136 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1137 (prot & PAGE_BITS) & ~PAGE_WRITE);
1138#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1139 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1140 page_addr);
fd6ce8f6 1141#endif
fd6ce8f6 1142 }
9fa3e853
FB
1143#else
1144 /* if some code is already present, then the pages are already
1145 protected. So we handle the case where only the first TB is
1146 allocated in a physical page */
1147 if (!last_first_tb) {
6a00d601 1148 tlb_protect_code(page_addr);
9fa3e853
FB
1149 }
1150#endif
d720b93d
FB
1151
1152#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1153}
1154
1155/* Allocate a new translation block. Flush the translation buffer if
1156 too many translation blocks or too much generated code. */
c27004ec 1157TranslationBlock *tb_alloc(target_ulong pc)
fd6ce8f6
FB
1158{
1159 TranslationBlock *tb;
fd6ce8f6 1160
26a5f13b
FB
1161 if (nb_tbs >= code_gen_max_blocks ||
1162 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
d4e8164f 1163 return NULL;
fd6ce8f6
FB
1164 tb = &tbs[nb_tbs++];
1165 tb->pc = pc;
b448f2f3 1166 tb->cflags = 0;
d4e8164f
FB
1167 return tb;
1168}
1169
2e70f6ef
PB
1170void tb_free(TranslationBlock *tb)
1171{
bf20dc07 1172 /* In practice this is mostly used for single use temporary TB
2e70f6ef
PB
1173 Ignore the hard cases and just back up if this TB happens to
1174 be the last one generated. */
1175 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1176 code_gen_ptr = tb->tc_ptr;
1177 nb_tbs--;
1178 }
1179}
1180
9fa3e853
FB
1181/* add a new TB and link it to the physical page tables. phys_page2 is
1182 (-1) to indicate that only one page contains the TB. */
5fafdf24 1183void tb_link_phys(TranslationBlock *tb,
9fa3e853 1184 target_ulong phys_pc, target_ulong phys_page2)
d4e8164f 1185{
9fa3e853
FB
1186 unsigned int h;
1187 TranslationBlock **ptb;
1188
c8a706fe
PB
1189 /* Grab the mmap lock to stop another thread invalidating this TB
1190 before we are done. */
1191 mmap_lock();
9fa3e853
FB
1192 /* add in the physical hash table */
1193 h = tb_phys_hash_func(phys_pc);
1194 ptb = &tb_phys_hash[h];
1195 tb->phys_hash_next = *ptb;
1196 *ptb = tb;
fd6ce8f6
FB
1197
1198 /* add in the page list */
9fa3e853
FB
1199 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1200 if (phys_page2 != -1)
1201 tb_alloc_page(tb, 1, phys_page2);
1202 else
1203 tb->page_addr[1] = -1;
9fa3e853 1204
d4e8164f
FB
1205 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1206 tb->jmp_next[0] = NULL;
1207 tb->jmp_next[1] = NULL;
1208
1209 /* init original jump addresses */
1210 if (tb->tb_next_offset[0] != 0xffff)
1211 tb_reset_jump(tb, 0);
1212 if (tb->tb_next_offset[1] != 0xffff)
1213 tb_reset_jump(tb, 1);
8a40a180
FB
1214
1215#ifdef DEBUG_TB_CHECK
1216 tb_page_check();
1217#endif
c8a706fe 1218 mmap_unlock();
fd6ce8f6
FB
1219}
1220
9fa3e853
FB
1221/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1222 tb[1].tc_ptr. Return NULL if not found */
1223TranslationBlock *tb_find_pc(unsigned long tc_ptr)
fd6ce8f6 1224{
9fa3e853
FB
1225 int m_min, m_max, m;
1226 unsigned long v;
1227 TranslationBlock *tb;
a513fe19
FB
1228
1229 if (nb_tbs <= 0)
1230 return NULL;
1231 if (tc_ptr < (unsigned long)code_gen_buffer ||
1232 tc_ptr >= (unsigned long)code_gen_ptr)
1233 return NULL;
1234 /* binary search (cf Knuth) */
1235 m_min = 0;
1236 m_max = nb_tbs - 1;
1237 while (m_min <= m_max) {
1238 m = (m_min + m_max) >> 1;
1239 tb = &tbs[m];
1240 v = (unsigned long)tb->tc_ptr;
1241 if (v == tc_ptr)
1242 return tb;
1243 else if (tc_ptr < v) {
1244 m_max = m - 1;
1245 } else {
1246 m_min = m + 1;
1247 }
5fafdf24 1248 }
a513fe19
FB
1249 return &tbs[m_max];
1250}
7501267e 1251
ea041c0e
FB
1252static void tb_reset_jump_recursive(TranslationBlock *tb);
1253
1254static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1255{
1256 TranslationBlock *tb1, *tb_next, **ptb;
1257 unsigned int n1;
1258
1259 tb1 = tb->jmp_next[n];
1260 if (tb1 != NULL) {
1261 /* find head of list */
1262 for(;;) {
1263 n1 = (long)tb1 & 3;
1264 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1265 if (n1 == 2)
1266 break;
1267 tb1 = tb1->jmp_next[n1];
1268 }
1269 /* we are now sure now that tb jumps to tb1 */
1270 tb_next = tb1;
1271
1272 /* remove tb from the jmp_first list */
1273 ptb = &tb_next->jmp_first;
1274 for(;;) {
1275 tb1 = *ptb;
1276 n1 = (long)tb1 & 3;
1277 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1278 if (n1 == n && tb1 == tb)
1279 break;
1280 ptb = &tb1->jmp_next[n1];
1281 }
1282 *ptb = tb->jmp_next[n];
1283 tb->jmp_next[n] = NULL;
3b46e624 1284
ea041c0e
FB
1285 /* suppress the jump to next tb in generated code */
1286 tb_reset_jump(tb, n);
1287
0124311e 1288 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1289 tb_reset_jump_recursive(tb_next);
1290 }
1291}
1292
1293static void tb_reset_jump_recursive(TranslationBlock *tb)
1294{
1295 tb_reset_jump_recursive2(tb, 0);
1296 tb_reset_jump_recursive2(tb, 1);
1297}
1298
1fddef4b 1299#if defined(TARGET_HAS_ICE)
d720b93d
FB
1300static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1301{
9b3c35e0
JM
1302 target_phys_addr_t addr;
1303 target_ulong pd;
c2f07f81
PB
1304 ram_addr_t ram_addr;
1305 PhysPageDesc *p;
d720b93d 1306
c2f07f81
PB
1307 addr = cpu_get_phys_page_debug(env, pc);
1308 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1309 if (!p) {
1310 pd = IO_MEM_UNASSIGNED;
1311 } else {
1312 pd = p->phys_offset;
1313 }
1314 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
706cd4b5 1315 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1316}
c27004ec 1317#endif
d720b93d 1318
6658ffb8 1319/* Add a watchpoint. */
a1d1bb31
AL
1320int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1321 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1322{
b4051334 1323 target_ulong len_mask = ~(len - 1);
c0ce998e 1324 CPUWatchpoint *wp;
6658ffb8 1325
b4051334
AL
1326 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1327 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1328 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1329 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1330 return -EINVAL;
1331 }
a1d1bb31 1332 wp = qemu_malloc(sizeof(*wp));
a1d1bb31
AL
1333
1334 wp->vaddr = addr;
b4051334 1335 wp->len_mask = len_mask;
a1d1bb31
AL
1336 wp->flags = flags;
1337
2dc9f411 1338 /* keep all GDB-injected watchpoints in front */
c0ce998e
AL
1339 if (flags & BP_GDB)
1340 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1341 else
1342 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1343
6658ffb8 1344 tlb_flush_page(env, addr);
a1d1bb31
AL
1345
1346 if (watchpoint)
1347 *watchpoint = wp;
1348 return 0;
6658ffb8
PB
1349}
1350
a1d1bb31
AL
1351/* Remove a specific watchpoint. */
1352int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1353 int flags)
6658ffb8 1354{
b4051334 1355 target_ulong len_mask = ~(len - 1);
a1d1bb31 1356 CPUWatchpoint *wp;
6658ffb8 1357
c0ce998e 1358 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1359 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1360 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1361 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1362 return 0;
1363 }
1364 }
a1d1bb31 1365 return -ENOENT;
6658ffb8
PB
1366}
1367
a1d1bb31
AL
1368/* Remove a specific watchpoint by reference. */
1369void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1370{
c0ce998e 1371 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1372
a1d1bb31
AL
1373 tlb_flush_page(env, watchpoint->vaddr);
1374
1375 qemu_free(watchpoint);
1376}
1377
1378/* Remove all matching watchpoints. */
1379void cpu_watchpoint_remove_all(CPUState *env, int mask)
1380{
c0ce998e 1381 CPUWatchpoint *wp, *next;
a1d1bb31 1382
c0ce998e 1383 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1384 if (wp->flags & mask)
1385 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1386 }
7d03f82f
EI
1387}
1388
a1d1bb31
AL
1389/* Add a breakpoint. */
1390int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1391 CPUBreakpoint **breakpoint)
4c3a88a2 1392{
1fddef4b 1393#if defined(TARGET_HAS_ICE)
c0ce998e 1394 CPUBreakpoint *bp;
3b46e624 1395
a1d1bb31 1396 bp = qemu_malloc(sizeof(*bp));
4c3a88a2 1397
a1d1bb31
AL
1398 bp->pc = pc;
1399 bp->flags = flags;
1400
2dc9f411 1401 /* keep all GDB-injected breakpoints in front */
c0ce998e
AL
1402 if (flags & BP_GDB)
1403 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1404 else
1405 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1406
d720b93d 1407 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1408
1409 if (breakpoint)
1410 *breakpoint = bp;
4c3a88a2
FB
1411 return 0;
1412#else
a1d1bb31 1413 return -ENOSYS;
4c3a88a2
FB
1414#endif
