]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
483c6ad4 40* System requirements::
e8412576 41* Security::
78e87797 42* Implementation notes::
eb22aeca 43* Deprecated features::
45b47130 44* Supported build platforms::
7544a042 45* License::
debc7065
FB
46* Index::
47@end menu
48@end ifnottex
49
50@contents
51
52@node Introduction
386405f7
FB
53@chapter Introduction
54
debc7065
FB
55@menu
56* intro_features:: Features
57@end menu
58
59@node intro_features
322d0c66 60@section Features
386405f7 61
1f673135
FB
62QEMU is a FAST! processor emulator using dynamic translation to
63achieve good emulation speed.
1eb20527 64
1f3e7e41 65@cindex operating modes
1eb20527 66QEMU has two operating modes:
0806e3f6 67
d7e5edca 68@itemize
7544a042 69@cindex system emulation
1f3e7e41 70@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
71example a PC), including one or several processors and various
72peripherals. It can be used to launch different Operating Systems
73without rebooting the PC or to debug system code.
1eb20527 74
7544a042 75@cindex user mode emulation
1f3e7e41 76@item User mode emulation. In this mode, QEMU can launch
83195237 77processes compiled for one CPU on another CPU. It can be used to
70b7fba9 78launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 79to ease cross-compilation and cross-debugging.
1eb20527
FB
80
81@end itemize
82
1f3e7e41
PB
83QEMU has the following features:
84
85@itemize
86@item QEMU can run without a host kernel driver and yet gives acceptable
87performance. It uses dynamic translation to native code for reasonable speed,
88with support for self-modifying code and precise exceptions.
89
90@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
91Windows) and architectures.
92
93@item It performs accurate software emulation of the FPU.
94@end itemize
322d0c66 95
1f3e7e41 96QEMU user mode emulation has the following features:
52c00a5f 97@itemize
1f3e7e41
PB
98@item Generic Linux system call converter, including most ioctls.
99
100@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
101
102@item Accurate signal handling by remapping host signals to target signals.
103@end itemize
104
105QEMU full system emulation has the following features:
106@itemize
107@item
108QEMU uses a full software MMU for maximum portability.
109
110@item
326c4c3c 111QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
112execute most of the guest code natively, while
113continuing to emulate the rest of the machine.
114
115@item
116Various hardware devices can be emulated and in some cases, host
117devices (e.g. serial and parallel ports, USB, drives) can be used
118transparently by the guest Operating System. Host device passthrough
119can be used for talking to external physical peripherals (e.g. a
120webcam, modem or tape drive).
121
122@item
123Symmetric multiprocessing (SMP) support. Currently, an in-kernel
124accelerator is required to use more than one host CPU for emulation.
125
52c00a5f 126@end itemize
386405f7 127
0806e3f6 128
debc7065 129@node QEMU PC System emulator
3f9f3aa1 130@chapter QEMU PC System emulator
7544a042 131@cindex system emulation (PC)
1eb20527 132
debc7065
FB
133@menu
134* pcsys_introduction:: Introduction
135* pcsys_quickstart:: Quick Start
136* sec_invocation:: Invocation
a40db1b3
PM
137* pcsys_keys:: Keys in the graphical frontends
138* mux_keys:: Keys in the character backend multiplexer
debc7065 139* pcsys_monitor:: QEMU Monitor
2544e9e4 140* cpu_models:: CPU models
debc7065
FB
141* disk_images:: Disk Images
142* pcsys_network:: Network emulation
576fd0a1 143* pcsys_other_devs:: Other Devices
debc7065
FB
144* direct_linux_boot:: Direct Linux Boot
145* pcsys_usb:: USB emulation
f858dcae 146* vnc_security:: VNC security
5d19a6ea 147* network_tls:: TLS setup for network services
debc7065
FB
148* gdb_usage:: GDB usage
149* pcsys_os_specific:: Target OS specific information
150@end menu
151
152@node pcsys_introduction
0806e3f6
FB
153@section Introduction
154
155@c man begin DESCRIPTION
156
3f9f3aa1
FB
157The QEMU PC System emulator simulates the
158following peripherals:
0806e3f6
FB
159
160@itemize @minus
5fafdf24 161@item
15a34c63 162i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 163@item
15a34c63
FB
164Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
165extensions (hardware level, including all non standard modes).
0806e3f6
FB
166@item
167PS/2 mouse and keyboard
5fafdf24 168@item
15a34c63 1692 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
170@item
171Floppy disk
5fafdf24 172@item
3a2eeac0 173PCI and ISA network adapters
0806e3f6 174@item
05d5818c
FB
175Serial ports
176@item
23076bb3
CM
177IPMI BMC, either and internal or external one
178@item
c0fe3827
FB
179Creative SoundBlaster 16 sound card
180@item
181ENSONIQ AudioPCI ES1370 sound card
182@item
e5c9a13e
AZ
183Intel 82801AA AC97 Audio compatible sound card
184@item
7d72e762
GH
185Intel HD Audio Controller and HDA codec
186@item
2d983446 187Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 188@item
26463dbc
AZ
189Gravis Ultrasound GF1 sound card
190@item
cc53d26d 191CS4231A compatible sound card
192@item
a92ff8c1 193PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
194@end itemize
195
3f9f3aa1
FB
196SMP is supported with up to 255 CPUs.
197
a8ad4159 198QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
199VGA BIOS.
200
c0fe3827
FB
201QEMU uses YM3812 emulation by Tatsuyuki Satoh.
202
2d983446 203QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 204by Tibor "TS" Schütz.
423d65f4 205
1a1a0e20 206Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 207QEMU must be told to not have parallel ports to have working GUS.
720036a5 208
209@example
3804da9d 210qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 211@end example
212
213Alternatively:
214@example
3804da9d 215qemu-system-i386 dos.img -device gus,irq=5
720036a5 216@end example
217
218Or some other unclaimed IRQ.
219
cc53d26d 220CS4231A is the chip used in Windows Sound System and GUSMAX products
221
0806e3f6
FB
222@c man end
223
debc7065 224@node pcsys_quickstart
1eb20527 225@section Quick Start
7544a042 226@cindex quick start
1eb20527 227
285dc330 228Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
229
230@example
3804da9d 231qemu-system-i386 linux.img
0806e3f6
FB
232@end example
233
234Linux should boot and give you a prompt.
235
6cc721cf 236@node sec_invocation
ec410fc9
FB
237@section Invocation
238
239@example
0806e3f6 240@c man begin SYNOPSIS
8485140f 241@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 242@c man end
ec410fc9
FB
243@end example
244
0806e3f6 245@c man begin OPTIONS
d2c639d6
BS
246@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
247targets do not need a disk image.
ec410fc9 248
5824d651 249@include qemu-options.texi
ec410fc9 250
3e11db9a
FB
251@c man end
252
e896d0f9
MA
253@subsection Device URL Syntax
254@c TODO merge this with section Disk Images
255
256@c man begin NOTES
257
258In addition to using normal file images for the emulated storage devices,
259QEMU can also use networked resources such as iSCSI devices. These are
260specified using a special URL syntax.
261
262@table @option
263@item iSCSI
264iSCSI support allows QEMU to access iSCSI resources directly and use as
265images for the guest storage. Both disk and cdrom images are supported.
266
267Syntax for specifying iSCSI LUNs is
268``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
269
270By default qemu will use the iSCSI initiator-name
271'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
272line or a configuration file.
273
274Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
275stalled requests and force a reestablishment of the session. The timeout
276is specified in seconds. The default is 0 which means no timeout. Libiscsi
2771.15.0 or greater is required for this feature.
278
279Example (without authentication):
280@example
281qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
282 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
283 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
284@end example
285
286Example (CHAP username/password via URL):
287@example
288qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
289@end example
290
291Example (CHAP username/password via environment variables):
292@example
293LIBISCSI_CHAP_USERNAME="user" \
294LIBISCSI_CHAP_PASSWORD="password" \
295qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
296@end example
297
298@item NBD
299QEMU supports NBD (Network Block Devices) both using TCP protocol as well
300as Unix Domain Sockets.
