]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
migration: pass in_postcopy instead of check state again
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
664785ac
TH
14@set qemu_system qemu-system-x86_64
15@set qemu_system_x86 qemu-system-x86_64
16
a1a32b05
SW
17@ifinfo
18@direntry
19* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
20@end direntry
21@end ifinfo
22
0806e3f6 23@iftex
386405f7
FB
24@titlepage
25@sp 7
44cb280d 26@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
27@sp 1
28@center @titlefont{User Documentation}
386405f7
FB
29@sp 3
30@end titlepage
0806e3f6 31@end iftex
386405f7 32
debc7065
FB
33@ifnottex
34@node Top
35@top
36
37@menu
38* Introduction::
debc7065
FB
39* QEMU PC System emulator::
40* QEMU System emulator for non PC targets::
3f2ce724 41* QEMU Guest Agent::
83195237 42* QEMU User space emulator::
483c6ad4 43* System requirements::
e8412576 44* Security::
78e87797 45* Implementation notes::
eb22aeca 46* Deprecated features::
45b47130 47* Supported build platforms::
7544a042 48* License::
debc7065
FB
49* Index::
50@end menu
51@end ifnottex
52
53@contents
54
55@node Introduction
386405f7
FB
56@chapter Introduction
57
debc7065
FB
58@menu
59* intro_features:: Features
60@end menu
61
62@node intro_features
322d0c66 63@section Features
386405f7 64
1f673135
FB
65QEMU is a FAST! processor emulator using dynamic translation to
66achieve good emulation speed.
1eb20527 67
1f3e7e41 68@cindex operating modes
1eb20527 69QEMU has two operating modes:
0806e3f6 70
d7e5edca 71@itemize
7544a042 72@cindex system emulation
1f3e7e41 73@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
74example a PC), including one or several processors and various
75peripherals. It can be used to launch different Operating Systems
76without rebooting the PC or to debug system code.
1eb20527 77
7544a042 78@cindex user mode emulation
1f3e7e41 79@item User mode emulation. In this mode, QEMU can launch
83195237 80processes compiled for one CPU on another CPU. It can be used to
70b7fba9 81launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 82to ease cross-compilation and cross-debugging.
1eb20527
FB
83
84@end itemize
85
1f3e7e41
PB
86QEMU has the following features:
87
88@itemize
89@item QEMU can run without a host kernel driver and yet gives acceptable
90performance. It uses dynamic translation to native code for reasonable speed,
91with support for self-modifying code and precise exceptions.
92
93@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
94Windows) and architectures.
95
96@item It performs accurate software emulation of the FPU.
97@end itemize
322d0c66 98
1f3e7e41 99QEMU user mode emulation has the following features:
52c00a5f 100@itemize
1f3e7e41
PB
101@item Generic Linux system call converter, including most ioctls.
102
103@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
104
105@item Accurate signal handling by remapping host signals to target signals.
106@end itemize
107
108QEMU full system emulation has the following features:
109@itemize
110@item
111QEMU uses a full software MMU for maximum portability.
112
113@item
326c4c3c 114QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
115execute most of the guest code natively, while
116continuing to emulate the rest of the machine.
117
118@item
119Various hardware devices can be emulated and in some cases, host
120devices (e.g. serial and parallel ports, USB, drives) can be used
121transparently by the guest Operating System. Host device passthrough
122can be used for talking to external physical peripherals (e.g. a
123webcam, modem or tape drive).
124
125@item
126Symmetric multiprocessing (SMP) support. Currently, an in-kernel
127accelerator is required to use more than one host CPU for emulation.
128
52c00a5f 129@end itemize
386405f7 130
0806e3f6 131
debc7065 132@node QEMU PC System emulator
3f9f3aa1 133@chapter QEMU PC System emulator
7544a042 134@cindex system emulation (PC)
1eb20527 135
debc7065
FB
136@menu
137* pcsys_introduction:: Introduction
138* pcsys_quickstart:: Quick Start
139* sec_invocation:: Invocation
a40db1b3
PM
140* pcsys_keys:: Keys in the graphical frontends
141* mux_keys:: Keys in the character backend multiplexer
debc7065 142* pcsys_monitor:: QEMU Monitor
2544e9e4 143* cpu_models:: CPU models
debc7065
FB
144* disk_images:: Disk Images
145* pcsys_network:: Network emulation
576fd0a1 146* pcsys_other_devs:: Other Devices
debc7065
FB
147* direct_linux_boot:: Direct Linux Boot
148* pcsys_usb:: USB emulation
f858dcae 149* vnc_security:: VNC security
5d19a6ea 150* network_tls:: TLS setup for network services
debc7065
FB
151* gdb_usage:: GDB usage
152* pcsys_os_specific:: Target OS specific information
153@end menu
154
155@node pcsys_introduction
0806e3f6
FB
156@section Introduction
157
158@c man begin DESCRIPTION
159
3f9f3aa1
FB
160The QEMU PC System emulator simulates the
161following peripherals:
0806e3f6
FB
162
163@itemize @minus
5fafdf24 164@item
15a34c63 165i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 166@item
15a34c63
FB
167Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
168extensions (hardware level, including all non standard modes).
0806e3f6
FB
169@item
170PS/2 mouse and keyboard
5fafdf24 171@item
15a34c63 1722 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
173@item
174Floppy disk
5fafdf24 175@item
3a2eeac0 176PCI and ISA network adapters
0806e3f6 177@item
05d5818c
FB
178Serial ports
179@item
23076bb3
CM
180IPMI BMC, either and internal or external one
181@item
c0fe3827
FB
182Creative SoundBlaster 16 sound card
183@item
184ENSONIQ AudioPCI ES1370 sound card
185@item
e5c9a13e
AZ
186Intel 82801AA AC97 Audio compatible sound card
187@item
7d72e762
GH
188Intel HD Audio Controller and HDA codec
189@item
2d983446 190Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 191@item
26463dbc
AZ
192Gravis Ultrasound GF1 sound card
193@item
cc53d26d 194CS4231A compatible sound card
195@item
a92ff8c1 196PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
197@end itemize
198
3f9f3aa1
FB
199SMP is supported with up to 255 CPUs.
200
a8ad4159 201QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
202VGA BIOS.
203
c0fe3827
FB
204QEMU uses YM3812 emulation by Tatsuyuki Satoh.
205
2d983446 206QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 207by Tibor "TS" Schütz.
423d65f4 208
1a1a0e20 209Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 210QEMU must be told to not have parallel ports to have working GUS.
720036a5 211
212@example
664785ac 213@value{qemu_system_x86} dos.img -soundhw gus -parallel none
720036a5 214@end example
215
216Alternatively:
217@example
664785ac 218@value{qemu_system_x86} dos.img -device gus,irq=5
720036a5 219@end example
220
221Or some other unclaimed IRQ.
222
cc53d26d 223CS4231A is the chip used in Windows Sound System and GUSMAX products
224
0806e3f6
FB
225@c man end
226
debc7065 227@node pcsys_quickstart
1eb20527 228@section Quick Start
7544a042 229@cindex quick start
1eb20527 230
664785ac
TH
231Download and uncompress a hard disk image with Linux installed (e.g.
232@file{linux.img}) and type:
0806e3f6
FB
233
234@example
664785ac 235@value{qemu_system} linux.img
0806e3f6
FB
236@end example
237
238Linux should boot and give you a prompt.
239
6cc721cf 240@node sec_invocation
ec410fc9
FB
241@section Invocation
242
243@example
0806e3f6 244@c man begin SYNOPSIS
664785ac 245@command{@value{qemu_system}} [@var{options}] [@var{disk_image}]
0806e3f6 246@c man end
ec410fc9
FB
247@end example
248
0806e3f6 249@c man begin OPTIONS
d2c639d6
BS
250@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
251targets do not need a disk image.
ec410fc9 252
5824d651 253@include qemu-options.texi
ec410fc9 254
3e11db9a
FB
255@c man end
256
e896d0f9
MA
257@subsection Device URL Syntax
258@c TODO merge this with section Disk Images
259
260@c man begin NOTES
261
262In addition to using normal file images for the emulated storage devices,
263QEMU can also use networked resources such as iSCSI devices. These are
264specified using a special URL syntax.
265
266@table @option
267@item iSCSI
268iSCSI support allows QEMU to access iSCSI resources directly and use as
269images for the guest storage. Both disk and cdrom images are supported.
270
271Syntax for specifying iSCSI LUNs is
272``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
273
274By default qemu will use the iSCSI initiator-name
275'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
276line or a configuration file.
277
278Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
279stalled requests and force a reestablishment of the session. The timeout
280is specified in seconds. The default is 0 which means no timeout. Libiscsi
2811.15.0 or greater is required for this feature.
282
283Example (without authentication):
284@example
664785ac 285@value{qemu_system} -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
e896d0f9
MA
286 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
287 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
288@end example
289
290Example (CHAP username/password via URL):
291@example
664785ac 292@value{qemu_system} -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
293@end example
294
295Example (CHAP username/password via environment variables):
296@example
297LIBISCSI_CHAP_USERNAME="user" \
298LIBISCSI_CHAP_PASSWORD="password" \
664785ac 299@value{qemu_system} -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
300@end example
301
302@item NBD
303QEMU supports NBD (Network Block Devices) both using TCP protocol as well
0c61ebb0 304as Unix Domain Sockets. With TCP, the default port is 10809.
e896d0f9 305
0c61ebb0
EB
306Syntax for specifying a NBD device using TCP, in preferred URI form:
307``nbd://<server-ip>[:<port>]/[<export>]''
308
309Syntax for specifying a NBD device using Unix Domain Sockets; remember
310that '?' is a shell glob character and may need quoting:
311``nbd+unix:///[<export>]?socket=<domain-socket>''
312
313Older syntax that is also recognized:
e896d0f9
MA
314``nbd:<server-ip>:<port>[:exportname=<export>]''
315
316Syntax for specifying a NBD device using Unix Domain Sockets
317``nbd:unix:<domain-socket>[:exportname=<export>]''
318
319Example for TCP
320@example
664785ac 321@value{qemu_system} --drive file=nbd:192.0.2.1:30000
e896d0f9
MA
322@end example
323
324Example for Unix Domain Sockets
325@example
664785ac 326@value{qemu_system} --drive file=nbd:unix:/tmp/nbd-socket
e896d0f9
MA
327@end example
328
329@item SSH
330QEMU supports SSH (Secure Shell) access to remote disks.
331
332Examples:
333@example
664785ac
TH
334@value{qemu_system} -drive file=ssh://user@@host/path/to/disk.img
335@value{qemu_system} -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
e896d0f9
MA
336@end example
337
338Currently authentication must be done using ssh-agent. Other
339authentication methods may be supported in future.
340
341@item Sheepdog
342Sheepdog is a distributed storage system for QEMU.
343QEMU supports using either local sheepdog devices or remote networked
344devices.
345
346Syntax for specifying a sheepdog device
347@example
348sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
349@end example
350
351Example
352@example
664785ac 353@value{qemu_system} --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
e896d0f9
MA
354@end example
355
356See also @url{https://sheepdog.github.io/sheepdog/}.
357
358@item GlusterFS
359GlusterFS is a user space distributed file system.
360QEMU supports the use of GlusterFS volumes for hosting VM disk images using
361TCP, Unix Domain Sockets and RDMA transport protocols.
362
363Syntax for specifying a VM disk image on GlusterFS volume is
364@example
365
366URI:
367gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
368
369JSON:
370'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
371@ "server":[@{"type":"tcp","host":"...","port":"..."@},
372@ @{"type":"unix","socket":"..."@}]@}@}'
373@end example
374
375
376Example
377@example
378URI:
664785ac 379@value{qemu_system} --drive file=gluster://192.0.2.1/testvol/a.img,
e896d0f9
MA
380@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
381
382JSON:
664785ac 383@value{qemu_system} 'json:@{"driver":"qcow2",
e896d0f9
MA
384@ "file":@{"driver":"gluster",
385@ "volume":"testvol","path":"a.img",
386@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
387@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
388@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
664785ac 389@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
e896d0f9
MA
390@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
391@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
392@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
393@end example
394
395See also @url{http://www.gluster.org}.