1415}
1416
a1d1bb31
AL
1417/* Remove a specific breakpoint. */
1418int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1419{
7d03f82f 1420#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1421 CPUBreakpoint *bp;
1422
c0ce998e 1423 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1424 if (bp->pc == pc && bp->flags == flags) {
1425 cpu_breakpoint_remove_by_ref(env, bp);
1426 return 0;
1427 }
7d03f82f 1428 }
a1d1bb31
AL
1429 return -ENOENT;
1430#else
1431 return -ENOSYS;
7d03f82f
EI
1432#endif
1433}
1434
a1d1bb31
AL
1435/* Remove a specific breakpoint by reference. */
1436void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1437{
1fddef4b 1438#if defined(TARGET_HAS_ICE)
c0ce998e 1439 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1440
a1d1bb31
AL
1441 breakpoint_invalidate(env, breakpoint->pc);
1442
1443 qemu_free(breakpoint);
1444#endif
1445}
1446
1447/* Remove all matching breakpoints. */
1448void cpu_breakpoint_remove_all(CPUState *env, int mask)
1449{
1450#if defined(TARGET_HAS_ICE)
c0ce998e 1451 CPUBreakpoint *bp, *next;
a1d1bb31 1452
c0ce998e 1453 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1454 if (bp->flags & mask)
1455 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1456 }
4c3a88a2
FB
1457#endif
1458}
1459
c33a346e
FB
1460/* enable or disable single step mode. EXCP_DEBUG is returned by the
1461 CPU loop after each instruction */
1462void cpu_single_step(CPUState *env, int enabled)
1463{
1fddef4b 1464#if defined(TARGET_HAS_ICE)
c33a346e
FB
1465 if (env->singlestep_enabled != enabled) {
1466 env->singlestep_enabled = enabled;
e22a25c9
AL
1467 if (kvm_enabled())
1468 kvm_update_guest_debug(env, 0);
1469 else {
ccbb4d44 1470 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1471 /* XXX: only flush what is necessary */
1472 tb_flush(env);
1473 }
c33a346e
FB
1474 }
1475#endif
1476}
1477
34865134
FB
1478/* enable or disable low levels log */
1479void cpu_set_log(int log_flags)
1480{
1481 loglevel = log_flags;
1482 if (loglevel && !logfile) {
11fcfab4 1483 logfile = fopen(logfilename, log_append ? "a" : "w");
34865134
FB
1484 if (!logfile) {
1485 perror(logfilename);
1486 _exit(1);
1487 }
9fa3e853
FB
1488#if !defined(CONFIG_SOFTMMU)
1489 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1490 {
b55266b5 1491 static char logfile_buf[4096];
9fa3e853
FB
1492 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1493 }
bf65f53f
FN
1494#elif !defined(_WIN32)
1495 /* Win32 doesn't support line-buffering and requires size >= 2 */
34865134 1496 setvbuf(logfile, NULL, _IOLBF, 0);
9fa3e853 1497#endif
e735b91c
PB
1498 log_append = 1;
1499 }
1500 if (!loglevel && logfile) {
1501 fclose(logfile);
1502 logfile = NULL;
34865134
FB
1503 }
1504}
1505
1506void cpu_set_log_filename(const char *filename)
1507{
1508 logfilename = strdup(filename);
e735b91c
PB
1509 if (logfile) {
1510 fclose(logfile);
1511 logfile = NULL;
1512 }
1513 cpu_set_log(loglevel);
34865134 1514}
c33a346e 1515
3098dba0 1516static void cpu_unlink_tb(CPUState *env)
ea041c0e 1517{
2f7bb878 1518#if defined(CONFIG_USE_NPTL)
3098dba0
AJ
1519 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1520 problem and hope the cpu will stop of its own accord. For userspace
1521 emulation this often isn't actually as bad as it sounds. Often
1522 signals are used primarily to interrupt blocking syscalls. */
1523#else
ea041c0e 1524 TranslationBlock *tb;
15a51156 1525 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1526
3098dba0
AJ
1527 tb = env->current_tb;
1528 /* if the cpu is currently executing code, we must unlink it and
1529 all the potentially executing TB */
1530 if (tb && !testandset(&interrupt_lock)) {
1531 env->current_tb = NULL;
1532 tb_reset_jump_recursive(tb);
1533 resetlock(&interrupt_lock);
be214e6c 1534 }
3098dba0
AJ
1535#endif
1536}
1537
1538/* mask must never be zero, except for A20 change call */
1539void cpu_interrupt(CPUState *env, int mask)
1540{
1541 int old_mask;
be214e6c 1542
2e70f6ef 1543 old_mask = env->interrupt_request;
68a79315 1544 env->interrupt_request |= mask;
3098dba0 1545
8edac960
AL
1546#ifndef CONFIG_USER_ONLY
1547 /*
1548 * If called from iothread context, wake the target cpu in
1549 * case its halted.
1550 */
1551 if (!qemu_cpu_self(env)) {
1552 qemu_cpu_kick(env);
1553 return;
1554 }
1555#endif
1556
2e70f6ef 1557 if (use_icount) {
266910c4 1558 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1559#ifndef CONFIG_USER_ONLY
2e70f6ef 1560 if (!can_do_io(env)
be214e6c 1561 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1562 cpu_abort(env, "Raised interrupt while not in I/O function");
1563 }
1564#endif
1565 } else {
3098dba0 1566 cpu_unlink_tb(env);
ea041c0e
FB
1567 }
1568}
1569
b54ad049
FB
1570void cpu_reset_interrupt(CPUState *env, int mask)
1571{
1572 env->interrupt_request &= ~mask;
1573}
1574
3098dba0
AJ
1575void cpu_exit(CPUState *env)
1576{
1577 env->exit_request = 1;
1578 cpu_unlink_tb(env);
1579}
1580
c7cd6a37 1581const CPULogItem cpu_log_items[] = {
5fafdf24 1582 { CPU_LOG_TB_OUT_ASM, "out_asm",
f193c797
FB
1583 "show generated host assembly code for each compiled TB" },
1584 { CPU_LOG_TB_IN_ASM, "in_asm",
1585 "show target assembly code for each compiled TB" },
5fafdf24 1586 { CPU_LOG_TB_OP, "op",
57fec1fe 1587 "show micro ops for each compiled TB" },
f193c797 1588 { CPU_LOG_TB_OP_OPT, "op_opt",
e01a1157
BS
1589 "show micro ops "
1590#ifdef TARGET_I386
1591 "before eflags optimization and "
f193c797 1592#endif
e01a1157 1593 "after liveness analysis" },
f193c797
FB
1594 { CPU_LOG_INT, "int",
1595 "show interrupts/exceptions in short format" },
1596 { CPU_LOG_EXEC, "exec",
1597 "show trace before each executed TB (lots of logs)" },
9fddaa0c 1598 { CPU_LOG_TB_CPU, "cpu",
e91c8a77 1599 "show CPU state before block translation" },
f193c797
FB
1600#ifdef TARGET_I386
1601 { CPU_LOG_PCALL, "pcall",
1602 "show protected mode far calls/returns/exceptions" },
eca1bdf4
AL
1603 { CPU_LOG_RESET, "cpu_reset",
1604 "show CPU state before CPU resets" },
f193c797 1605#endif
8e3a9fd2 1606#ifdef DEBUG_IOPORT
fd872598
FB
1607 { CPU_LOG_IOPORT, "ioport",
1608 "show all i/o ports accesses" },
8e3a9fd2 1609#endif
f193c797
FB
1610 { 0, NULL, NULL },
1611};
1612
1613static int cmp1(const char *s1, int n, const char *s2)
1614{
1615 if (strlen(s2) != n)
1616 return 0;
1617 return memcmp(s1, s2, n) == 0;
1618}
3b46e624 1619
f193c797
FB
1620/* takes a comma separated list of log masks. Return 0 if error. */
1621int cpu_str_to_log_mask(const char *str)
1622{
c7cd6a37 1623 const CPULogItem *item;
f193c797
FB
1624 int mask;
1625 const char *p, *p1;
1626
1627 p = str;
1628 mask = 0;
1629 for(;;) {
1630 p1 = strchr(p, ',');
1631 if (!p1)
1632 p1 = p + strlen(p);
8e3a9fd2
FB
1633 if(cmp1(p,p1-p,"all")) {
1634 for(item = cpu_log_items; item->mask != 0; item++) {
1635 mask |= item->mask;
1636 }
1637 } else {
f193c797
FB
1638 for(item = cpu_log_items; item->mask != 0; item++) {
1639 if (cmp1(p, p1 - p, item->name))
1640 goto found;
1641 }
1642 return 0;
8e3a9fd2 1643 }
f193c797
FB
1644 found:
1645 mask |= item->mask;
1646 if (*p1 != ',')
1647 break;
1648 p = p1 + 1;
1649 }
1650 return mask;
1651}
ea041c0e 1652
7501267e
FB
1653void cpu_abort(CPUState *env, const char *fmt, ...)
1654{
1655 va_list ap;
493ae1f0 1656 va_list ap2;
7501267e
FB
1657
1658 va_start(ap, fmt);
493ae1f0 1659 va_copy(ap2, ap);
7501267e
FB
1660 fprintf(stderr, "qemu: fatal: ");
1661 vfprintf(stderr, fmt, ap);
1662 fprintf(stderr, "\n");
1663#ifdef TARGET_I386
7fe48483
FB
1664 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1665#else
1666 cpu_dump_state(env, stderr, fprintf, 0);
7501267e 1667#endif
93fcfe39
AL
1668 if (qemu_log_enabled()) {
1669 qemu_log("qemu: fatal: ");
1670 qemu_log_vprintf(fmt, ap2);
1671 qemu_log("\n");
f9373291 1672#ifdef TARGET_I386
93fcfe39 1673 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
f9373291 1674#else
93fcfe39 1675 log_cpu_state(env, 0);
f9373291 1676#endif
31b1a7b4 1677 qemu_log_flush();
93fcfe39 1678 qemu_log_close();
924edcae 1679 }
493ae1f0 1680 va_end(ap2);
f9373291 1681 va_end(ap);
7501267e
FB
1682 abort();
1683}
1684
c5be9f08
TS
1685CPUState *cpu_copy(CPUState *env)
1686{
01ba9816 1687 CPUState *new_env = cpu_init(env->cpu_model_str);
c5be9f08
TS
1688 CPUState *next_cpu = new_env->next_cpu;
1689 int cpu_index = new_env->cpu_index;
5a38f081
AL
1690#if defined(TARGET_HAS_ICE)
1691 CPUBreakpoint *bp;
1692 CPUWatchpoint *wp;
1693#endif
1694
c5be9f08 1695 memcpy(new_env, env, sizeof(CPUState));
5a38f081
AL
1696
1697 /* Preserve chaining and index. */
c5be9f08
TS
1698 new_env->next_cpu = next_cpu;
1699 new_env->cpu_index = cpu_index;
5a38f081
AL
1700
1701 /* Clone all break/watchpoints.