301
302Syntax for specifying a NBD device using TCP
303``nbd:<server-ip>:<port>[:exportname=<export>]''
304
305Syntax for specifying a NBD device using Unix Domain Sockets
306``nbd:unix:<domain-socket>[:exportname=<export>]''
307
308Example for TCP
309@example
310qemu-system-i386 --drive file=nbd:192.0.2.1:30000
311@end example
312
313Example for Unix Domain Sockets
314@example
315qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
316@end example
317
318@item SSH
319QEMU supports SSH (Secure Shell) access to remote disks.
320
321Examples:
322@example
323qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
324qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
325@end example
326
327Currently authentication must be done using ssh-agent. Other
328authentication methods may be supported in future.
329
330@item Sheepdog
331Sheepdog is a distributed storage system for QEMU.
332QEMU supports using either local sheepdog devices or remote networked
333devices.
334
335Syntax for specifying a sheepdog device
336@example
337sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
338@end example
339
340Example
341@example
342qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
343@end example
344
345See also @url{https://sheepdog.github.io/sheepdog/}.
346
347@item GlusterFS
348GlusterFS is a user space distributed file system.
349QEMU supports the use of GlusterFS volumes for hosting VM disk images using
350TCP, Unix Domain Sockets and RDMA transport protocols.
351
352Syntax for specifying a VM disk image on GlusterFS volume is
353@example
354
355URI:
356gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
357
358JSON:
359'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
360@ "server":[@{"type":"tcp","host":"...","port":"..."@},
361@ @{"type":"unix","socket":"..."@}]@}@}'
362@end example
363
364
365Example
366@example
367URI:
368qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
369@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
370
371JSON:
372qemu-system-x86_64 'json:@{"driver":"qcow2",
373@ "file":@{"driver":"gluster",
374@ "volume":"testvol","path":"a.img",
375@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
376@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
377@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
378qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
379@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
380@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
381@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
382@end example
383
384See also @url{http://www.gluster.org}.
385
386@item HTTP/HTTPS/FTP/FTPS
387QEMU supports read-only access to files accessed over http(s) and ftp(s).
388
389Syntax using a single filename:
390@example
391<protocol>://[<username>[:<password>]@@]<host>/<path>
392@end example
393
394where:
395@table @option
396@item protocol
397'http', 'https', 'ftp', or 'ftps'.
398
399@item username
400Optional username for authentication to the remote server.
401
402@item password
403Optional password for authentication to the remote server.
404
405@item host
406Address of the remote server.
407
408@item path
409Path on the remote server, including any query string.
410@end table
411
412The following options are also supported:
413@table @option
414@item url
415The full URL when passing options to the driver explicitly.
416
417@item readahead
418The amount of data to read ahead with each range request to the remote server.
419This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
420does not have a suffix, it will be assumed to be in bytes. The value must be a
421multiple of 512 bytes. It defaults to 256k.
422
423@item sslverify
424Whether to verify the remote server's certificate when connecting over SSL. It
425can have the value 'on' or 'off'. It defaults to 'on'.
426
427@item cookie
428Send this cookie (it can also be a list of cookies separated by ';') with
429each outgoing request. Only supported when using protocols such as HTTP
430which support cookies, otherwise ignored.
431
432@item timeout
433Set the timeout in seconds of the CURL connection. This timeout is the time
434that CURL waits for a response from the remote server to get the size of the
435image to be downloaded. If not set, the default timeout of 5 seconds is used.
436@end table
437
438Note that when passing options to qemu explicitly, @option{driver} is the value
439of <protocol>.
440
441Example: boot from a remote Fedora 20 live ISO image
442@example
443qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
444
445qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
446@end example
447
448Example: boot from a remote Fedora 20 cloud image using a local overlay for
449writes, copy-on-read, and a readahead of 64k
450@example
451qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
452
453qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
454@end example
455
456Example: boot from an image stored on a VMware vSphere server with a self-signed
457certificate using a local overlay for writes, a readahead of 64k and a timeout
458of 10 seconds.
459@example
460qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
461
462qemu-system-x86_64 -drive file=/tmp/test.qcow2
463@end example
464
465@end table
466
467@c man end
468
debc7065 469@node pcsys_keys
a40db1b3 470@section Keys in the graphical frontends
3e11db9a
FB
471
472@c man begin OPTIONS
473
de1db2a1
BH
474During the graphical emulation, you can use special key combinations to change
475modes. The default key mappings are shown below, but if you use @code{-alt-grab}
476then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
477@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
478
a1b74fe8 479@table @key
f9859310 480@item Ctrl-Alt-f
7544a042 481@kindex Ctrl-Alt-f
a1b74fe8 482Toggle full screen
a0a821a4 483
d6a65ba3
JK
484@item Ctrl-Alt-+
485@kindex Ctrl-Alt-+
486Enlarge the screen
487
488@item Ctrl-Alt--
489@kindex Ctrl-Alt--
490Shrink the screen
491
c4a735f9 492@item Ctrl-Alt-u
7544a042 493@kindex Ctrl-Alt-u
c4a735f9 494Restore the screen's un-scaled dimensions
495
f9859310 496@item Ctrl-Alt-n
7544a042 497@kindex Ctrl-Alt-n
a0a821a4
FB
498Switch to virtual console 'n'. Standard console mappings are:
499@table @emph
500@item 1
501Target system display
502@item 2
503Monitor
504@item 3
505Serial port
a1b74fe8
FB
506@end table
507
f9859310 508@item Ctrl-Alt
7544a042 509@kindex Ctrl-Alt
a0a821a4
FB
510Toggle mouse and keyboard grab.
511@end table
512
7544a042
SW
513@kindex Ctrl-Up
514@kindex Ctrl-Down
515@kindex Ctrl-PageUp
516@kindex Ctrl-PageDown
3e11db9a
FB
517In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
518@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
519
a40db1b3
PM
520@c man end
521
522@node mux_keys
523@section Keys in the character backend multiplexer
524
525@c man begin OPTIONS
526
527During emulation, if you are using a character backend multiplexer
528(which is the default if you are using @option{-nographic}) then
529several commands are available via an escape sequence. These
530key sequences all start with an escape character, which is @key{Ctrl-a}
531by default, but can be changed with @option{-echr}. The list below assumes
532you're using the default.
ec410fc9
FB
533
534@table @key
a1b74fe8 535@item Ctrl-a h
7544a042 536@kindex Ctrl-a h
ec410fc9 537Print this help
3b46e624 538@item Ctrl-a x
7544a042 539@kindex Ctrl-a x
366dfc52 540Exit emulator
3b46e624 541@item Ctrl-a s
7544a042 542@kindex Ctrl-a s
1f47a922 543Save disk data back to file (if -snapshot)
20d8a3ed 544@item Ctrl-a t
7544a042 545@kindex Ctrl-a t
d2c639d6 546Toggle console timestamps
a1b74fe8 547@item Ctrl-a b
7544a042 548@kindex Ctrl-a b
1f673135 549Send break (magic sysrq in Linux)
a1b74fe8 550@item Ctrl-a c
7544a042 551@kindex Ctrl-a c
a40db1b3
PM
552Rotate between the frontends connected to the multiplexer (usually
553this switches between the monitor and the console)
a1b74fe8 554@item Ctrl-a Ctrl-a
a40db1b3
PM
555@kindex Ctrl-a Ctrl-a
556Send the escape character to the frontend
ec410fc9 557@end table
0806e3f6
FB
558@c man end
559
560@ignore
561
1f673135
FB
562@c man begin SEEALSO
563The HTML documentation of QEMU for more precise information and Linux
564user mode emulator invocation.
565@c man end
566
567@c man begin AUTHOR
568Fabrice Bellard
569@c man end
570
571@end ignore
572
debc7065 573@node pcsys_monitor
1f673135 574@section QEMU Monitor
7544a042 575@cindex QEMU monitor
1f673135
FB
576
577The QEMU monitor is used to give complex commands to the QEMU
578emulator. You can use it to:
579
580@itemize @minus
581
582@item
e598752a 583Remove or insert removable media images
89dfe898 584(such as CD-ROM or floppies).
