]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
core: replace getpagesize() with qemu_real_host_page_size
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
664785ac
TH
14@set qemu_system qemu-system-x86_64
15@set qemu_system_x86 qemu-system-x86_64
16
a1a32b05
SW
17@ifinfo
18@direntry
19* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
20@end direntry
21@end ifinfo
22
0806e3f6 23@iftex
386405f7
FB
24@titlepage
25@sp 7
44cb280d 26@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
27@sp 1
28@center @titlefont{User Documentation}
386405f7
FB
29@sp 3
30@end titlepage
0806e3f6 31@end iftex
386405f7 32
debc7065
FB
33@ifnottex
34@node Top
35@top
36
37@menu
38* Introduction::
debc7065
FB
39* QEMU PC System emulator::
40* QEMU System emulator for non PC targets::
3f2ce724 41* QEMU Guest Agent::
83195237 42* QEMU User space emulator::
483c6ad4 43* System requirements::
e8412576 44* Security::
78e87797 45* Implementation notes::
eb22aeca 46* Deprecated features::
45b47130 47* Supported build platforms::
7544a042 48* License::
debc7065
FB
49* Index::
50@end menu
51@end ifnottex
52
53@contents
54
55@node Introduction
386405f7
FB
56@chapter Introduction
57
debc7065
FB
58@menu
59* intro_features:: Features
60@end menu
61
62@node intro_features
322d0c66 63@section Features
386405f7 64
1f673135
FB
65QEMU is a FAST! processor emulator using dynamic translation to
66achieve good emulation speed.
1eb20527 67
1f3e7e41 68@cindex operating modes
1eb20527 69QEMU has two operating modes:
0806e3f6 70
d7e5edca 71@itemize
7544a042 72@cindex system emulation
1f3e7e41 73@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
74example a PC), including one or several processors and various
75peripherals. It can be used to launch different Operating Systems
76without rebooting the PC or to debug system code.
1eb20527 77
7544a042 78@cindex user mode emulation
1f3e7e41 79@item User mode emulation. In this mode, QEMU can launch
83195237 80processes compiled for one CPU on another CPU. It can be used to
70b7fba9 81launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 82to ease cross-compilation and cross-debugging.
1eb20527
FB
83
84@end itemize
85
1f3e7e41
PB
86QEMU has the following features:
87
88@itemize
89@item QEMU can run without a host kernel driver and yet gives acceptable
90performance. It uses dynamic translation to native code for reasonable speed,
91with support for self-modifying code and precise exceptions.
92
93@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
94Windows) and architectures.
95
96@item It performs accurate software emulation of the FPU.
97@end itemize
322d0c66 98
1f3e7e41 99QEMU user mode emulation has the following features:
52c00a5f 100@itemize
1f3e7e41
PB
101@item Generic Linux system call converter, including most ioctls.
102
103@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
104
105@item Accurate signal handling by remapping host signals to target signals.
106@end itemize
107
108QEMU full system emulation has the following features:
109@itemize
110@item
111QEMU uses a full software MMU for maximum portability.
112
113@item
326c4c3c 114QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
115execute most of the guest code natively, while
116continuing to emulate the rest of the machine.
117
118@item
119Various hardware devices can be emulated and in some cases, host
120devices (e.g. serial and parallel ports, USB, drives) can be used
121transparently by the guest Operating System. Host device passthrough
122can be used for talking to external physical peripherals (e.g. a
123webcam, modem or tape drive).
124
125@item
126Symmetric multiprocessing (SMP) support. Currently, an in-kernel
127accelerator is required to use more than one host CPU for emulation.
128
52c00a5f 129@end itemize
386405f7 130
0806e3f6 131
debc7065 132@node QEMU PC System emulator
3f9f3aa1 133@chapter QEMU PC System emulator
7544a042 134@cindex system emulation (PC)
1eb20527 135
debc7065
FB
136@menu
137* pcsys_introduction:: Introduction
138* pcsys_quickstart:: Quick Start
139* sec_invocation:: Invocation
a40db1b3
PM
140* pcsys_keys:: Keys in the graphical frontends
141* mux_keys:: Keys in the character backend multiplexer
debc7065 142* pcsys_monitor:: QEMU Monitor
2544e9e4 143* cpu_models:: CPU models
debc7065
FB
144* disk_images:: Disk Images
145* pcsys_network:: Network emulation
576fd0a1 146* pcsys_other_devs:: Other Devices
debc7065
FB
147* direct_linux_boot:: Direct Linux Boot
148* pcsys_usb:: USB emulation
f858dcae 149* vnc_security:: VNC security
5d19a6ea 150* network_tls:: TLS setup for network services
debc7065
FB
151* gdb_usage:: GDB usage
152* pcsys_os_specific:: Target OS specific information
153@end menu
154
155@node pcsys_introduction
0806e3f6
FB
156@section Introduction
157
158@c man begin DESCRIPTION
159
3f9f3aa1
FB
160The QEMU PC System emulator simulates the
161following peripherals:
0806e3f6
FB
162
163@itemize @minus
5fafdf24 164@item
15a34c63 165i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 166@item
15a34c63
FB
167Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
168extensions (hardware level, including all non standard modes).
0806e3f6
FB
169@item
170PS/2 mouse and keyboard
5fafdf24 171@item
15a34c63 1722 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
173@item
174Floppy disk
5fafdf24 175@item
3a2eeac0 176PCI and ISA network adapters
0806e3f6 177@item
05d5818c
FB
178Serial ports
179@item
23076bb3
CM
180IPMI BMC, either and internal or external one
181@item
c0fe3827
FB
182Creative SoundBlaster 16 sound card
183@item
184ENSONIQ AudioPCI ES1370 sound card
185@item
e5c9a13e
AZ
186Intel 82801AA AC97 Audio compatible sound card
187@item
7d72e762
GH
188Intel HD Audio Controller and HDA codec
189@item
2d983446 190Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 191@item
26463dbc
AZ
192Gravis Ultrasound GF1 sound card
193@item
cc53d26d 194CS4231A compatible sound card
195@item
a92ff8c1 196PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
197@end itemize
198
3f9f3aa1
FB
199SMP is supported with up to 255 CPUs.
200
a8ad4159 201QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
202VGA BIOS.
203
c0fe3827
FB
204QEMU uses YM3812 emulation by Tatsuyuki Satoh.
205
2d983446 206QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 207by Tibor "TS" Schütz.
423d65f4 208
1a1a0e20 209Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 210QEMU must be told to not have parallel ports to have working GUS.
720036a5 211
212@example
664785ac 213@value{qemu_system_x86} dos.img -soundhw gus -parallel none
720036a5 214@end example
215
216Alternatively:
217@example
664785ac 218@value{qemu_system_x86} dos.img -device gus,irq=5
720036a5 219@end example
220
221Or some other unclaimed IRQ.
222
cc53d26d 223CS4231A is the chip used in Windows Sound System and GUSMAX products
224
0806e3f6
FB
225@c man end
226
debc7065 227@node pcsys_quickstart
1eb20527 228@section Quick Start
7544a042 229@cindex quick start
1eb20527 230
664785ac
TH
231Download and uncompress a hard disk image with Linux installed (e.g.
232@file{linux.img}) and type:
0806e3f6
FB
233
234@example
664785ac 235@value{qemu_system} linux.img
0806e3f6
FB
236@end example
237
238Linux should boot and give you a prompt.
239
6cc721cf 240@node sec_invocation
ec410fc9
FB
241@section Invocation
242
243@example
0806e3f6 244@c man begin SYNOPSIS
664785ac 245@command{@value{qemu_system}} [@var{options}] [@var{disk_image}]
0806e3f6 246@c man end
ec410fc9
FB
247@end example
248
0806e3f6 249@c man begin OPTIONS
d2c639d6
BS
250@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
251targets do not need a disk image.
ec410fc9 252
5824d651 253@include qemu-options.texi
ec410fc9 254
3e11db9a
FB
255@c man end
256
e896d0f9
MA
257@subsection Device URL Syntax
258@c TODO merge this with section Disk Images
259
260@c man begin NOTES
261
262In addition to using normal file images for the emulated storage devices,
263QEMU can also use networked resources such as iSCSI devices. These are
264specified using a special URL syntax.
265
266@table @option
267@item iSCSI
268iSCSI support allows QEMU to access iSCSI resources directly and use as
269images for the guest storage. Both disk and cdrom images are supported.
270
271Syntax for specifying iSCSI LUNs is
272``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
273
274By default qemu will use the iSCSI initiator-name
275'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
276line or a configuration file.
277
278Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
279stalled requests and force a reestablishment of the session. The timeout
280is specified in seconds. The default is 0 which means no timeout. Libiscsi
2811.15.0 or greater is required for this feature.
282
283Example (without authentication):
284@example
664785ac 285@value{qemu_system} -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
e896d0f9
MA
286 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
287 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
288@end example
289
290Example (CHAP username/password via URL):
291@example
664785ac 292@value{qemu_system} -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
293@end example
294
295Example (CHAP username/password via environment variables):
296@example
297LIBISCSI_CHAP_USERNAME="user" \
298LIBISCSI_CHAP_PASSWORD="password" \
664785ac 299@value{qemu_system} -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
300@end example
301
302@item NBD
303QEMU supports NBD (Network Block Devices) both using TCP protocol as well
0c61ebb0 304as Unix Domain Sockets. With TCP, the default port is 10809.
e896d0f9 305
0c61ebb0
EB
306Syntax for specifying a NBD device using TCP, in preferred URI form:
307``nbd://<server-ip>[:<port>]/[<export>]''
308
309Syntax for specifying a NBD device using Unix Domain Sockets; remember
310that '?' is a shell glob character and may need quoting:
311``nbd+unix:///[<export>]?socket=<domain-socket>''
312
313Older syntax that is also recognized:
e896d0f9
MA
314``nbd:<server-ip>:<port>[:exportname=<export>]''
315
316Syntax for specifying a NBD device using Unix Domain Sockets
317``nbd:unix:<domain-socket>[:exportname=<export>]''
318
319Example for TCP
320@example
664785ac 321@value{qemu_system} --drive file=nbd:192.0.2.1:30000
e896d0f9
MA
322@end example
323
324Example for Unix Domain Sockets
325@example
664785ac 326@value{qemu_system} --drive file=nbd:unix:/tmp/nbd-socket
e896d0f9
MA
327@end example
328
329@item SSH
330QEMU supports SSH (Secure Shell) access to remote disks.
331
332Examples:
333@example
664785ac
TH
334@value{qemu_system} -drive file=ssh://user@@host/path/to/disk.img
335@value{qemu_system} -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
e896d0f9
MA
336@end example
337
338Currently authentication must be done using ssh-agent. Other
339authentication methods may be supported in future.
340
341@item Sheepdog
342Sheepdog is a distributed storage system for QEMU.
343QEMU supports using either local sheepdog devices or remote networked
344devices.
345
346Syntax for specifying a sheepdog device
347@example
348sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
349@end example
350
351Example
352@example
664785ac 353@value{qemu_system} --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
e896d0f9
MA
354@end example
355
356See also @url{https://sheepdog.github.io/sheepdog/}.
357
358@item GlusterFS
359GlusterFS is a user space distributed file system.
360QEMU supports the use of GlusterFS volumes for hosting VM disk images using
361TCP, Unix Domain Sockets and RDMA transport protocols.
362
363Syntax for specifying a VM disk image on GlusterFS volume is
364@example
365
366URI:
367gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
368
369JSON:
370'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
371@ "server":[@{"type":"tcp","host":"...","port":"..."@},
372@ @{"type":"unix","socket":"..."@}]@}@}'
373@end example
374
375
376Example
377@example
378URI:
664785ac 379@value{qemu_system} --drive file=gluster://192.0.2.1/testvol/a.img,
e896d0f9
MA
380@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
381
382JSON:
664785ac 383@value{qemu_system} 'json:@{"driver":"qcow2",
e896d0f9
MA
384@ "file":@{"driver":"gluster",
385@ "volume":"testvol","path":"a.img",
386@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
387@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
388@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
664785ac 389@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
e896d0f9
MA
390@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
391@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
392@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
393@end example
394
395See also @url{http://www.gluster.org}.