396
397@item HTTP/HTTPS/FTP/FTPS
398QEMU supports read-only access to files accessed over http(s) and ftp(s).
399
400Syntax using a single filename:
401@example
402<protocol>://[<username>[:<password>]@@]<host>/<path>
403@end example
404
405where:
406@table @option
407@item protocol
408'http', 'https', 'ftp', or 'ftps'.
409
410@item username
411Optional username for authentication to the remote server.
412
413@item password
414Optional password for authentication to the remote server.
415
416@item host
417Address of the remote server.
418
419@item path
420Path on the remote server, including any query string.
421@end table
422
423The following options are also supported:
424@table @option
425@item url
426The full URL when passing options to the driver explicitly.
427
428@item readahead
429The amount of data to read ahead with each range request to the remote server.
430This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
431does not have a suffix, it will be assumed to be in bytes. The value must be a
432multiple of 512 bytes. It defaults to 256k.
433
434@item sslverify
435Whether to verify the remote server's certificate when connecting over SSL. It
436can have the value 'on' or 'off'. It defaults to 'on'.
437
438@item cookie
439Send this cookie (it can also be a list of cookies separated by ';') with
440each outgoing request. Only supported when using protocols such as HTTP
441which support cookies, otherwise ignored.
442
443@item timeout
444Set the timeout in seconds of the CURL connection. This timeout is the time
445that CURL waits for a response from the remote server to get the size of the
446image to be downloaded. If not set, the default timeout of 5 seconds is used.
447@end table
448
449Note that when passing options to qemu explicitly, @option{driver} is the value
450of <protocol>.
451
452Example: boot from a remote Fedora 20 live ISO image
453@example
93bbbdf6 454@value{qemu_system_x86} --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9 455
93bbbdf6 456@value{qemu_system_x86} --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9
MA
457@end example
458
459Example: boot from a remote Fedora 20 cloud image using a local overlay for
460writes, copy-on-read, and a readahead of 64k
461@example
93bbbdf6 462qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
e896d0f9 463
664785ac 464@value{qemu_system_x86} -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
e896d0f9
MA
465@end example
466
467Example: boot from an image stored on a VMware vSphere server with a self-signed
468certificate using a local overlay for writes, a readahead of 64k and a timeout
469of 10 seconds.
470@example
471qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
472
664785ac 473@value{qemu_system_x86} -drive file=/tmp/test.qcow2
e896d0f9
MA
474@end example
475
476@end table
477
478@c man end
479
debc7065 480@node pcsys_keys
a40db1b3 481@section Keys in the graphical frontends
3e11db9a
FB
482
483@c man begin OPTIONS
484
de1db2a1
BH
485During the graphical emulation, you can use special key combinations to change
486modes. The default key mappings are shown below, but if you use @code{-alt-grab}
487then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
488@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
489
a1b74fe8 490@table @key
f9859310 491@item Ctrl-Alt-f
7544a042 492@kindex Ctrl-Alt-f
a1b74fe8 493Toggle full screen
a0a821a4 494
d6a65ba3
JK
495@item Ctrl-Alt-+
496@kindex Ctrl-Alt-+
497Enlarge the screen
498
499@item Ctrl-Alt--
500@kindex Ctrl-Alt--
501Shrink the screen
502
c4a735f9 503@item Ctrl-Alt-u
7544a042 504@kindex Ctrl-Alt-u
c4a735f9 505Restore the screen's un-scaled dimensions
506
f9859310 507@item Ctrl-Alt-n
7544a042 508@kindex Ctrl-Alt-n
a0a821a4
FB
509Switch to virtual console 'n'. Standard console mappings are:
510@table @emph
511@item 1
512Target system display
513@item 2
514Monitor
515@item 3
516Serial port
a1b74fe8
FB
517@end table
518
f9859310 519@item Ctrl-Alt
7544a042 520@kindex Ctrl-Alt
a0a821a4
FB
521Toggle mouse and keyboard grab.
522@end table
523
7544a042
SW
524@kindex Ctrl-Up
525@kindex Ctrl-Down
526@kindex Ctrl-PageUp
527@kindex Ctrl-PageDown
3e11db9a
FB
528In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
529@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
530
a40db1b3
PM
531@c man end
532
533@node mux_keys
534@section Keys in the character backend multiplexer
535
536@c man begin OPTIONS
537
538During emulation, if you are using a character backend multiplexer
539(which is the default if you are using @option{-nographic}) then
540several commands are available via an escape sequence. These
541key sequences all start with an escape character, which is @key{Ctrl-a}
542by default, but can be changed with @option{-echr}. The list below assumes
543you're using the default.
ec410fc9
FB
544
545@table @key
a1b74fe8 546@item Ctrl-a h
7544a042 547@kindex Ctrl-a h
ec410fc9 548Print this help
3b46e624 549@item Ctrl-a x
7544a042 550@kindex Ctrl-a x
366dfc52 551Exit emulator
3b46e624 552@item Ctrl-a s
7544a042 553@kindex Ctrl-a s
1f47a922 554Save disk data back to file (if -snapshot)
20d8a3ed 555@item Ctrl-a t
7544a042 556@kindex Ctrl-a t
d2c639d6 557Toggle console timestamps
a1b74fe8 558@item Ctrl-a b
7544a042 559@kindex Ctrl-a b
1f673135 560Send break (magic sysrq in Linux)
a1b74fe8 561@item Ctrl-a c
7544a042 562@kindex Ctrl-a c
a40db1b3
PM
563Rotate between the frontends connected to the multiplexer (usually
564this switches between the monitor and the console)
a1b74fe8 565@item Ctrl-a Ctrl-a
a40db1b3
PM
566@kindex Ctrl-a Ctrl-a
567Send the escape character to the frontend
ec410fc9 568@end table
0806e3f6
FB
569@c man end
570
571@ignore
572
1f673135
FB
573@c man begin SEEALSO
574The HTML documentation of QEMU for more precise information and Linux
575user mode emulator invocation.
576@c man end
577
578@c man begin AUTHOR
579Fabrice Bellard
580@c man end
581
582@end ignore
583
debc7065 584@node pcsys_monitor
1f673135 585@section QEMU Monitor
7544a042 586@cindex QEMU monitor
1f673135
FB
587
588The QEMU monitor is used to give complex commands to the QEMU
589emulator. You can use it to:
590
591@itemize @minus
592
593@item
e598752a 594Remove or insert removable media images
89dfe898 595(such as CD-ROM or floppies).
1f673135 596
5fafdf24 597@item
1f673135
FB
598Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
599from a disk file.
600
601@item Inspect the VM state without an external debugger.
602
603@end itemize
604
605@subsection Commands
606
607The following commands are available:
608
2313086a 609@include qemu-monitor.texi
0806e3f6 610
2cd8af2d
PB
611@include qemu-monitor-info.texi
612
1f673135
FB
613@subsection Integer expressions
614
615The monitor understands integers expressions for every integer
616argument. You can use register names to get the value of specifics
617CPU registers by prefixing them with @emph{$}.
ec410fc9 618
2544e9e4
DB
619@node cpu_models
620@section CPU models
621
622@include docs/qemu-cpu-models.texi
623
1f47a922
FB
624@node disk_images
625@section Disk Images
626
ee29bdb6
PB
627QEMU supports many disk image formats, including growable disk images
628(their size increase as non empty sectors are written), compressed and
629encrypted disk images.
1f47a922 630
debc7065
FB
631@menu
632* disk_images_quickstart:: Quick start for disk image creation
633* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 634* vm_snapshots:: VM snapshots
debc7065 635* qemu_img_invocation:: qemu-img Invocation
975b092b 636* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 637* disk_images_formats:: Disk image file formats
19cb3738 638* host_drives:: Using host drives
debc7065 639* disk_images_fat_images:: Virtual FAT disk images
75818250 640* disk_images_nbd:: NBD access
42af9c30 641* disk_images_sheepdog:: Sheepdog disk images
00984e39 642* disk_images_iscsi:: iSCSI LUNs
8809e289 643* disk_images_gluster:: GlusterFS disk images
0a12ec87 644* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 645* disk_images_nvme:: NVMe userspace driver
b1d1cb27 646* disk_image_locking:: Disk image file locking
debc7065
FB
647@end menu
648
649@node disk_images_quickstart
acd935ef
FB
650@subsection Quick start for disk image creation
651
652You can create a disk image with the command:
1f47a922 653@example
acd935ef 654qemu-img create myimage.img mysize
1f47a922 655@end example
acd935ef
FB
656where @var{myimage.img} is the disk image filename and @var{mysize} is its
657size in kilobytes. You can add an @code{M} suffix to give the size in
658megabytes and a @code{G} suffix for gigabytes.
659
debc7065 660See @ref{qemu_img_invocation} for more information.
1f47a922 661
debc7065 662@node disk_images_snapshot_mode
1f47a922
FB
663@subsection Snapshot mode
664
665If you use the option @option{-snapshot}, all disk images are
666considered as read only. When sectors in written, they are written in
667a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
668write back to the raw disk images by using the @code{commit} monitor
669command (or @key{C-a s} in the serial console).
1f47a922 670
13a2e80f
FB
671@node vm_snapshots
672@subsection VM snapshots
673
674VM snapshots are snapshots of the complete virtual machine including
675CPU state, RAM, device state and the content of all the writable
676disks. In order to use VM snapshots, you must have at least one non
677removable and writable block device using the @code{qcow2} disk image
678format. Normally this device is the first virtual hard drive.
679
680Use the monitor command @code{savevm} to create a new VM snapshot or
681replace an existing one. A human readable name can be assigned to each
19d36792 682snapshot in addition to its numerical ID.
13a2e80f
FB
683
684Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
685a VM snapshot. @code{info snapshots} lists the available snapshots
686with their associated information:
687
688@example
689(qemu) info snapshots
690Snapshot devices: hda
691Snapshot list (from hda):
692ID TAG VM SIZE DATE VM CLOCK
6931 start 41M 2006-08-06 12:38:02 00:00:14.954
6942 40M 2006-08-06 12:43:29 00:00:18.633
6953 msys 40M 2006-08-06 12:44:04 00:00:23.514
696@end example
697
698A VM snapshot is made of a VM state info (its size is shown in
699@code{info snapshots}) and a snapshot of every writable disk image.
700The VM state info is stored in the first @code{qcow2} non removable
701and writable block device. The disk image snapshots are stored in
702every disk image. The size of a snapshot in a disk image is difficult
703to evaluate and is not shown by @code{info snapshots} because the
704associated disk sectors are shared among all the snapshots to save
19d36792
FB
705disk space (otherwise each snapshot would need a full copy of all the
706disk images).
13a2e80f
FB
707
708When using the (unrelated) @code{-snapshot} option
709(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
710but they are deleted as soon as you exit QEMU.
711
712VM snapshots currently have the following known limitations:
713@itemize
5fafdf24 714@item
13a2e80f
FB
715They cannot cope with removable devices if they are removed or
716inserted after a snapshot is done.
5fafdf24 717@item
13a2e80f
FB
718A few device drivers still have incomplete snapshot support so their
719state is not saved or restored properly (in particular USB).
720@end itemize
721
acd935ef
FB
722@node qemu_img_invocation
723@subsection @code{qemu-img} Invocation
1f47a922 724
acd935ef 725@include qemu-img.texi
05efe46e 726
975b092b
TS
727@node qemu_nbd_invocation
728@subsection @code{qemu-nbd} Invocation
729
730@include qemu-nbd.texi
731
78aa8aa0 732@include docs/qemu-block-drivers.texi
0a12ec87 733
debc7065 734@node pcsys_network
9d4fb82e
FB
735@section Network emulation
736
0e0266c2
TH
737QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
738target) and can connect them to a network backend on the host or an emulated
739hub. The various host network backends can either be used to connect the NIC of
740the guest to a real network (e.g. by using a TAP devices or the non-privileged
741user mode network stack), or to other guest instances running in another QEMU
742process (e.g. by using the socket host network backend).