1702 Note: Once we support ptrace with hw-debug register access, make sure
1703 BP_CPU break/watchpoints are handled correctly on clone. */
1704 TAILQ_INIT(&env->breakpoints);
1705 TAILQ_INIT(&env->watchpoints);
1706#if defined(TARGET_HAS_ICE)
1707 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1708 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1709 }
1710 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1711 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1712 wp->flags, NULL);
1713 }
1714#endif
1715
c5be9f08
TS
1716 return new_env;
1717}
1718
0124311e
FB
1719#if !defined(CONFIG_USER_ONLY)
1720
5c751e99
EI
1721static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1722{
1723 unsigned int i;
1724
1725 /* Discard jump cache entries for any tb which might potentially
1726 overlap the flushed page. */
1727 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1728 memset (&env->tb_jmp_cache[i], 0,
1729 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1730
1731 i = tb_jmp_cache_hash_page(addr);
1732 memset (&env->tb_jmp_cache[i], 0,
1733 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1734}
1735
08738984
IK
1736static CPUTLBEntry s_cputlb_empty_entry = {
1737 .addr_read = -1,
1738 .addr_write = -1,
1739 .addr_code = -1,
1740 .addend = -1,
1741};
1742
ee8b7021
FB
1743/* NOTE: if flush_global is true, also flush global entries (not
1744 implemented yet) */
1745void tlb_flush(CPUState *env, int flush_global)
33417e70 1746{
33417e70 1747 int i;
0124311e 1748
9fa3e853
FB
1749#if defined(DEBUG_TLB)
1750 printf("tlb_flush:\n");
1751#endif
0124311e
FB
1752 /* must reset current TB so that interrupts cannot modify the
1753 links while we are modifying them */
1754 env->current_tb = NULL;
1755
33417e70 1756 for(i = 0; i < CPU_TLB_SIZE; i++) {
cfde4bd9
IY
1757 int mmu_idx;
1758 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
08738984 1759 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
cfde4bd9 1760 }
33417e70 1761 }
9fa3e853 1762
8a40a180 1763 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
9fa3e853 1764
e3db7226 1765 tlb_flush_count++;
33417e70
FB
1766}
1767
274da6b2 1768static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
61382a50 1769{
5fafdf24 1770 if (addr == (tlb_entry->addr_read &
84b7b8e7 1771 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1772 addr == (tlb_entry->addr_write &
84b7b8e7 1773 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
5fafdf24 1774 addr == (tlb_entry->addr_code &
84b7b8e7 1775 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
08738984 1776 *tlb_entry = s_cputlb_empty_entry;
84b7b8e7 1777 }
61382a50
FB
1778}
1779
2e12669a 1780void tlb_flush_page(CPUState *env, target_ulong addr)
33417e70 1781{
8a40a180 1782 int i;
cfde4bd9 1783 int mmu_idx;
0124311e 1784
9fa3e853 1785#if defined(DEBUG_TLB)
108c49b8 1786 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
9fa3e853 1787#endif
0124311e
FB
1788 /* must reset current TB so that interrupts cannot modify the
1789 links while we are modifying them */
1790 env->current_tb = NULL;
61382a50
FB
1791
1792 addr &= TARGET_PAGE_MASK;
1793 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1794 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1795 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
0124311e 1796
5c751e99 1797 tlb_flush_jmp_cache(env, addr);
9fa3e853
FB
1798}
1799
9fa3e853
FB
1800/* update the TLBs so that writes to code in the virtual page 'addr'
1801 can be detected */
6a00d601 1802static void tlb_protect_code(ram_addr_t ram_addr)
9fa3e853 1803{
5fafdf24 1804 cpu_physical_memory_reset_dirty(ram_addr,
6a00d601
FB
1805 ram_addr + TARGET_PAGE_SIZE,
1806 CODE_DIRTY_FLAG);
9fa3e853
FB
1807}
1808
9fa3e853 1809/* update the TLB so that writes in physical page 'phys_addr' are no longer
3a7d929e 1810 tested for self modifying code */
5fafdf24 1811static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
3a7d929e 1812 target_ulong vaddr)
9fa3e853 1813{
3a7d929e 1814 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1ccde1cb
FB
1815}
1816
5fafdf24 1817static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1ccde1cb
FB
1818 unsigned long start, unsigned long length)
1819{
1820 unsigned long addr;
84b7b8e7
FB
1821 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1822 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1ccde1cb 1823 if ((addr - start) < length) {
0f459d16 1824 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1ccde1cb
FB
1825 }
1826 }
1827}
1828
5579c7f3 1829/* Note: start and end must be within the same ram block. */
3a7d929e 1830void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1831 int dirty_flags)
1ccde1cb
FB
1832{
1833 CPUState *env;
4f2ac237 1834 unsigned long length, start1;
0a962c02
FB
1835 int i, mask, len;
1836 uint8_t *p;
1ccde1cb
FB
1837
1838 start &= TARGET_PAGE_MASK;
1839 end = TARGET_PAGE_ALIGN(end);
1840
1841 length = end - start;
1842 if (length == 0)
1843 return;
0a962c02 1844 len = length >> TARGET_PAGE_BITS;
f23db169
FB
1845 mask = ~dirty_flags;
1846 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1847 for(i = 0; i < len; i++)
1848 p[i] &= mask;
1849
1ccde1cb
FB
1850 /* we modify the TLB cache so that the dirty bit will be set again
1851 when accessing the range */
5579c7f3
PB
1852 start1 = (unsigned long)qemu_get_ram_ptr(start);
1853 /* Chek that we don't span multiple blocks - this breaks the
1854 address comparisons below. */
1855 if ((unsigned long)qemu_get_ram_ptr(end - 1) - start1
1856 != (end - 1) - start) {
1857 abort();
1858 }
1859
6a00d601 1860 for(env = first_cpu; env != NULL; env = env->next_cpu) {
cfde4bd9
IY
1861 int mmu_idx;
1862 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1863 for(i = 0; i < CPU_TLB_SIZE; i++)
1864 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
1865 start1, length);
1866 }
6a00d601 1867 }
1ccde1cb
FB
1868}
1869
74576198
AL
1870int cpu_physical_memory_set_dirty_tracking(int enable)
1871{
1872 in_migration = enable;
b0a46a33
JK
1873 if (kvm_enabled()) {
1874 return kvm_set_migration_log(enable);
1875 }
74576198
AL
1876 return 0;
1877}
1878
1879int cpu_physical_memory_get_dirty_tracking(void)
1880{
1881 return in_migration;
1882}
1883
151f7749
JK
1884int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
1885 target_phys_addr_t end_addr)
2bec46dc 1886{
151f7749
JK
1887 int ret = 0;
1888
2bec46dc 1889 if (kvm_enabled())
151f7749
JK
1890 ret = kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1891 return ret;
2bec46dc
AL
1892}
1893
3a7d929e
FB
1894static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1895{
1896 ram_addr_t ram_addr;
5579c7f3 1897 void *p;
3a7d929e 1898
84b7b8e7 1899 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
5579c7f3
PB
1900 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
1901 + tlb_entry->addend);
1902 ram_addr = qemu_ram_addr_from_host(p);
3a7d929e 1903 if (!cpu_physical_memory_is_dirty(ram_addr)) {
0f459d16 1904 tlb_entry->addr_write |= TLB_NOTDIRTY;
3a7d929e
FB
1905 }
1906 }
1907}
1908
1909/* update the TLB according to the current state of the dirty bits */
1910void cpu_tlb_update_dirty(CPUState *env)
1911{
1912 int i;
cfde4bd9
IY
1913 int mmu_idx;
1914 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1915 for(i = 0; i < CPU_TLB_SIZE; i++)
1916 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
1917 }
3a7d929e
FB
1918}
1919
0f459d16 1920static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1ccde1cb 1921{
0f459d16
PB
1922 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1923 tlb_entry->addr_write = vaddr;
1ccde1cb
FB
1924}
1925
0f459d16
PB
1926/* update the TLB corresponding to virtual page vaddr
1927 so that it is no longer dirty */
1928static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1ccde1cb 1929{
1ccde1cb 1930 int i;
cfde4bd9 1931 int mmu_idx;
1ccde1cb 1932
0f459d16 1933 vaddr &= TARGET_PAGE_MASK;
1ccde1cb 1934 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cfde4bd9
IY
1935 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1936 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
9fa3e853
FB
1937}
1938
59817ccb
FB
1939/* add a new TLB entry. At most one entry for a given virtual address
1940 is permitted. Return 0 if OK or 2 if the page could not be mapped
1941 (can only happen in non SOFTMMU mode for I/O pages or pages
1942 conflicting with the host address space). */
5fafdf24
TS
1943int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1944 target_phys_addr_t paddr, int prot,
6ebbf390 1945 int mmu_idx, int is_softmmu)
9fa3e853 1946{
92e873b9 1947 PhysPageDesc *p;
4f2ac237 1948 unsigned long pd;
9fa3e853 1949 unsigned int index;
4f2ac237 1950 target_ulong address;
0f459d16 1951 target_ulong code_address;
108c49b8 1952 target_phys_addr_t addend;
9fa3e853 1953 int ret;
84b7b8e7 1954 CPUTLBEntry *te;
a1d1bb31 1955 CPUWatchpoint *wp;
0f459d16 1956 target_phys_addr_t iotlb;
9fa3e853 1957
92e873b9 1958 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
9fa3e853
FB
1959 if (!p) {
1960 pd = IO_MEM_UNASSIGNED;
9fa3e853
FB
1961 } else {
1962 pd = p->phys_offset;
9fa3e853
FB
1963 }
1964#if defined(DEBUG_TLB)
6ebbf390
JM
1965 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1966 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
9fa3e853
FB
1967#endif
1968
1969 ret = 0;
0f459d16
PB
1970 address = vaddr;
1971 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1972 /* IO memory case (romd handled later) */
1973 address |= TLB_MMIO;
1974 }
5579c7f3 1975 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
0f459d16
PB
1976 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1977 /* Normal RAM. */
1978 iotlb = pd & TARGET_PAGE_MASK;
1979 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1980 iotlb |= IO_MEM_NOTDIRTY;
1981 else
1982 iotlb |= IO_MEM_ROM;
1983 } else {
ccbb4d44 1984 /* IO handlers are currently passed a physical address.
0f459d16
PB
1985 It would be nice to pass an offset from the base address
1986 of that region. This would avoid having to special case RAM,
1987 and avoid full address decoding in every device.
1988 We can't use the high bits of pd for this because
1989 IO_MEM_ROMD uses these as a ram address. */
8da3ff18
PB
1990 iotlb = (pd & ~TARGET_PAGE_MASK);
1991 if (p) {
8da3ff18
PB
1992 iotlb += p->region_offset;
1993 } else {
1994 iotlb += paddr;
1995 }
0f459d16
PB
1996 }
1997
1998 code_address = address;
1999 /* Make accesses to pages with watchpoints go via the
2000 watchpoint trap routines. */
c0ce998e 2001 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
a1d1bb31 2002 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
0f459d16
PB
2003 iotlb = io_mem_watch + paddr;
2004 /* TODO: The memory case can be optimized by not trapping
2005 reads of pages with a write breakpoint. */
2006 address |= TLB_MMIO;
6658ffb8 2007 }
0f459d16 2008 }
d79acba4 2009
0f459d16
PB
2010 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2011 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2012 te = &env->tlb_table[mmu_idx][index];
2013 te->addend = addend - vaddr;
2014 if (prot & PAGE_READ) {
2015 te->addr_read = address;
2016 } else {
2017 te->addr_read = -1;
2018 }
5c751e99 2019
0f459d16
PB
2020 if (prot & PAGE_EXEC) {
2021 te->addr_code = code_address;
2022 } else {
2023 te->addr_code = -1;
2024 }
2025 if (prot & PAGE_WRITE) {
2026 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2027 (pd & IO_MEM_ROMD)) {
2028 /* Write access calls the I/O callback. */
2029 te->addr_write = address | TLB_MMIO;
2030 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2031 !cpu_physical_memory_is_dirty(pd)) {
2032 te->addr_write = address | TLB_NOTDIRTY;
9fa3e853 2033 } else {
0f459d16 2034 te->addr_write = address;
9fa3e853 2035 }
0f459d16
PB
2036 } else {
2037 te->addr_write = -1;
9fa3e853 2038 }
9fa3e853
FB
2039 return ret;
2040}
2041
0124311e
FB
2042#else
2043
ee8b7021 2044void tlb_flush(CPUState *env, int flush_global)
0124311e
FB
2045{
2046}
2047
2e12669a 2048void tlb_flush_page(CPUState *env, target_ulong addr)
0124311e
FB
2049{
2050}
2051
5fafdf24
TS
2052int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2053 target_phys_addr_t paddr, int prot,
6ebbf390 2054 int mmu_idx, int is_softmmu)
9fa3e853
FB
2055{
2056 return 0;
2057}
0124311e 2058
edf8e2af
MW
2059/*
2060 * Walks guest process memory "regions" one by one
2061 * and calls callback function 'fn' for each region.