396
397@item HTTP/HTTPS/FTP/FTPS
398QEMU supports read-only access to files accessed over http(s) and ftp(s).
399
400Syntax using a single filename:
401@example
402<protocol>://[<username>[:<password>]@@]<host>/<path>
403@end example
404
405where:
406@table @option
407@item protocol
408'http', 'https', 'ftp', or 'ftps'.
409
410@item username
411Optional username for authentication to the remote server.
412
413@item password
414Optional password for authentication to the remote server.
415
416@item host
417Address of the remote server.
418
419@item path
420Path on the remote server, including any query string.
421@end table
422
423The following options are also supported:
424@table @option
425@item url
426The full URL when passing options to the driver explicitly.
427
428@item readahead
429The amount of data to read ahead with each range request to the remote server.
430This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
431does not have a suffix, it will be assumed to be in bytes. The value must be a
432multiple of 512 bytes. It defaults to 256k.
433
434@item sslverify
435Whether to verify the remote server's certificate when connecting over SSL. It
436can have the value 'on' or 'off'. It defaults to 'on'.
437
438@item cookie
439Send this cookie (it can also be a list of cookies separated by ';') with
440each outgoing request. Only supported when using protocols such as HTTP
441which support cookies, otherwise ignored.
442
443@item timeout
444Set the timeout in seconds of the CURL connection. This timeout is the time
445that CURL waits for a response from the remote server to get the size of the
446image to be downloaded. If not set, the default timeout of 5 seconds is used.
447@end table
448
449Note that when passing options to qemu explicitly, @option{driver} is the value
450of <protocol>.
451
452Example: boot from a remote Fedora 20 live ISO image
453@example
93bbbdf6 454@value{qemu_system_x86} --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9 455
93bbbdf6 456@value{qemu_system_x86} --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9
MA
457@end example
458
459Example: boot from a remote Fedora 20 cloud image using a local overlay for
460writes, copy-on-read, and a readahead of 64k
461@example
93bbbdf6 462qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
e896d0f9 463
664785ac 464@value{qemu_system_x86} -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
e896d0f9
MA
465@end example
466
467Example: boot from an image stored on a VMware vSphere server with a self-signed
468certificate using a local overlay for writes, a readahead of 64k and a timeout
469of 10 seconds.
470@example
471qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
472
664785ac 473@value{qemu_system_x86} -drive file=/tmp/test.qcow2
e896d0f9
MA
474@end example
475
476@end table
477
478@c man end
479
debc7065 480@node pcsys_keys
a40db1b3 481@section Keys in the graphical frontends
3e11db9a
FB
482
483@c man begin OPTIONS
484
de1db2a1
BH
485During the graphical emulation, you can use special key combinations to change
486modes. The default key mappings are shown below, but if you use @code{-alt-grab}
487then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
488@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
489
a1b74fe8 490@table @key
f9859310 491@item Ctrl-Alt-f
7544a042 492@kindex Ctrl-Alt-f
a1b74fe8 493Toggle full screen
a0a821a4 494
d6a65ba3
JK
495@item Ctrl-Alt-+
496@kindex Ctrl-Alt-+
497Enlarge the screen
498
499@item Ctrl-Alt--
500@kindex Ctrl-Alt--
501Shrink the screen
502
c4a735f9 503@item Ctrl-Alt-u
7544a042 504@kindex Ctrl-Alt-u
c4a735f9 505Restore the screen's un-scaled dimensions
506
f9859310 507@item Ctrl-Alt-n
7544a042 508@kindex Ctrl-Alt-n
a0a821a4
FB
509Switch to virtual console 'n'. Standard console mappings are:
510@table @emph
511@item 1
512Target system display
513@item 2
514Monitor
515@item 3
516Serial port
a1b74fe8
FB
517@end table
518
f9859310 519@item Ctrl-Alt
7544a042 520@kindex Ctrl-Alt
a0a821a4
FB
521Toggle mouse and keyboard grab.
522@end table
523
7544a042
SW
524@kindex Ctrl-Up
525@kindex Ctrl-Down
526@kindex Ctrl-PageUp
527@kindex Ctrl-PageDown
3e11db9a
FB
528In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
529@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
530
a40db1b3
PM
531@c man end
532
533@node mux_keys
534@section Keys in the character backend multiplexer
535
536@c man begin OPTIONS
537
538During emulation, if you are using a character backend multiplexer
539(which is the default if you are using @option{-nographic}) then
540several commands are available via an escape sequence. These
541key sequences all start with an escape character, which is @key{Ctrl-a}
542by default, but can be changed with @option{-echr}. The list below assumes
543you're using the default.
ec410fc9
FB
544
545@table @key
a1b74fe8 546@item Ctrl-a h
7544a042 547@kindex Ctrl-a h
ec410fc9 548Print this help
3b46e624 549@item Ctrl-a x
7544a042 550@kindex Ctrl-a x
366dfc52 551Exit emulator
3b46e624 552@item Ctrl-a s
7544a042 553@kindex Ctrl-a s
1f47a922 554Save disk data back to file (if -snapshot)
20d8a3ed 555@item Ctrl-a t
7544a042 556@kindex Ctrl-a t
d2c639d6 557Toggle console timestamps
a1b74fe8 558@item Ctrl-a b
7544a042 559@kindex Ctrl-a b
1f673135 560Send break (magic sysrq in Linux)
a1b74fe8 561@item Ctrl-a c
7544a042 562@kindex Ctrl-a c
a40db1b3
PM
563Rotate between the frontends connected to the multiplexer (usually
564this switches between the monitor and the console)
a1b74fe8 565@item Ctrl-a Ctrl-a
a40db1b3
PM
566@kindex Ctrl-a Ctrl-a
567Send the escape character to the frontend
ec410fc9 568@end table
0806e3f6
FB
569@c man end
570
571@ignore
572
1f673135
FB
573@c man begin SEEALSO
574The HTML documentation of QEMU for more precise information and Linux
575user mode emulator invocation.
576@c man end
577
578@c man begin AUTHOR
579Fabrice Bellard
580@c man end
581
582@end ignore
583
debc7065 584@node pcsys_monitor
1f673135 585@section QEMU Monitor
7544a042 586@cindex QEMU monitor
1f673135
FB
587
588The QEMU monitor is used to give complex commands to the QEMU
589emulator. You can use it to:
590
591@itemize @minus
592
593@item
e598752a 594Remove or insert removable media images
89dfe898 595(such as CD-ROM or floppies).
1f673135 596
5fafdf24 597@item
1f673135
FB
598Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
599from a disk file.
600
601@item Inspect the VM state without an external debugger.
602
603@end itemize
604
605@subsection Commands
606
607The following commands are available:
608
2313086a 609@include qemu-monitor.texi
0806e3f6 610
2cd8af2d
PB
611@include qemu-monitor-info.texi
612
1f673135
FB
613@subsection Integer expressions
614
615The monitor understands integers expressions for every integer
616argument. You can use register names to get the value of specifics
617CPU registers by prefixing them with @emph{$}.
ec410fc9 618
2544e9e4
DB
619@node cpu_models
620@section CPU models
621
622@include docs/qemu-cpu-models.texi
623
1f47a922
FB
624@node disk_images
625@section Disk Images
626
ee29bdb6
PB
627QEMU supports many disk image formats, including growable disk images
628(their size increase as non empty sectors are written), compressed and
629encrypted disk images.
1f47a922 630
debc7065
FB
631@menu
632* disk_images_quickstart:: Quick start for disk image creation
633* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 634* vm_snapshots:: VM snapshots
debc7065 635* qemu_img_invocation:: qemu-img Invocation
975b092b 636* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 637* disk_images_formats:: Disk image file formats
19cb3738 638* host_drives:: Using host drives
debc7065 639* disk_images_fat_images:: Virtual FAT disk images
75818250 640* disk_images_nbd:: NBD access
42af9c30 641* disk_images_sheepdog:: Sheepdog disk images
00984e39 642* disk_images_iscsi:: iSCSI LUNs
8809e289 643* disk_images_gluster:: GlusterFS disk images
0a12ec87 644* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 645* disk_images_nvme:: NVMe userspace driver
b1d1cb27 646* disk_image_locking:: Disk image file locking
debc7065
FB
647@end menu
648
649@node disk_images_quickstart
acd935ef
FB
650@subsection Quick start for disk image creation
651
652You can create a disk image with the command:
1f47a922 653@example
acd935ef 654qemu-img create myimage.img mysize
1f47a922 655@end example
acd935ef
FB
656where @var{myimage.img} is the disk image filename and @var{mysize} is its
657size in kilobytes. You can add an @code{M} suffix to give the size in
658megabytes and a @code{G} suffix for gigabytes.
659
debc7065 660See @ref{qemu_img_invocation} for more information.
1f47a922 661
debc7065 662@node disk_images_snapshot_mode
1f47a922
FB
663@subsection Snapshot mode
664
665If you use the option @option{-snapshot}, all disk images are
666considered as read only. When sectors in written, they are written in
667a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
668write back to the raw disk images by using the @code{commit} monitor
669command (or @key{C-a s} in the serial console).
1f47a922 670
13a2e80f
FB
671@node vm_snapshots
672@subsection VM snapshots
673
674VM snapshots are snapshots of the complete virtual machine including
675CPU state, RAM, device state and the content of all the writable
676disks. In order to use VM snapshots, you must have at least one non
677removable and writable block device using the @code{qcow2} disk image
678format. Normally this device is the first virtual hard drive.
679
680Use the monitor command @code{savevm} to create a new VM snapshot or
681replace an existing one. A human readable name can be assigned to each
19d36792 682snapshot in addition to its numerical ID.
13a2e80f
FB
683
684Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
685a VM snapshot. @code{info snapshots} lists the available snapshots
686with their associated information:
687
688@example
689(qemu) info snapshots
690Snapshot devices: hda
691Snapshot list (from hda):
692ID TAG VM SIZE DATE VM CLOCK
6931 start 41M 2006-08-06 12:38:02 00:00:14.954
6942 40M 2006-08-06 12:43:29 00:00:18.633
6953 msys 40M 2006-08-06 12:44:04 00:00:23.514
696@end example
697
698A VM snapshot is made of a VM state info (its size is shown in
699@code{info snapshots}) and a snapshot of every writable disk image.
700The VM state info is stored in the first @code{qcow2} non removable
701and writable block device. The disk image snapshots are stored in
702every disk image. The size of a snapshot in a disk image is difficult
703to evaluate and is not shown by @code{info snapshots} because the
704associated disk sectors are shared among all the snapshots to save
19d36792
FB
705disk space (otherwise each snapshot would need a full copy of all the
706disk images).
13a2e80f
FB
707
708When using the (unrelated) @code{-snapshot} option
709(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
710but they are deleted as soon as you exit QEMU.
711
712VM snapshots currently have the following known limitations:
713@itemize
5fafdf24 714@item
13a2e80f
FB
715They cannot cope with removable devices if they are removed or
716inserted after a snapshot is done.
5fafdf24 717@item
13a2e80f
FB
718A few device drivers still have incomplete snapshot support so their
719state is not saved or restored properly (in particular USB).
720@end itemize
721
acd935ef
FB
722@node qemu_img_invocation
723@subsection @code{qemu-img} Invocation
1f47a922 724
acd935ef 725@include qemu-img.texi
05efe46e 726
975b092b
TS
727@node qemu_nbd_invocation
728@subsection @code{qemu-nbd} Invocation
729
730@include qemu-nbd.texi
731
78aa8aa0 732@include docs/qemu-block-drivers.texi
0a12ec87 733
debc7065 734@node pcsys_network
9d4fb82e
FB
735@section Network emulation
736
0e0266c2
TH
737QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
738target) and can connect them to a network backend on the host or an emulated
739hub. The various host network backends can either be used to connect the NIC of
740the guest to a real network (e.g. by using a TAP devices or the non-privileged
741user mode network stack), or to other guest instances running in another QEMU
742process (e.g. by using the socket host network backend).