1f673135 585
5fafdf24 586@item
1f673135
FB
587Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
588from a disk file.
589
590@item Inspect the VM state without an external debugger.
591
592@end itemize
593
594@subsection Commands
595
596The following commands are available:
597
2313086a 598@include qemu-monitor.texi
0806e3f6 599
2cd8af2d
PB
600@include qemu-monitor-info.texi
601
1f673135
FB
602@subsection Integer expressions
603
604The monitor understands integers expressions for every integer
605argument. You can use register names to get the value of specifics
606CPU registers by prefixing them with @emph{$}.
ec410fc9 607
2544e9e4
DB
608@node cpu_models
609@section CPU models
610
611@include docs/qemu-cpu-models.texi
612
1f47a922
FB
613@node disk_images
614@section Disk Images
615
ee29bdb6
PB
616QEMU supports many disk image formats, including growable disk images
617(their size increase as non empty sectors are written), compressed and
618encrypted disk images.
1f47a922 619
debc7065
FB
620@menu
621* disk_images_quickstart:: Quick start for disk image creation
622* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 623* vm_snapshots:: VM snapshots
debc7065 624* qemu_img_invocation:: qemu-img Invocation
975b092b 625* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 626* disk_images_formats:: Disk image file formats
19cb3738 627* host_drives:: Using host drives
debc7065 628* disk_images_fat_images:: Virtual FAT disk images
75818250 629* disk_images_nbd:: NBD access
42af9c30 630* disk_images_sheepdog:: Sheepdog disk images
00984e39 631* disk_images_iscsi:: iSCSI LUNs
8809e289 632* disk_images_gluster:: GlusterFS disk images
0a12ec87 633* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 634* disk_images_nvme:: NVMe userspace driver
b1d1cb27 635* disk_image_locking:: Disk image file locking
debc7065
FB
636@end menu
637
638@node disk_images_quickstart
acd935ef
FB
639@subsection Quick start for disk image creation
640
641You can create a disk image with the command:
1f47a922 642@example
acd935ef 643qemu-img create myimage.img mysize
1f47a922 644@end example
acd935ef
FB
645where @var{myimage.img} is the disk image filename and @var{mysize} is its
646size in kilobytes. You can add an @code{M} suffix to give the size in
647megabytes and a @code{G} suffix for gigabytes.
648
debc7065 649See @ref{qemu_img_invocation} for more information.
1f47a922 650
debc7065 651@node disk_images_snapshot_mode
1f47a922
FB
652@subsection Snapshot mode
653
654If you use the option @option{-snapshot}, all disk images are
655considered as read only. When sectors in written, they are written in
656a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
657write back to the raw disk images by using the @code{commit} monitor
658command (or @key{C-a s} in the serial console).
1f47a922 659
13a2e80f
FB
660@node vm_snapshots
661@subsection VM snapshots
662
663VM snapshots are snapshots of the complete virtual machine including
664CPU state, RAM, device state and the content of all the writable
665disks. In order to use VM snapshots, you must have at least one non
666removable and writable block device using the @code{qcow2} disk image
667format. Normally this device is the first virtual hard drive.
668
669Use the monitor command @code{savevm} to create a new VM snapshot or
670replace an existing one. A human readable name can be assigned to each
19d36792 671snapshot in addition to its numerical ID.
13a2e80f
FB
672
673Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
674a VM snapshot. @code{info snapshots} lists the available snapshots
675with their associated information:
676
677@example
678(qemu) info snapshots
679Snapshot devices: hda
680Snapshot list (from hda):
681ID TAG VM SIZE DATE VM CLOCK
6821 start 41M 2006-08-06 12:38:02 00:00:14.954
6832 40M 2006-08-06 12:43:29 00:00:18.633
6843 msys 40M 2006-08-06 12:44:04 00:00:23.514
685@end example
686
687A VM snapshot is made of a VM state info (its size is shown in
688@code{info snapshots}) and a snapshot of every writable disk image.
689The VM state info is stored in the first @code{qcow2} non removable
690and writable block device. The disk image snapshots are stored in
691every disk image. The size of a snapshot in a disk image is difficult
692to evaluate and is not shown by @code{info snapshots} because the
693associated disk sectors are shared among all the snapshots to save
19d36792
FB
694disk space (otherwise each snapshot would need a full copy of all the
695disk images).
13a2e80f
FB
696
697When using the (unrelated) @code{-snapshot} option
698(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
699but they are deleted as soon as you exit QEMU.
700
701VM snapshots currently have the following known limitations:
702@itemize
5fafdf24 703@item
13a2e80f
FB
704They cannot cope with removable devices if they are removed or
705inserted after a snapshot is done.
5fafdf24 706@item
13a2e80f
FB
707A few device drivers still have incomplete snapshot support so their
708state is not saved or restored properly (in particular USB).
709@end itemize
710
acd935ef
FB
711@node qemu_img_invocation
712@subsection @code{qemu-img} Invocation
1f47a922 713
acd935ef 714@include qemu-img.texi
05efe46e 715
975b092b
TS
716@node qemu_nbd_invocation
717@subsection @code{qemu-nbd} Invocation
718
719@include qemu-nbd.texi
720
78aa8aa0 721@include docs/qemu-block-drivers.texi
0a12ec87 722
debc7065 723@node pcsys_network
9d4fb82e
FB
724@section Network emulation
725
0e0266c2
TH
726QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
727target) and can connect them to a network backend on the host or an emulated
728hub. The various host network backends can either be used to connect the NIC of
729the guest to a real network (e.g. by using a TAP devices or the non-privileged
730user mode network stack), or to other guest instances running in another QEMU
731process (e.g. by using the socket host network backend).
9d4fb82e 732
41d03949
FB
733@subsection Using TAP network interfaces
734
735This is the standard way to connect QEMU to a real network. QEMU adds
736a virtual network device on your host (called @code{tapN}), and you
737can then configure it as if it was a real ethernet card.
9d4fb82e 738
8f40c388
FB
739@subsubsection Linux host
740
9d4fb82e
FB
741As an example, you can download the @file{linux-test-xxx.tar.gz}
742archive and copy the script @file{qemu-ifup} in @file{/etc} and
743configure properly @code{sudo} so that the command @code{ifconfig}
744contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 745that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
746device @file{/dev/net/tun} must be present.
747
ee0f4751
FB
748See @ref{sec_invocation} to have examples of command lines using the
749TAP network interfaces.
9d4fb82e 750
8f40c388
FB
751@subsubsection Windows host
752
753There is a virtual ethernet driver for Windows 2000/XP systems, called
754TAP-Win32. But it is not included in standard QEMU for Windows,
755so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 756so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 757
9d4fb82e
FB
758@subsection Using the user mode network stack
759
41d03949
FB
760By using the option @option{-net user} (default configuration if no
761@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 762network stack (you don't need root privilege to use the virtual
41d03949 763network). The virtual network configuration is the following:
9d4fb82e
FB
764
765@example
766
0e0266c2 767 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 768 | (10.0.2.2)
9d4fb82e 769 |
2518bd0d 770 ----> DNS server (10.0.2.3)
3b46e624 771 |
2518bd0d 772 ----> SMB server (10.0.2.4)
9d4fb82e
FB
773@end example
774
775The QEMU VM behaves as if it was behind a firewall which blocks all
776incoming connections. You can use a DHCP client to automatically
41d03949
FB
777configure the network in the QEMU VM. The DHCP server assign addresses
778to the hosts starting from 10.0.2.15.
9d4fb82e
FB
779
780In order to check that the user mode network is working, you can ping
781the address 10.0.2.2 and verify that you got an address in the range
78210.0.2.x from the QEMU virtual DHCP server.
783
37cbfcce
GH
784Note that ICMP traffic in general does not work with user mode networking.