9d4fb82e 743
41d03949
FB
744@subsection Using TAP network interfaces
745
746This is the standard way to connect QEMU to a real network. QEMU adds
747a virtual network device on your host (called @code{tapN}), and you
748can then configure it as if it was a real ethernet card.
9d4fb82e 749
8f40c388
FB
750@subsubsection Linux host
751
9d4fb82e
FB
752As an example, you can download the @file{linux-test-xxx.tar.gz}
753archive and copy the script @file{qemu-ifup} in @file{/etc} and
754configure properly @code{sudo} so that the command @code{ifconfig}
755contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 756that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
757device @file{/dev/net/tun} must be present.
758
ee0f4751
FB
759See @ref{sec_invocation} to have examples of command lines using the
760TAP network interfaces.
9d4fb82e 761
8f40c388
FB
762@subsubsection Windows host
763
764There is a virtual ethernet driver for Windows 2000/XP systems, called
765TAP-Win32. But it is not included in standard QEMU for Windows,
766so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 767so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 768
9d4fb82e
FB
769@subsection Using the user mode network stack
770
41d03949
FB
771By using the option @option{-net user} (default configuration if no
772@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 773network stack (you don't need root privilege to use the virtual
41d03949 774network). The virtual network configuration is the following:
9d4fb82e
FB
775
776@example
777
0e0266c2 778 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 779 | (10.0.2.2)
9d4fb82e 780 |
2518bd0d 781 ----> DNS server (10.0.2.3)
3b46e624 782 |
2518bd0d 783 ----> SMB server (10.0.2.4)
9d4fb82e
FB
784@end example
785
786The QEMU VM behaves as if it was behind a firewall which blocks all
787incoming connections. You can use a DHCP client to automatically
41d03949
FB
788configure the network in the QEMU VM. The DHCP server assign addresses
789to the hosts starting from 10.0.2.15.
9d4fb82e
FB
790
791In order to check that the user mode network is working, you can ping
792the address 10.0.2.2 and verify that you got an address in the range
79310.0.2.x from the QEMU virtual DHCP server.
794
37cbfcce
GH
795Note that ICMP traffic in general does not work with user mode networking.
796@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
797however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
798ping sockets to allow @code{ping} to the Internet. The host admin has to set
799the ping_group_range in order to grant access to those sockets. To allow ping
800for GID 100 (usually users group):
801
802@example
803echo 100 100 > /proc/sys/net/ipv4/ping_group_range
804@end example
b415a407 805
9bf05444
FB
806When using the built-in TFTP server, the router is also the TFTP
807server.
808
c8c6afa8
TH
809When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
810connections can be redirected from the host to the guest. It allows for
811example to redirect X11, telnet or SSH connections.
443f1376 812
0e0266c2
TH
813@subsection Hubs
814
815QEMU can simulate several hubs. A hub can be thought of as a virtual connection
816between several network devices. These devices can be for example QEMU virtual
817ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
818guest NICs or host network backends to such a hub using the @option{-netdev
819hubport} or @option{-nic hubport} options. The legacy @option{-net} option
820also connects the given device to the emulated hub with ID 0 (i.e. the default
821hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 822
0e0266c2 823@subsection Connecting emulated networks between QEMU instances
41d03949 824
0e0266c2
TH
825Using the @option{-netdev socket} (or @option{-nic socket} or
826@option{-net socket}) option, it is possible to create emulated
827networks that span several QEMU instances.
828See the description of the @option{-netdev socket} option in the
829@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 830
576fd0a1 831@node pcsys_other_devs
6cbf4c8c
CM
832@section Other Devices
833
834@subsection Inter-VM Shared Memory device
835
5400c02b
MA
836On Linux hosts, a shared memory device is available. The basic syntax
837is:
6cbf4c8c
CM
838
839@example
664785ac 840@value{qemu_system_x86} -device ivshmem-plain,memdev=@var{hostmem}
5400c02b
MA
841@end example
842
843where @var{hostmem} names a host memory backend. For a POSIX shared
844memory backend, use something like
845
846@example
847-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
848@end example
849
850If desired, interrupts can be sent between guest VMs accessing the same shared
851memory region. Interrupt support requires using a shared memory server and
852using a chardev socket to connect to it. The code for the shared memory server
853is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
854memory server is:
855
856@example
a75eb03b 857# First start the ivshmem server once and for all
50d34c4e 858ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
859
860# Then start your qemu instances with matching arguments
664785ac 861@value{qemu_system_x86} -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 862 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
863@end example
864
865When using the server, the guest will be assigned a VM ID (>=0) that allows guests
866using the same server to communicate via interrupts. Guests can read their
1309cf44 867VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 868
62a830b6
MA
869@subsubsection Migration with ivshmem
870
5400c02b
MA
871With device property @option{master=on}, the guest will copy the shared
872memory on migration to the destination host. With @option{master=off},
873the guest will not be able to migrate with the device attached. In the
874latter case, the device should be detached and then reattached after
875migration using the PCI hotplug support.
6cbf4c8c 876
62a830b6
MA
877At most one of the devices sharing the same memory can be master. The
878master must complete migration before you plug back the other devices.
879
7d4f4bda
MAL
880@subsubsection ivshmem and hugepages
881
882Instead of specifying the <shm size> using POSIX shm, you may specify
883a memory backend that has hugepage support:
884
885@example
664785ac 886@value{qemu_system_x86} -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
5400c02b 887 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
888@end example
889
890ivshmem-server also supports hugepages mount points with the
891@option{-m} memory path argument.
892
9d4fb82e
FB
893@node direct_linux_boot
894@section Direct Linux Boot
1f673135
FB
895
896This section explains how to launch a Linux kernel inside QEMU without
897having to make a full bootable image. It is very useful for fast Linux
ee0f4751 898kernel testing.
1f673135 899
ee0f4751 900The syntax is:
1f673135 901@example
664785ac 902@value{qemu_system} -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
1f673135
FB
903@end example
904
ee0f4751
FB
905Use @option{-kernel} to provide the Linux kernel image and
906@option{-append} to give the kernel command line arguments. The
907@option{-initrd} option can be used to provide an INITRD image.
1f673135 908
ee0f4751
FB
909When using the direct Linux boot, a disk image for the first hard disk
910@file{hda} is required because its boot sector is used to launch the
911Linux kernel.
1f673135 912
ee0f4751
FB
913If you do not need graphical output, you can disable it and redirect
914the virtual serial port and the QEMU monitor to the console with the
915@option{-nographic} option. The typical command line is:
1f673135 916@example
664785ac 917@value{qemu_system} -kernel bzImage -hda rootdisk.img \
3804da9d 918 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
919@end example
920
ee0f4751
FB
921Use @key{Ctrl-a c} to switch between the serial console and the
922monitor (@pxref{pcsys_keys}).
1f673135 923
debc7065 924@node pcsys_usb
b389dbfb
FB
925@section USB emulation
926
a92ff8c1
TH
927QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
928plug virtual USB devices or real host USB devices (only works with certain
929host operating systems). QEMU will automatically create and connect virtual
930USB hubs as necessary to connect multiple USB devices.
b389dbfb 931
0aff66b5
PB
932@menu
933* usb_devices::
934* host_usb_devices::
935@end menu
936@node usb_devices
937@subsection Connecting USB devices
b389dbfb 938
a92ff8c1
TH
939USB devices can be connected with the @option{-device usb-...} command line
940option or the @code{device_add} monitor command. Available devices are:
b389dbfb 941
db380c06 942@table @code
a92ff8c1 943@item usb-mouse
0aff66b5 944Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 945@item usb-tablet
c6d46c20 946Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 947This means QEMU is able to report the mouse position without having
0aff66b5 948to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
949@item usb-storage,drive=@var{drive_id}
950Mass storage device backed by @var{drive_id} (@pxref{disk_images})
951@item usb-uas
952USB attached SCSI device, see
70b7fba9 953@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
954for details
955@item usb-bot
956Bulk-only transport storage device, see
70b7fba9 957@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 958for details here, too
1ee53067 959@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
960Media transfer protocol device, using @var{dir} as root of the file tree
961that is presented to the guest.
962@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
963Pass through the host device identified by @var{bus} and @var{addr}
964@item usb-host,vendorid=@var{vendor},productid=@var{product}
965Pass through the host device identified by @var{vendor} and @var{product} ID
966@item usb-wacom-tablet
f6d2a316
AZ
967Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
968above but it can be used with the tslib library because in addition to touch
969coordinates it reports touch pressure.
a92ff8c1 970@item usb-kbd
47b2d338 971Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 972@item usb-serial,chardev=@var{id}
db380c06 973Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
974device @var{id}.
975@item usb-braille,chardev=@var{id}
2e4d9fb1 976Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
977or fake device referenced by @var{id}.
978@item usb-net[,netdev=@var{id}]
979Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
980specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 981For instance, user-mode networking can be used with
6c9f886c 982@example
664785ac 983@value{qemu_system} [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 984@end example
a92ff8c1
TH
985@item usb-ccid
986Smartcard reader device
987@item usb-audio
988USB audio device
989@item usb-bt-dongle
990Bluetooth dongle for the transport layer of HCI. It is connected to HCI
991scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
992Note that the syntax for the @code{-device usb-bt-dongle} option is not as
993useful yet as it was with the legacy @code{-usbdevice} option. So to
994configure an USB bluetooth device, you might need to use
995"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
996bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
997the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
998no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
999This USB device implements the USB Transport Layer of HCI. Example
1000usage:
1001@example
664785ac 1002@command{@value{qemu_system}} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 1003@end example
0aff66b5 1004@end table
b389dbfb 1005
0aff66b5 1006@node host_usb_devices
b389dbfb
FB
1007@subsection Using host USB devices on a Linux host
1008
1009WARNING: this is an experimental feature. QEMU will slow down when
1010using it. USB devices requiring real time streaming (i.e. USB Video
1011Cameras) are not supported yet.
1012
1013@enumerate
5fafdf24 1014@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1015is actually using the USB device. A simple way to do that is simply to
1016disable the corresponding kernel module by renaming it from @file{mydriver.o}
1017to @file{mydriver.o.disabled}.
1018
1019@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1020@example
1021ls /proc/bus/usb
1022001 devices drivers
1023@end example
1024
1025@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1026@example
1027chown -R myuid /proc/bus/usb
1028@end example
1029
1030@item Launch QEMU and do in the monitor:
5fafdf24 1031@example
b389dbfb
FB
1032info usbhost
1033 Device 1.2, speed 480 Mb/s
1034 Class 00: USB device 1234:5678, USB DISK
1035@end example
1036You should see the list of the devices you can use (Never try to use
1037hubs, it won't work).
1038
1039@item Add the device in QEMU by using:
5fafdf24 1040@example
a92ff8c1 1041device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1042@end example
1043
a92ff8c1
TH
1044Normally the guest OS should report that a new USB device is plugged.
1045You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1046
1047@item Now you can try to use the host USB device in QEMU.
1048
1049@end enumerate
1050
1051When relaunching QEMU, you may have to unplug and plug again the USB
1052device to make it work again (this is a bug).
1053
f858dcae
TS
1054@node vnc_security
1055@section VNC security
1056
1057The VNC server capability provides access to the graphical console
1058of the guest VM across the network. This has a number of security
1059considerations depending on the deployment scenarios.
1060
1061@menu
1062* vnc_sec_none::
1063* vnc_sec_password::
1064* vnc_sec_certificate::
1065* vnc_sec_certificate_verify::
1066* vnc_sec_certificate_pw::
2f9606b3
AL
1067* vnc_sec_sasl::
1068* vnc_sec_certificate_sasl::
2f9606b3 1069* vnc_setup_sasl::
f858dcae
TS
1070@end menu
1071@node vnc_sec_none
1072@subsection Without passwords
1073
1074The simplest VNC server setup does not include any form of authentication.