2062 */
2063int walk_memory_regions(void *priv,
2064 int (*fn)(void *, unsigned long, unsigned long, unsigned long))
33417e70 2065{
9fa3e853 2066 unsigned long start, end;
edf8e2af 2067 PageDesc *p = NULL;
9fa3e853 2068 int i, j, prot, prot1;
edf8e2af 2069 int rc = 0;
33417e70 2070
edf8e2af 2071 start = end = -1;
9fa3e853 2072 prot = 0;
edf8e2af
MW
2073
2074 for (i = 0; i <= L1_SIZE; i++) {
2075 p = (i < L1_SIZE) ? l1_map[i] : NULL;
2076 for (j = 0; j < L2_SIZE; j++) {
2077 prot1 = (p == NULL) ? 0 : p[j].flags;
2078 /*
2079 * "region" is one continuous chunk of memory
2080 * that has same protection flags set.
2081 */
9fa3e853
FB
2082 if (prot1 != prot) {
2083 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2084 if (start != -1) {
edf8e2af
MW
2085 rc = (*fn)(priv, start, end, prot);
2086 /* callback can stop iteration by returning != 0 */
2087 if (rc != 0)
2088 return (rc);
9fa3e853
FB
2089 }
2090 if (prot1 != 0)
2091 start = end;
2092 else
2093 start = -1;
2094 prot = prot1;
2095 }
edf8e2af 2096 if (p == NULL)
9fa3e853
FB
2097 break;
2098 }
33417e70 2099 }
edf8e2af
MW
2100 return (rc);
2101}
2102
2103static int dump_region(void *priv, unsigned long start,
2104 unsigned long end, unsigned long prot)
2105{
2106 FILE *f = (FILE *)priv;
2107
2108 (void) fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2109 start, end, end - start,
2110 ((prot & PAGE_READ) ? 'r' : '-'),
2111 ((prot & PAGE_WRITE) ? 'w' : '-'),
2112 ((prot & PAGE_EXEC) ? 'x' : '-'));
2113
2114 return (0);
2115}
2116
2117/* dump memory mappings */
2118void page_dump(FILE *f)
2119{
2120 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2121 "start", "end", "size", "prot");
2122 walk_memory_regions(f, dump_region);
33417e70
FB
2123}
2124
53a5960a 2125int page_get_flags(target_ulong address)
33417e70 2126{
9fa3e853
FB
2127 PageDesc *p;
2128
2129 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2130 if (!p)
9fa3e853
FB
2131 return 0;
2132 return p->flags;
2133}
2134
2135/* modify the flags of a page and invalidate the code if
ccbb4d44 2136 necessary. The flag PAGE_WRITE_ORG is positioned automatically
9fa3e853 2137 depending on PAGE_WRITE */
53a5960a 2138void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853
FB
2139{
2140 PageDesc *p;
53a5960a 2141 target_ulong addr;
9fa3e853 2142
c8a706fe 2143 /* mmap_lock should already be held. */
9fa3e853
FB
2144 start = start & TARGET_PAGE_MASK;
2145 end = TARGET_PAGE_ALIGN(end);
2146 if (flags & PAGE_WRITE)
2147 flags |= PAGE_WRITE_ORG;
9fa3e853
FB
2148 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2149 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
17e2377a
PB
2150 /* We may be called for host regions that are outside guest
2151 address space. */
2152 if (!p)
2153 return;
9fa3e853
FB
2154 /* if the write protection is set, then we invalidate the code
2155 inside */
5fafdf24 2156 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2157 (flags & PAGE_WRITE) &&
2158 p->first_tb) {
d720b93d 2159 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2160 }
2161 p->flags = flags;
2162 }
33417e70
FB
2163}
2164
3d97b40b
TS
2165int page_check_range(target_ulong start, target_ulong len, int flags)
2166{
2167 PageDesc *p;
2168 target_ulong end;
2169 target_ulong addr;
2170
55f280c9
AZ
2171 if (start + len < start)
2172 /* we've wrapped around */
2173 return -1;
2174
3d97b40b
TS
2175 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2176 start = start & TARGET_PAGE_MASK;
2177
3d97b40b
TS
2178 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2179 p = page_find(addr >> TARGET_PAGE_BITS);
2180 if( !p )
2181 return -1;
2182 if( !(p->flags & PAGE_VALID) )
2183 return -1;
2184
dae3270c 2185 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2186 return -1;
dae3270c
FB
2187 if (flags & PAGE_WRITE) {
2188 if (!(p->flags & PAGE_WRITE_ORG))
2189 return -1;
2190 /* unprotect the page if it was put read-only because it
2191 contains translated code */
2192 if (!(p->flags & PAGE_WRITE)) {
2193 if (!page_unprotect(addr, 0, NULL))
2194 return -1;
2195 }
2196 return 0;
2197 }
3d97b40b
TS
2198 }
2199 return 0;
2200}
2201
9fa3e853 2202/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2203 page. Return TRUE if the fault was successfully handled. */
53a5960a 2204int page_unprotect(target_ulong address, unsigned long pc, void *puc)
9fa3e853
FB
2205{
2206 unsigned int page_index, prot, pindex;
2207 PageDesc *p, *p1;
53a5960a 2208 target_ulong host_start, host_end, addr;
9fa3e853 2209
c8a706fe
PB
2210 /* Technically this isn't safe inside a signal handler. However we
2211 know this only ever happens in a synchronous SEGV handler, so in
2212 practice it seems to be ok. */
2213 mmap_lock();
2214
83fb7adf 2215 host_start = address & qemu_host_page_mask;
9fa3e853
FB
2216 page_index = host_start >> TARGET_PAGE_BITS;
2217 p1 = page_find(page_index);
c8a706fe
PB
2218 if (!p1) {
2219 mmap_unlock();
9fa3e853 2220 return 0;
c8a706fe 2221 }
83fb7adf 2222 host_end = host_start + qemu_host_page_size;
9fa3e853
FB
2223 p = p1;
2224 prot = 0;
2225 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2226 prot |= p->flags;
2227 p++;
2228 }
2229 /* if the page was really writable, then we change its
2230 protection back to writable */
2231 if (prot & PAGE_WRITE_ORG) {
2232 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2233 if (!(p1[pindex].flags & PAGE_WRITE)) {
5fafdf24 2234 mprotect((void *)g2h(host_start), qemu_host_page_size,
9fa3e853
FB
2235 (prot & PAGE_BITS) | PAGE_WRITE);
2236 p1[pindex].flags |= PAGE_WRITE;
2237 /* and since the content will be modified, we must invalidate
2238 the corresponding translated code. */
d720b93d 2239 tb_invalidate_phys_page(address, pc, puc);
9fa3e853
FB
2240#ifdef DEBUG_TB_CHECK
2241 tb_invalidate_check(address);
2242#endif
c8a706fe 2243 mmap_unlock();
9fa3e853
FB
2244 return 1;
2245 }
2246 }
c8a706fe 2247 mmap_unlock();
9fa3e853
FB
2248 return 0;
2249}
2250
6a00d601
FB
2251static inline void tlb_set_dirty(CPUState *env,
2252 unsigned long addr, target_ulong vaddr)
1ccde1cb
FB
2253{
2254}
9fa3e853
FB
2255#endif /* defined(CONFIG_USER_ONLY) */
2256
e2eef170 2257#if !defined(CONFIG_USER_ONLY)
8da3ff18 2258
db7b5426 2259static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2260 ram_addr_t memory, ram_addr_t region_offset);
00f82b8a 2261static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2262 ram_addr_t orig_memory, ram_addr_t region_offset);
db7b5426
BS
2263#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2264 need_subpage) \
2265 do { \
2266 if (addr > start_addr) \
2267 start_addr2 = 0; \
2268 else { \
2269 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2270 if (start_addr2 > 0) \
2271 need_subpage = 1; \
2272 } \
2273 \
49e9fba2 2274 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
db7b5426
BS
2275 end_addr2 = TARGET_PAGE_SIZE - 1; \
2276 else { \
2277 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2278 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2279 need_subpage = 1; \
2280 } \
2281 } while (0)
2282
33417e70
FB
2283/* register physical memory. 'size' must be a multiple of the target
2284 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
8da3ff18
PB
2285 io memory page. The address used when calling the IO function is
2286 the offset from the start of the region, plus region_offset. Both
ccbb4d44 2287 start_addr and region_offset are rounded down to a page boundary
8da3ff18
PB
2288 before calculating this offset. This should not be a problem unless
2289 the low bits of start_addr and region_offset differ. */
2290void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2291 ram_addr_t size,
2292 ram_addr_t phys_offset,
2293 ram_addr_t region_offset)
33417e70 2294{
108c49b8 2295 target_phys_addr_t addr, end_addr;
92e873b9 2296 PhysPageDesc *p;
9d42037b 2297 CPUState *env;
00f82b8a 2298 ram_addr_t orig_size = size;
db7b5426 2299 void *subpage;
33417e70 2300
7ba1e619
AL
2301 if (kvm_enabled())
2302 kvm_set_phys_mem(start_addr, size, phys_offset);
2303
67c4d23c
PB
2304 if (phys_offset == IO_MEM_UNASSIGNED) {
2305 region_offset = start_addr;
2306 }
8da3ff18 2307 region_offset &= TARGET_PAGE_MASK;
5fd386f6 2308 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
49e9fba2
BS
2309 end_addr = start_addr + (target_phys_addr_t)size;
2310 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
db7b5426
BS
2311 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2312 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
00f82b8a 2313 ram_addr_t orig_memory = p->phys_offset;
db7b5426
BS
2314 target_phys_addr_t start_addr2, end_addr2;
2315 int need_subpage = 0;
2316
2317 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2318 need_subpage);
4254fab8 2319 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426
BS
2320 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2321 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18
PB
2322 &p->phys_offset, orig_memory,
2323 p->region_offset);
db7b5426
BS
2324 } else {
2325 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2326 >> IO_MEM_SHIFT];
2327 }
8da3ff18
PB
2328 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2329 region_offset);
2330 p->region_offset = 0;
db7b5426
BS
2331 } else {
2332 p->phys_offset = phys_offset;
2333 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2334 (phys_offset & IO_MEM_ROMD))
2335 phys_offset += TARGET_PAGE_SIZE;
2336 }
2337 } else {
2338 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2339 p->phys_offset = phys_offset;
8da3ff18 2340 p->region_offset = region_offset;
db7b5426 2341 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
8da3ff18 2342 (phys_offset & IO_MEM_ROMD)) {
db7b5426 2343 phys_offset += TARGET_PAGE_SIZE;
0e8f0967 2344 } else {
db7b5426
BS
2345 target_phys_addr_t start_addr2, end_addr2;