785@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
786however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
787ping sockets to allow @code{ping} to the Internet. The host admin has to set
788the ping_group_range in order to grant access to those sockets. To allow ping
789for GID 100 (usually users group):
790
791@example
792echo 100 100 > /proc/sys/net/ipv4/ping_group_range
793@end example
b415a407 794
9bf05444
FB
795When using the built-in TFTP server, the router is also the TFTP
796server.
797
c8c6afa8
TH
798When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
799connections can be redirected from the host to the guest. It allows for
800example to redirect X11, telnet or SSH connections.
443f1376 801
0e0266c2
TH
802@subsection Hubs
803
804QEMU can simulate several hubs. A hub can be thought of as a virtual connection
805between several network devices. These devices can be for example QEMU virtual
806ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
807guest NICs or host network backends to such a hub using the @option{-netdev
808hubport} or @option{-nic hubport} options. The legacy @option{-net} option
809also connects the given device to the emulated hub with ID 0 (i.e. the default
810hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 811
0e0266c2 812@subsection Connecting emulated networks between QEMU instances
41d03949 813
0e0266c2
TH
814Using the @option{-netdev socket} (or @option{-nic socket} or
815@option{-net socket}) option, it is possible to create emulated
816networks that span several QEMU instances.
817See the description of the @option{-netdev socket} option in the
818@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 819
576fd0a1 820@node pcsys_other_devs
6cbf4c8c
CM
821@section Other Devices
822
823@subsection Inter-VM Shared Memory device
824
5400c02b
MA
825On Linux hosts, a shared memory device is available. The basic syntax
826is:
6cbf4c8c
CM
827
828@example
5400c02b
MA
829qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
830@end example
831
832where @var{hostmem} names a host memory backend. For a POSIX shared
833memory backend, use something like
834
835@example
836-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
837@end example
838
839If desired, interrupts can be sent between guest VMs accessing the same shared
840memory region. Interrupt support requires using a shared memory server and
841using a chardev socket to connect to it. The code for the shared memory server
842is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
843memory server is:
844
845@example
a75eb03b 846# First start the ivshmem server once and for all
50d34c4e 847ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
848
849# Then start your qemu instances with matching arguments
5400c02b 850qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 851 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
852@end example
853
854When using the server, the guest will be assigned a VM ID (>=0) that allows guests
855using the same server to communicate via interrupts. Guests can read their
1309cf44 856VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 857
62a830b6
MA
858@subsubsection Migration with ivshmem
859
5400c02b
MA
860With device property @option{master=on}, the guest will copy the shared
861memory on migration to the destination host. With @option{master=off},
862the guest will not be able to migrate with the device attached. In the
863latter case, the device should be detached and then reattached after
864migration using the PCI hotplug support.
6cbf4c8c 865
62a830b6
MA
866At most one of the devices sharing the same memory can be master. The
867master must complete migration before you plug back the other devices.
868
7d4f4bda
MAL
869@subsubsection ivshmem and hugepages
870
871Instead of specifying the <shm size> using POSIX shm, you may specify
872a memory backend that has hugepage support:
873
874@example
5400c02b
MA
875qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
876 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
877@end example
878
879ivshmem-server also supports hugepages mount points with the
880@option{-m} memory path argument.
881
9d4fb82e
FB
882@node direct_linux_boot
883@section Direct Linux Boot
1f673135
FB
884
885This section explains how to launch a Linux kernel inside QEMU without
886having to make a full bootable image. It is very useful for fast Linux
ee0f4751 887kernel testing.
1f673135 888
ee0f4751 889The syntax is:
1f673135 890@example
3804da9d 891qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
892@end example
893
ee0f4751
FB
894Use @option{-kernel} to provide the Linux kernel image and
895@option{-append} to give the kernel command line arguments. The
896@option{-initrd} option can be used to provide an INITRD image.
1f673135 897
ee0f4751
FB
898When using the direct Linux boot, a disk image for the first hard disk
899@file{hda} is required because its boot sector is used to launch the
900Linux kernel.
1f673135 901
ee0f4751
FB
902If you do not need graphical output, you can disable it and redirect
903the virtual serial port and the QEMU monitor to the console with the
904@option{-nographic} option. The typical command line is:
1f673135 905@example
3804da9d
SW
906qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
907 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
908@end example
909
ee0f4751
FB
910Use @key{Ctrl-a c} to switch between the serial console and the
911monitor (@pxref{pcsys_keys}).
1f673135 912
debc7065 913@node pcsys_usb
b389dbfb
FB
914@section USB emulation
915
a92ff8c1
TH
916QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
917plug virtual USB devices or real host USB devices (only works with certain
918host operating systems). QEMU will automatically create and connect virtual
919USB hubs as necessary to connect multiple USB devices.
b389dbfb 920
0aff66b5
PB
921@menu
922* usb_devices::
923* host_usb_devices::
924@end menu
925@node usb_devices
926@subsection Connecting USB devices
b389dbfb 927
a92ff8c1
TH
928USB devices can be connected with the @option{-device usb-...} command line
929option or the @code{device_add} monitor command. Available devices are:
b389dbfb 930
db380c06 931@table @code
a92ff8c1 932@item usb-mouse
0aff66b5 933Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 934@item usb-tablet
c6d46c20 935Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 936This means QEMU is able to report the mouse position without having
0aff66b5 937to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
938@item usb-storage,drive=@var{drive_id}
939Mass storage device backed by @var{drive_id} (@pxref{disk_images})
940@item usb-uas
941USB attached SCSI device, see
70b7fba9 942@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
943for details
944@item usb-bot
945Bulk-only transport storage device, see
70b7fba9 946@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 947for details here, too
1ee53067 948@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
949Media transfer protocol device, using @var{dir} as root of the file tree
950that is presented to the guest.
951@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
952Pass through the host device identified by @var{bus} and @var{addr}
953@item usb-host,vendorid=@var{vendor},productid=@var{product}
954Pass through the host device identified by @var{vendor} and @var{product} ID
955@item usb-wacom-tablet
f6d2a316
AZ
956Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
957above but it can be used with the tslib library because in addition to touch
958coordinates it reports touch pressure.
a92ff8c1 959@item usb-kbd
47b2d338 960Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 961@item usb-serial,chardev=@var{id}
db380c06 962Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
963device @var{id}.
964@item usb-braille,chardev=@var{id}
2e4d9fb1 965Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
966or fake device referenced by @var{id}.
967@item usb-net[,netdev=@var{id}]
968Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
969specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 970For instance, user-mode networking can be used with
6c9f886c 971@example
a92ff8c1 972qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 973@end example
a92ff8c1
TH
974@item usb-ccid
975Smartcard reader device
976@item usb-audio
977USB audio device
978@item usb-bt-dongle
979Bluetooth dongle for the transport layer of HCI. It is connected to HCI
980scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
981Note that the syntax for the @code{-device usb-bt-dongle} option is not as
982useful yet as it was with the legacy @code{-usbdevice} option. So to
983configure an USB bluetooth device, you might need to use
984"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
985bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
986the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
987no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
988This USB device implements the USB Transport Layer of HCI. Example
989usage:
990@example
8485140f 991@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 992@end example
0aff66b5 993@end table
b389dbfb 994
0aff66b5 995@node host_usb_devices
b389dbfb
FB
996@subsection Using host USB devices on a Linux host
997
998WARNING: this is an experimental feature. QEMU will slow down when
999using it. USB devices requiring real time streaming (i.e. USB Video
1000Cameras) are not supported yet.
1001
1002@enumerate
5fafdf24 1003@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
1004is actually using the USB device. A simple way to do that is simply to
1005disable the corresponding kernel module by renaming it from @file{mydriver.o}
1006to @file{mydriver.o.disabled}.
1007
1008@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1009@example
1010ls /proc/bus/usb
1011001 devices drivers
1012@end example
1013
1014@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1015@example
1016chown -R myuid /proc/bus/usb
1017@end example
1018
1019@item Launch QEMU and do in the monitor:
5fafdf24 1020@example
b389dbfb
FB
1021info usbhost
1022 Device 1.2, speed 480 Mb/s
1023 Class 00: USB device 1234:5678, USB DISK
1024@end example
1025You should see the list of the devices you can use (Never try to use
1026hubs, it won't work).