1075For this setup it is recommended to restrict it to listen on a UNIX domain
1076socket only. For example
1077
1078@example
664785ac 1079@value{qemu_system} [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1080@end example
1081
1082This ensures that only users on local box with read/write access to that
1083path can access the VNC server. To securely access the VNC server from a
1084remote machine, a combination of netcat+ssh can be used to provide a secure
1085tunnel.
1086
1087@node vnc_sec_password
1088@subsection With passwords
1089
1090The VNC protocol has limited support for password based authentication. Since
1091the protocol limits passwords to 8 characters it should not be considered
1092to provide high security. The password can be fairly easily brute-forced by
1093a client making repeat connections. For this reason, a VNC server using password
1094authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1095or UNIX domain sockets. Password authentication is not supported when operating
1096in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1097authentication is requested with the @code{password} option, and then once QEMU
1098is running the password is set with the monitor. Until the monitor is used to
1099set the password all clients will be rejected.
f858dcae
TS
1100
1101@example
664785ac 1102@value{qemu_system} [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1103(qemu) change vnc password
1104Password: ********
1105(qemu)
1106@end example
1107
1108@node vnc_sec_certificate
1109@subsection With x509 certificates
1110
1111The QEMU VNC server also implements the VeNCrypt extension allowing use of
1112TLS for encryption of the session, and x509 certificates for authentication.
1113The use of x509 certificates is strongly recommended, because TLS on its
1114own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1115support provides a secure session, but no authentication. This allows any
1116client to connect, and provides an encrypted session.
1117
1118@example
664785ac 1119@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1120 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1121 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1122@end example
1123
1124In the above example @code{/etc/pki/qemu} should contain at least three files,
1125@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1126users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1127NB the @code{server-key.pem} file should be protected with file mode 0600 to
1128only be readable by the user owning it.
1129
1130@node vnc_sec_certificate_verify
1131@subsection With x509 certificates and client verification
1132
1133Certificates can also provide a means to authenticate the client connecting.
1134The server will request that the client provide a certificate, which it will
1135then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1136in an environment with a private internal certificate authority. It uses the
1137same syntax as previously, but with @code{verify-peer} set to @code{yes}
1138instead.
f858dcae
TS
1139
1140@example
664785ac 1141@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1142 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1143 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1144@end example
1145
1146
1147@node vnc_sec_certificate_pw
1148@subsection With x509 certificates, client verification and passwords
1149
1150Finally, the previous method can be combined with VNC password authentication
1151to provide two layers of authentication for clients.
1152
1153@example
664785ac 1154@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1155 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1156 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1157(qemu) change vnc password
1158Password: ********
1159(qemu)
1160@end example
1161
2f9606b3
AL
1162
1163@node vnc_sec_sasl
1164@subsection With SASL authentication
1165
1166The SASL authentication method is a VNC extension, that provides an
1167easily extendable, pluggable authentication method. This allows for
1168integration with a wide range of authentication mechanisms, such as
1169PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1170The strength of the authentication depends on the exact mechanism
1171configured. If the chosen mechanism also provides a SSF layer, then
1172it will encrypt the datastream as well.
1173
1174Refer to the later docs on how to choose the exact SASL mechanism
1175used for authentication, but assuming use of one supporting SSF,
1176then QEMU can be launched with:
1177
1178@example
664785ac 1179@value{qemu_system} [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1180@end example
1181
1182@node vnc_sec_certificate_sasl
1183@subsection With x509 certificates and SASL authentication
1184
1185If the desired SASL authentication mechanism does not supported
1186SSF layers, then it is strongly advised to run it in combination
1187with TLS and x509 certificates. This provides securely encrypted
1188data stream, avoiding risk of compromising of the security
1189credentials. This can be enabled, by combining the 'sasl' option
1190with the aforementioned TLS + x509 options:
1191
1192@example
664785ac 1193@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1194 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1195 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1196@end example
1197
5d19a6ea
DB
1198@node vnc_setup_sasl
1199
1200@subsection Configuring SASL mechanisms
1201
1202The following documentation assumes use of the Cyrus SASL implementation on a
1203Linux host, but the principles should apply to any other SASL implementation
1204or host. When SASL is enabled, the mechanism configuration will be loaded from
1205system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1206unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1207it search alternate locations for the service config file.
1208
1209If the TLS option is enabled for VNC, then it will provide session encryption,
1210otherwise the SASL mechanism will have to provide encryption. In the latter
1211case the list of possible plugins that can be used is drastically reduced. In
1212fact only the GSSAPI SASL mechanism provides an acceptable level of security
1213by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1214mechanism, however, it has multiple serious flaws described in detail in
1215RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1216provides a simple username/password auth facility similar to DIGEST-MD5, but
1217does not support session encryption, so can only be used in combination with
1218TLS.
2f9606b3 1219
5d19a6ea 1220When not using TLS the recommended configuration is
f858dcae 1221
5d19a6ea
DB
1222@example
1223mech_list: gssapi
1224keytab: /etc/qemu/krb5.tab
1225@end example
1226
1227This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1228the server principal stored in /etc/qemu/krb5.tab. For this to work the
1229administrator of your KDC must generate a Kerberos principal for the server,
1230with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1231'somehost.example.com' with the fully qualified host name of the machine
1232running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1233
1234When using TLS, if username+password authentication is desired, then a
1235reasonable configuration is
1236
1237@example
1238mech_list: scram-sha-1
1239sasldb_path: /etc/qemu/passwd.db
1240@end example
1241
1242The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1243file with accounts.
1244
1245Other SASL configurations will be left as an exercise for the reader. Note that
1246all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1247secure data channel.
1248
1249
1250@node network_tls
1251@section TLS setup for network services
1252
1253Almost all network services in QEMU have the ability to use TLS for
1254session data encryption, along with x509 certificates for simple
1255client authentication. What follows is a description of how to
1256generate certificates suitable for usage with QEMU, and applies to
1257the VNC server, character devices with the TCP backend, NBD server
1258and client, and migration server and client.
1259
1260At a high level, QEMU requires certificates and private keys to be
1261provided in PEM format. Aside from the core fields, the certificates
1262should include various extension data sets, including v3 basic
1263constraints data, key purpose, key usage and subject alt name.
1264
1265The GnuTLS package includes a command called @code{certtool} which can
1266be used to easily generate certificates and keys in the required format
1267with expected data present. Alternatively a certificate management
1268service may be used.
1269
1270At a minimum it is necessary to setup a certificate authority, and
1271issue certificates to each server. If using x509 certificates for
1272authentication, then each client will also need to be issued a
1273certificate.
1274
1275Assuming that the QEMU network services will only ever be exposed to
1276clients on a private intranet, there is no need to use a commercial
1277certificate authority to create certificates. A self-signed CA is
1278sufficient, and in fact likely to be more secure since it removes
1279the ability of malicious 3rd parties to trick the CA into mis-issuing
1280certs for impersonating your services. The only likely exception
1281where a commercial CA might be desirable is if enabling the VNC
1282websockets server and exposing it directly to remote browser clients.
1283In such a case it might be useful to use a commercial CA to avoid
1284needing to install custom CA certs in the web browsers.
1285
1286The recommendation is for the server to keep its certificates in either
1287@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1288
1289@menu
5d19a6ea
DB
1290* tls_generate_ca::
1291* tls_generate_server::
1292* tls_generate_client::
1293* tls_creds_setup::
e1a6dc91 1294* tls_psk::
f858dcae 1295@end menu
5d19a6ea
DB
1296@node tls_generate_ca
1297@subsection Setup the Certificate Authority
f858dcae
TS
1298
1299This step only needs to be performed once per organization / organizational
1300unit. First the CA needs a private key. This key must be kept VERY secret
1301and secure. If this key is compromised the entire trust chain of the certificates
1302issued with it is lost.
1303
1304@example
1305# certtool --generate-privkey > ca-key.pem
1306@end example
1307
5d19a6ea
DB
1308To generate a self-signed certificate requires one core piece of information,
1309the name of the organization. A template file @code{ca.info} should be
1310populated with the desired data to avoid having to deal with interactive
1311prompts from certtool:
f858dcae
TS
1312@example
1313# cat > ca.info <<EOF
1314cn = Name of your organization
1315ca
1316cert_signing_key
1317EOF
1318# certtool --generate-self-signed \
1319 --load-privkey ca-key.pem
1320 --template ca.info \
1321 --outfile ca-cert.pem
1322@end example
1323
5d19a6ea
DB
1324The @code{ca} keyword in the template sets the v3 basic constraints extension
1325to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1326the key usage extension to indicate this will be used for signing other keys.
1327The generated @code{ca-cert.pem} file should be copied to all servers and
1328clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1329must not be disclosed/copied anywhere except the host responsible for issuing
1330certificates.
f858dcae 1331
5d19a6ea
DB
1332@node tls_generate_server
1333@subsection Issuing server certificates
f858dcae
TS
1334
1335Each server (or host) needs to be issued with a key and certificate. When connecting
1336the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1337The core pieces of information for a server certificate are the hostnames and/or IP
1338addresses that will be used by clients when connecting. The hostname / IP address
1339that the client specifies when connecting will be validated against the hostname(s)
1340and IP address(es) recorded in the server certificate, and if no match is found
1341the client will close the connection.
1342
1343Thus it is recommended that the server certificate include both the fully qualified
1344and unqualified hostnames. If the server will have permanently assigned IP address(es),
1345and clients are likely to use them when connecting, they may also be included in the
1346certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1347only included 1 hostname in the @code{CN} field, however, usage of this field for
1348validation is now deprecated. Instead modern TLS clients will validate against the
1349Subject Alt Name extension data, which allows for multiple entries. In the future
1350usage of the @code{CN} field may be discontinued entirely, so providing SAN
1351extension data is strongly recommended.
1352
1353On the host holding the CA, create template files containing the information
1354for each server, and use it to issue server certificates.
f858dcae
TS
1355
1356@example
5d19a6ea 1357# cat > server-hostNNN.info <<EOF
f858dcae 1358organization = Name of your organization
5d19a6ea
DB
1359cn = hostNNN.foo.example.com
1360dns_name = hostNNN
1361dns_name = hostNNN.foo.example.com
1362ip_address = 10.0.1.87
1363ip_address = 192.8.0.92
1364ip_address = 2620:0:cafe::87
1365ip_address = 2001:24::92
f858dcae
TS
1366tls_www_server
1367encryption_key
1368signing_key
1369EOF
5d19a6ea 1370# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1371# certtool --generate-certificate \
1372 --load-ca-certificate ca-cert.pem \
1373 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1374 --load-privkey server-hostNNN-key.pem \
1375 --template server-hostNNN.info \
1376 --outfile server-hostNNN-cert.pem
f858dcae
TS
1377@end example
1378
5d19a6ea
DB
1379The @code{dns_name} and @code{ip_address} fields in the template are setting
1380the subject alt name extension data. The @code{tls_www_server} keyword is the
1381key purpose extension to indicate this certificate is intended for usage in
1382a web server. Although QEMU network services are not in fact HTTP servers
1383(except for VNC websockets), setting this key purpose is still recommended.
1384The @code{encryption_key} and @code{signing_key} keyword is the key usage
1385extension to indicate this certificate is intended for usage in the data
1386session.
1387
1388The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1389should now be securely copied to the server for which they were generated,
1390and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1391to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1392file is security sensitive and should be kept protected with file mode 0600
1393to prevent disclosure.
1394
1395@node tls_generate_client
1396@subsection Issuing client certificates
f858dcae 1397
5d19a6ea
DB
1398The QEMU x509 TLS credential setup defaults to enabling client verification
1399using certificates, providing a simple authentication mechanism. If this
1400default is used, each client also needs to be issued a certificate. The client
1401certificate contains enough metadata to uniquely identify the client with the
1402scope of the certificate authority. The client certificate would typically
1403include fields for organization, state, city, building, etc.