2346 int need_subpage = 0;
2347
2348 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2349 end_addr2, need_subpage);
2350
4254fab8 2351 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
db7b5426 2352 subpage = subpage_init((addr & TARGET_PAGE_MASK),
8da3ff18 2353 &p->phys_offset, IO_MEM_UNASSIGNED,
67c4d23c 2354 addr & TARGET_PAGE_MASK);
db7b5426 2355 subpage_register(subpage, start_addr2, end_addr2,
8da3ff18
PB
2356 phys_offset, region_offset);
2357 p->region_offset = 0;
db7b5426
BS
2358 }
2359 }
2360 }
8da3ff18 2361 region_offset += TARGET_PAGE_SIZE;
33417e70 2362 }
3b46e624 2363
9d42037b
FB
2364 /* since each CPU stores ram addresses in its TLB cache, we must
2365 reset the modified entries */
2366 /* XXX: slow ! */
2367 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2368 tlb_flush(env, 1);
2369 }
33417e70
FB
2370}
2371
ba863458 2372/* XXX: temporary until new memory mapping API */
00f82b8a 2373ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
ba863458
FB
2374{
2375 PhysPageDesc *p;
2376
2377 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2378 if (!p)
2379 return IO_MEM_UNASSIGNED;
2380 return p->phys_offset;
2381}
2382
f65ed4c1
AL
2383void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2384{
2385 if (kvm_enabled())
2386 kvm_coalesce_mmio_region(addr, size);
2387}
2388
2389void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2390{
2391 if (kvm_enabled())
2392 kvm_uncoalesce_mmio_region(addr, size);
2393}
2394
94a6b54f
PB
2395ram_addr_t qemu_ram_alloc(ram_addr_t size)
2396{
2397 RAMBlock *new_block;
2398
94a6b54f
PB
2399 size = TARGET_PAGE_ALIGN(size);
2400 new_block = qemu_malloc(sizeof(*new_block));
2401
2402 new_block->host = qemu_vmalloc(size);
2403 new_block->offset = last_ram_offset;
2404 new_block->length = size;
2405
2406 new_block->next = ram_blocks;
2407 ram_blocks = new_block;
2408
2409 phys_ram_dirty = qemu_realloc(phys_ram_dirty,
2410 (last_ram_offset + size) >> TARGET_PAGE_BITS);
2411 memset(phys_ram_dirty + (last_ram_offset >> TARGET_PAGE_BITS),
2412 0xff, size >> TARGET_PAGE_BITS);
2413
2414 last_ram_offset += size;
2415
6f0437e8
JK
2416 if (kvm_enabled())
2417 kvm_setup_guest_memory(new_block->host, size);
2418
94a6b54f
PB
2419 return new_block->offset;
2420}
e9a1ab19
FB
2421
2422void qemu_ram_free(ram_addr_t addr)
2423{
94a6b54f 2424 /* TODO: implement this. */
e9a1ab19
FB
2425}
2426
dc828ca1 2427/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2428 With the exception of the softmmu code in this file, this should
2429 only be used for local memory (e.g. video ram) that the device owns,
2430 and knows it isn't going to access beyond the end of the block.
2431
2432 It should not be used for general purpose DMA.
2433 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2434 */
dc828ca1
PB
2435void *qemu_get_ram_ptr(ram_addr_t addr)
2436{
94a6b54f
PB
2437 RAMBlock *prev;
2438 RAMBlock **prevp;
2439 RAMBlock *block;
2440
94a6b54f
PB
2441 prev = NULL;
2442 prevp = &ram_blocks;
2443 block = ram_blocks;
2444 while (block && (block->offset > addr
2445 || block->offset + block->length <= addr)) {
2446 if (prev)
2447 prevp = &prev->next;
2448 prev = block;
2449 block = block->next;
2450 }
2451 if (!block) {
2452 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2453 abort();
2454 }
2455 /* Move this entry to to start of the list. */
2456 if (prev) {
2457 prev->next = block->next;
2458 block->next = *prevp;
2459 *prevp = block;
2460 }
2461 return block->host + (addr - block->offset);
dc828ca1
PB
2462}
2463
5579c7f3
PB
2464/* Some of the softmmu routines need to translate from a host pointer
2465 (typically a TLB entry) back to a ram offset. */
2466ram_addr_t qemu_ram_addr_from_host(void *ptr)
2467{
94a6b54f
PB
2468 RAMBlock *prev;
2469 RAMBlock **prevp;
2470 RAMBlock *block;
2471 uint8_t *host = ptr;
2472
94a6b54f
PB
2473 prev = NULL;
2474 prevp = &ram_blocks;
2475 block = ram_blocks;
2476 while (block && (block->host > host
2477 || block->host + block->length <= host)) {
2478 if (prev)
2479 prevp = &prev->next;
2480 prev = block;
2481 block = block->next;
2482 }
2483 if (!block) {
2484 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2485 abort();
2486 }
2487 return block->offset + (host - block->host);
5579c7f3
PB
2488}
2489
a4193c8a 2490static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
33417e70 2491{
67d3b957 2492#ifdef DEBUG_UNASSIGNED
ab3d1727 2493 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
b4f0a316 2494#endif
faed1c2a 2495#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2496 do_unassigned_access(addr, 0, 0, 0, 1);
2497#endif
2498 return 0;
2499}
2500
2501static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2502{
2503#ifdef DEBUG_UNASSIGNED
2504 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2505#endif
faed1c2a 2506#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2507 do_unassigned_access(addr, 0, 0, 0, 2);
2508#endif
2509 return 0;
2510}
2511
2512static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2513{
2514#ifdef DEBUG_UNASSIGNED
2515 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2516#endif
faed1c2a 2517#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2518 do_unassigned_access(addr, 0, 0, 0, 4);
67d3b957 2519#endif
33417e70
FB
2520 return 0;
2521}
2522
a4193c8a 2523static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
33417e70 2524{
67d3b957 2525#ifdef DEBUG_UNASSIGNED
ab3d1727 2526 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
67d3b957 2527#endif
faed1c2a 2528#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2529 do_unassigned_access(addr, 1, 0, 0, 1);
2530#endif
2531}
2532
2533static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2534{
2535#ifdef DEBUG_UNASSIGNED
2536 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2537#endif
faed1c2a 2538#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3
BS
2539 do_unassigned_access(addr, 1, 0, 0, 2);
2540#endif
2541}
2542
2543static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2544{
2545#ifdef DEBUG_UNASSIGNED
2546 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2547#endif
faed1c2a 2548#if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
e18231a3 2549 do_unassigned_access(addr, 1, 0, 0, 4);
b4f0a316 2550#endif
33417e70
FB
2551}
2552
d60efc6b 2553static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
33417e70 2554 unassigned_mem_readb,
e18231a3
BS
2555 unassigned_mem_readw,
2556 unassigned_mem_readl,
33417e70
FB
2557};
2558
d60efc6b 2559static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
33417e70 2560 unassigned_mem_writeb,
e18231a3
BS
2561 unassigned_mem_writew,
2562 unassigned_mem_writel,
33417e70
FB
2563};
2564
0f459d16
PB
2565static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2566 uint32_t val)
9fa3e853 2567{
3a7d929e 2568 int dirty_flags;
3a7d929e
FB
2569 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2570 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2571#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2572 tb_invalidate_phys_page_fast(ram_addr, 1);
2573 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2574#endif
3a7d929e 2575 }
5579c7f3 2576 stb_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2577 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2578 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2579 /* we remove the notdirty callback only if the code has been
2580 flushed */
2581 if (dirty_flags == 0xff)
2e70f6ef 2582 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2583}
2584
0f459d16
PB
2585static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2586 uint32_t val)
9fa3e853 2587{
3a7d929e 2588 int dirty_flags;
3a7d929e
FB
2589 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2590 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2591#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2592 tb_invalidate_phys_page_fast(ram_addr, 2);
2593 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2594#endif
3a7d929e 2595 }
5579c7f3 2596 stw_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2597 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2598 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2599 /* we remove the notdirty callback only if the code has been
2600 flushed */
2601 if (dirty_flags == 0xff)
2e70f6ef 2602 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2603}
2604
0f459d16
PB
2605static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2606 uint32_t val)
9fa3e853 2607{
3a7d929e 2608 int dirty_flags;
3a7d929e
FB
2609 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2610 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2611#if !defined(CONFIG_USER_ONLY)
3a7d929e
FB
2612 tb_invalidate_phys_page_fast(ram_addr, 4);
2613 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
9fa3e853 2614#endif
3a7d929e 2615 }
5579c7f3 2616 stl_p(qemu_get_ram_ptr(ram_addr), val);
f23db169
FB
2617 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2618 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2619 /* we remove the notdirty callback only if the code has been
2620 flushed */
2621 if (dirty_flags == 0xff)
2e70f6ef 2622 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2623}
2624
d60efc6b 2625static CPUReadMemoryFunc * const error_mem_read[3] = {
9fa3e853
FB
2626 NULL, /* never used */
2627 NULL, /* never used */
2628 NULL, /* never used */
2629};
2630
d60efc6b 2631static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
1ccde1cb
FB
2632 notdirty_mem_writeb,
2633 notdirty_mem_writew,
2634 notdirty_mem_writel,
2635};
2636
0f459d16 2637/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2638static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16
PB
2639{
2640 CPUState *env = cpu_single_env;
06d55cc1
AL
2641 target_ulong pc, cs_base;