9d4fb82e 743
41d03949
FB
744@subsection Using TAP network interfaces
745
746This is the standard way to connect QEMU to a real network. QEMU adds
747a virtual network device on your host (called @code{tapN}), and you
748can then configure it as if it was a real ethernet card.
9d4fb82e 749
8f40c388
FB
750@subsubsection Linux host
751
9d4fb82e
FB
752As an example, you can download the @file{linux-test-xxx.tar.gz}
753archive and copy the script @file{qemu-ifup} in @file{/etc} and
754configure properly @code{sudo} so that the command @code{ifconfig}
755contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 756that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
757device @file{/dev/net/tun} must be present.
758
ee0f4751
FB
759See @ref{sec_invocation} to have examples of command lines using the
760TAP network interfaces.
9d4fb82e 761
8f40c388
FB
762@subsubsection Windows host
763
764There is a virtual ethernet driver for Windows 2000/XP systems, called
765TAP-Win32. But it is not included in standard QEMU for Windows,
766so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 767so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 768
9d4fb82e
FB
769@subsection Using the user mode network stack
770
41d03949
FB
771By using the option @option{-net user} (default configuration if no
772@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 773network stack (you don't need root privilege to use the virtual
41d03949 774network). The virtual network configuration is the following:
9d4fb82e
FB
775
776@example
777
0e0266c2 778 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 779 | (10.0.2.2)
9d4fb82e 780 |
2518bd0d 781 ----> DNS server (10.0.2.3)
3b46e624 782 |
2518bd0d 783 ----> SMB server (10.0.2.4)
9d4fb82e
FB
784@end example
785
786The QEMU VM behaves as if it was behind a firewall which blocks all
787incoming connections. You can use a DHCP client to automatically
41d03949
FB
788configure the network in the QEMU VM. The DHCP server assign addresses
789to the hosts starting from 10.0.2.15.
9d4fb82e
FB
790
791In order to check that the user mode network is working, you can ping
792the address 10.0.2.2 and verify that you got an address in the range
79310.0.2.x from the QEMU virtual DHCP server.
794
37cbfcce
GH
795Note that ICMP traffic in general does not work with user mode networking.
796@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
797however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
798ping sockets to allow @code{ping} to the Internet. The host admin has to set
799the ping_group_range in order to grant access to those sockets. To allow ping
800for GID 100 (usually users group):
801
802@example
803echo 100 100 > /proc/sys/net/ipv4/ping_group_range
804@end example
b415a407 805
9bf05444
FB
806When using the built-in TFTP server, the router is also the TFTP
807server.
808
c8c6afa8
TH
809When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
810connections can be redirected from the host to the guest. It allows for
811example to redirect X11, telnet or SSH connections.
443f1376 812
0e0266c2
TH
813@subsection Hubs
814
815QEMU can simulate several hubs. A hub can be thought of as a virtual connection
816between several network devices. These devices can be for example QEMU virtual
817ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
818guest NICs or host network backends to such a hub using the @option{-netdev
819hubport} or @option{-nic hubport} options. The legacy @option{-net} option
820also connects the given device to the emulated hub with ID 0 (i.e. the default
821hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 822
0e0266c2 823@subsection Connecting emulated networks between QEMU instances
41d03949 824
0e0266c2
TH
825Using the @option{-netdev socket} (or @option{-nic socket} or
826@option{-net socket}) option, it is possible to create emulated
827networks that span several QEMU instances.
828See the description of the @option{-netdev socket} option in the
829@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 830
576fd0a1 831@node pcsys_other_devs
6cbf4c8c
CM
832@section Other Devices
833
834@subsection Inter-VM Shared Memory device
835
5400c02b
MA
836On Linux hosts, a shared memory device is available. The basic syntax
837is:
6cbf4c8c
CM
838
839@example
664785ac 840@value{qemu_system_x86} -device ivshmem-plain,memdev=@var{hostmem}
5400c02b
MA
841@end example
842
843where @var{hostmem} names a host memory backend. For a POSIX shared
844memory backend, use something like
845
846@example
847-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
848@end example
849
850If desired, interrupts can be sent between guest VMs accessing the same shared
851memory region. Interrupt support requires using a shared memory server and
852using a chardev socket to connect to it. The code for the shared memory server
853is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
854memory server is:
855
856@example
a75eb03b 857# First start the ivshmem server once and for all
50d34c4e 858ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
859
860# Then start your qemu instances with matching arguments
664785ac 861@value{qemu_system_x86} -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 862 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
863@end example
864
865When using the server, the guest will be assigned a VM ID (>=0) that allows guests
866using the same server to communicate via interrupts. Guests can read their
1309cf44 867VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 868
62a830b6
MA
869@subsubsection Migration with ivshmem
870
5400c02b
MA
871With device property @option{master=on}, the guest will copy the shared
872memory on migration to the destination host. With @option{master=off},
873the guest will not be able to migrate with the device attached. In the
874latter case, the device should be detached and then reattached after
875migration using the PCI hotplug support.
6cbf4c8c 876
62a830b6
MA
877At most one of the devices sharing the same memory can be master. The
878master must complete migration before you plug back the other devices.
879
7d4f4bda
MAL
880@subsubsection ivshmem and hugepages
881
882Instead of specifying the <shm size> using POSIX shm, you may specify
883a memory backend that has hugepage support:
884
885@example
664785ac 886@value{qemu_system_x86} -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
5400c02b 887 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
888@end example
889
890ivshmem-server also supports hugepages mount points with the
891@option{-m} memory path argument.
892
9d4fb82e
FB
893@node direct_linux_boot
894@section Direct Linux Boot
1f673135
FB
895
896This section explains how to launch a Linux kernel inside QEMU without
897having to make a full bootable image. It is very useful for fast Linux
ee0f4751 898kernel testing.
1f673135 899
ee0f4751 900The syntax is:
1f673135 901@example
664785ac 902@value{qemu_system} -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
1f673135
FB
903@end example
904
ee0f4751
FB
905Use @option{-kernel} to provide the Linux kernel image and
906@option{-append} to give the kernel command line arguments. The
907@option{-initrd} option can be used to provide an INITRD image.
1f673135 908
ee0f4751
FB
909If you do not need graphical output, you can disable it and redirect
910the virtual serial port and the QEMU monitor to the console with the
911@option{-nographic} option. The typical command line is:
1f673135 912@example
664785ac 913@value{qemu_system} -kernel bzImage -hda rootdisk.img \
3804da9d 914 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
915@end example
916
ee0f4751
FB
917Use @key{Ctrl-a c} to switch between the serial console and the
918monitor (@pxref{pcsys_keys}).
1f673135 919
debc7065 920@node pcsys_usb
b389dbfb
FB
921@section USB emulation
922
a92ff8c1
TH
923QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
924plug virtual USB devices or real host USB devices (only works with certain
925host operating systems). QEMU will automatically create and connect virtual
926USB hubs as necessary to connect multiple USB devices.
b389dbfb 927
0aff66b5
PB
928@menu
929* usb_devices::
930* host_usb_devices::
931@end menu
932@node usb_devices
933@subsection Connecting USB devices
b389dbfb 934
a92ff8c1
TH
935USB devices can be connected with the @option{-device usb-...} command line
936option or the @code{device_add} monitor command. Available devices are:
b389dbfb 937
db380c06 938@table @code
a92ff8c1 939@item usb-mouse
0aff66b5 940Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 941@item usb-tablet
c6d46c20 942Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 943This means QEMU is able to report the mouse position without having
0aff66b5 944to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
945@item usb-storage,drive=@var{drive_id}
946Mass storage device backed by @var{drive_id} (@pxref{disk_images})
947@item usb-uas
948USB attached SCSI device, see
70b7fba9 949@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
950for details
951@item usb-bot
952Bulk-only transport storage device, see
70b7fba9 953@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 954for details here, too
1ee53067 955@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
956Media transfer protocol device, using @var{dir} as root of the file tree
957that is presented to the guest.
958@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
959Pass through the host device identified by @var{bus} and @var{addr}
960@item usb-host,vendorid=@var{vendor},productid=@var{product}
961Pass through the host device identified by @var{vendor} and @var{product} ID
962@item usb-wacom-tablet
f6d2a316
AZ
963Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
964above but it can be used with the tslib library because in addition to touch
965coordinates it reports touch pressure.
a92ff8c1 966@item usb-kbd
47b2d338 967Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 968@item usb-serial,chardev=@var{id}
db380c06 969Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
970device @var{id}.
971@item usb-braille,chardev=@var{id}
2e4d9fb1 972Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
973or fake device referenced by @var{id}.
974@item usb-net[,netdev=@var{id}]
975Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
976specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 977For instance, user-mode networking can be used with
6c9f886c 978@example
664785ac 979@value{qemu_system} [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 980@end example
a92ff8c1
TH
981@item usb-ccid
982Smartcard reader device
983@item usb-audio
984USB audio device
985@item usb-bt-dongle
986Bluetooth dongle for the transport layer of HCI. It is connected to HCI
987scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
988Note that the syntax for the @code{-device usb-bt-dongle} option is not as
989useful yet as it was with the legacy @code{-usbdevice} option. So to
990configure an USB bluetooth device, you might need to use
991"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
992bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
993the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
994no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
995This USB device implements the USB Transport Layer of HCI. Example
996usage:
997@example
664785ac 998@command{@value{qemu_system}} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 999@end example
0aff66b5 1000@end table
b389dbfb 1001
0aff66b5 1002@node host_usb_devices
b389dbfb
FB
1003@subsection Using host USB devices on a Linux host
1004
1005WARNING: this is an experimental feature. QEMU will slow down when
1006using it. USB devices requiring real time streaming (i.e. USB Video
1007Cameras) are not supported yet.
1008
1009@enumerate
5fafdf24 1010@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1011is actually using the USB device. A simple way to do that is simply to
1012disable the corresponding kernel module by renaming it from @file{mydriver.o}
1013to @file{mydriver.o.disabled}.
1014
1015@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1016@example
1017ls /proc/bus/usb
1018001 devices drivers
1019@end example
1020
1021@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1022@example
1023chown -R myuid /proc/bus/usb
1024@end example
1025
1026@item Launch QEMU and do in the monitor:
5fafdf24 1027@example
b389dbfb
FB
1028info usbhost
1029 Device 1.2, speed 480 Mb/s
1030 Class 00: USB device 1234:5678, USB DISK
1031@end example
1032You should see the list of the devices you can use (Never try to use
1033hubs, it won't work).
1034
1035@item Add the device in QEMU by using:
5fafdf24 1036@example
a92ff8c1 1037device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1038@end example
1039
a92ff8c1
TH
1040Normally the guest OS should report that a new USB device is plugged.
1041You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1042
1043@item Now you can try to use the host USB device in QEMU.
1044
1045@end enumerate
1046
1047When relaunching QEMU, you may have to unplug and plug again the USB
1048device to make it work again (this is a bug).
1049
f858dcae
TS
1050@node vnc_security
1051@section VNC security
1052
1053The VNC server capability provides access to the graphical console
1054of the guest VM across the network. This has a number of security
1055considerations depending on the deployment scenarios.
1056
1057@menu
1058* vnc_sec_none::
1059* vnc_sec_password::
1060* vnc_sec_certificate::
1061* vnc_sec_certificate_verify::
1062* vnc_sec_certificate_pw::
2f9606b3
AL
1063* vnc_sec_sasl::
1064* vnc_sec_certificate_sasl::
2f9606b3 1065* vnc_setup_sasl::
f858dcae
TS
1066@end menu
1067@node vnc_sec_none
1068@subsection Without passwords
1069
1070The simplest VNC server setup does not include any form of authentication.