1404
1405Once again on the host holding the CA, create template files containing the
1406information for each client, and use it to issue client certificates.
f858dcae 1407
f858dcae
TS
1408
1409@example
5d19a6ea 1410# cat > client-hostNNN.info <<EOF
f858dcae
TS
1411country = GB
1412state = London
5d19a6ea 1413locality = City Of London
63c693f8 1414organization = Name of your organization
5d19a6ea 1415cn = hostNNN.foo.example.com
f858dcae
TS
1416tls_www_client
1417encryption_key
1418signing_key
1419EOF
5d19a6ea 1420# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1421# certtool --generate-certificate \
1422 --load-ca-certificate ca-cert.pem \
1423 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1424 --load-privkey client-hostNNN-key.pem \
1425 --template client-hostNNN.info \
1426 --outfile client-hostNNN-cert.pem
f858dcae
TS
1427@end example
1428
5d19a6ea
DB
1429The subject alt name extension data is not required for clients, so the
1430the @code{dns_name} and @code{ip_address} fields are not included.
1431The @code{tls_www_client} keyword is the key purpose extension to indicate
1432this certificate is intended for usage in a web client. Although QEMU
1433network clients are not in fact HTTP clients, setting this key purpose is
1434still recommended. The @code{encryption_key} and @code{signing_key} keyword
1435is the key usage extension to indicate this certificate is intended for
1436usage in the data session.
1437
1438The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1439should now be securely copied to the client for which they were generated,
1440and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1441to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1442file is security sensitive and should be kept protected with file mode 0600
1443to prevent disclosure.
1444
1445If a single host is going to be using TLS in both a client and server
1446role, it is possible to create a single certificate to cover both roles.
1447This would be quite common for the migration and NBD services, where a
1448QEMU process will be started by accepting a TLS protected incoming migration,
1449and later itself be migrated out to another host. To generate a single
1450certificate, simply include the template data from both the client and server
1451instructions in one.
2f9606b3 1452
5d19a6ea
DB
1453@example
1454# cat > both-hostNNN.info <<EOF
1455country = GB
1456state = London
1457locality = City Of London
1458organization = Name of your organization
1459cn = hostNNN.foo.example.com
1460dns_name = hostNNN
1461dns_name = hostNNN.foo.example.com
1462ip_address = 10.0.1.87
1463ip_address = 192.8.0.92
1464ip_address = 2620:0:cafe::87
1465ip_address = 2001:24::92
1466tls_www_server
1467tls_www_client
1468encryption_key
1469signing_key
1470EOF
1471# certtool --generate-privkey > both-hostNNN-key.pem
1472# certtool --generate-certificate \
1473 --load-ca-certificate ca-cert.pem \
1474 --load-ca-privkey ca-key.pem \
1475 --load-privkey both-hostNNN-key.pem \
1476 --template both-hostNNN.info \
1477 --outfile both-hostNNN-cert.pem
1478@end example
c6a9a9f5 1479
5d19a6ea
DB
1480When copying the PEM files to the target host, save them twice,
1481once as @code{server-cert.pem} and @code{server-key.pem}, and
1482again as @code{client-cert.pem} and @code{client-key.pem}.
1483
1484@node tls_creds_setup
1485@subsection TLS x509 credential configuration
1486
1487QEMU has a standard mechanism for loading x509 credentials that will be
1488used for network services and clients. It requires specifying the
1489@code{tls-creds-x509} class name to the @code{--object} command line
1490argument for the system emulators. Each set of credentials loaded should
1491be given a unique string identifier via the @code{id} parameter. A single
1492set of TLS credentials can be used for multiple network backends, so VNC,
1493migration, NBD, character devices can all share the same credentials. Note,
1494however, that credentials for use in a client endpoint must be loaded
1495separately from those used in a server endpoint.
1496
1497When specifying the object, the @code{dir} parameters specifies which
1498directory contains the credential files. This directory is expected to
1499contain files with the names mentioned previously, @code{ca-cert.pem},
1500@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1501and @code{client-cert.pem} as appropriate. It is also possible to
1502include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1503@code{dh-params.pem}, which can be created using the
1504@code{certtool --generate-dh-params} command. If omitted, QEMU will
1505dynamically generate DH parameters when loading the credentials.
1506
1507The @code{endpoint} parameter indicates whether the credentials will
1508be used for a network client or server, and determines which PEM
1509files are loaded.
1510
1511The @code{verify} parameter determines whether x509 certificate
1512validation should be performed. This defaults to enabled, meaning
1513clients will always validate the server hostname against the
1514certificate subject alt name fields and/or CN field. It also
1515means that servers will request that clients provide a certificate
1516and validate them. Verification should never be turned off for
1517client endpoints, however, it may be turned off for server endpoints
1518if an alternative mechanism is used to authenticate clients. For
1519example, the VNC server can use SASL to authenticate clients
1520instead.
1521
1522To load server credentials with client certificate validation
1523enabled
2f9606b3
AL
1524
1525@example
664785ac 1526@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1527@end example
1528
5d19a6ea 1529while to load client credentials use
2f9606b3
AL
1530
1531@example
664785ac 1532@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1533@end example
1534
5d19a6ea
DB
1535Network services which support TLS will all have a @code{tls-creds}
1536parameter which expects the ID of the TLS credentials object. For
1537example with VNC:
2f9606b3 1538
5d19a6ea 1539@example
664785ac 1540@value{qemu_system} -vnc 0.0.0.0:0,tls-creds=tls0
5d19a6ea 1541@end example
2f9606b3 1542
e1a6dc91
RJ
1543@node tls_psk
1544@subsection TLS Pre-Shared Keys (PSK)
1545
1546Instead of using certificates, you may also use TLS Pre-Shared Keys
1547(TLS-PSK). This can be simpler to set up than certificates but is
1548less scalable.
1549
1550Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1551file containing one or more usernames and random keys:
1552
1553@example
1554mkdir -m 0700 /tmp/keys
1555psktool -u rich -p /tmp/keys/keys.psk
1556@end example
1557
1558TLS-enabled servers such as qemu-nbd can use this directory like so:
1559
1560@example
1561qemu-nbd \
1562 -t -x / \
1563 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1564 --tls-creds tls0 \
1565 image.qcow2
1566@end example
1567
1568When connecting from a qemu-based client you must specify the
1569directory containing @code{keys.psk} and an optional @var{username}
1570(defaults to ``qemu''):
1571
1572@example
1573qemu-img info \
1574 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1575 --image-opts \
1576 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1577@end example
1578
0806e3f6 1579@node gdb_usage
da415d54
FB
1580@section GDB usage
1581
1582QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1583'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1584
b65ee4fa 1585In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1586gdb connection:
1587@example
664785ac 1588@value{qemu_system} -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
da415d54
FB
1589Connected to host network interface: tun0
1590Waiting gdb connection on port 1234
1591@end example
1592
1593Then launch gdb on the 'vmlinux' executable:
1594@example
1595> gdb vmlinux
1596@end example
1597
1598In gdb, connect to QEMU:
1599@example
6c9bf893 1600(gdb) target remote localhost:1234
da415d54
FB
1601@end example
1602
1603Then you can use gdb normally. For example, type 'c' to launch the kernel:
1604@example
1605(gdb) c
1606@end example
1607
0806e3f6
FB
1608Here are some useful tips in order to use gdb on system code:
1609
1610@enumerate
1611@item
1612Use @code{info reg} to display all the CPU registers.
1613@item
1614Use @code{x/10i $eip} to display the code at the PC position.
1615@item
1616Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1617@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1618@end enumerate
1619
60897d36
EI
1620Advanced debugging options:
1621
b6af0975 1622The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1623@table @code
60897d36
EI
1624@item maintenance packet qqemu.sstepbits
1625
1626This will display the MASK bits used to control the single stepping IE:
1627@example
1628(gdb) maintenance packet qqemu.sstepbits
1629sending: "qqemu.sstepbits"
1630received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1631@end example
1632@item maintenance packet qqemu.sstep
1633
1634This will display the current value of the mask used when single stepping IE:
1635@example
1636(gdb) maintenance packet qqemu.sstep
1637sending: "qqemu.sstep"
1638received: "0x7"
1639@end example
1640@item maintenance packet Qqemu.sstep=HEX_VALUE
1641
1642This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1643@example
1644(gdb) maintenance packet Qqemu.sstep=0x5
1645sending: "qemu.sstep=0x5"
1646received: "OK"
1647@end example
94d45e44 1648@end table
60897d36 1649
debc7065 1650@node pcsys_os_specific
1a084f3d
FB
1651@section Target OS specific information
1652
1653@subsection Linux
1654
15a34c63
FB
1655To have access to SVGA graphic modes under X11, use the @code{vesa} or
1656the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1657color depth in the guest and the host OS.
1a084f3d 1658
e3371e62
FB
1659When using a 2.6 guest Linux kernel, you should add the option
1660@code{clock=pit} on the kernel command line because the 2.6 Linux
1661kernels make very strict real time clock checks by default that QEMU
1662cannot simulate exactly.
1663
7c3fc84d
FB
1664When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1665not activated because QEMU is slower with this patch. The QEMU
1666Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1667Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1668patch by default. Newer kernels don't have it.
1669
1a084f3d
FB
1670@subsection Windows
1671
1672If you have a slow host, using Windows 95 is better as it gives the
1673best speed. Windows 2000 is also a good choice.
1674
e3371e62
FB
1675@subsubsection SVGA graphic modes support
1676
1677QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1678card. All Windows versions starting from Windows 95 should recognize
1679and use this graphic card. For optimal performances, use 16 bit color
1680depth in the guest and the host OS.
1a084f3d 1681
3cb0853a
FB
1682If you are using Windows XP as guest OS and if you want to use high
1683resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16841280x1024x16), then you should use the VESA VBE virtual graphic card
1685(option @option{-std-vga}).
1686
e3371e62
FB
1687@subsubsection CPU usage reduction
1688
1689Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1690instruction. The result is that it takes host CPU cycles even when
1691idle. You can install the utility from
70b7fba9 1692@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1693to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1694
9d0a8e6f 1695@subsubsection Windows 2000 disk full problem
e3371e62 1696
9d0a8e6f
FB
1697Windows 2000 has a bug which gives a disk full problem during its
1698installation. When installing it, use the @option{-win2k-hack} QEMU
1699option to enable a specific workaround. After Windows 2000 is
1700installed, you no longer need this option (this option slows down the
1701IDE transfers).
e3371e62 1702
6cc721cf
FB
1703@subsubsection Windows 2000 shutdown
1704
1705Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1706can. It comes from the fact that Windows 2000 does not automatically
1707use the APM driver provided by the BIOS.
1708
1709In order to correct that, do the following (thanks to Struan
1710Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1711Add/Troubleshoot a device => Add a new device & Next => No, select the
1712hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1713(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1714correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1715
1716@subsubsection Share a directory between Unix and Windows
1717
c8c6afa8
TH
1718See @ref{sec_invocation} about the help of the option
1719@option{'-netdev user,smb=...'}.
6cc721cf 1720
2192c332 1721@subsubsection Windows XP security problem
e3371e62
FB
1722
1723Some releases of Windows XP install correctly but give a security
1724error when booting:
1725@example
1726A problem is preventing Windows from accurately checking the
1727license for this computer. Error code: 0x800703e6.
1728@end example
e3371e62 1729
2192c332
FB
1730The workaround is to install a service pack for XP after a boot in safe
1731mode. Then reboot, and the problem should go away. Since there is no
1732network while in safe mode, its recommended to download the full
1733installation of SP1 or SP2 and transfer that via an ISO or using the
1734vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1735
a0a821a4
FB
1736@subsection MS-DOS and FreeDOS
1737
1738@subsubsection CPU usage reduction
1739
1740DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1741it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1742@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1743to solve this problem.
a0a821a4 1744
debc7065 1745@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1746@chapter QEMU System emulator for non PC targets
1747
1748QEMU is a generic emulator and it emulates many non PC
1749machines. Most of the options are similar to the PC emulator. The
4be456f1 1750differences are mentioned in the following sections.