2642 TranslationBlock *tb;
0f459d16 2643 target_ulong vaddr;
a1d1bb31 2644 CPUWatchpoint *wp;
06d55cc1 2645 int cpu_flags;
0f459d16 2646
06d55cc1
AL
2647 if (env->watchpoint_hit) {
2648 /* We re-entered the check after replacing the TB. Now raise
2649 * the debug interrupt so that is will trigger after the
2650 * current instruction. */
2651 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2652 return;
2653 }
2e70f6ef 2654 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
c0ce998e 2655 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2656 if ((vaddr == (wp->vaddr & len_mask) ||
2657 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2658 wp->flags |= BP_WATCHPOINT_HIT;
2659 if (!env->watchpoint_hit) {
2660 env->watchpoint_hit = wp;
2661 tb = tb_find_pc(env->mem_io_pc);
2662 if (!tb) {
2663 cpu_abort(env, "check_watchpoint: could not find TB for "
2664 "pc=%p", (void *)env->mem_io_pc);
2665 }
2666 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2667 tb_phys_invalidate(tb, -1);
2668 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2669 env->exception_index = EXCP_DEBUG;
2670 } else {
2671 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2672 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2673 }
2674 cpu_resume_from_signal(env, NULL);
06d55cc1 2675 }
6e140f28
AL
2676 } else {
2677 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2678 }
2679 }
2680}
2681
6658ffb8
PB
2682/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2683 so these check for a hit then pass through to the normal out-of-line
2684 phys routines. */
2685static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2686{
b4051334 2687 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
6658ffb8
PB
2688 return ldub_phys(addr);
2689}
2690
2691static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2692{
b4051334 2693 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
6658ffb8
PB
2694 return lduw_phys(addr);
2695}
2696
2697static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2698{
b4051334 2699 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
6658ffb8
PB
2700 return ldl_phys(addr);
2701}
2702
6658ffb8
PB
2703static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2704 uint32_t val)
2705{
b4051334 2706 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
6658ffb8
PB
2707 stb_phys(addr, val);
2708}
2709
2710static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2711 uint32_t val)
2712{
b4051334 2713 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
6658ffb8
PB
2714 stw_phys(addr, val);
2715}
2716
2717static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2718 uint32_t val)
2719{
b4051334 2720 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
6658ffb8
PB
2721 stl_phys(addr, val);
2722}
2723
d60efc6b 2724static CPUReadMemoryFunc * const watch_mem_read[3] = {
6658ffb8
PB
2725 watch_mem_readb,
2726 watch_mem_readw,
2727 watch_mem_readl,
2728};
2729
d60efc6b 2730static CPUWriteMemoryFunc * const watch_mem_write[3] = {
6658ffb8
PB
2731 watch_mem_writeb,
2732 watch_mem_writew,
2733 watch_mem_writel,
2734};
6658ffb8 2735
db7b5426
BS
2736static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2737 unsigned int len)
2738{
db7b5426
BS
2739 uint32_t ret;
2740 unsigned int idx;
2741
8da3ff18 2742 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2743#if defined(DEBUG_SUBPAGE)
2744 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2745 mmio, len, addr, idx);
2746#endif
8da3ff18
PB
2747 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2748 addr + mmio->region_offset[idx][0][len]);
db7b5426
BS
2749
2750 return ret;
2751}
2752
2753static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2754 uint32_t value, unsigned int len)
2755{
db7b5426
BS
2756 unsigned int idx;
2757
8da3ff18 2758 idx = SUBPAGE_IDX(addr);
db7b5426
BS
2759#if defined(DEBUG_SUBPAGE)
2760 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2761 mmio, len, addr, idx, value);
2762#endif
8da3ff18
PB
2763 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2764 addr + mmio->region_offset[idx][1][len],
2765 value);
db7b5426
BS
2766}
2767
2768static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2769{
2770#if defined(DEBUG_SUBPAGE)
2771 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2772#endif
2773
2774 return subpage_readlen(opaque, addr, 0);
2775}
2776
2777static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2778 uint32_t value)
2779{
2780#if defined(DEBUG_SUBPAGE)
2781 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2782#endif
2783 subpage_writelen(opaque, addr, value, 0);
2784}
2785
2786static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2787{
2788#if defined(DEBUG_SUBPAGE)
2789 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2790#endif
2791
2792 return subpage_readlen(opaque, addr, 1);
2793}
2794
2795static void subpage_writew (void *opaque, target_phys_addr_t addr,
2796 uint32_t value)
2797{
2798#if defined(DEBUG_SUBPAGE)
2799 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2800#endif
2801 subpage_writelen(opaque, addr, value, 1);
2802}
2803
2804static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2805{
2806#if defined(DEBUG_SUBPAGE)
2807 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2808#endif
2809
2810 return subpage_readlen(opaque, addr, 2);
2811}
2812
2813static void subpage_writel (void *opaque,
2814 target_phys_addr_t addr, uint32_t value)
2815{
2816#if defined(DEBUG_SUBPAGE)
2817 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2818#endif
2819 subpage_writelen(opaque, addr, value, 2);
2820}
2821
d60efc6b 2822static CPUReadMemoryFunc * const subpage_read[] = {
db7b5426
BS
2823 &subpage_readb,
2824 &subpage_readw,
2825 &subpage_readl,
2826};
2827
d60efc6b 2828static CPUWriteMemoryFunc * const subpage_write[] = {
db7b5426
BS
2829 &subpage_writeb,
2830 &subpage_writew,
2831 &subpage_writel,
2832};
2833
2834static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
8da3ff18 2835 ram_addr_t memory, ram_addr_t region_offset)
db7b5426
BS
2836{
2837 int idx, eidx;
4254fab8 2838 unsigned int i;
db7b5426
BS
2839
2840 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2841 return -1;
2842 idx = SUBPAGE_IDX(start);
2843 eidx = SUBPAGE_IDX(end);
2844#if defined(DEBUG_SUBPAGE)
0bf9e31a 2845 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
2846 mmio, start, end, idx, eidx, memory);
2847#endif
2848 memory >>= IO_MEM_SHIFT;
2849 for (; idx <= eidx; idx++) {
4254fab8 2850 for (i = 0; i < 4; i++) {
3ee89922
BS
2851 if (io_mem_read[memory][i]) {
2852 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2853 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
8da3ff18 2854 mmio->region_offset[idx][0][i] = region_offset;
3ee89922
BS
2855 }
2856 if (io_mem_write[memory][i]) {
2857 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2858 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
8da3ff18 2859 mmio->region_offset[idx][1][i] = region_offset;
3ee89922 2860 }
4254fab8 2861 }
db7b5426
BS
2862 }
2863
2864 return 0;
2865}
2866
00f82b8a 2867static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
8da3ff18 2868 ram_addr_t orig_memory, ram_addr_t region_offset)
db7b5426
BS
2869{
2870 subpage_t *mmio;
2871 int subpage_memory;
2872
2873 mmio = qemu_mallocz(sizeof(subpage_t));
1eec614b
AL
2874
2875 mmio->base = base;
1eed09cb 2876 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio);
db7b5426 2877#if defined(DEBUG_SUBPAGE)
1eec614b
AL
2878 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2879 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 2880#endif
1eec614b
AL
2881 *phys = subpage_memory | IO_MEM_SUBPAGE;
2882 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
8da3ff18 2883 region_offset);
db7b5426
BS
2884
2885 return mmio;
2886}
2887
88715657
AL
2888static int get_free_io_mem_idx(void)
2889{
2890 int i;
2891
2892 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2893 if (!io_mem_used[i]) {
2894 io_mem_used[i] = 1;
2895 return i;
2896 }
2897
2898 return -1;
2899}
2900
33417e70
FB
2901/* mem_read and mem_write are arrays of functions containing the
2902 function to access byte (index 0), word (index 1) and dword (index
0b4e6e3e 2903 2). Functions can be omitted with a NULL function pointer.
3ee89922 2904 If io_index is non zero, the corresponding io zone is
4254fab8
BS
2905 modified. If it is zero, a new io zone is allocated. The return
2906 value can be used with cpu_register_physical_memory(). (-1) is
2907 returned if error. */
1eed09cb 2908static int cpu_register_io_memory_fixed(int io_index,
d60efc6b
BS
2909 CPUReadMemoryFunc * const *mem_read,
2910 CPUWriteMemoryFunc * const *mem_write,
1eed09cb 2911 void *opaque)
33417e70 2912{
4254fab8 2913 int i, subwidth = 0;
33417e70
FB
2914
2915 if (io_index <= 0) {
88715657
AL
2916 io_index = get_free_io_mem_idx();
2917 if (io_index == -1)
2918 return io_index;
33417e70 2919 } else {
1eed09cb 2920 io_index >>= IO_MEM_SHIFT;
33417e70
FB
2921 if (io_index >= IO_MEM_NB_ENTRIES)
2922 return -1;
2923 }
b5ff1b31 2924
33417e70 2925 for(i = 0;i < 3; i++) {
4254fab8
BS
2926 if (!mem_read[i] || !mem_write[i])
2927 subwidth = IO_MEM_SUBWIDTH;
33417e70
FB
2928 io_mem_read[io_index][i] = mem_read[i];
2929 io_mem_write[io_index][i] = mem_write[i];
2930 }
a4193c8a 2931 io_mem_opaque[io_index] = opaque;
4254fab8 2932 return (io_index << IO_MEM_SHIFT) | subwidth;
33417e70 2933}
61382a50 2934
d60efc6b
BS
2935int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
2936 CPUWriteMemoryFunc * const *mem_write,
1eed09cb
AK
2937 void *opaque)
2938{
2939 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque);
2940}
2941
88715657
AL
2942void cpu_unregister_io_memory(int io_table_address)
2943{
2944 int i;
2945 int io_index = io_table_address >> IO_MEM_SHIFT;