1071For this setup it is recommended to restrict it to listen on a UNIX domain
1072socket only. For example
1073
1074@example
664785ac 1075@value{qemu_system} [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1076@end example
1077
1078This ensures that only users on local box with read/write access to that
1079path can access the VNC server. To securely access the VNC server from a
1080remote machine, a combination of netcat+ssh can be used to provide a secure
1081tunnel.
1082
1083@node vnc_sec_password
1084@subsection With passwords
1085
1086The VNC protocol has limited support for password based authentication. Since
1087the protocol limits passwords to 8 characters it should not be considered
1088to provide high security. The password can be fairly easily brute-forced by
1089a client making repeat connections. For this reason, a VNC server using password
1090authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1091or UNIX domain sockets. Password authentication is not supported when operating
1092in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1093authentication is requested with the @code{password} option, and then once QEMU
1094is running the password is set with the monitor. Until the monitor is used to
1095set the password all clients will be rejected.
f858dcae
TS
1096
1097@example
664785ac 1098@value{qemu_system} [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1099(qemu) change vnc password
1100Password: ********
1101(qemu)
1102@end example
1103
1104@node vnc_sec_certificate
1105@subsection With x509 certificates
1106
1107The QEMU VNC server also implements the VeNCrypt extension allowing use of
1108TLS for encryption of the session, and x509 certificates for authentication.
1109The use of x509 certificates is strongly recommended, because TLS on its
1110own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1111support provides a secure session, but no authentication. This allows any
1112client to connect, and provides an encrypted session.
1113
1114@example
664785ac 1115@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1116 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1117 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1118@end example
1119
1120In the above example @code{/etc/pki/qemu} should contain at least three files,
1121@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1122users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1123NB the @code{server-key.pem} file should be protected with file mode 0600 to
1124only be readable by the user owning it.
1125
1126@node vnc_sec_certificate_verify
1127@subsection With x509 certificates and client verification
1128
1129Certificates can also provide a means to authenticate the client connecting.
1130The server will request that the client provide a certificate, which it will
1131then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1132in an environment with a private internal certificate authority. It uses the
1133same syntax as previously, but with @code{verify-peer} set to @code{yes}
1134instead.
f858dcae
TS
1135
1136@example
664785ac 1137@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1138 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1139 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1140@end example
1141
1142
1143@node vnc_sec_certificate_pw
1144@subsection With x509 certificates, client verification and passwords
1145
1146Finally, the previous method can be combined with VNC password authentication
1147to provide two layers of authentication for clients.
1148
1149@example
664785ac 1150@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1151 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1152 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1153(qemu) change vnc password
1154Password: ********
1155(qemu)
1156@end example
1157
2f9606b3
AL
1158
1159@node vnc_sec_sasl
1160@subsection With SASL authentication
1161
1162The SASL authentication method is a VNC extension, that provides an
1163easily extendable, pluggable authentication method. This allows for
1164integration with a wide range of authentication mechanisms, such as
1165PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1166The strength of the authentication depends on the exact mechanism
1167configured. If the chosen mechanism also provides a SSF layer, then
1168it will encrypt the datastream as well.
1169
1170Refer to the later docs on how to choose the exact SASL mechanism
1171used for authentication, but assuming use of one supporting SSF,
1172then QEMU can be launched with:
1173
1174@example
664785ac 1175@value{qemu_system} [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1176@end example
1177
1178@node vnc_sec_certificate_sasl
1179@subsection With x509 certificates and SASL authentication
1180
1181If the desired SASL authentication mechanism does not supported
1182SSF layers, then it is strongly advised to run it in combination
1183with TLS and x509 certificates. This provides securely encrypted
1184data stream, avoiding risk of compromising of the security
1185credentials. This can be enabled, by combining the 'sasl' option
1186with the aforementioned TLS + x509 options:
1187
1188@example
664785ac 1189@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1190 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1191 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1192@end example
1193
5d19a6ea
DB
1194@node vnc_setup_sasl
1195
1196@subsection Configuring SASL mechanisms
1197
1198The following documentation assumes use of the Cyrus SASL implementation on a
1199Linux host, but the principles should apply to any other SASL implementation
1200or host. When SASL is enabled, the mechanism configuration will be loaded from
1201system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1202unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1203it search alternate locations for the service config file.
1204
1205If the TLS option is enabled for VNC, then it will provide session encryption,
1206otherwise the SASL mechanism will have to provide encryption. In the latter
1207case the list of possible plugins that can be used is drastically reduced. In
1208fact only the GSSAPI SASL mechanism provides an acceptable level of security
1209by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1210mechanism, however, it has multiple serious flaws described in detail in
1211RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1212provides a simple username/password auth facility similar to DIGEST-MD5, but
1213does not support session encryption, so can only be used in combination with
1214TLS.
2f9606b3 1215
5d19a6ea 1216When not using TLS the recommended configuration is
f858dcae 1217
5d19a6ea
DB
1218@example
1219mech_list: gssapi
1220keytab: /etc/qemu/krb5.tab
1221@end example
1222
1223This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1224the server principal stored in /etc/qemu/krb5.tab. For this to work the
1225administrator of your KDC must generate a Kerberos principal for the server,
1226with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1227'somehost.example.com' with the fully qualified host name of the machine
1228running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1229
1230When using TLS, if username+password authentication is desired, then a
1231reasonable configuration is
1232
1233@example
1234mech_list: scram-sha-1
1235sasldb_path: /etc/qemu/passwd.db
1236@end example
1237
1238The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1239file with accounts.
1240
1241Other SASL configurations will be left as an exercise for the reader. Note that
1242all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1243secure data channel.
1244
1245
1246@node network_tls
1247@section TLS setup for network services
1248
1249Almost all network services in QEMU have the ability to use TLS for
1250session data encryption, along with x509 certificates for simple
1251client authentication. What follows is a description of how to
1252generate certificates suitable for usage with QEMU, and applies to
1253the VNC server, character devices with the TCP backend, NBD server
1254and client, and migration server and client.
1255
1256At a high level, QEMU requires certificates and private keys to be
1257provided in PEM format. Aside from the core fields, the certificates
1258should include various extension data sets, including v3 basic
1259constraints data, key purpose, key usage and subject alt name.
1260
1261The GnuTLS package includes a command called @code{certtool} which can
1262be used to easily generate certificates and keys in the required format
1263with expected data present. Alternatively a certificate management
1264service may be used.
1265
1266At a minimum it is necessary to setup a certificate authority, and
1267issue certificates to each server. If using x509 certificates for
1268authentication, then each client will also need to be issued a
1269certificate.
1270
1271Assuming that the QEMU network services will only ever be exposed to
1272clients on a private intranet, there is no need to use a commercial
1273certificate authority to create certificates. A self-signed CA is
1274sufficient, and in fact likely to be more secure since it removes
1275the ability of malicious 3rd parties to trick the CA into mis-issuing
1276certs for impersonating your services. The only likely exception
1277where a commercial CA might be desirable is if enabling the VNC
1278websockets server and exposing it directly to remote browser clients.
1279In such a case it might be useful to use a commercial CA to avoid
1280needing to install custom CA certs in the web browsers.
1281
1282The recommendation is for the server to keep its certificates in either
1283@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1284
1285@menu
5d19a6ea
DB
1286* tls_generate_ca::
1287* tls_generate_server::
1288* tls_generate_client::
1289* tls_creds_setup::
e1a6dc91 1290* tls_psk::
f858dcae 1291@end menu
5d19a6ea
DB
1292@node tls_generate_ca
1293@subsection Setup the Certificate Authority
f858dcae
TS
1294
1295This step only needs to be performed once per organization / organizational
1296unit. First the CA needs a private key. This key must be kept VERY secret
1297and secure. If this key is compromised the entire trust chain of the certificates
1298issued with it is lost.
1299
1300@example
1301# certtool --generate-privkey > ca-key.pem
1302@end example
1303
5d19a6ea
DB
1304To generate a self-signed certificate requires one core piece of information,
1305the name of the organization. A template file @code{ca.info} should be
1306populated with the desired data to avoid having to deal with interactive
1307prompts from certtool:
f858dcae
TS
1308@example
1309# cat > ca.info <<EOF
1310cn = Name of your organization
1311ca
1312cert_signing_key
1313EOF
1314# certtool --generate-self-signed \
1315 --load-privkey ca-key.pem
1316 --template ca.info \
1317 --outfile ca-cert.pem
1318@end example
1319
5d19a6ea
DB
1320The @code{ca} keyword in the template sets the v3 basic constraints extension
1321to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1322the key usage extension to indicate this will be used for signing other keys.
1323The generated @code{ca-cert.pem} file should be copied to all servers and
1324clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1325must not be disclosed/copied anywhere except the host responsible for issuing
1326certificates.
f858dcae 1327
5d19a6ea
DB
1328@node tls_generate_server
1329@subsection Issuing server certificates
f858dcae
TS
1330
1331Each server (or host) needs to be issued with a key and certificate. When connecting
1332the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1333The core pieces of information for a server certificate are the hostnames and/or IP
1334addresses that will be used by clients when connecting. The hostname / IP address
1335that the client specifies when connecting will be validated against the hostname(s)
1336and IP address(es) recorded in the server certificate, and if no match is found
1337the client will close the connection.
1338
1339Thus it is recommended that the server certificate include both the fully qualified
1340and unqualified hostnames. If the server will have permanently assigned IP address(es),
1341and clients are likely to use them when connecting, they may also be included in the
1342certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1343only included 1 hostname in the @code{CN} field, however, usage of this field for
1344validation is now deprecated. Instead modern TLS clients will validate against the
1345Subject Alt Name extension data, which allows for multiple entries. In the future
1346usage of the @code{CN} field may be discontinued entirely, so providing SAN
1347extension data is strongly recommended.
1348
1349On the host holding the CA, create template files containing the information
1350for each server, and use it to issue server certificates.
f858dcae
TS
1351
1352@example
5d19a6ea 1353# cat > server-hostNNN.info <<EOF
f858dcae 1354organization = Name of your organization
5d19a6ea
DB
1355cn = hostNNN.foo.example.com
1356dns_name = hostNNN
1357dns_name = hostNNN.foo.example.com
1358ip_address = 10.0.1.87
1359ip_address = 192.8.0.92
1360ip_address = 2620:0:cafe::87
1361ip_address = 2001:24::92
f858dcae
TS
1362tls_www_server
1363encryption_key
1364signing_key
1365EOF
5d19a6ea 1366# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1367# certtool --generate-certificate \
1368 --load-ca-certificate ca-cert.pem \
1369 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1370 --load-privkey server-hostNNN-key.pem \
1371 --template server-hostNNN.info \
1372 --outfile server-hostNNN-cert.pem
f858dcae
TS
1373@end example
1374
5d19a6ea
DB
1375The @code{dns_name} and @code{ip_address} fields in the template are setting
1376the subject alt name extension data. The @code{tls_www_server} keyword is the
1377key purpose extension to indicate this certificate is intended for usage in
1378a web server. Although QEMU network services are not in fact HTTP servers
1379(except for VNC websockets), setting this key purpose is still recommended.
1380The @code{encryption_key} and @code{signing_key} keyword is the key usage
1381extension to indicate this certificate is intended for usage in the data
1382session.
1383
1384The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1385should now be securely copied to the server for which they were generated,
1386and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1387to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1388file is security sensitive and should be kept protected with file mode 0600
1389to prevent disclosure.
1390
1391@node tls_generate_client
1392@subsection Issuing client certificates
f858dcae 1393
5d19a6ea
DB
1394The QEMU x509 TLS credential setup defaults to enabling client verification
1395using certificates, providing a simple authentication mechanism. If this
1396default is used, each client also needs to be issued a certificate. The client
1397certificate contains enough metadata to uniquely identify the client with the
1398scope of the certificate authority. The client certificate would typically
1399include fields for organization, state, city, building, etc.