3f9f3aa1 1751
debc7065 1752@menu
7544a042 1753* PowerPC System emulator::
24d4de45
TS
1754* Sparc32 System emulator::
1755* Sparc64 System emulator::
1756* MIPS System emulator::
1757* ARM System emulator::
1758* ColdFire System emulator::
7544a042
SW
1759* Cris System emulator::
1760* Microblaze System emulator::
1761* SH4 System emulator::
3aeaea65 1762* Xtensa System emulator::
debc7065
FB
1763@end menu
1764
7544a042
SW
1765@node PowerPC System emulator
1766@section PowerPC System emulator
1767@cindex system emulation (PowerPC)
1a084f3d 1768
15a34c63
FB
1769Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1770or PowerMac PowerPC system.
1a084f3d 1771
b671f9ed 1772QEMU emulates the following PowerMac peripherals:
1a084f3d 1773
15a34c63 1774@itemize @minus
5fafdf24 1775@item
006f3a48 1776UniNorth or Grackle PCI Bridge
15a34c63
FB
1777@item
1778PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1779@item
15a34c63 17802 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1781@item
15a34c63
FB
1782NE2000 PCI adapters
1783@item
1784Non Volatile RAM
1785@item
1786VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1787@end itemize
1788
b671f9ed 1789QEMU emulates the following PREP peripherals:
52c00a5f
FB
1790
1791@itemize @minus
5fafdf24 1792@item
15a34c63
FB
1793PCI Bridge
1794@item
1795PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1796@item
52c00a5f
FB
17972 IDE interfaces with hard disk and CD-ROM support
1798@item
1799Floppy disk
5fafdf24 1800@item
15a34c63 1801NE2000 network adapters
52c00a5f
FB
1802@item
1803Serial port
1804@item
1805PREP Non Volatile RAM
15a34c63
FB
1806@item
1807PC compatible keyboard and mouse.
52c00a5f
FB
1808@end itemize
1809
15a34c63 1810QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1811@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1812
70b7fba9 1813Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1814for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1815v2) portable firmware implementation. The goal is to implement a 100%
1816IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1817
15a34c63
FB
1818@c man begin OPTIONS
1819
1820The following options are specific to the PowerPC emulation:
1821
1822@table @option
1823
4e257e5e 1824@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1825
340fb41b 1826Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1827
4e257e5e 1828@item -prom-env @var{string}
95efd11c
BS
1829
1830Set OpenBIOS variables in NVRAM, for example:
1831
1832@example
1833qemu-system-ppc -prom-env 'auto-boot?=false' \
1834 -prom-env 'boot-device=hd:2,\yaboot' \
1835 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1836@end example
1837
1838These variables are not used by Open Hack'Ware.
1839
15a34c63
FB
1840@end table
1841
5fafdf24 1842@c man end
15a34c63
FB
1843
1844
52c00a5f 1845More information is available at
3f9f3aa1 1846@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1847
24d4de45
TS
1848@node Sparc32 System emulator
1849@section Sparc32 System emulator
7544a042 1850@cindex system emulation (Sparc32)
e80cfcfc 1851
34a3d239
BS
1852Use the executable @file{qemu-system-sparc} to simulate the following
1853Sun4m architecture machines:
1854@itemize @minus
1855@item
1856SPARCstation 4
1857@item
1858SPARCstation 5
1859@item
1860SPARCstation 10
1861@item
1862SPARCstation 20
1863@item
1864SPARCserver 600MP
1865@item
1866SPARCstation LX
1867@item
1868SPARCstation Voyager
1869@item
1870SPARCclassic
1871@item
1872SPARCbook
1873@end itemize
1874
1875The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1876but Linux limits the number of usable CPUs to 4.
e80cfcfc 1877
6a4e1771 1878QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1879
1880@itemize @minus
3475187d 1881@item
6a4e1771 1882IOMMU
e80cfcfc 1883@item
33632788 1884TCX or cgthree Frame buffer
5fafdf24 1885@item
e80cfcfc
FB
1886Lance (Am7990) Ethernet
1887@item
34a3d239 1888Non Volatile RAM M48T02/M48T08
e80cfcfc 1889@item
3475187d
FB
1890Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1891and power/reset logic
1892@item
1893ESP SCSI controller with hard disk and CD-ROM support
1894@item
6a3b9cc9 1895Floppy drive (not on SS-600MP)
a2502b58
BS
1896@item
1897CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1898@end itemize
1899
6a3b9cc9
BS
1900The number of peripherals is fixed in the architecture. Maximum
1901memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1902others 2047MB.
3475187d 1903
30a604f3 1904Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1905@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1906firmware implementation. The goal is to implement a 100% IEEE
19071275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1908
1909A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1910the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1911most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1912don't work probably due to interface issues between OpenBIOS and
1913Solaris.
3475187d
FB
1914
1915@c man begin OPTIONS
1916
a2502b58 1917The following options are specific to the Sparc32 emulation:
3475187d
FB
1918
1919@table @option
1920
4e257e5e 1921@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1922
33632788
MCA
1923Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1924option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1925of 1152x900x8 for people who wish to use OBP.
3475187d 1926
4e257e5e 1927@item -prom-env @var{string}
66508601
BS
1928
1929Set OpenBIOS variables in NVRAM, for example:
1930
1931@example
1932qemu-system-sparc -prom-env 'auto-boot?=false' \
1933 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1934@end example
1935
6a4e1771 1936@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1937
1938Set the emulated machine type. Default is SS-5.
1939
3475187d
FB
1940@end table
1941
5fafdf24 1942@c man end
3475187d 1943
24d4de45
TS
1944@node Sparc64 System emulator
1945@section Sparc64 System emulator
7544a042 1946@cindex system emulation (Sparc64)
e80cfcfc 1947
34a3d239
BS
1948Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1949(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1950Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1951able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1952Sun4v emulator is still a work in progress.
1953
1954The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1955of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1956and is able to boot the disk.s10hw2 Solaris image.
1957@example
1958qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1959 -nographic -m 256 \
1960 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1961@end example
1962
b756921a 1963
c7ba218d 1964QEMU emulates the following peripherals:
83469015
FB
1965
1966@itemize @minus
1967@item
5fafdf24 1968UltraSparc IIi APB PCI Bridge
83469015
FB
1969@item
1970PCI VGA compatible card with VESA Bochs Extensions
1971@item
34a3d239
BS
1972PS/2 mouse and keyboard
1973@item
83469015
FB
1974Non Volatile RAM M48T59
1975@item
1976PC-compatible serial ports
c7ba218d
BS
1977@item
19782 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1979@item
1980Floppy disk
83469015
FB
1981@end itemize
1982
c7ba218d
BS
1983@c man begin OPTIONS
1984
1985The following options are specific to the Sparc64 emulation:
1986
1987@table @option
1988
4e257e5e 1989@item -prom-env @var{string}
34a3d239
BS
1990
1991Set OpenBIOS variables in NVRAM, for example:
1992
1993@example
1994qemu-system-sparc64 -prom-env 'auto-boot?=false'
1995@end example
1996
a2664ca0 1997@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1998
1999Set the emulated machine type. The default is sun4u.
2000
2001@end table
2002
2003@c man end
2004
24d4de45
TS
2005@node MIPS System emulator
2006@section MIPS System emulator
7544a042 2007@cindex system emulation (MIPS)
9d0a8e6f 2008
f7d257cb
SM
2009@menu
2010* nanoMIPS System emulator ::
2011@end menu
2012
d9aedc32
TS
2013Four executables cover simulation of 32 and 64-bit MIPS systems in
2014both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2015@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2016Five different machine types are emulated:
24d4de45
TS
2017
2018@itemize @minus
2019@item
2020A generic ISA PC-like machine "mips"
2021@item
2022The MIPS Malta prototype board "malta"
2023@item
d9aedc32 2024An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2025@item
f0fc6f8f 2026MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2027@item
2028A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2029@end itemize
2030
2031The generic emulation is supported by Debian 'Etch' and is able to
2032install Debian into a virtual disk image. The following devices are
2033emulated:
3f9f3aa1
FB
2034
2035@itemize @minus
5fafdf24 2036@item
6bf5b4e8 2037A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2038@item
2039PC style serial port
2040@item
24d4de45
TS
2041PC style IDE disk
2042@item
3f9f3aa1
FB
2043NE2000 network card
2044@end itemize
2045
24d4de45
TS
2046The Malta emulation supports the following devices:
2047
2048@itemize @minus
2049@item
0b64d008 2050Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2051@item
2052PIIX4 PCI/USB/SMbus controller
2053@item
2054The Multi-I/O chip's serial device
2055@item
3a2eeac0 2056PCI network cards (PCnet32 and others)
24d4de45
TS
2057@item
2058Malta FPGA serial device
2059@item
1f605a76 2060Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2061@end itemize
2062
ba182a18
AM
2063The Boston board emulation supports the following devices:
2064
2065@itemize @minus
2066@item
2067Xilinx FPGA, which includes a PCIe root port and an UART
2068@item
2069Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2070@end itemize
2071
24d4de45
TS
2072The ACER Pica emulation supports:
2073
2074@itemize @minus
2075@item
2076MIPS R4000 CPU
2077@item
2078PC-style IRQ and DMA controllers
2079@item
2080PC Keyboard
2081@item
2082IDE controller
2083@end itemize
3f9f3aa1 2084
88cb0a02
AJ
2085The MIPS Magnum R4000 emulation supports:
2086
2087@itemize @minus
2088@item
2089MIPS R4000 CPU
2090@item
2091PC-style IRQ controller
2092@item
2093PC Keyboard
2094@item
2095SCSI controller
2096@item
2097G364 framebuffer
2098@end itemize
2099
3a1b94d9
AM
2100The Fulong 2E emulation supports:
2101
2102@itemize @minus
2103@item
2104Loongson 2E CPU
2105@item
2106Bonito64 system controller as North Bridge
2107@item
2108VT82C686 chipset as South Bridge
2109@item
2110RTL8139D as a network card chipset
2111@end itemize
2112
53d21e7b
AM
2113The mipssim pseudo board emulation provides an environment similar
2114to what the proprietary MIPS emulator uses for running Linux.
2115It supports:
2116
2117@itemize @minus
2118@item
2119A range of MIPS CPUs, default is the 24Kf
2120@item
2121PC style serial port
2122@item
2123MIPSnet network emulation
2124@end itemize
2125
f7d257cb
SM
2126@node nanoMIPS System emulator
2127@subsection nanoMIPS System emulator
2128@cindex system emulation (nanoMIPS)
2129
2130Executable @file{qemu-system-mipsel} also covers simulation of
213132-bit nanoMIPS system in little endian mode:
2132
2133@itemize @minus
2134@item
2135nanoMIPS I7200 CPU
2136@end itemize
2137
2138Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2139
2140Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2141
2142Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2143
2144Start system emulation of Malta board with nanoMIPS I7200 CPU:
2145@example
2146qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2147 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2148 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2149@end example
2150
88cb0a02 2151
24d4de45
TS
2152@node ARM System emulator
2153@section ARM System emulator
7544a042 2154@cindex system emulation (ARM)
3f9f3aa1
FB
2155
2156Use the executable @file{qemu-system-arm} to simulate a ARM
2157machine. The ARM Integrator/CP board is emulated with the following
2158devices:
2159
2160@itemize @minus
2161@item
9ee6e8bb 2162ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2163@item
2164Two PL011 UARTs
5fafdf24 2165@item
3f9f3aa1 2166SMC 91c111 Ethernet adapter
00a9bf19
PB
2167@item
2168PL110 LCD controller
2169@item
2170PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2171@item
2172PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2173@end itemize
2174
2175The ARM Versatile baseboard is emulated with the following devices:
2176
2177@itemize @minus
2178@item
9ee6e8bb 2179ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2180@item
2181PL190 Vectored Interrupt Controller
2182@item
2183Four PL011 UARTs
5fafdf24 2184@item
00a9bf19
PB
2185SMC 91c111 Ethernet adapter
2186@item
2187PL110 LCD controller
2188@item
2189PL050 KMI with PS/2 keyboard and mouse.