1027
1028@item Add the device in QEMU by using:
5fafdf24 1029@example
a92ff8c1 1030device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1031@end example
1032
a92ff8c1
TH
1033Normally the guest OS should report that a new USB device is plugged.
1034You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1035
1036@item Now you can try to use the host USB device in QEMU.
1037
1038@end enumerate
1039
1040When relaunching QEMU, you may have to unplug and plug again the USB
1041device to make it work again (this is a bug).
1042
f858dcae
TS
1043@node vnc_security
1044@section VNC security
1045
1046The VNC server capability provides access to the graphical console
1047of the guest VM across the network. This has a number of security
1048considerations depending on the deployment scenarios.
1049
1050@menu
1051* vnc_sec_none::
1052* vnc_sec_password::
1053* vnc_sec_certificate::
1054* vnc_sec_certificate_verify::
1055* vnc_sec_certificate_pw::
2f9606b3
AL
1056* vnc_sec_sasl::
1057* vnc_sec_certificate_sasl::
2f9606b3 1058* vnc_setup_sasl::
f858dcae
TS
1059@end menu
1060@node vnc_sec_none
1061@subsection Without passwords
1062
1063The simplest VNC server setup does not include any form of authentication.
1064For this setup it is recommended to restrict it to listen on a UNIX domain
1065socket only. For example
1066
1067@example
3804da9d 1068qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1069@end example
1070
1071This ensures that only users on local box with read/write access to that
1072path can access the VNC server. To securely access the VNC server from a
1073remote machine, a combination of netcat+ssh can be used to provide a secure
1074tunnel.
1075
1076@node vnc_sec_password
1077@subsection With passwords
1078
1079The VNC protocol has limited support for password based authentication. Since
1080the protocol limits passwords to 8 characters it should not be considered
1081to provide high security. The password can be fairly easily brute-forced by
1082a client making repeat connections. For this reason, a VNC server using password
1083authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1084or UNIX domain sockets. Password authentication is not supported when operating
1085in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1086authentication is requested with the @code{password} option, and then once QEMU
1087is running the password is set with the monitor. Until the monitor is used to
1088set the password all clients will be rejected.
f858dcae
TS
1089
1090@example
3804da9d 1091qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1092(qemu) change vnc password
1093Password: ********
1094(qemu)
1095@end example
1096
1097@node vnc_sec_certificate
1098@subsection With x509 certificates
1099
1100The QEMU VNC server also implements the VeNCrypt extension allowing use of
1101TLS for encryption of the session, and x509 certificates for authentication.
1102The use of x509 certificates is strongly recommended, because TLS on its
1103own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1104support provides a secure session, but no authentication. This allows any
1105client to connect, and provides an encrypted session.
1106
1107@example
756b9da7
DB
1108qemu-system-i386 [...OPTIONS...] \
1109 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1110 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1111@end example
1112
1113In the above example @code{/etc/pki/qemu} should contain at least three files,
1114@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1115users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1116NB the @code{server-key.pem} file should be protected with file mode 0600 to
1117only be readable by the user owning it.
1118
1119@node vnc_sec_certificate_verify
1120@subsection With x509 certificates and client verification
1121
1122Certificates can also provide a means to authenticate the client connecting.
1123The server will request that the client provide a certificate, which it will
1124then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1125in an environment with a private internal certificate authority. It uses the
1126same syntax as previously, but with @code{verify-peer} set to @code{yes}
1127instead.
f858dcae
TS
1128
1129@example
756b9da7
DB
1130qemu-system-i386 [...OPTIONS...] \
1131 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1132 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1133@end example
1134
1135
1136@node vnc_sec_certificate_pw
1137@subsection With x509 certificates, client verification and passwords
1138
1139Finally, the previous method can be combined with VNC password authentication
1140to provide two layers of authentication for clients.
1141
1142@example
756b9da7
DB
1143qemu-system-i386 [...OPTIONS...] \
1144 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1145 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1146(qemu) change vnc password
1147Password: ********
1148(qemu)
1149@end example
1150
2f9606b3
AL
1151
1152@node vnc_sec_sasl
1153@subsection With SASL authentication
1154
1155The SASL authentication method is a VNC extension, that provides an
1156easily extendable, pluggable authentication method. This allows for
1157integration with a wide range of authentication mechanisms, such as
1158PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1159The strength of the authentication depends on the exact mechanism
1160configured. If the chosen mechanism also provides a SSF layer, then
1161it will encrypt the datastream as well.
1162
1163Refer to the later docs on how to choose the exact SASL mechanism
1164used for authentication, but assuming use of one supporting SSF,
1165then QEMU can be launched with:
1166
1167@example
3804da9d 1168qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1169@end example
1170
1171@node vnc_sec_certificate_sasl
1172@subsection With x509 certificates and SASL authentication
1173
1174If the desired SASL authentication mechanism does not supported
1175SSF layers, then it is strongly advised to run it in combination
1176with TLS and x509 certificates. This provides securely encrypted
1177data stream, avoiding risk of compromising of the security
1178credentials. This can be enabled, by combining the 'sasl' option
1179with the aforementioned TLS + x509 options:
1180
1181@example
756b9da7
DB
1182qemu-system-i386 [...OPTIONS...] \
1183 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1184 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1185@end example
1186
5d19a6ea
DB
1187@node vnc_setup_sasl
1188
1189@subsection Configuring SASL mechanisms
1190
1191The following documentation assumes use of the Cyrus SASL implementation on a
1192Linux host, but the principles should apply to any other SASL implementation
1193or host. When SASL is enabled, the mechanism configuration will be loaded from
1194system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1195unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1196it search alternate locations for the service config file.
1197
1198If the TLS option is enabled for VNC, then it will provide session encryption,
1199otherwise the SASL mechanism will have to provide encryption. In the latter
1200case the list of possible plugins that can be used is drastically reduced. In
1201fact only the GSSAPI SASL mechanism provides an acceptable level of security
1202by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1203mechanism, however, it has multiple serious flaws described in detail in
1204RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1205provides a simple username/password auth facility similar to DIGEST-MD5, but
1206does not support session encryption, so can only be used in combination with
1207TLS.
2f9606b3 1208
5d19a6ea 1209When not using TLS the recommended configuration is
f858dcae 1210
5d19a6ea
DB
1211@example
1212mech_list: gssapi
1213keytab: /etc/qemu/krb5.tab
1214@end example
1215
1216This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1217the server principal stored in /etc/qemu/krb5.tab. For this to work the
1218administrator of your KDC must generate a Kerberos principal for the server,
1219with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1220'somehost.example.com' with the fully qualified host name of the machine
1221running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1222
1223When using TLS, if username+password authentication is desired, then a
1224reasonable configuration is
1225
1226@example
1227mech_list: scram-sha-1
1228sasldb_path: /etc/qemu/passwd.db
1229@end example
1230
1231The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1232file with accounts.
1233
1234Other SASL configurations will be left as an exercise for the reader. Note that
1235all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1236secure data channel.
1237
1238
1239@node network_tls
1240@section TLS setup for network services
1241
1242Almost all network services in QEMU have the ability to use TLS for
1243session data encryption, along with x509 certificates for simple
1244client authentication. What follows is a description of how to
1245generate certificates suitable for usage with QEMU, and applies to
1246the VNC server, character devices with the TCP backend, NBD server
1247and client, and migration server and client.
1248
1249At a high level, QEMU requires certificates and private keys to be
1250provided in PEM format. Aside from the core fields, the certificates
1251should include various extension data sets, including v3 basic
1252constraints data, key purpose, key usage and subject alt name.
1253
1254The GnuTLS package includes a command called @code{certtool} which can
1255be used to easily generate certificates and keys in the required format
1256with expected data present. Alternatively a certificate management
1257service may be used.
1258
1259At a minimum it is necessary to setup a certificate authority, and
1260issue certificates to each server. If using x509 certificates for
1261authentication, then each client will also need to be issued a
1262certificate.