1400
1401Once again on the host holding the CA, create template files containing the
1402information for each client, and use it to issue client certificates.
f858dcae 1403
f858dcae
TS
1404
1405@example
5d19a6ea 1406# cat > client-hostNNN.info <<EOF
f858dcae
TS
1407country = GB
1408state = London
5d19a6ea 1409locality = City Of London
63c693f8 1410organization = Name of your organization
5d19a6ea 1411cn = hostNNN.foo.example.com
f858dcae
TS
1412tls_www_client
1413encryption_key
1414signing_key
1415EOF
5d19a6ea 1416# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1417# certtool --generate-certificate \
1418 --load-ca-certificate ca-cert.pem \
1419 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1420 --load-privkey client-hostNNN-key.pem \
1421 --template client-hostNNN.info \
1422 --outfile client-hostNNN-cert.pem
f858dcae
TS
1423@end example
1424
5d19a6ea
DB
1425The subject alt name extension data is not required for clients, so the
1426the @code{dns_name} and @code{ip_address} fields are not included.
1427The @code{tls_www_client} keyword is the key purpose extension to indicate
1428this certificate is intended for usage in a web client. Although QEMU
1429network clients are not in fact HTTP clients, setting this key purpose is
1430still recommended. The @code{encryption_key} and @code{signing_key} keyword
1431is the key usage extension to indicate this certificate is intended for
1432usage in the data session.
1433
1434The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1435should now be securely copied to the client for which they were generated,
1436and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1437to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1438file is security sensitive and should be kept protected with file mode 0600
1439to prevent disclosure.
1440
1441If a single host is going to be using TLS in both a client and server
1442role, it is possible to create a single certificate to cover both roles.
1443This would be quite common for the migration and NBD services, where a
1444QEMU process will be started by accepting a TLS protected incoming migration,
1445and later itself be migrated out to another host. To generate a single
1446certificate, simply include the template data from both the client and server
1447instructions in one.
2f9606b3 1448
5d19a6ea
DB
1449@example
1450# cat > both-hostNNN.info <<EOF
1451country = GB
1452state = London
1453locality = City Of London
1454organization = Name of your organization
1455cn = hostNNN.foo.example.com
1456dns_name = hostNNN
1457dns_name = hostNNN.foo.example.com
1458ip_address = 10.0.1.87
1459ip_address = 192.8.0.92
1460ip_address = 2620:0:cafe::87
1461ip_address = 2001:24::92
1462tls_www_server
1463tls_www_client
1464encryption_key
1465signing_key
1466EOF
1467# certtool --generate-privkey > both-hostNNN-key.pem
1468# certtool --generate-certificate \
1469 --load-ca-certificate ca-cert.pem \
1470 --load-ca-privkey ca-key.pem \
1471 --load-privkey both-hostNNN-key.pem \
1472 --template both-hostNNN.info \
1473 --outfile both-hostNNN-cert.pem
1474@end example
c6a9a9f5 1475
5d19a6ea
DB
1476When copying the PEM files to the target host, save them twice,
1477once as @code{server-cert.pem} and @code{server-key.pem}, and
1478again as @code{client-cert.pem} and @code{client-key.pem}.
1479
1480@node tls_creds_setup
1481@subsection TLS x509 credential configuration
1482
1483QEMU has a standard mechanism for loading x509 credentials that will be
1484used for network services and clients. It requires specifying the
1485@code{tls-creds-x509} class name to the @code{--object} command line
1486argument for the system emulators. Each set of credentials loaded should
1487be given a unique string identifier via the @code{id} parameter. A single
1488set of TLS credentials can be used for multiple network backends, so VNC,
1489migration, NBD, character devices can all share the same credentials. Note,
1490however, that credentials for use in a client endpoint must be loaded
1491separately from those used in a server endpoint.
1492
1493When specifying the object, the @code{dir} parameters specifies which
1494directory contains the credential files. This directory is expected to
1495contain files with the names mentioned previously, @code{ca-cert.pem},
1496@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1497and @code{client-cert.pem} as appropriate. It is also possible to
1498include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1499@code{dh-params.pem}, which can be created using the
1500@code{certtool --generate-dh-params} command. If omitted, QEMU will
1501dynamically generate DH parameters when loading the credentials.
1502
1503The @code{endpoint} parameter indicates whether the credentials will
1504be used for a network client or server, and determines which PEM
1505files are loaded.
1506
1507The @code{verify} parameter determines whether x509 certificate
1508validation should be performed. This defaults to enabled, meaning
1509clients will always validate the server hostname against the
1510certificate subject alt name fields and/or CN field. It also
1511means that servers will request that clients provide a certificate
1512and validate them. Verification should never be turned off for
1513client endpoints, however, it may be turned off for server endpoints
1514if an alternative mechanism is used to authenticate clients. For
1515example, the VNC server can use SASL to authenticate clients
1516instead.
1517
1518To load server credentials with client certificate validation
1519enabled
2f9606b3
AL
1520
1521@example
664785ac 1522@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1523@end example
1524
5d19a6ea 1525while to load client credentials use
2f9606b3
AL
1526
1527@example
664785ac 1528@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1529@end example
1530
5d19a6ea
DB
1531Network services which support TLS will all have a @code{tls-creds}
1532parameter which expects the ID of the TLS credentials object. For
1533example with VNC:
2f9606b3 1534
5d19a6ea 1535@example
664785ac 1536@value{qemu_system} -vnc 0.0.0.0:0,tls-creds=tls0
5d19a6ea 1537@end example
2f9606b3 1538
e1a6dc91
RJ
1539@node tls_psk
1540@subsection TLS Pre-Shared Keys (PSK)
1541
1542Instead of using certificates, you may also use TLS Pre-Shared Keys
1543(TLS-PSK). This can be simpler to set up than certificates but is
1544less scalable.
1545
1546Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1547file containing one or more usernames and random keys:
1548
1549@example
1550mkdir -m 0700 /tmp/keys
1551psktool -u rich -p /tmp/keys/keys.psk
1552@end example
1553
1554TLS-enabled servers such as qemu-nbd can use this directory like so:
1555
1556@example
1557qemu-nbd \
1558 -t -x / \
1559 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1560 --tls-creds tls0 \
1561 image.qcow2
1562@end example
1563
1564When connecting from a qemu-based client you must specify the
1565directory containing @code{keys.psk} and an optional @var{username}
1566(defaults to ``qemu''):
1567
1568@example
1569qemu-img info \
1570 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1571 --image-opts \
1572 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1573@end example
1574
0806e3f6 1575@node gdb_usage
da415d54
FB
1576@section GDB usage
1577
1578QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1579'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1580
b65ee4fa 1581In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1582gdb connection:
1583@example
664785ac 1584@value{qemu_system} -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
da415d54
FB
1585Connected to host network interface: tun0
1586Waiting gdb connection on port 1234
1587@end example
1588
1589Then launch gdb on the 'vmlinux' executable:
1590@example
1591> gdb vmlinux
1592@end example
1593
1594In gdb, connect to QEMU:
1595@example
6c9bf893 1596(gdb) target remote localhost:1234
da415d54
FB
1597@end example
1598
1599Then you can use gdb normally. For example, type 'c' to launch the kernel:
1600@example
1601(gdb) c
1602@end example
1603
0806e3f6
FB
1604Here are some useful tips in order to use gdb on system code:
1605
1606@enumerate
1607@item
1608Use @code{info reg} to display all the CPU registers.
1609@item
1610Use @code{x/10i $eip} to display the code at the PC position.
1611@item
1612Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1613@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1614@end enumerate
1615
60897d36
EI
1616Advanced debugging options:
1617
b6af0975 1618The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1619@table @code
60897d36
EI
1620@item maintenance packet qqemu.sstepbits
1621
1622This will display the MASK bits used to control the single stepping IE:
1623@example
1624(gdb) maintenance packet qqemu.sstepbits
1625sending: "qqemu.sstepbits"
1626received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1627@end example
1628@item maintenance packet qqemu.sstep
1629
1630This will display the current value of the mask used when single stepping IE:
1631@example
1632(gdb) maintenance packet qqemu.sstep
1633sending: "qqemu.sstep"
1634received: "0x7"
1635@end example
1636@item maintenance packet Qqemu.sstep=HEX_VALUE
1637
1638This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1639@example
1640(gdb) maintenance packet Qqemu.sstep=0x5
1641sending: "qemu.sstep=0x5"
1642received: "OK"
1643@end example
94d45e44 1644@end table
60897d36 1645
debc7065 1646@node pcsys_os_specific
1a084f3d
FB
1647@section Target OS specific information
1648
1649@subsection Linux
1650
15a34c63
FB
1651To have access to SVGA graphic modes under X11, use the @code{vesa} or
1652the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1653color depth in the guest and the host OS.
1a084f3d 1654
e3371e62
FB
1655When using a 2.6 guest Linux kernel, you should add the option
1656@code{clock=pit} on the kernel command line because the 2.6 Linux
1657kernels make very strict real time clock checks by default that QEMU
1658cannot simulate exactly.
1659
7c3fc84d
FB
1660When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1661not activated because QEMU is slower with this patch. The QEMU
1662Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1663Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1664patch by default. Newer kernels don't have it.
1665
1a084f3d
FB
1666@subsection Windows
1667
1668If you have a slow host, using Windows 95 is better as it gives the
1669best speed. Windows 2000 is also a good choice.
1670
e3371e62
FB
1671@subsubsection SVGA graphic modes support
1672
1673QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1674card. All Windows versions starting from Windows 95 should recognize
1675and use this graphic card. For optimal performances, use 16 bit color
1676depth in the guest and the host OS.
1a084f3d 1677
3cb0853a
FB
1678If you are using Windows XP as guest OS and if you want to use high
1679resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16801280x1024x16), then you should use the VESA VBE virtual graphic card
1681(option @option{-std-vga}).
1682
e3371e62
FB
1683@subsubsection CPU usage reduction
1684
1685Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1686instruction. The result is that it takes host CPU cycles even when
1687idle. You can install the utility from
70b7fba9 1688@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1689to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1690
9d0a8e6f 1691@subsubsection Windows 2000 disk full problem
e3371e62 1692
9d0a8e6f
FB
1693Windows 2000 has a bug which gives a disk full problem during its
1694installation. When installing it, use the @option{-win2k-hack} QEMU
1695option to enable a specific workaround. After Windows 2000 is
1696installed, you no longer need this option (this option slows down the
1697IDE transfers).
e3371e62 1698
6cc721cf
FB
1699@subsubsection Windows 2000 shutdown
1700
1701Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1702can. It comes from the fact that Windows 2000 does not automatically
1703use the APM driver provided by the BIOS.
1704
1705In order to correct that, do the following (thanks to Struan
1706Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1707Add/Troubleshoot a device => Add a new device & Next => No, select the
1708hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1709(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1710correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1711
1712@subsubsection Share a directory between Unix and Windows
1713
c8c6afa8
TH
1714See @ref{sec_invocation} about the help of the option
1715@option{'-netdev user,smb=...'}.
6cc721cf 1716
2192c332 1717@subsubsection Windows XP security problem
e3371e62
FB
1718
1719Some releases of Windows XP install correctly but give a security
1720error when booting:
1721@example
1722A problem is preventing Windows from accurately checking the
1723license for this computer. Error code: 0x800703e6.
1724@end example
e3371e62 1725
2192c332
FB
1726The workaround is to install a service pack for XP after a boot in safe
1727mode. Then reboot, and the problem should go away. Since there is no
1728network while in safe mode, its recommended to download the full
1729installation of SP1 or SP2 and transfer that via an ISO or using the
1730vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1731
a0a821a4
FB
1732@subsection MS-DOS and FreeDOS
1733
1734@subsubsection CPU usage reduction
1735
1736DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1737it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1738@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1739to solve this problem.
a0a821a4 1740
debc7065 1741@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1742@chapter QEMU System emulator for non PC targets
1743
1744QEMU is a generic emulator and it emulates many non PC
1745machines. Most of the options are similar to the PC emulator. The
4be456f1 1746differences are mentioned in the following sections.