2190@item
2191PCI host bridge. Note the emulated PCI bridge only provides access to
2192PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2193This means some devices (eg. ne2k_pci NIC) are not usable, and others
2194(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2195mapped control registers.
e6de1bad
PB
2196@item
2197PCI OHCI USB controller.
2198@item
2199LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2200@item
2201PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2202@end itemize
2203
21a88941
PB
2204Several variants of the ARM RealView baseboard are emulated,
2205including the EB, PB-A8 and PBX-A9. Due to interactions with the
2206bootloader, only certain Linux kernel configurations work out
2207of the box on these boards.
2208
2209Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2210enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2211should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2212disabled and expect 1024M RAM.
2213
40c5c6cd 2214The following devices are emulated:
d7739d75
PB
2215
2216@itemize @minus
2217@item
f7c70325 2218ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2219@item
2220ARM AMBA Generic/Distributed Interrupt Controller
2221@item
2222Four PL011 UARTs
5fafdf24 2223@item
0ef849d7 2224SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2225@item
2226PL110 LCD controller
2227@item
2228PL050 KMI with PS/2 keyboard and mouse
2229@item
2230PCI host bridge
2231@item
2232PCI OHCI USB controller
2233@item
2234LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2235@item
2236PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2237@end itemize
2238
b00052e4
AZ
2239The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2240and "Terrier") emulation includes the following peripherals:
2241
2242@itemize @minus
2243@item
2244Intel PXA270 System-on-chip (ARM V5TE core)
2245@item
2246NAND Flash memory
2247@item
2248IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2249@item
2250On-chip OHCI USB controller
2251@item
2252On-chip LCD controller
2253@item
2254On-chip Real Time Clock
2255@item
2256TI ADS7846 touchscreen controller on SSP bus
2257@item
2258Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2259@item
2260GPIO-connected keyboard controller and LEDs
2261@item
549444e1 2262Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2263@item
2264Three on-chip UARTs
2265@item
2266WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2267@end itemize
2268
02645926
AZ
2269The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2270following elements:
2271
2272@itemize @minus
2273@item
2274Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2275@item
2276ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2277@item
2278On-chip LCD controller
2279@item
2280On-chip Real Time Clock
2281@item
2282TI TSC2102i touchscreen controller / analog-digital converter / Audio
2283CODEC, connected through MicroWire and I@math{^2}S busses
2284@item
2285GPIO-connected matrix keypad
2286@item
2287Secure Digital card connected to OMAP MMC/SD host
2288@item
2289Three on-chip UARTs
2290@end itemize
2291
c30bb264
AZ
2292Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2293emulation supports the following elements:
2294
2295@itemize @minus
2296@item
2297Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2298@item
2299RAM and non-volatile OneNAND Flash memories
2300@item
2301Display connected to EPSON remote framebuffer chip and OMAP on-chip
2302display controller and a LS041y3 MIPI DBI-C controller
2303@item
2304TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2305driven through SPI bus
2306@item
2307National Semiconductor LM8323-controlled qwerty keyboard driven
2308through I@math{^2}C bus
2309@item
2310Secure Digital card connected to OMAP MMC/SD host
2311@item
2312Three OMAP on-chip UARTs and on-chip STI debugging console
2313@item
40c5c6cd 2314A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2315@item
c30bb264
AZ
2316Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2317TUSB6010 chip - only USB host mode is supported
2318@item
2319TI TMP105 temperature sensor driven through I@math{^2}C bus
2320@item
2321TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2322@item
2323Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2324through CBUS
2325@end itemize
2326
9ee6e8bb
PB
2327The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2328devices:
2329
2330@itemize @minus
2331@item
2332Cortex-M3 CPU core.
2333@item
233464k Flash and 8k SRAM.
2335@item
2336Timers, UARTs, ADC and I@math{^2}C interface.
2337@item
2338OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2339@end itemize
2340
2341The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2342devices:
2343
2344@itemize @minus
2345@item
2346Cortex-M3 CPU core.
2347@item
2348256k Flash and 64k SRAM.
2349@item
2350Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2351@item
2352OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2353@end itemize
2354
57cd6e97
AZ
2355The Freecom MusicPal internet radio emulation includes the following
2356elements:
2357
2358@itemize @minus
2359@item
2360Marvell MV88W8618 ARM core.
2361@item
236232 MB RAM, 256 KB SRAM, 8 MB flash.
2363@item
2364Up to 2 16550 UARTs
2365@item
2366MV88W8xx8 Ethernet controller
2367@item
2368MV88W8618 audio controller, WM8750 CODEC and mixer
2369@item
e080e785 2370128×64 display with brightness control
57cd6e97
AZ
2371@item
23722 buttons, 2 navigation wheels with button function
2373@end itemize
2374
997641a8 2375The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2376The emulation includes the following elements:
997641a8
AZ
2377
2378@itemize @minus
2379@item
2380Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2381@item
2382ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2383V1
23841 Flash of 16MB and 1 Flash of 8MB
2385V2
23861 Flash of 32MB
2387@item
2388On-chip LCD controller
2389@item
2390On-chip Real Time Clock
2391@item
2392Secure Digital card connected to OMAP MMC/SD host
2393@item
2394Three on-chip UARTs
2395@end itemize
2396
3f9f3aa1
FB
2397A Linux 2.6 test image is available on the QEMU web site. More
2398information is available in the QEMU mailing-list archive.
9d0a8e6f 2399
d2c639d6
BS
2400@c man begin OPTIONS
2401
2402The following options are specific to the ARM emulation:
2403
2404@table @option
2405
2406@item -semihosting
2407Enable semihosting syscall emulation.
2408
2409On ARM this implements the "Angel" interface.
2410
2411Note that this allows guest direct access to the host filesystem,
2412so should only be used with trusted guest OS.
2413
2414@end table
2415
abc67eb6
TH
2416@c man end
2417
24d4de45
TS
2418@node ColdFire System emulator
2419@section ColdFire System emulator
7544a042
SW
2420@cindex system emulation (ColdFire)
2421@cindex system emulation (M68K)
209a4e69
PB
2422
2423Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2424The emulator is able to boot a uClinux kernel.
707e011b
PB
2425
2426The M5208EVB emulation includes the following devices:
2427
2428@itemize @minus
5fafdf24 2429@item
707e011b
PB
2430MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2431@item
2432Three Two on-chip UARTs.
2433@item
2434Fast Ethernet Controller (FEC)
2435@end itemize
2436
2437The AN5206 emulation includes the following devices:
209a4e69
PB
2438
2439@itemize @minus
5fafdf24 2440@item
209a4e69
PB
2441MCF5206 ColdFire V2 Microprocessor.
2442@item
2443Two on-chip UARTs.
2444@end itemize
2445
d2c639d6
BS
2446@c man begin OPTIONS
2447
7544a042 2448The following options are specific to the ColdFire emulation:
d2c639d6
BS
2449
2450@table @option
2451
2452@item -semihosting
2453Enable semihosting syscall emulation.
2454
2455On M68K this implements the "ColdFire GDB" interface used by libgloss.
2456
2457Note that this allows guest direct access to the host filesystem,
2458so should only be used with trusted guest OS.
2459
2460@end table
2461
abc67eb6
TH
2462@c man end
2463
7544a042
SW
2464@node Cris System emulator
2465@section Cris System emulator
2466@cindex system emulation (Cris)
2467
2468TODO
2469
2470@node Microblaze System emulator
2471@section Microblaze System emulator
2472@cindex system emulation (Microblaze)
2473
2474TODO
2475
2476@node SH4 System emulator
2477@section SH4 System emulator
2478@cindex system emulation (SH4)
2479
2480TODO
2481
3aeaea65
MF
2482@node Xtensa System emulator
2483@section Xtensa System emulator
2484@cindex system emulation (Xtensa)
2485
2486Two executables cover simulation of both Xtensa endian options,
2487@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2488Two different machine types are emulated:
2489
2490@itemize @minus
2491@item
2492Xtensa emulator pseudo board "sim"
2493@item
2494Avnet LX60/LX110/LX200 board
2495@end itemize
2496
b5e4946f 2497The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2498to one provided by the proprietary Tensilica ISS.
2499It supports:
2500
2501@itemize @minus
2502@item
2503A range of Xtensa CPUs, default is the DC232B
2504@item
2505Console and filesystem access via semihosting calls
2506@end itemize
2507
2508The Avnet LX60/LX110/LX200 emulation supports:
2509
2510@itemize @minus
2511@item
2512A range of Xtensa CPUs, default is the DC232B
2513@item
251416550 UART
2515@item
2516OpenCores 10/100 Mbps Ethernet MAC
2517@end itemize
2518
2519@c man begin OPTIONS
2520
2521The following options are specific to the Xtensa emulation:
2522
2523@table @option
2524
2525@item -semihosting
2526Enable semihosting syscall emulation.
2527
2528Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2529Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2530
2531Note that this allows guest direct access to the host filesystem,
2532so should only be used with trusted guest OS.
2533
2534@end table
3f2ce724 2535
abc67eb6
TH
2536@c man end
2537
5fafdf24
TS
2538@node QEMU User space emulator
2539@chapter QEMU User space emulator
83195237
FB
2540
2541@menu
2542* Supported Operating Systems ::
0722cc42 2543* Features::
83195237 2544* Linux User space emulator::
84778508 2545* BSD User space emulator ::
83195237
FB
2546@end menu
2547
2548@node Supported Operating Systems
2549@section Supported Operating Systems
2550
2551The following OS are supported in user space emulation:
2552
2553@itemize @minus
2554@item
4be456f1 2555Linux (referred as qemu-linux-user)
83195237 2556@item
84778508 2557BSD (referred as qemu-bsd-user)
83195237
FB
2558@end itemize
2559
0722cc42
PB
2560@node Features
2561@section Features
2562
2563QEMU user space emulation has the following notable features:
2564
2565@table @strong
2566@item System call translation:
2567QEMU includes a generic system call translator. This means that
2568the parameters of the system calls can be converted to fix
2569endianness and 32/64-bit mismatches between hosts and targets.
2570IOCTLs can be converted too.
2571
2572@item POSIX signal handling:
2573QEMU can redirect to the running program all signals coming from
2574the host (such as @code{SIGALRM}), as well as synthesize signals from
2575virtual CPU exceptions (for example @code{SIGFPE} when the program
2576executes a division by zero).
2577
2578QEMU relies on the host kernel to emulate most signal system
2579calls, for example to emulate the signal mask. On Linux, QEMU
2580supports both normal and real-time signals.
2581
2582@item Threading:
2583On Linux, QEMU can emulate the @code{clone} syscall and create a real
2584host thread (with a separate virtual CPU) for each emulated thread.
2585Note that not all targets currently emulate atomic operations correctly.
2586x86 and ARM use a global lock in order to preserve their semantics.
2587@end table
2588
2589QEMU was conceived so that ultimately it can emulate itself. Although
2590it is not very useful, it is an important test to show the power of the
2591emulator.
2592
83195237
FB
2593@node Linux User space emulator
2594@section Linux User space emulator
386405f7 2595
debc7065
FB
2596@menu
2597* Quick Start::
2598* Wine launch::
2599* Command line options::
79737e4a 2600* Other binaries::
debc7065
FB
2601@end menu
2602
2603@node Quick Start
83195237 2604@subsection Quick Start
df0f11a0 2605
1f673135 2606In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2607itself and all the target (x86) dynamic libraries used by it.