1263
1264Assuming that the QEMU network services will only ever be exposed to
1265clients on a private intranet, there is no need to use a commercial
1266certificate authority to create certificates. A self-signed CA is
1267sufficient, and in fact likely to be more secure since it removes
1268the ability of malicious 3rd parties to trick the CA into mis-issuing
1269certs for impersonating your services. The only likely exception
1270where a commercial CA might be desirable is if enabling the VNC
1271websockets server and exposing it directly to remote browser clients.
1272In such a case it might be useful to use a commercial CA to avoid
1273needing to install custom CA certs in the web browsers.
1274
1275The recommendation is for the server to keep its certificates in either
1276@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1277
1278@menu
5d19a6ea
DB
1279* tls_generate_ca::
1280* tls_generate_server::
1281* tls_generate_client::
1282* tls_creds_setup::
e1a6dc91 1283* tls_psk::
f858dcae 1284@end menu
5d19a6ea
DB
1285@node tls_generate_ca
1286@subsection Setup the Certificate Authority
f858dcae
TS
1287
1288This step only needs to be performed once per organization / organizational
1289unit. First the CA needs a private key. This key must be kept VERY secret
1290and secure. If this key is compromised the entire trust chain of the certificates
1291issued with it is lost.
1292
1293@example
1294# certtool --generate-privkey > ca-key.pem
1295@end example
1296
5d19a6ea
DB
1297To generate a self-signed certificate requires one core piece of information,
1298the name of the organization. A template file @code{ca.info} should be
1299populated with the desired data to avoid having to deal with interactive
1300prompts from certtool:
f858dcae
TS
1301@example
1302# cat > ca.info <<EOF
1303cn = Name of your organization
1304ca
1305cert_signing_key
1306EOF
1307# certtool --generate-self-signed \
1308 --load-privkey ca-key.pem
1309 --template ca.info \
1310 --outfile ca-cert.pem
1311@end example
1312
5d19a6ea
DB
1313The @code{ca} keyword in the template sets the v3 basic constraints extension
1314to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1315the key usage extension to indicate this will be used for signing other keys.
1316The generated @code{ca-cert.pem} file should be copied to all servers and
1317clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1318must not be disclosed/copied anywhere except the host responsible for issuing
1319certificates.
f858dcae 1320
5d19a6ea
DB
1321@node tls_generate_server
1322@subsection Issuing server certificates
f858dcae
TS
1323
1324Each server (or host) needs to be issued with a key and certificate. When connecting
1325the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1326The core pieces of information for a server certificate are the hostnames and/or IP
1327addresses that will be used by clients when connecting. The hostname / IP address
1328that the client specifies when connecting will be validated against the hostname(s)
1329and IP address(es) recorded in the server certificate, and if no match is found
1330the client will close the connection.
1331
1332Thus it is recommended that the server certificate include both the fully qualified
1333and unqualified hostnames. If the server will have permanently assigned IP address(es),
1334and clients are likely to use them when connecting, they may also be included in the
1335certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1336only included 1 hostname in the @code{CN} field, however, usage of this field for
1337validation is now deprecated. Instead modern TLS clients will validate against the
1338Subject Alt Name extension data, which allows for multiple entries. In the future
1339usage of the @code{CN} field may be discontinued entirely, so providing SAN
1340extension data is strongly recommended.
1341
1342On the host holding the CA, create template files containing the information
1343for each server, and use it to issue server certificates.
f858dcae
TS
1344
1345@example
5d19a6ea 1346# cat > server-hostNNN.info <<EOF
f858dcae 1347organization = Name of your organization
5d19a6ea
DB
1348cn = hostNNN.foo.example.com
1349dns_name = hostNNN
1350dns_name = hostNNN.foo.example.com
1351ip_address = 10.0.1.87
1352ip_address = 192.8.0.92
1353ip_address = 2620:0:cafe::87
1354ip_address = 2001:24::92
f858dcae
TS
1355tls_www_server
1356encryption_key
1357signing_key
1358EOF
5d19a6ea 1359# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1360# certtool --generate-certificate \
1361 --load-ca-certificate ca-cert.pem \
1362 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1363 --load-privkey server-hostNNN-key.pem \
1364 --template server-hostNNN.info \
1365 --outfile server-hostNNN-cert.pem
f858dcae
TS
1366@end example
1367
5d19a6ea
DB
1368The @code{dns_name} and @code{ip_address} fields in the template are setting
1369the subject alt name extension data. The @code{tls_www_server} keyword is the
1370key purpose extension to indicate this certificate is intended for usage in
1371a web server. Although QEMU network services are not in fact HTTP servers
1372(except for VNC websockets), setting this key purpose is still recommended.
1373The @code{encryption_key} and @code{signing_key} keyword is the key usage
1374extension to indicate this certificate is intended for usage in the data
1375session.
1376
1377The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1378should now be securely copied to the server for which they were generated,
1379and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1380to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1381file is security sensitive and should be kept protected with file mode 0600
1382to prevent disclosure.
1383
1384@node tls_generate_client
1385@subsection Issuing client certificates
f858dcae 1386
5d19a6ea
DB
1387The QEMU x509 TLS credential setup defaults to enabling client verification
1388using certificates, providing a simple authentication mechanism. If this
1389default is used, each client also needs to be issued a certificate. The client
1390certificate contains enough metadata to uniquely identify the client with the
1391scope of the certificate authority. The client certificate would typically
1392include fields for organization, state, city, building, etc.
1393
1394Once again on the host holding the CA, create template files containing the
1395information for each client, and use it to issue client certificates.
f858dcae 1396
f858dcae
TS
1397
1398@example
5d19a6ea 1399# cat > client-hostNNN.info <<EOF
f858dcae
TS
1400country = GB
1401state = London
5d19a6ea 1402locality = City Of London
63c693f8 1403organization = Name of your organization
5d19a6ea 1404cn = hostNNN.foo.example.com
f858dcae
TS
1405tls_www_client
1406encryption_key
1407signing_key
1408EOF
5d19a6ea 1409# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1410# certtool --generate-certificate \
1411 --load-ca-certificate ca-cert.pem \
1412 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1413 --load-privkey client-hostNNN-key.pem \
1414 --template client-hostNNN.info \
1415 --outfile client-hostNNN-cert.pem
f858dcae
TS
1416@end example
1417
5d19a6ea
DB
1418The subject alt name extension data is not required for clients, so the
1419the @code{dns_name} and @code{ip_address} fields are not included.
1420The @code{tls_www_client} keyword is the key purpose extension to indicate
1421this certificate is intended for usage in a web client. Although QEMU
1422network clients are not in fact HTTP clients, setting this key purpose is
1423still recommended. The @code{encryption_key} and @code{signing_key} keyword
1424is the key usage extension to indicate this certificate is intended for
1425usage in the data session.
1426
1427The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1428should now be securely copied to the client for which they were generated,
1429and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1430to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1431file is security sensitive and should be kept protected with file mode 0600
1432to prevent disclosure.
1433
1434If a single host is going to be using TLS in both a client and server
1435role, it is possible to create a single certificate to cover both roles.
1436This would be quite common for the migration and NBD services, where a
1437QEMU process will be started by accepting a TLS protected incoming migration,
1438and later itself be migrated out to another host. To generate a single
1439certificate, simply include the template data from both the client and server
1440instructions in one.
2f9606b3 1441
5d19a6ea
DB
1442@example
1443# cat > both-hostNNN.info <<EOF
1444country = GB
1445state = London
1446locality = City Of London
1447organization = Name of your organization
1448cn = hostNNN.foo.example.com
1449dns_name = hostNNN
1450dns_name = hostNNN.foo.example.com
1451ip_address = 10.0.1.87
1452ip_address = 192.8.0.92
1453ip_address = 2620:0:cafe::87
1454ip_address = 2001:24::92
1455tls_www_server
1456tls_www_client
1457encryption_key
1458signing_key
1459EOF
1460# certtool --generate-privkey > both-hostNNN-key.pem
1461# certtool --generate-certificate \
1462 --load-ca-certificate ca-cert.pem \
1463 --load-ca-privkey ca-key.pem \
1464 --load-privkey both-hostNNN-key.pem \
1465 --template both-hostNNN.info \
1466 --outfile both-hostNNN-cert.pem
1467@end example
c6a9a9f5 1468
5d19a6ea
DB
1469When copying the PEM files to the target host, save them twice,
1470once as @code{server-cert.pem} and @code{server-key.pem}, and
1471again as @code{client-cert.pem} and @code{client-key.pem}.