3f9f3aa1 1747
debc7065 1748@menu
7544a042 1749* PowerPC System emulator::
24d4de45
TS
1750* Sparc32 System emulator::
1751* Sparc64 System emulator::
1752* MIPS System emulator::
1753* ARM System emulator::
1754* ColdFire System emulator::
7544a042
SW
1755* Cris System emulator::
1756* Microblaze System emulator::
1757* SH4 System emulator::
3aeaea65 1758* Xtensa System emulator::
debc7065
FB
1759@end menu
1760
7544a042
SW
1761@node PowerPC System emulator
1762@section PowerPC System emulator
1763@cindex system emulation (PowerPC)
1a084f3d 1764
15a34c63
FB
1765Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1766or PowerMac PowerPC system.
1a084f3d 1767
b671f9ed 1768QEMU emulates the following PowerMac peripherals:
1a084f3d 1769
15a34c63 1770@itemize @minus
5fafdf24 1771@item
006f3a48 1772UniNorth or Grackle PCI Bridge
15a34c63
FB
1773@item
1774PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1775@item
15a34c63 17762 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1777@item
15a34c63
FB
1778NE2000 PCI adapters
1779@item
1780Non Volatile RAM
1781@item
1782VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1783@end itemize
1784
b671f9ed 1785QEMU emulates the following PREP peripherals:
52c00a5f
FB
1786
1787@itemize @minus
5fafdf24 1788@item
15a34c63
FB
1789PCI Bridge
1790@item
1791PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1792@item
52c00a5f
FB
17932 IDE interfaces with hard disk and CD-ROM support
1794@item
1795Floppy disk
5fafdf24 1796@item
15a34c63 1797NE2000 network adapters
52c00a5f
FB
1798@item
1799Serial port
1800@item
1801PREP Non Volatile RAM
15a34c63
FB
1802@item
1803PC compatible keyboard and mouse.
52c00a5f
FB
1804@end itemize
1805
15a34c63 1806QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1807@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1808
70b7fba9 1809Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1810for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1811v2) portable firmware implementation. The goal is to implement a 100%
1812IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1813
15a34c63
FB
1814@c man begin OPTIONS
1815
1816The following options are specific to the PowerPC emulation:
1817
1818@table @option
1819
4e257e5e 1820@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1821
340fb41b 1822Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1823
4e257e5e 1824@item -prom-env @var{string}
95efd11c
BS
1825
1826Set OpenBIOS variables in NVRAM, for example:
1827
1828@example
1829qemu-system-ppc -prom-env 'auto-boot?=false' \
1830 -prom-env 'boot-device=hd:2,\yaboot' \
1831 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1832@end example
1833
1834These variables are not used by Open Hack'Ware.
1835
15a34c63
FB
1836@end table
1837
5fafdf24 1838@c man end
15a34c63
FB
1839
1840
52c00a5f 1841More information is available at
3f9f3aa1 1842@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1843
24d4de45
TS
1844@node Sparc32 System emulator
1845@section Sparc32 System emulator
7544a042 1846@cindex system emulation (Sparc32)
e80cfcfc 1847
34a3d239
BS
1848Use the executable @file{qemu-system-sparc} to simulate the following
1849Sun4m architecture machines:
1850@itemize @minus
1851@item
1852SPARCstation 4
1853@item
1854SPARCstation 5
1855@item
1856SPARCstation 10
1857@item
1858SPARCstation 20
1859@item
1860SPARCserver 600MP
1861@item
1862SPARCstation LX
1863@item
1864SPARCstation Voyager
1865@item
1866SPARCclassic
1867@item
1868SPARCbook
1869@end itemize
1870
1871The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1872but Linux limits the number of usable CPUs to 4.
e80cfcfc 1873
6a4e1771 1874QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1875
1876@itemize @minus
3475187d 1877@item
6a4e1771 1878IOMMU
e80cfcfc 1879@item
33632788 1880TCX or cgthree Frame buffer
5fafdf24 1881@item
e80cfcfc
FB
1882Lance (Am7990) Ethernet
1883@item
34a3d239 1884Non Volatile RAM M48T02/M48T08
e80cfcfc 1885@item
3475187d
FB
1886Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1887and power/reset logic
1888@item
1889ESP SCSI controller with hard disk and CD-ROM support
1890@item
6a3b9cc9 1891Floppy drive (not on SS-600MP)
a2502b58
BS
1892@item
1893CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1894@end itemize
1895
6a3b9cc9
BS
1896The number of peripherals is fixed in the architecture. Maximum
1897memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1898others 2047MB.
3475187d 1899
30a604f3 1900Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1901@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1902firmware implementation. The goal is to implement a 100% IEEE
19031275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1904
1905A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1906the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1907most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1908don't work probably due to interface issues between OpenBIOS and
1909Solaris.
3475187d
FB
1910
1911@c man begin OPTIONS
1912
a2502b58 1913The following options are specific to the Sparc32 emulation:
3475187d
FB
1914
1915@table @option
1916
4e257e5e 1917@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1918
33632788
MCA
1919Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1920option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1921of 1152x900x8 for people who wish to use OBP.
3475187d 1922
4e257e5e 1923@item -prom-env @var{string}
66508601
BS
1924
1925Set OpenBIOS variables in NVRAM, for example:
1926
1927@example
1928qemu-system-sparc -prom-env 'auto-boot?=false' \
1929 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1930@end example
1931
6a4e1771 1932@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1933
1934Set the emulated machine type. Default is SS-5.
1935
3475187d
FB
1936@end table
1937
5fafdf24 1938@c man end
3475187d 1939
24d4de45
TS
1940@node Sparc64 System emulator
1941@section Sparc64 System emulator
7544a042 1942@cindex system emulation (Sparc64)
e80cfcfc 1943
34a3d239
BS
1944Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1945(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1946Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1947able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1948Sun4v emulator is still a work in progress.
1949
1950The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1951of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1952and is able to boot the disk.s10hw2 Solaris image.
1953@example
1954qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1955 -nographic -m 256 \
1956 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1957@end example
1958
b756921a 1959
c7ba218d 1960QEMU emulates the following peripherals:
83469015
FB
1961
1962@itemize @minus
1963@item
5fafdf24 1964UltraSparc IIi APB PCI Bridge
83469015
FB
1965@item
1966PCI VGA compatible card with VESA Bochs Extensions
1967@item
34a3d239
BS
1968PS/2 mouse and keyboard
1969@item
83469015
FB
1970Non Volatile RAM M48T59
1971@item
1972PC-compatible serial ports
c7ba218d
BS
1973@item
19742 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1975@item
1976Floppy disk
83469015
FB
1977@end itemize
1978
c7ba218d
BS
1979@c man begin OPTIONS
1980
1981The following options are specific to the Sparc64 emulation:
1982
1983@table @option
1984
4e257e5e 1985@item -prom-env @var{string}
34a3d239
BS
1986
1987Set OpenBIOS variables in NVRAM, for example:
1988
1989@example
1990qemu-system-sparc64 -prom-env 'auto-boot?=false'
1991@end example
1992
a2664ca0 1993@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1994
1995Set the emulated machine type. The default is sun4u.
1996
1997@end table
1998
1999@c man end
2000
24d4de45
TS
2001@node MIPS System emulator
2002@section MIPS System emulator
7544a042 2003@cindex system emulation (MIPS)
9d0a8e6f 2004
f7d257cb
SM
2005@menu
2006* nanoMIPS System emulator ::
2007@end menu
2008
d9aedc32
TS
2009Four executables cover simulation of 32 and 64-bit MIPS systems in
2010both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2011@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2012Five different machine types are emulated:
24d4de45
TS
2013
2014@itemize @minus
2015@item
2016A generic ISA PC-like machine "mips"
2017@item
2018The MIPS Malta prototype board "malta"
2019@item
d9aedc32 2020An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2021@item
f0fc6f8f 2022MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2023@item
2024A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2025@end itemize
2026
2027The generic emulation is supported by Debian 'Etch' and is able to
2028install Debian into a virtual disk image. The following devices are
2029emulated:
3f9f3aa1
FB
2030
2031@itemize @minus
5fafdf24 2032@item
6bf5b4e8 2033A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2034@item
2035PC style serial port
2036@item
24d4de45
TS
2037PC style IDE disk
2038@item
3f9f3aa1
FB
2039NE2000 network card
2040@end itemize
2041
24d4de45
TS
2042The Malta emulation supports the following devices:
2043
2044@itemize @minus
2045@item
0b64d008 2046Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2047@item
2048PIIX4 PCI/USB/SMbus controller
2049@item
2050The Multi-I/O chip's serial device
2051@item
3a2eeac0 2052PCI network cards (PCnet32 and others)
24d4de45
TS
2053@item
2054Malta FPGA serial device
2055@item
1f605a76 2056Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2057@end itemize
2058
ba182a18
AM
2059The Boston board emulation supports the following devices:
2060
2061@itemize @minus
2062@item
2063Xilinx FPGA, which includes a PCIe root port and an UART
2064@item
2065Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2066@end itemize
2067
24d4de45
TS
2068The ACER Pica emulation supports:
2069
2070@itemize @minus
2071@item
2072MIPS R4000 CPU
2073@item
2074PC-style IRQ and DMA controllers
2075@item
2076PC Keyboard
2077@item
2078IDE controller
2079@end itemize
3f9f3aa1 2080
88cb0a02
AJ
2081The MIPS Magnum R4000 emulation supports:
2082
2083@itemize @minus
2084@item
2085MIPS R4000 CPU
2086@item
2087PC-style IRQ controller
2088@item
2089PC Keyboard
2090@item
2091SCSI controller
2092@item
2093G364 framebuffer
2094@end itemize
2095
3a1b94d9
AM
2096The Fulong 2E emulation supports:
2097
2098@itemize @minus
2099@item
2100Loongson 2E CPU
2101@item
2102Bonito64 system controller as North Bridge
2103@item
2104VT82C686 chipset as South Bridge
2105@item
2106RTL8139D as a network card chipset
2107@end itemize
2108
53d21e7b
AM
2109The mipssim pseudo board emulation provides an environment similar
2110to what the proprietary MIPS emulator uses for running Linux.
2111It supports:
2112
2113@itemize @minus
2114@item
2115A range of MIPS CPUs, default is the 24Kf
2116@item
2117PC style serial port
2118@item
2119MIPSnet network emulation
2120@end itemize
2121
f7d257cb
SM
2122@node nanoMIPS System emulator
2123@subsection nanoMIPS System emulator
2124@cindex system emulation (nanoMIPS)
2125
2126Executable @file{qemu-system-mipsel} also covers simulation of
212732-bit nanoMIPS system in little endian mode:
2128
2129@itemize @minus
2130@item
2131nanoMIPS I7200 CPU
2132@end itemize
2133
2134Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2135
2136Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2137
2138Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2139
2140Start system emulation of Malta board with nanoMIPS I7200 CPU:
2141@example
2142qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2143 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2144 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2145@end example
2146
88cb0a02 2147
24d4de45
TS
2148@node ARM System emulator
2149@section ARM System emulator
7544a042 2150@cindex system emulation (ARM)
3f9f3aa1
FB
2151
2152Use the executable @file{qemu-system-arm} to simulate a ARM
2153machine. The ARM Integrator/CP board is emulated with the following
2154devices:
2155
2156@itemize @minus
2157@item
9ee6e8bb 2158ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2159@item
2160Two PL011 UARTs
5fafdf24 2161@item
3f9f3aa1 2162SMC 91c111 Ethernet adapter
00a9bf19
PB
2163@item
2164PL110 LCD controller
2165@item
2166PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2167@item
2168PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2169@end itemize
2170
2171The ARM Versatile baseboard is emulated with the following devices:
2172
2173@itemize @minus
2174@item
9ee6e8bb 2175ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2176@item
2177PL190 Vectored Interrupt Controller
2178@item
2179Four PL011 UARTs
5fafdf24 2180@item
00a9bf19
PB
2181SMC 91c111 Ethernet adapter
2182@item
2183PL110 LCD controller
2184@item
2185PL050 KMI with PS/2 keyboard and mouse.