2946
2947 for (i=0;i < 3; i++) {
2948 io_mem_read[io_index][i] = unassigned_mem_read[i];
2949 io_mem_write[io_index][i] = unassigned_mem_write[i];
2950 }
2951 io_mem_opaque[io_index] = NULL;
2952 io_mem_used[io_index] = 0;
2953}
2954
e9179ce1
AK
2955static void io_mem_init(void)
2956{
2957 int i;
2958
2959 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read, unassigned_mem_write, NULL);
2960 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read, unassigned_mem_write, NULL);
2961 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read, notdirty_mem_write, NULL);
2962 for (i=0; i<5; i++)
2963 io_mem_used[i] = 1;
2964
2965 io_mem_watch = cpu_register_io_memory(watch_mem_read,
2966 watch_mem_write, NULL);
e9179ce1
AK
2967}
2968
e2eef170
PB
2969#endif /* !defined(CONFIG_USER_ONLY) */
2970
13eb76e0
FB
2971/* physical memory access (slow version, mainly for debug) */
2972#if defined(CONFIG_USER_ONLY)
5fafdf24 2973void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
2974 int len, int is_write)
2975{
2976 int l, flags;
2977 target_ulong page;
53a5960a 2978 void * p;
13eb76e0
FB
2979
2980 while (len > 0) {
2981 page = addr & TARGET_PAGE_MASK;
2982 l = (page + TARGET_PAGE_SIZE) - addr;
2983 if (l > len)
2984 l = len;
2985 flags = page_get_flags(page);
2986 if (!(flags & PAGE_VALID))
2987 return;
2988 if (is_write) {
2989 if (!(flags & PAGE_WRITE))
2990 return;
579a97f7 2991 /* XXX: this code should not depend on lock_user */
72fb7daa 2992 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
579a97f7
FB
2993 /* FIXME - should this return an error rather than just fail? */
2994 return;
72fb7daa
AJ
2995 memcpy(p, buf, l);
2996 unlock_user(p, addr, l);
13eb76e0
FB
2997 } else {
2998 if (!(flags & PAGE_READ))
2999 return;
579a97f7 3000 /* XXX: this code should not depend on lock_user */
72fb7daa 3001 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
579a97f7
FB
3002 /* FIXME - should this return an error rather than just fail? */
3003 return;
72fb7daa 3004 memcpy(buf, p, l);
5b257578 3005 unlock_user(p, addr, 0);
13eb76e0
FB
3006 }
3007 len -= l;
3008 buf += l;
3009 addr += l;
3010 }
3011}
8df1cd07 3012
13eb76e0 3013#else
5fafdf24 3014void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3015 int len, int is_write)
3016{
3017 int l, io_index;
3018 uint8_t *ptr;
3019 uint32_t val;
2e12669a
FB
3020 target_phys_addr_t page;
3021 unsigned long pd;
92e873b9 3022 PhysPageDesc *p;
3b46e624 3023
13eb76e0
FB
3024 while (len > 0) {
3025 page = addr & TARGET_PAGE_MASK;
3026 l = (page + TARGET_PAGE_SIZE) - addr;
3027 if (l > len)
3028 l = len;
92e873b9 3029 p = phys_page_find(page >> TARGET_PAGE_BITS);
13eb76e0
FB
3030 if (!p) {
3031 pd = IO_MEM_UNASSIGNED;
3032 } else {
3033 pd = p->phys_offset;
3034 }
3b46e624 3035
13eb76e0 3036 if (is_write) {
3a7d929e 3037 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
6c2934db 3038 target_phys_addr_t addr1 = addr;
13eb76e0 3039 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3040 if (p)
6c2934db 3041 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
6a00d601
FB
3042 /* XXX: could force cpu_single_env to NULL to avoid
3043 potential bugs */
6c2934db 3044 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3045 /* 32 bit write access */
c27004ec 3046 val = ldl_p(buf);
6c2934db 3047 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
13eb76e0 3048 l = 4;
6c2934db 3049 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3050 /* 16 bit write access */
c27004ec 3051 val = lduw_p(buf);
6c2934db 3052 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3053 l = 2;
3054 } else {
1c213d19 3055 /* 8 bit write access */
c27004ec 3056 val = ldub_p(buf);
6c2934db 3057 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
13eb76e0
FB
3058 l = 1;
3059 }
3060 } else {
b448f2f3
FB
3061 unsigned long addr1;
3062 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
13eb76e0 3063 /* RAM case */
5579c7f3 3064 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3065 memcpy(ptr, buf, l);
3a7d929e
FB
3066 if (!cpu_physical_memory_is_dirty(addr1)) {
3067 /* invalidate code */
3068 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3069 /* set dirty bit */
5fafdf24 3070 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
f23db169 3071 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3072 }
13eb76e0
FB
3073 }
3074 } else {
5fafdf24 3075 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3076 !(pd & IO_MEM_ROMD)) {
6c2934db 3077 target_phys_addr_t addr1 = addr;
13eb76e0
FB
3078 /* I/O case */
3079 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18 3080 if (p)
6c2934db
AJ
3081 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3082 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3083 /* 32 bit read access */
6c2934db 3084 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
c27004ec 3085 stl_p(buf, val);
13eb76e0 3086 l = 4;
6c2934db 3087 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3088 /* 16 bit read access */
6c2934db 3089 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
c27004ec 3090 stw_p(buf, val);
13eb76e0
FB
3091 l = 2;
3092 } else {
1c213d19 3093 /* 8 bit read access */
6c2934db 3094 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
c27004ec 3095 stb_p(buf, val);
13eb76e0
FB
3096 l = 1;
3097 }
3098 } else {
3099 /* RAM case */
5579c7f3 3100 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
13eb76e0
FB
3101 (addr & ~TARGET_PAGE_MASK);
3102 memcpy(buf, ptr, l);
3103 }
3104 }
3105 len -= l;
3106 buf += l;
3107 addr += l;
3108 }
3109}
8df1cd07 3110
d0ecd2aa 3111/* used for ROM loading : can write in RAM and ROM */
5fafdf24 3112void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3113 const uint8_t *buf, int len)
3114{
3115 int l;
3116 uint8_t *ptr;
3117 target_phys_addr_t page;
3118 unsigned long pd;
3119 PhysPageDesc *p;
3b46e624 3120
d0ecd2aa
FB
3121 while (len > 0) {
3122 page = addr & TARGET_PAGE_MASK;
3123 l = (page + TARGET_PAGE_SIZE) - addr;
3124 if (l > len)
3125 l = len;
3126 p = phys_page_find(page >> TARGET_PAGE_BITS);
3127 if (!p) {
3128 pd = IO_MEM_UNASSIGNED;
3129 } else {
3130 pd = p->phys_offset;
3131 }
3b46e624 3132
d0ecd2aa 3133 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
2a4188a3
FB
3134 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3135 !(pd & IO_MEM_ROMD)) {
d0ecd2aa
FB
3136 /* do nothing */
3137 } else {
3138 unsigned long addr1;
3139 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3140 /* ROM/RAM case */
5579c7f3 3141 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa
FB
3142 memcpy(ptr, buf, l);
3143 }
3144 len -= l;
3145 buf += l;
3146 addr += l;
3147 }
3148}
3149
6d16c2f8
AL
3150typedef struct {
3151 void *buffer;
3152 target_phys_addr_t addr;
3153 target_phys_addr_t len;
3154} BounceBuffer;
3155
3156static BounceBuffer bounce;
3157
ba223c29
AL
3158typedef struct MapClient {
3159 void *opaque;
3160 void (*callback)(void *opaque);
3161 LIST_ENTRY(MapClient) link;
3162} MapClient;
3163
3164static LIST_HEAD(map_client_list, MapClient) map_client_list
3165 = LIST_HEAD_INITIALIZER(map_client_list);
3166
3167void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3168{
3169 MapClient *client = qemu_malloc(sizeof(*client));
3170
3171 client->opaque = opaque;
3172 client->callback = callback;
3173 LIST_INSERT_HEAD(&map_client_list, client, link);
3174 return client;
3175}
3176
3177void cpu_unregister_map_client(void *_client)
3178{
3179 MapClient *client = (MapClient *)_client;
3180
3181 LIST_REMOVE(client, link);
34d5e948 3182 qemu_free(client);
ba223c29
AL
3183}
3184
3185static void cpu_notify_map_clients(void)
3186{
3187 MapClient *client;
3188
3189 while (!LIST_EMPTY(&map_client_list)) {
3190 client = LIST_FIRST(&map_client_list);
3191 client->callback(client->opaque);
34d5e948 3192 cpu_unregister_map_client(client);
ba223c29
AL
3193 }
3194}
3195
6d16c2f8
AL
3196/* Map a physical memory region into a host virtual address.
3197 * May map a subset of the requested range, given by and returned in *plen.
3198 * May return NULL if resources needed to perform the mapping are exhausted.
3199 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3200 * Use cpu_register_map_client() to know when retrying the map operation is
3201 * likely to succeed.
6d16c2f8
AL
3202 */
3203void *cpu_physical_memory_map(target_phys_addr_t addr,
3204 target_phys_addr_t *plen,
3205 int is_write)
3206{
3207 target_phys_addr_t len = *plen;
3208 target_phys_addr_t done = 0;
3209 int l;
3210 uint8_t *ret = NULL;
3211 uint8_t *ptr;
3212 target_phys_addr_t page;
3213 unsigned long pd;
3214 PhysPageDesc *p;
3215 unsigned long addr1;
3216
3217 while (len > 0) {
3218 page = addr & TARGET_PAGE_MASK;
3219 l = (page + TARGET_PAGE_SIZE) - addr;
3220 if (l > len)
3221 l = len;
3222 p = phys_page_find(page >> TARGET_PAGE_BITS);
3223 if (!p) {
3224 pd = IO_MEM_UNASSIGNED;
3225 } else {
3226 pd = p->phys_offset;
3227 }
3228
3229 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3230 if (done || bounce.buffer) {
3231 break;
3232 }
3233 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3234 bounce.addr = addr;
3235 bounce.len = l;
3236 if (!is_write) {
3237 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3238 }
3239 ptr = bounce.buffer;
3240 } else {
3241 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3242 ptr = qemu_get_ram_ptr(addr1);
6d16c2f8
AL
3243 }
3244 if (!done) {
3245 ret = ptr;
3246 } else if (ret + done != ptr) {
3247 break;
3248 }
3249
3250 len -= l;
3251 addr += l;
3252 done += l;
3253 }
3254 *plen = done;
3255 return ret;
3256}
3257
3258/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3259 * Will also mark the memory as dirty if is_write == 1. access_len gives
3260 * the amount of memory that was actually read or written by the caller.