386405f7 2608
1f673135 2609@itemize
386405f7 2610
1f673135
FB
2611@item On x86, you can just try to launch any process by using the native
2612libraries:
386405f7 2613
5fafdf24 2614@example
1f673135
FB
2615qemu-i386 -L / /bin/ls
2616@end example
386405f7 2617
1f673135
FB
2618@code{-L /} tells that the x86 dynamic linker must be searched with a
2619@file{/} prefix.
386405f7 2620
b65ee4fa
SW
2621@item Since QEMU is also a linux process, you can launch QEMU with
2622QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2623
5fafdf24 2624@example
1f673135
FB
2625qemu-i386 -L / qemu-i386 -L / /bin/ls
2626@end example
386405f7 2627
1f673135
FB
2628@item On non x86 CPUs, you need first to download at least an x86 glibc
2629(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2630@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2631
1f673135 2632@example
5fafdf24 2633unset LD_LIBRARY_PATH
1f673135 2634@end example
1eb87257 2635
1f673135 2636Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2637
1f673135
FB
2638@example
2639qemu-i386 tests/i386/ls
2640@end example
4c3b5a48 2641You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2642QEMU is automatically launched by the Linux kernel when you try to
2643launch x86 executables. It requires the @code{binfmt_misc} module in the
2644Linux kernel.
1eb87257 2645
1f673135
FB
2646@item The x86 version of QEMU is also included. You can try weird things such as:
2647@example
debc7065
FB
2648qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2649 /usr/local/qemu-i386/bin/ls-i386
1f673135 2650@end example
1eb20527 2651
1f673135 2652@end itemize
1eb20527 2653
debc7065 2654@node Wine launch
83195237 2655@subsection Wine launch
1eb20527 2656
1f673135 2657@itemize
386405f7 2658
1f673135
FB
2659@item Ensure that you have a working QEMU with the x86 glibc
2660distribution (see previous section). In order to verify it, you must be
2661able to do:
386405f7 2662
1f673135
FB
2663@example
2664qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2665@end example
386405f7 2666
1f673135 2667@item Download the binary x86 Wine install
5fafdf24 2668(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2669
1f673135 2670@item Configure Wine on your account. Look at the provided script
debc7065 2671@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2672@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2673
1f673135 2674@item Then you can try the example @file{putty.exe}:
386405f7 2675
1f673135 2676@example
debc7065
FB
2677qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2678 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2679@end example
386405f7 2680
1f673135 2681@end itemize
fd429f2f 2682
debc7065 2683@node Command line options
83195237 2684@subsection Command line options
1eb20527 2685
1f673135 2686@example
8485140f 2687@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2688@end example
1eb20527 2689
1f673135
FB
2690@table @option
2691@item -h
2692Print the help
3b46e624 2693@item -L path
1f673135
FB
2694Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2695@item -s size
2696Set the x86 stack size in bytes (default=524288)
34a3d239 2697@item -cpu model
c8057f95 2698Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2699@item -E @var{var}=@var{value}
2700Set environment @var{var} to @var{value}.
2701@item -U @var{var}
2702Remove @var{var} from the environment.
379f6698
PB
2703@item -B offset
2704Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2705the address region required by guest applications is reserved on the host.
2706This option is currently only supported on some hosts.
68a1c816
PB
2707@item -R size
2708Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2709"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2710@end table
2711
1f673135 2712Debug options:
386405f7 2713
1f673135 2714@table @option
989b697d
PM
2715@item -d item1,...
2716Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2717@item -p pagesize
2718Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2719@item -g port
2720Wait gdb connection to port
1b530a6d
AJ
2721@item -singlestep
2722Run the emulation in single step mode.
1f673135 2723@end table
386405f7 2724
b01bcae6
AZ
2725Environment variables:
2726
2727@table @env
2728@item QEMU_STRACE
2729Print system calls and arguments similar to the 'strace' program
2730(NOTE: the actual 'strace' program will not work because the user
2731space emulator hasn't implemented ptrace). At the moment this is
2732incomplete. All system calls that don't have a specific argument
2733format are printed with information for six arguments. Many
2734flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2735@end table
b01bcae6 2736
79737e4a 2737@node Other binaries
83195237 2738@subsection Other binaries
79737e4a 2739
7544a042
SW
2740@cindex user mode (Alpha)
2741@command{qemu-alpha} TODO.
2742
2743@cindex user mode (ARM)
2744@command{qemu-armeb} TODO.
2745
2746@cindex user mode (ARM)
79737e4a
PB
2747@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2748binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2749configurations), and arm-uclinux bFLT format binaries.
2750
7544a042
SW
2751@cindex user mode (ColdFire)
2752@cindex user mode (M68K)
e6e5906b
PB
2753@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2754(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2755coldfire uClinux bFLT format binaries.
2756
79737e4a
PB
2757The binary format is detected automatically.
2758
7544a042
SW
2759@cindex user mode (Cris)
2760@command{qemu-cris} TODO.
2761
2762@cindex user mode (i386)
2763@command{qemu-i386} TODO.
2764@command{qemu-x86_64} TODO.
2765
2766@cindex user mode (Microblaze)
2767@command{qemu-microblaze} TODO.
2768
2769@cindex user mode (MIPS)
8639c5c9
AM
2770@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2771
2772@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2773
2774@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2775
2776@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2777
2778@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2779
2780@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2781
e671711c
MV
2782@cindex user mode (NiosII)
2783@command{qemu-nios2} TODO.
2784
7544a042
SW
2785@cindex user mode (PowerPC)
2786@command{qemu-ppc64abi32} TODO.
2787@command{qemu-ppc64} TODO.
2788@command{qemu-ppc} TODO.
2789
2790@cindex user mode (SH4)
2791@command{qemu-sh4eb} TODO.
2792@command{qemu-sh4} TODO.
2793
2794@cindex user mode (SPARC)
34a3d239
BS
2795@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2796
a785e42e
BS
2797@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2798(Sparc64 CPU, 32 bit ABI).
2799
2800@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2801SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2802
84778508
BS
2803@node BSD User space emulator
2804@section BSD User space emulator
2805
2806@menu
2807* BSD Status::
2808* BSD Quick Start::
2809* BSD Command line options::
2810@end menu
2811
2812@node BSD Status
2813@subsection BSD Status
2814
2815@itemize @minus
2816@item
2817target Sparc64 on Sparc64: Some trivial programs work.
2818@end itemize
2819
2820@node BSD Quick Start
2821@subsection Quick Start
2822
2823In order to launch a BSD process, QEMU needs the process executable
2824itself and all the target dynamic libraries used by it.
2825
2826@itemize
2827
2828@item On Sparc64, you can just try to launch any process by using the native
2829libraries:
2830
2831@example
2832qemu-sparc64 /bin/ls
2833@end example
2834
2835@end itemize
2836
2837@node BSD Command line options
2838@subsection Command line options
2839
2840@example
8485140f 2841@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2842@end example
2843
2844@table @option
2845@item -h
2846Print the help
2847@item -L path
2848Set the library root path (default=/)
2849@item -s size
2850Set the stack size in bytes (default=524288)
f66724c9
SW
2851@item -ignore-environment
2852Start with an empty environment. Without this option,
40c5c6cd 2853the initial environment is a copy of the caller's environment.
f66724c9
SW
2854@item -E @var{var}=@var{value}
2855Set environment @var{var} to @var{value}.
2856@item -U @var{var}
2857Remove @var{var} from the environment.
84778508
BS
2858@item -bsd type
2859Set the type of the emulated BSD Operating system. Valid values are
2860FreeBSD, NetBSD and OpenBSD (default).
2861@end table
2862
2863Debug options:
2864
2865@table @option
989b697d
PM
2866@item -d item1,...
2867Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2868@item -p pagesize
2869Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2870@item -singlestep
2871Run the emulation in single step mode.
84778508
BS
2872@end table
2873
483c6ad4
BP
2874@node System requirements
2875@chapter System requirements
2876
2877@section KVM kernel module
2878
2879On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2880require the host to be running Linux v4.5 or newer.
2881
2882The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2883added with Linux 4.5 which is supported by the major distros. And even
2884if RHEL7 has kernel 3.10, KVM there has the required functionality there
2885to make it close to a 4.5 or newer kernel.
47eacb4f 2886
e8412576
SH
2887@include docs/security.texi
2888
78e87797
PB
2889@include qemu-tech.texi
2890
44c67847 2891@include qemu-deprecated.texi
efe2add7 2892
45b47130
DB
2893@node Supported build platforms
2894@appendix Supported build platforms
2895
2896QEMU aims to support building and executing on multiple host OS platforms.
2897This appendix outlines which platforms are the major build targets. These
2898platforms are used as the basis for deciding upon the minimum required
2899versions of 3rd party software QEMU depends on. The supported platforms
2900are the targets for automated testing performed by the project when patches
2901are submitted for review, and tested before and after merge.
2902
2903If a platform is not listed here, it does not imply that QEMU won't work.
2904If an unlisted platform has comparable software versions to a listed platform,
2905there is every expectation that it will work. Bug reports are welcome for
2906problems encountered on unlisted platforms unless they are clearly older
2907vintage than what is described here.
2908
2909Note that when considering software versions shipped in distros as support
2910targets, QEMU considers only the version number, and assumes the features in
2911that distro match the upstream release with the same version. In other words,
2912if a distro backports extra features to the software in their distro, QEMU
2913upstream code will not add explicit support for those backports, unless the
2914feature is auto-detectable in a manner that works for the upstream releases
2915too.
2916
2917The Repology site @url{https://repology.org} is a useful resource to identify
2918currently shipped versions of software in various operating systems, though
2919it does not cover all distros listed below.
2920
2921@section Linux OS
2922
2923For distributions with frequent, short-lifetime releases, the project will
2924aim to support all versions that are not end of life by their respective
2925vendors. For the purposes of identifying supported software versions, the
2926project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2927lifetime distros will be assumed to ship similar software versions.
2928
2929For distributions with long-lifetime releases, the project will aim to support
2930the most recent major version at all times. Support for the previous major
2931version will be dropped 2 years after the new major version is released. For
2932the purposes of identifying supported software versions, the project will look
2933at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2934be assumed to ship similar software versions.
2935
2936@section Windows
2937
2938The project supports building with current versions of the MinGW toolchain,
2939hosted on Linux.
2940
2941@section macOS
2942
2943The project supports building with the two most recent versions of macOS, with
2944the current homebrew package set available.
2945
2946@section FreeBSD
2947
2948The project aims to support the all the versions which are not end of life.
2949
2950@section NetBSD
2951
2952The project aims to support the most recent major version at all times. Support
2953for the previous major version will be dropped 2 years after the new major
2954version is released.
2955
2956@section OpenBSD
2957
2958The project aims to support the all the versions which are not end of life.
2959
7544a042
SW
2960@node License
2961@appendix License
2962
2963QEMU is a trademark of Fabrice Bellard.
2964
2f8d8f01
TH
2965QEMU is released under the
2966@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2967version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2968@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2969
debc7065 2970@node Index
7544a042
SW
2971@appendix Index
2972@menu
2973* Concept Index::
2974* Function Index::
2975* Keystroke Index::
2976* Program Index::
2977* Data Type Index::
2978* Variable Index::
2979@end menu
2980
2981@node Concept Index
2982@section Concept Index
2983This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2984@printindex cp
2985
7544a042
SW
2986@node Function Index
2987@section Function Index
2988This index could be used for command line options and monitor functions.
2989@printindex fn
2990
2991@node Keystroke Index
2992@section Keystroke Index
2993
2994This is a list of all keystrokes which have a special function
2995in system emulation.
2996
2997@printindex ky
2998
2999@node Program Index
3000@section Program Index
3001@printindex pg
3002
3003@node Data Type Index
3004@section Data Type Index
3005
3006This index could be used for qdev device names and options.
3007
3008@printindex tp
3009
3010@node Variable Index
3011@section Variable Index
3012@printindex vr
3013
debc7065 3014@bye