2186@item
2187PCI host bridge. Note the emulated PCI bridge only provides access to
2188PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2189This means some devices (eg. ne2k_pci NIC) are not usable, and others
2190(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2191mapped control registers.
e6de1bad
PB
2192@item
2193PCI OHCI USB controller.
2194@item
2195LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2196@item
2197PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2198@end itemize
2199
21a88941
PB
2200Several variants of the ARM RealView baseboard are emulated,
2201including the EB, PB-A8 and PBX-A9. Due to interactions with the
2202bootloader, only certain Linux kernel configurations work out
2203of the box on these boards.
2204
2205Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2206enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2207should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2208disabled and expect 1024M RAM.
2209
40c5c6cd 2210The following devices are emulated:
d7739d75
PB
2211
2212@itemize @minus
2213@item
f7c70325 2214ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2215@item
2216ARM AMBA Generic/Distributed Interrupt Controller
2217@item
2218Four PL011 UARTs
5fafdf24 2219@item
0ef849d7 2220SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2221@item
2222PL110 LCD controller
2223@item
2224PL050 KMI with PS/2 keyboard and mouse
2225@item
2226PCI host bridge
2227@item
2228PCI OHCI USB controller
2229@item
2230LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2231@item
2232PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2233@end itemize
2234
b00052e4
AZ
2235The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2236and "Terrier") emulation includes the following peripherals:
2237
2238@itemize @minus
2239@item
2240Intel PXA270 System-on-chip (ARM V5TE core)
2241@item
2242NAND Flash memory
2243@item
2244IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2245@item
2246On-chip OHCI USB controller
2247@item
2248On-chip LCD controller
2249@item
2250On-chip Real Time Clock
2251@item
2252TI ADS7846 touchscreen controller on SSP bus
2253@item
2254Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2255@item
2256GPIO-connected keyboard controller and LEDs
2257@item
549444e1 2258Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2259@item
2260Three on-chip UARTs
2261@item
2262WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2263@end itemize
2264
02645926
AZ
2265The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2266following elements:
2267
2268@itemize @minus
2269@item
2270Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2271@item
2272ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2273@item
2274On-chip LCD controller
2275@item
2276On-chip Real Time Clock
2277@item
2278TI TSC2102i touchscreen controller / analog-digital converter / Audio
2279CODEC, connected through MicroWire and I@math{^2}S busses
2280@item
2281GPIO-connected matrix keypad
2282@item
2283Secure Digital card connected to OMAP MMC/SD host
2284@item
2285Three on-chip UARTs
2286@end itemize
2287
c30bb264
AZ
2288Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2289emulation supports the following elements:
2290
2291@itemize @minus
2292@item
2293Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2294@item
2295RAM and non-volatile OneNAND Flash memories
2296@item
2297Display connected to EPSON remote framebuffer chip and OMAP on-chip
2298display controller and a LS041y3 MIPI DBI-C controller
2299@item
2300TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2301driven through SPI bus
2302@item
2303National Semiconductor LM8323-controlled qwerty keyboard driven
2304through I@math{^2}C bus
2305@item
2306Secure Digital card connected to OMAP MMC/SD host
2307@item
2308Three OMAP on-chip UARTs and on-chip STI debugging console
2309@item
40c5c6cd 2310A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2311@item
c30bb264
AZ
2312Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2313TUSB6010 chip - only USB host mode is supported
2314@item
2315TI TMP105 temperature sensor driven through I@math{^2}C bus
2316@item
2317TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2318@item
2319Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2320through CBUS
2321@end itemize
2322
9ee6e8bb
PB
2323The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2324devices:
2325
2326@itemize @minus
2327@item
2328Cortex-M3 CPU core.
2329@item
233064k Flash and 8k SRAM.
2331@item
2332Timers, UARTs, ADC and I@math{^2}C interface.
2333@item
2334OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2335@end itemize
2336
2337The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2338devices:
2339
2340@itemize @minus
2341@item
2342Cortex-M3 CPU core.
2343@item
2344256k Flash and 64k SRAM.
2345@item
2346Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2347@item
2348OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2349@end itemize
2350
57cd6e97
AZ
2351The Freecom MusicPal internet radio emulation includes the following
2352elements:
2353
2354@itemize @minus
2355@item
2356Marvell MV88W8618 ARM core.
2357@item
235832 MB RAM, 256 KB SRAM, 8 MB flash.
2359@item
2360Up to 2 16550 UARTs
2361@item
2362MV88W8xx8 Ethernet controller
2363@item
2364MV88W8618 audio controller, WM8750 CODEC and mixer
2365@item
e080e785 2366128×64 display with brightness control
57cd6e97
AZ
2367@item
23682 buttons, 2 navigation wheels with button function
2369@end itemize
2370
997641a8 2371The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2372The emulation includes the following elements:
997641a8
AZ
2373
2374@itemize @minus
2375@item
2376Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2377@item
2378ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2379V1
23801 Flash of 16MB and 1 Flash of 8MB
2381V2
23821 Flash of 32MB
2383@item
2384On-chip LCD controller
2385@item
2386On-chip Real Time Clock
2387@item
2388Secure Digital card connected to OMAP MMC/SD host
2389@item
2390Three on-chip UARTs
2391@end itemize
2392
3f9f3aa1
FB
2393A Linux 2.6 test image is available on the QEMU web site. More
2394information is available in the QEMU mailing-list archive.
9d0a8e6f 2395
d2c639d6
BS
2396@c man begin OPTIONS
2397
2398The following options are specific to the ARM emulation:
2399
2400@table @option
2401
2402@item -semihosting
2403Enable semihosting syscall emulation.
2404
2405On ARM this implements the "Angel" interface.
2406
2407Note that this allows guest direct access to the host filesystem,
2408so should only be used with trusted guest OS.
2409
2410@end table
2411
abc67eb6
TH
2412@c man end
2413
24d4de45
TS
2414@node ColdFire System emulator
2415@section ColdFire System emulator
7544a042
SW
2416@cindex system emulation (ColdFire)
2417@cindex system emulation (M68K)
209a4e69
PB
2418
2419Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2420The emulator is able to boot a uClinux kernel.
707e011b
PB
2421
2422The M5208EVB emulation includes the following devices:
2423
2424@itemize @minus
5fafdf24 2425@item
707e011b
PB
2426MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2427@item
2428Three Two on-chip UARTs.
2429@item
2430Fast Ethernet Controller (FEC)
2431@end itemize
2432
2433The AN5206 emulation includes the following devices:
209a4e69
PB
2434
2435@itemize @minus
5fafdf24 2436@item
209a4e69
PB
2437MCF5206 ColdFire V2 Microprocessor.
2438@item
2439Two on-chip UARTs.
2440@end itemize
2441
d2c639d6
BS
2442@c man begin OPTIONS
2443
7544a042 2444The following options are specific to the ColdFire emulation:
d2c639d6
BS
2445
2446@table @option
2447
2448@item -semihosting
2449Enable semihosting syscall emulation.
2450
2451On M68K this implements the "ColdFire GDB" interface used by libgloss.
2452
2453Note that this allows guest direct access to the host filesystem,
2454so should only be used with trusted guest OS.
2455
2456@end table
2457
abc67eb6
TH
2458@c man end
2459
7544a042
SW
2460@node Cris System emulator
2461@section Cris System emulator
2462@cindex system emulation (Cris)
2463
2464TODO
2465
2466@node Microblaze System emulator
2467@section Microblaze System emulator
2468@cindex system emulation (Microblaze)
2469
2470TODO
2471
2472@node SH4 System emulator
2473@section SH4 System emulator
2474@cindex system emulation (SH4)
2475
2476TODO
2477
3aeaea65
MF
2478@node Xtensa System emulator
2479@section Xtensa System emulator
2480@cindex system emulation (Xtensa)
2481
2482Two executables cover simulation of both Xtensa endian options,
2483@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2484Two different machine types are emulated:
2485
2486@itemize @minus
2487@item
2488Xtensa emulator pseudo board "sim"
2489@item
2490Avnet LX60/LX110/LX200 board
2491@end itemize
2492
b5e4946f 2493The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2494to one provided by the proprietary Tensilica ISS.
2495It supports:
2496
2497@itemize @minus
2498@item
2499A range of Xtensa CPUs, default is the DC232B
2500@item
2501Console and filesystem access via semihosting calls
2502@end itemize
2503
2504The Avnet LX60/LX110/LX200 emulation supports:
2505
2506@itemize @minus
2507@item
2508A range of Xtensa CPUs, default is the DC232B
2509@item
251016550 UART
2511@item
2512OpenCores 10/100 Mbps Ethernet MAC
2513@end itemize
2514
2515@c man begin OPTIONS
2516
2517The following options are specific to the Xtensa emulation:
2518
2519@table @option
2520
2521@item -semihosting
2522Enable semihosting syscall emulation.
2523
2524Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2525Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2526
2527Note that this allows guest direct access to the host filesystem,
2528so should only be used with trusted guest OS.
2529
2530@end table
3f2ce724 2531
abc67eb6
TH
2532@c man end
2533
5fafdf24
TS
2534@node QEMU User space emulator
2535@chapter QEMU User space emulator
83195237
FB
2536
2537@menu
2538* Supported Operating Systems ::
0722cc42 2539* Features::
83195237 2540* Linux User space emulator::
84778508 2541* BSD User space emulator ::
83195237
FB
2542@end menu
2543
2544@node Supported Operating Systems
2545@section Supported Operating Systems
2546
2547The following OS are supported in user space emulation:
2548
2549@itemize @minus
2550@item
4be456f1 2551Linux (referred as qemu-linux-user)
83195237 2552@item
84778508 2553BSD (referred as qemu-bsd-user)
83195237
FB
2554@end itemize
2555
0722cc42
PB
2556@node Features
2557@section Features
2558
2559QEMU user space emulation has the following notable features:
2560
2561@table @strong
2562@item System call translation:
2563QEMU includes a generic system call translator. This means that
2564the parameters of the system calls can be converted to fix
2565endianness and 32/64-bit mismatches between hosts and targets.
2566IOCTLs can be converted too.
2567
2568@item POSIX signal handling:
2569QEMU can redirect to the running program all signals coming from
2570the host (such as @code{SIGALRM}), as well as synthesize signals from
2571virtual CPU exceptions (for example @code{SIGFPE} when the program
2572executes a division by zero).
2573
2574QEMU relies on the host kernel to emulate most signal system
2575calls, for example to emulate the signal mask. On Linux, QEMU
2576supports both normal and real-time signals.
2577
2578@item Threading:
2579On Linux, QEMU can emulate the @code{clone} syscall and create a real
2580host thread (with a separate virtual CPU) for each emulated thread.
2581Note that not all targets currently emulate atomic operations correctly.
2582x86 and ARM use a global lock in order to preserve their semantics.
2583@end table
2584
2585QEMU was conceived so that ultimately it can emulate itself. Although
2586it is not very useful, it is an important test to show the power of the
2587emulator.
2588
83195237
FB
2589@node Linux User space emulator
2590@section Linux User space emulator
386405f7 2591
debc7065
FB
2592@menu
2593* Quick Start::
2594* Wine launch::
2595* Command line options::
79737e4a 2596* Other binaries::
debc7065
FB
2597@end menu
2598
2599@node Quick Start
83195237 2600@subsection Quick Start
df0f11a0 2601
1f673135 2602In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2603itself and all the target (x86) dynamic libraries used by it.