1472
1473@node tls_creds_setup
1474@subsection TLS x509 credential configuration
1475
1476QEMU has a standard mechanism for loading x509 credentials that will be
1477used for network services and clients. It requires specifying the
1478@code{tls-creds-x509} class name to the @code{--object} command line
1479argument for the system emulators. Each set of credentials loaded should
1480be given a unique string identifier via the @code{id} parameter. A single
1481set of TLS credentials can be used for multiple network backends, so VNC,
1482migration, NBD, character devices can all share the same credentials. Note,
1483however, that credentials for use in a client endpoint must be loaded
1484separately from those used in a server endpoint.
1485
1486When specifying the object, the @code{dir} parameters specifies which
1487directory contains the credential files. This directory is expected to
1488contain files with the names mentioned previously, @code{ca-cert.pem},
1489@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1490and @code{client-cert.pem} as appropriate. It is also possible to
1491include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1492@code{dh-params.pem}, which can be created using the
1493@code{certtool --generate-dh-params} command. If omitted, QEMU will
1494dynamically generate DH parameters when loading the credentials.
1495
1496The @code{endpoint} parameter indicates whether the credentials will
1497be used for a network client or server, and determines which PEM
1498files are loaded.
1499
1500The @code{verify} parameter determines whether x509 certificate
1501validation should be performed. This defaults to enabled, meaning
1502clients will always validate the server hostname against the
1503certificate subject alt name fields and/or CN field. It also
1504means that servers will request that clients provide a certificate
1505and validate them. Verification should never be turned off for
1506client endpoints, however, it may be turned off for server endpoints
1507if an alternative mechanism is used to authenticate clients. For
1508example, the VNC server can use SASL to authenticate clients
1509instead.
1510
1511To load server credentials with client certificate validation
1512enabled
2f9606b3
AL
1513
1514@example
5d19a6ea 1515$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1516@end example
1517
5d19a6ea 1518while to load client credentials use
2f9606b3
AL
1519
1520@example
5d19a6ea 1521$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1522@end example
1523
5d19a6ea
DB
1524Network services which support TLS will all have a @code{tls-creds}
1525parameter which expects the ID of the TLS credentials object. For
1526example with VNC:
2f9606b3 1527
5d19a6ea
DB
1528@example
1529$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
1530@end example
2f9606b3 1531
e1a6dc91
RJ
1532@node tls_psk
1533@subsection TLS Pre-Shared Keys (PSK)
1534
1535Instead of using certificates, you may also use TLS Pre-Shared Keys
1536(TLS-PSK). This can be simpler to set up than certificates but is
1537less scalable.
1538
1539Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1540file containing one or more usernames and random keys:
1541
1542@example
1543mkdir -m 0700 /tmp/keys
1544psktool -u rich -p /tmp/keys/keys.psk
1545@end example
1546
1547TLS-enabled servers such as qemu-nbd can use this directory like so:
1548
1549@example
1550qemu-nbd \
1551 -t -x / \
1552 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1553 --tls-creds tls0 \
1554 image.qcow2
1555@end example
1556
1557When connecting from a qemu-based client you must specify the
1558directory containing @code{keys.psk} and an optional @var{username}
1559(defaults to ``qemu''):
1560
1561@example
1562qemu-img info \
1563 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1564 --image-opts \
1565 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1566@end example
1567
0806e3f6 1568@node gdb_usage
da415d54
FB
1569@section GDB usage
1570
1571QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1572'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1573
b65ee4fa 1574In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1575gdb connection:
1576@example
3804da9d
SW
1577qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1578 -append "root=/dev/hda"
da415d54
FB
1579Connected to host network interface: tun0
1580Waiting gdb connection on port 1234
1581@end example
1582
1583Then launch gdb on the 'vmlinux' executable:
1584@example
1585> gdb vmlinux
1586@end example
1587
1588In gdb, connect to QEMU:
1589@example
6c9bf893 1590(gdb) target remote localhost:1234
da415d54
FB
1591@end example
1592
1593Then you can use gdb normally. For example, type 'c' to launch the kernel:
1594@example
1595(gdb) c
1596@end example
1597
0806e3f6
FB
1598Here are some useful tips in order to use gdb on system code:
1599
1600@enumerate
1601@item
1602Use @code{info reg} to display all the CPU registers.
1603@item
1604Use @code{x/10i $eip} to display the code at the PC position.
1605@item
1606Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1607@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1608@end enumerate
1609
60897d36
EI
1610Advanced debugging options:
1611
b6af0975 1612The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1613@table @code
60897d36
EI
1614@item maintenance packet qqemu.sstepbits
1615
1616This will display the MASK bits used to control the single stepping IE:
1617@example
1618(gdb) maintenance packet qqemu.sstepbits
1619sending: "qqemu.sstepbits"
1620received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1621@end example
1622@item maintenance packet qqemu.sstep
1623
1624This will display the current value of the mask used when single stepping IE:
1625@example
1626(gdb) maintenance packet qqemu.sstep
1627sending: "qqemu.sstep"
1628received: "0x7"
1629@end example
1630@item maintenance packet Qqemu.sstep=HEX_VALUE
1631
1632This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1633@example
1634(gdb) maintenance packet Qqemu.sstep=0x5
1635sending: "qemu.sstep=0x5"
1636received: "OK"
1637@end example
94d45e44 1638@end table
60897d36 1639
debc7065 1640@node pcsys_os_specific
1a084f3d
FB
1641@section Target OS specific information
1642
1643@subsection Linux
1644
15a34c63
FB
1645To have access to SVGA graphic modes under X11, use the @code{vesa} or
1646the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1647color depth in the guest and the host OS.
1a084f3d 1648
e3371e62
FB
1649When using a 2.6 guest Linux kernel, you should add the option
1650@code{clock=pit} on the kernel command line because the 2.6 Linux
1651kernels make very strict real time clock checks by default that QEMU
1652cannot simulate exactly.
1653
7c3fc84d
FB
1654When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1655not activated because QEMU is slower with this patch. The QEMU
1656Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1657Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1658patch by default. Newer kernels don't have it.
1659
1a084f3d
FB
1660@subsection Windows
1661
1662If you have a slow host, using Windows 95 is better as it gives the
1663best speed. Windows 2000 is also a good choice.
1664
e3371e62
FB
1665@subsubsection SVGA graphic modes support
1666
1667QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1668card. All Windows versions starting from Windows 95 should recognize
1669and use this graphic card. For optimal performances, use 16 bit color
1670depth in the guest and the host OS.
1a084f3d 1671
3cb0853a
FB
1672If you are using Windows XP as guest OS and if you want to use high
1673resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16741280x1024x16), then you should use the VESA VBE virtual graphic card
1675(option @option{-std-vga}).
1676
e3371e62
FB
1677@subsubsection CPU usage reduction
1678
1679Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1680instruction. The result is that it takes host CPU cycles even when
1681idle. You can install the utility from
70b7fba9 1682@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1683to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1684
9d0a8e6f 1685@subsubsection Windows 2000 disk full problem
e3371e62 1686
9d0a8e6f
FB
1687Windows 2000 has a bug which gives a disk full problem during its
1688installation. When installing it, use the @option{-win2k-hack} QEMU
1689option to enable a specific workaround. After Windows 2000 is
1690installed, you no longer need this option (this option slows down the
1691IDE transfers).
e3371e62 1692
6cc721cf
FB
1693@subsubsection Windows 2000 shutdown
1694
1695Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1696can. It comes from the fact that Windows 2000 does not automatically
1697use the APM driver provided by the BIOS.