3261 */
3262void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3263 int is_write, target_phys_addr_t access_len)
3264{
3265 if (buffer != bounce.buffer) {
3266 if (is_write) {
5579c7f3 3267 ram_addr_t addr1 = qemu_ram_addr_from_host(buffer);
6d16c2f8
AL
3268 while (access_len) {
3269 unsigned l;
3270 l = TARGET_PAGE_SIZE;
3271 if (l > access_len)
3272 l = access_len;
3273 if (!cpu_physical_memory_is_dirty(addr1)) {
3274 /* invalidate code */
3275 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3276 /* set dirty bit */
3277 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3278 (0xff & ~CODE_DIRTY_FLAG);
3279 }
3280 addr1 += l;
3281 access_len -= l;
3282 }
3283 }
3284 return;
3285 }
3286 if (is_write) {
3287 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3288 }
3289 qemu_free(bounce.buffer);
3290 bounce.buffer = NULL;
ba223c29 3291 cpu_notify_map_clients();
6d16c2f8 3292}
d0ecd2aa 3293
8df1cd07
FB
3294/* warning: addr must be aligned */
3295uint32_t ldl_phys(target_phys_addr_t addr)
3296{
3297 int io_index;
3298 uint8_t *ptr;
3299 uint32_t val;
3300 unsigned long pd;
3301 PhysPageDesc *p;
3302
3303 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3304 if (!p) {
3305 pd = IO_MEM_UNASSIGNED;
3306 } else {
3307 pd = p->phys_offset;
3308 }
3b46e624 3309
5fafdf24 3310 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
2a4188a3 3311 !(pd & IO_MEM_ROMD)) {
8df1cd07
FB
3312 /* I/O case */
3313 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3314 if (p)
3315 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3316 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3317 } else {
3318 /* RAM case */
5579c7f3 3319 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
8df1cd07
FB
3320 (addr & ~TARGET_PAGE_MASK);
3321 val = ldl_p(ptr);
3322 }
3323 return val;
3324}
3325
84b7b8e7
FB
3326/* warning: addr must be aligned */
3327uint64_t ldq_phys(target_phys_addr_t addr)
3328{
3329 int io_index;
3330 uint8_t *ptr;
3331 uint64_t val;
3332 unsigned long pd;
3333 PhysPageDesc *p;
3334
3335 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3336 if (!p) {
3337 pd = IO_MEM_UNASSIGNED;
3338 } else {
3339 pd = p->phys_offset;
3340 }
3b46e624 3341
2a4188a3
FB
3342 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3343 !(pd & IO_MEM_ROMD)) {
84b7b8e7
FB
3344 /* I/O case */
3345 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3346 if (p)
3347 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
84b7b8e7
FB
3348#ifdef TARGET_WORDS_BIGENDIAN
3349 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3350 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3351#else
3352 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3353 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3354#endif
3355 } else {
3356 /* RAM case */
5579c7f3 3357 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
84b7b8e7
FB
3358 (addr & ~TARGET_PAGE_MASK);
3359 val = ldq_p(ptr);
3360 }
3361 return val;
3362}
3363
aab33094
FB
3364/* XXX: optimize */
3365uint32_t ldub_phys(target_phys_addr_t addr)
3366{
3367 uint8_t val;
3368 cpu_physical_memory_read(addr, &val, 1);
3369 return val;
3370}
3371
3372/* XXX: optimize */
3373uint32_t lduw_phys(target_phys_addr_t addr)
3374{
3375 uint16_t val;
3376 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3377 return tswap16(val);
3378}
3379
8df1cd07
FB
3380/* warning: addr must be aligned. The ram page is not masked as dirty
3381 and the code inside is not invalidated. It is useful if the dirty
3382 bits are used to track modified PTEs */
3383void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3384{
3385 int io_index;
3386 uint8_t *ptr;
3387 unsigned long pd;
3388 PhysPageDesc *p;
3389
3390 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3391 if (!p) {
3392 pd = IO_MEM_UNASSIGNED;
3393 } else {
3394 pd = p->phys_offset;
3395 }
3b46e624 3396
3a7d929e 3397 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3398 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3399 if (p)
3400 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3401 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3402 } else {
74576198 3403 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
5579c7f3 3404 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3405 stl_p(ptr, val);
74576198
AL
3406
3407 if (unlikely(in_migration)) {
3408 if (!cpu_physical_memory_is_dirty(addr1)) {
3409 /* invalidate code */
3410 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3411 /* set dirty bit */
3412 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3413 (0xff & ~CODE_DIRTY_FLAG);
3414 }
3415 }
8df1cd07
FB
3416 }
3417}
3418
bc98a7ef
JM
3419void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3420{
3421 int io_index;
3422 uint8_t *ptr;
3423 unsigned long pd;
3424 PhysPageDesc *p;
3425
3426 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3427 if (!p) {
3428 pd = IO_MEM_UNASSIGNED;
3429 } else {
3430 pd = p->phys_offset;
3431 }
3b46e624 3432
bc98a7ef
JM
3433 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3434 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3435 if (p)
3436 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
bc98a7ef
JM
3437#ifdef TARGET_WORDS_BIGENDIAN
3438 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3439 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3440#else
3441 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3442 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3443#endif
3444 } else {
5579c7f3 3445 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
bc98a7ef
JM
3446 (addr & ~TARGET_PAGE_MASK);
3447 stq_p(ptr, val);
3448 }
3449}
3450
8df1cd07 3451/* warning: addr must be aligned */
8df1cd07
FB
3452void stl_phys(target_phys_addr_t addr, uint32_t val)
3453{
3454 int io_index;
3455 uint8_t *ptr;
3456 unsigned long pd;
3457 PhysPageDesc *p;
3458
3459 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3460 if (!p) {
3461 pd = IO_MEM_UNASSIGNED;
3462 } else {
3463 pd = p->phys_offset;
3464 }
3b46e624 3465
3a7d929e 3466 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
8df1cd07 3467 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
8da3ff18
PB
3468 if (p)
3469 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
8df1cd07
FB
3470 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3471 } else {
3472 unsigned long addr1;
3473 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3474 /* RAM case */
5579c7f3 3475 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3476 stl_p(ptr, val);
3a7d929e
FB
3477 if (!cpu_physical_memory_is_dirty(addr1)) {
3478 /* invalidate code */
3479 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3480 /* set dirty bit */
f23db169
FB
3481 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3482 (0xff & ~CODE_DIRTY_FLAG);
3a7d929e 3483 }
8df1cd07
FB
3484 }
3485}
3486
aab33094
FB
3487/* XXX: optimize */
3488void stb_phys(target_phys_addr_t addr, uint32_t val)
3489{
3490 uint8_t v = val;
3491 cpu_physical_memory_write(addr, &v, 1);
3492}
3493
3494/* XXX: optimize */
3495void stw_phys(target_phys_addr_t addr, uint32_t val)
3496{
3497 uint16_t v = tswap16(val);
3498 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3499}
3500
3501/* XXX: optimize */
3502void stq_phys(target_phys_addr_t addr, uint64_t val)
3503{
3504 val = tswap64(val);
3505 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3506}
3507
13eb76e0
FB
3508#endif
3509
5e2972fd 3510/* virtual memory access for debug (includes writing to ROM) */
5fafdf24 3511int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
b448f2f3 3512 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3513{
3514 int l;
9b3c35e0
JM
3515 target_phys_addr_t phys_addr;
3516 target_ulong page;
13eb76e0
FB
3517
3518 while (len > 0) {
3519 page = addr & TARGET_PAGE_MASK;
3520 phys_addr = cpu_get_phys_page_debug(env, page);
3521 /* if no physical page mapped, return an error */
3522 if (phys_addr == -1)
3523 return -1;
3524 l = (page + TARGET_PAGE_SIZE) - addr;
3525 if (l > len)
3526 l = len;
5e2972fd
AL
3527 phys_addr += (addr & ~TARGET_PAGE_MASK);
3528#if !defined(CONFIG_USER_ONLY)
3529 if (is_write)
3530 cpu_physical_memory_write_rom(phys_addr, buf, l);
3531 else
3532#endif
3533 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
3534 len -= l;
3535 buf += l;
3536 addr += l;
3537 }
3538 return 0;
3539}
3540
2e70f6ef
PB
3541/* in deterministic execution mode, instructions doing device I/Os
3542 must be at the end of the TB */
3543void cpu_io_recompile(CPUState *env, void *retaddr)
3544{
3545 TranslationBlock *tb;
3546 uint32_t n, cflags;
3547 target_ulong pc, cs_base;
3548 uint64_t flags;
3549
3550 tb = tb_find_pc((unsigned long)retaddr);
3551 if (!tb) {
3552 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3553 retaddr);
3554 }
3555 n = env->icount_decr.u16.low + tb->icount;
3556 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3557 /* Calculate how many instructions had been executed before the fault
bf20dc07 3558 occurred. */
2e70f6ef
PB
3559 n = n - env->icount_decr.u16.low;
3560 /* Generate a new TB ending on the I/O insn. */
3561 n++;
3562 /* On MIPS and SH, delay slot instructions can only be restarted if
3563 they were already the first instruction in the TB. If this is not
bf20dc07 3564 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
3565 branch. */
3566#if defined(TARGET_MIPS)
3567 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3568 env->active_tc.PC -= 4;
3569 env->icount_decr.u16.low++;
3570 env->hflags &= ~MIPS_HFLAG_BMASK;
3571 }
3572#elif defined(TARGET_SH4)
3573 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3574 && n > 1) {
3575 env->pc -= 2;
3576 env->icount_decr.u16.low++;
3577 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3578 }
3579#endif
3580 /* This should never happen. */
3581 if (n > CF_COUNT_MASK)
3582 cpu_abort(env, "TB too big during recompile");
3583
3584 cflags = n | CF_LAST_IO;
3585 pc = tb->pc;
3586 cs_base = tb->cs_base;
3587 flags = tb->flags;
3588 tb_phys_invalidate(tb, -1);
3589 /* FIXME: In theory this could raise an exception. In practice
3590 we have already translated the block once so it's probably ok. */
3591 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 3592 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
3593 the first in the TB) then we end up generating a whole new TB and
3594 repeating the fault, which is horribly inefficient.
3595 Better would be to execute just this insn uncached, or generate a
3596 second new TB. */
3597 cpu_resume_from_signal(env, NULL);
3598}
3599
e3db7226
FB
3600void dump_exec_info(FILE *f,
3601 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3602{
3603 int i, target_code_size, max_target_code_size;
3604 int direct_jmp_count, direct_jmp2_count, cross_page;
3605 TranslationBlock *tb;
3b46e624 3606
e3db7226
FB
3607 target_code_size = 0;
3608 max_target_code_size = 0;
3609 cross_page = 0;
3610 direct_jmp_count = 0;
3611 direct_jmp2_count = 0;
3612 for(i = 0; i < nb_tbs; i++) {
3613 tb = &tbs[i];
3614 target_code_size += tb->size;
3615 if (tb->size > max_target_code_size)
3616 max_target_code_size = tb->size;
3617 if (tb->page_addr[1] != -1)
3618 cross_page++;
3619 if (tb->tb_next_offset[0] != 0xffff) {
3620 direct_jmp_count++;
3621 if (tb->tb_next_offset[1] != 0xffff) {
3622 direct_jmp2_count++;
3623 }
3624 }
3625 }
3626 /* XXX: avoid using doubles ? */
57fec1fe 3627 cpu_fprintf(f, "Translation buffer state:\n");
26a5f13b
FB
3628 cpu_fprintf(f, "gen code size %ld/%ld\n",
3629 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3630 cpu_fprintf(f, "TB count %d/%d\n",
3631 nb_tbs, code_gen_max_blocks);
5fafdf24 3632 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
3633 nb_tbs ? target_code_size / nb_tbs : 0,
3634 max_target_code_size);
5fafdf24 3635 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
3636 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3637 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
3638 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3639 cross_page,
e3db7226
FB
3640 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3641 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 3642 direct_jmp_count,
e3db7226
FB
3643 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3644 direct_jmp2_count,
3645 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 3646 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
3647 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3648 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3649 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 3650 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
3651}
3652
5fafdf24 3653#if !defined(CONFIG_USER_ONLY)
61382a50
FB
3654
3655#define MMUSUFFIX _cmmu
3656#define GETPC() NULL
3657#define env cpu_single_env
b769d8fe 3658#define SOFTMMU_CODE_ACCESS
61382a50
FB
3659
3660#define SHIFT 0
3661#include "softmmu_template.h"
3662
3663#define SHIFT 1
3664#include "softmmu_template.h"
3665
3666#define SHIFT 2
3667#include "softmmu_template.h"
3668
3669#define SHIFT 3
3670#include "softmmu_template.h"
3671
3672#undef env
3673
3674#endif