386405f7 2604
1f673135 2605@itemize
386405f7 2606
1f673135
FB
2607@item On x86, you can just try to launch any process by using the native
2608libraries:
386405f7 2609
5fafdf24 2610@example
1f673135
FB
2611qemu-i386 -L / /bin/ls
2612@end example
386405f7 2613
1f673135
FB
2614@code{-L /} tells that the x86 dynamic linker must be searched with a
2615@file{/} prefix.
386405f7 2616
b65ee4fa
SW
2617@item Since QEMU is also a linux process, you can launch QEMU with
2618QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2619
5fafdf24 2620@example
1f673135
FB
2621qemu-i386 -L / qemu-i386 -L / /bin/ls
2622@end example
386405f7 2623
1f673135
FB
2624@item On non x86 CPUs, you need first to download at least an x86 glibc
2625(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2626@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2627
1f673135 2628@example
5fafdf24 2629unset LD_LIBRARY_PATH
1f673135 2630@end example
1eb87257 2631
1f673135 2632Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2633
1f673135
FB
2634@example
2635qemu-i386 tests/i386/ls
2636@end example
4c3b5a48 2637You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2638QEMU is automatically launched by the Linux kernel when you try to
2639launch x86 executables. It requires the @code{binfmt_misc} module in the
2640Linux kernel.
1eb87257 2641
1f673135
FB
2642@item The x86 version of QEMU is also included. You can try weird things such as:
2643@example
debc7065
FB
2644qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2645 /usr/local/qemu-i386/bin/ls-i386
1f673135 2646@end example
1eb20527 2647
1f673135 2648@end itemize
1eb20527 2649
debc7065 2650@node Wine launch
83195237 2651@subsection Wine launch
1eb20527 2652
1f673135 2653@itemize
386405f7 2654
1f673135
FB
2655@item Ensure that you have a working QEMU with the x86 glibc
2656distribution (see previous section). In order to verify it, you must be
2657able to do:
386405f7 2658
1f673135
FB
2659@example
2660qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2661@end example
386405f7 2662
1f673135 2663@item Download the binary x86 Wine install
5fafdf24 2664(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2665
1f673135 2666@item Configure Wine on your account. Look at the provided script
debc7065 2667@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2668@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2669
1f673135 2670@item Then you can try the example @file{putty.exe}:
386405f7 2671
1f673135 2672@example
debc7065
FB
2673qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2674 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2675@end example
386405f7 2676
1f673135 2677@end itemize
fd429f2f 2678
debc7065 2679@node Command line options
83195237 2680@subsection Command line options
1eb20527 2681
1f673135 2682@example
8485140f 2683@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2684@end example
1eb20527 2685
1f673135
FB
2686@table @option
2687@item -h
2688Print the help
3b46e624 2689@item -L path
1f673135
FB
2690Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2691@item -s size
2692Set the x86 stack size in bytes (default=524288)
34a3d239 2693@item -cpu model
c8057f95 2694Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2695@item -E @var{var}=@var{value}
2696Set environment @var{var} to @var{value}.
2697@item -U @var{var}
2698Remove @var{var} from the environment.
379f6698
PB
2699@item -B offset
2700Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2701the address region required by guest applications is reserved on the host.
2702This option is currently only supported on some hosts.
68a1c816
PB
2703@item -R size
2704Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2705"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2706@end table
2707
1f673135 2708Debug options:
386405f7 2709
1f673135 2710@table @option
989b697d
PM
2711@item -d item1,...
2712Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2713@item -p pagesize
2714Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2715@item -g port
2716Wait gdb connection to port
1b530a6d
AJ
2717@item -singlestep
2718Run the emulation in single step mode.
1f673135 2719@end table
386405f7 2720
b01bcae6
AZ
2721Environment variables:
2722
2723@table @env
2724@item QEMU_STRACE
2725Print system calls and arguments similar to the 'strace' program
2726(NOTE: the actual 'strace' program will not work because the user
2727space emulator hasn't implemented ptrace). At the moment this is
2728incomplete. All system calls that don't have a specific argument
2729format are printed with information for six arguments. Many
2730flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2731@end table
b01bcae6 2732
79737e4a 2733@node Other binaries
83195237 2734@subsection Other binaries
79737e4a 2735
7544a042
SW
2736@cindex user mode (Alpha)
2737@command{qemu-alpha} TODO.
2738
2739@cindex user mode (ARM)
2740@command{qemu-armeb} TODO.
2741
2742@cindex user mode (ARM)
79737e4a
PB
2743@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2744binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2745configurations), and arm-uclinux bFLT format binaries.
2746
7544a042
SW
2747@cindex user mode (ColdFire)
2748@cindex user mode (M68K)
e6e5906b
PB
2749@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2750(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2751coldfire uClinux bFLT format binaries.
2752
79737e4a
PB
2753The binary format is detected automatically.
2754
7544a042
SW
2755@cindex user mode (Cris)
2756@command{qemu-cris} TODO.
2757
2758@cindex user mode (i386)
2759@command{qemu-i386} TODO.
2760@command{qemu-x86_64} TODO.
2761
2762@cindex user mode (Microblaze)
2763@command{qemu-microblaze} TODO.
2764
2765@cindex user mode (MIPS)
8639c5c9
AM
2766@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2767
2768@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2769
2770@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2771
2772@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2773
2774@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2775
2776@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2777
e671711c
MV
2778@cindex user mode (NiosII)
2779@command{qemu-nios2} TODO.
2780
7544a042
SW
2781@cindex user mode (PowerPC)
2782@command{qemu-ppc64abi32} TODO.
2783@command{qemu-ppc64} TODO.
2784@command{qemu-ppc} TODO.
2785
2786@cindex user mode (SH4)
2787@command{qemu-sh4eb} TODO.
2788@command{qemu-sh4} TODO.
2789
2790@cindex user mode (SPARC)
34a3d239
BS
2791@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2792
a785e42e
BS
2793@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2794(Sparc64 CPU, 32 bit ABI).
2795
2796@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2797SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2798
84778508
BS
2799@node BSD User space emulator
2800@section BSD User space emulator
2801
2802@menu
2803* BSD Status::
2804* BSD Quick Start::
2805* BSD Command line options::
2806@end menu
2807
2808@node BSD Status
2809@subsection BSD Status
2810
2811@itemize @minus
2812@item
2813target Sparc64 on Sparc64: Some trivial programs work.
2814@end itemize
2815
2816@node BSD Quick Start
2817@subsection Quick Start
2818
2819In order to launch a BSD process, QEMU needs the process executable
2820itself and all the target dynamic libraries used by it.
2821
2822@itemize
2823
2824@item On Sparc64, you can just try to launch any process by using the native
2825libraries:
2826
2827@example
2828qemu-sparc64 /bin/ls
2829@end example
2830
2831@end itemize
2832
2833@node BSD Command line options
2834@subsection Command line options
2835
2836@example
8485140f 2837@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2838@end example
2839
2840@table @option
2841@item -h
2842Print the help
2843@item -L path
2844Set the library root path (default=/)
2845@item -s size
2846Set the stack size in bytes (default=524288)
f66724c9
SW
2847@item -ignore-environment
2848Start with an empty environment. Without this option,
40c5c6cd 2849the initial environment is a copy of the caller's environment.
f66724c9
SW
2850@item -E @var{var}=@var{value}
2851Set environment @var{var} to @var{value}.
2852@item -U @var{var}
2853Remove @var{var} from the environment.
84778508
BS
2854@item -bsd type
2855Set the type of the emulated BSD Operating system. Valid values are
2856FreeBSD, NetBSD and OpenBSD (default).
2857@end table
2858
2859Debug options:
2860
2861@table @option
989b697d
PM
2862@item -d item1,...
2863Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2864@item -p pagesize
2865Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2866@item -singlestep
2867Run the emulation in single step mode.
84778508
BS
2868@end table
2869
483c6ad4
BP
2870@node System requirements
2871@chapter System requirements
2872
2873@section KVM kernel module
2874
2875On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2876require the host to be running Linux v4.5 or newer.
2877
2878The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2879added with Linux 4.5 which is supported by the major distros. And even
2880if RHEL7 has kernel 3.10, KVM there has the required functionality there
2881to make it close to a 4.5 or newer kernel.
47eacb4f 2882
e8412576
SH
2883@include docs/security.texi
2884
78e87797
PB
2885@include qemu-tech.texi
2886
44c67847 2887@include qemu-deprecated.texi
efe2add7 2888
45b47130
DB
2889@node Supported build platforms
2890@appendix Supported build platforms
2891
2892QEMU aims to support building and executing on multiple host OS platforms.
2893This appendix outlines which platforms are the major build targets. These
2894platforms are used as the basis for deciding upon the minimum required
2895versions of 3rd party software QEMU depends on. The supported platforms
2896are the targets for automated testing performed by the project when patches
2897are submitted for review, and tested before and after merge.
2898
2899If a platform is not listed here, it does not imply that QEMU won't work.
2900If an unlisted platform has comparable software versions to a listed platform,
2901there is every expectation that it will work. Bug reports are welcome for
2902problems encountered on unlisted platforms unless they are clearly older
2903vintage than what is described here.
2904
2905Note that when considering software versions shipped in distros as support
2906targets, QEMU considers only the version number, and assumes the features in
2907that distro match the upstream release with the same version. In other words,
2908if a distro backports extra features to the software in their distro, QEMU
2909upstream code will not add explicit support for those backports, unless the
2910feature is auto-detectable in a manner that works for the upstream releases
2911too.
2912
2913The Repology site @url{https://repology.org} is a useful resource to identify
2914currently shipped versions of software in various operating systems, though
2915it does not cover all distros listed below.
2916
2917@section Linux OS
2918
2919For distributions with frequent, short-lifetime releases, the project will
2920aim to support all versions that are not end of life by their respective
2921vendors. For the purposes of identifying supported software versions, the
2922project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2923lifetime distros will be assumed to ship similar software versions.
2924
2925For distributions with long-lifetime releases, the project will aim to support
2926the most recent major version at all times. Support for the previous major
2927version will be dropped 2 years after the new major version is released. For
2928the purposes of identifying supported software versions, the project will look
2929at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2930be assumed to ship similar software versions.
2931
2932@section Windows
2933
2934The project supports building with current versions of the MinGW toolchain,
2935hosted on Linux.
2936
2937@section macOS
2938
2939The project supports building with the two most recent versions of macOS, with
2940the current homebrew package set available.
2941
2942@section FreeBSD
2943
2944The project aims to support the all the versions which are not end of life.
2945
2946@section NetBSD
2947
2948The project aims to support the most recent major version at all times. Support
2949for the previous major version will be dropped 2 years after the new major
2950version is released.
2951
2952@section OpenBSD
2953
2954The project aims to support the all the versions which are not end of life.
2955
7544a042
SW
2956@node License
2957@appendix License
2958
2959QEMU is a trademark of Fabrice Bellard.
2960
2f8d8f01
TH
2961QEMU is released under the
2962@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2963version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2964@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2965
debc7065 2966@node Index
7544a042
SW
2967@appendix Index
2968@menu
2969* Concept Index::
2970* Function Index::
2971* Keystroke Index::
2972* Program Index::
2973* Data Type Index::
2974* Variable Index::
2975@end menu
2976
2977@node Concept Index
2978@section Concept Index
2979This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2980@printindex cp
2981
7544a042
SW
2982@node Function Index
2983@section Function Index
2984This index could be used for command line options and monitor functions.
2985@printindex fn
2986
2987@node Keystroke Index
2988@section Keystroke Index
2989
2990This is a list of all keystrokes which have a special function
2991in system emulation.
2992
2993@printindex ky
2994
2995@node Program Index
2996@section Program Index
2997@printindex pg
2998
2999@node Data Type Index
3000@section Data Type Index
3001
3002This index could be used for qdev device names and options.
3003
3004@printindex tp
3005
3006@node Variable Index
3007@section Variable Index
3008@printindex vr
3009
debc7065 3010@bye