1698
1699In order to correct that, do the following (thanks to Struan
1700Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1701Add/Troubleshoot a device => Add a new device & Next => No, select the
1702hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1703(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1704correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1705
1706@subsubsection Share a directory between Unix and Windows
1707
c8c6afa8
TH
1708See @ref{sec_invocation} about the help of the option
1709@option{'-netdev user,smb=...'}.
6cc721cf 1710
2192c332 1711@subsubsection Windows XP security problem
e3371e62
FB
1712
1713Some releases of Windows XP install correctly but give a security
1714error when booting:
1715@example
1716A problem is preventing Windows from accurately checking the
1717license for this computer. Error code: 0x800703e6.
1718@end example
e3371e62 1719
2192c332
FB
1720The workaround is to install a service pack for XP after a boot in safe
1721mode. Then reboot, and the problem should go away. Since there is no
1722network while in safe mode, its recommended to download the full
1723installation of SP1 or SP2 and transfer that via an ISO or using the
1724vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1725
a0a821a4
FB
1726@subsection MS-DOS and FreeDOS
1727
1728@subsubsection CPU usage reduction
1729
1730DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1731it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1732@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1733to solve this problem.
a0a821a4 1734
debc7065 1735@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1736@chapter QEMU System emulator for non PC targets
1737
1738QEMU is a generic emulator and it emulates many non PC
1739machines. Most of the options are similar to the PC emulator. The
4be456f1 1740differences are mentioned in the following sections.
3f9f3aa1 1741
debc7065 1742@menu
7544a042 1743* PowerPC System emulator::
24d4de45
TS
1744* Sparc32 System emulator::
1745* Sparc64 System emulator::
1746* MIPS System emulator::
1747* ARM System emulator::
1748* ColdFire System emulator::
7544a042
SW
1749* Cris System emulator::
1750* Microblaze System emulator::
1751* SH4 System emulator::
3aeaea65 1752* Xtensa System emulator::
debc7065
FB
1753@end menu
1754
7544a042
SW
1755@node PowerPC System emulator
1756@section PowerPC System emulator
1757@cindex system emulation (PowerPC)
1a084f3d 1758
15a34c63
FB
1759Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1760or PowerMac PowerPC system.
1a084f3d 1761
b671f9ed 1762QEMU emulates the following PowerMac peripherals:
1a084f3d 1763
15a34c63 1764@itemize @minus
5fafdf24 1765@item
006f3a48 1766UniNorth or Grackle PCI Bridge
15a34c63
FB
1767@item
1768PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1769@item
15a34c63 17702 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1771@item
15a34c63
FB
1772NE2000 PCI adapters
1773@item
1774Non Volatile RAM
1775@item
1776VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1777@end itemize
1778
b671f9ed 1779QEMU emulates the following PREP peripherals:
52c00a5f
FB
1780
1781@itemize @minus
5fafdf24 1782@item
15a34c63
FB
1783PCI Bridge
1784@item
1785PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1786@item
52c00a5f
FB
17872 IDE interfaces with hard disk and CD-ROM support
1788@item
1789Floppy disk
5fafdf24 1790@item
15a34c63 1791NE2000 network adapters
52c00a5f
FB
1792@item
1793Serial port
1794@item
1795PREP Non Volatile RAM
15a34c63
FB
1796@item
1797PC compatible keyboard and mouse.
52c00a5f
FB
1798@end itemize
1799
15a34c63 1800QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1801@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1802
70b7fba9 1803Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1804for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1805v2) portable firmware implementation. The goal is to implement a 100%
1806IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1807
15a34c63
FB
1808@c man begin OPTIONS
1809
1810The following options are specific to the PowerPC emulation:
1811
1812@table @option
1813
4e257e5e 1814@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1815
340fb41b 1816Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1817
4e257e5e 1818@item -prom-env @var{string}
95efd11c
BS
1819
1820Set OpenBIOS variables in NVRAM, for example:
1821
1822@example
1823qemu-system-ppc -prom-env 'auto-boot?=false' \
1824 -prom-env 'boot-device=hd:2,\yaboot' \
1825 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1826@end example
1827
1828These variables are not used by Open Hack'Ware.
1829
15a34c63
FB
1830@end table
1831
5fafdf24 1832@c man end
15a34c63
FB
1833
1834
52c00a5f 1835More information is available at
3f9f3aa1 1836@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1837
24d4de45
TS
1838@node Sparc32 System emulator
1839@section Sparc32 System emulator
7544a042 1840@cindex system emulation (Sparc32)
e80cfcfc 1841
34a3d239
BS
1842Use the executable @file{qemu-system-sparc} to simulate the following
1843Sun4m architecture machines:
1844@itemize @minus
1845@item
1846SPARCstation 4
1847@item
1848SPARCstation 5
1849@item
1850SPARCstation 10
1851@item
1852SPARCstation 20
1853@item
1854SPARCserver 600MP
1855@item
1856SPARCstation LX
1857@item
1858SPARCstation Voyager
1859@item
1860SPARCclassic
1861@item
1862SPARCbook
1863@end itemize
1864
1865The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1866but Linux limits the number of usable CPUs to 4.
e80cfcfc 1867
6a4e1771 1868QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1869
1870@itemize @minus
3475187d 1871@item
6a4e1771 1872IOMMU
e80cfcfc 1873@item
33632788 1874TCX or cgthree Frame buffer
5fafdf24 1875@item
e80cfcfc
FB
1876Lance (Am7990) Ethernet
1877@item
34a3d239 1878Non Volatile RAM M48T02/M48T08
e80cfcfc 1879@item
3475187d
FB
1880Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1881and power/reset logic
1882@item
1883ESP SCSI controller with hard disk and CD-ROM support
1884@item
6a3b9cc9 1885Floppy drive (not on SS-600MP)
a2502b58
BS
1886@item
1887CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1888@end itemize
1889
6a3b9cc9
BS
1890The number of peripherals is fixed in the architecture. Maximum
1891memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1892others 2047MB.
3475187d 1893
30a604f3 1894Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1895@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1896firmware implementation. The goal is to implement a 100% IEEE
18971275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1898
1899A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1900the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1901most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1902don't work probably due to interface issues between OpenBIOS and
1903Solaris.
3475187d
FB
1904
1905@c man begin OPTIONS
1906
a2502b58 1907The following options are specific to the Sparc32 emulation:
3475187d
FB
1908
1909@table @option
1910
4e257e5e 1911@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1912
33632788
MCA
1913Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1914option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1915of 1152x900x8 for people who wish to use OBP.
3475187d 1916
4e257e5e 1917@item -prom-env @var{string}
66508601
BS
1918
1919Set OpenBIOS variables in NVRAM, for example:
1920
1921@example
1922qemu-system-sparc -prom-env 'auto-boot?=false' \
1923 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1924@end example
1925
6a4e1771 1926@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1927
1928Set the emulated machine type. Default is SS-5.
1929
3475187d
FB
1930@end table
1931
5fafdf24 1932@c man end
3475187d 1933
24d4de45
TS
1934@node Sparc64 System emulator
1935@section Sparc64 System emulator
7544a042 1936@cindex system emulation (Sparc64)
e80cfcfc 1937
34a3d239
BS
1938Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1939(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1940Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1941able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1942Sun4v emulator is still a work in progress.
1943
1944The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1945of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1946and is able to boot the disk.s10hw2 Solaris image.
1947@example
1948qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1949 -nographic -m 256 \
1950 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1951@end example
1952
b756921a 1953
c7ba218d 1954QEMU emulates the following peripherals:
83469015
FB
1955
1956@itemize @minus
1957@item
5fafdf24 1958UltraSparc IIi APB PCI Bridge
83469015
FB
1959@item
1960PCI VGA compatible card with VESA Bochs Extensions
1961@item
34a3d239
BS
1962PS/2 mouse and keyboard
1963@item
83469015
FB
1964Non Volatile RAM M48T59
1965@item
1966PC-compatible serial ports
c7ba218d
BS
1967@item
19682 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1969@item
1970Floppy disk
83469015
FB
1971@end itemize
1972
c7ba218d
BS
1973@c man begin OPTIONS
1974
1975The following options are specific to the Sparc64 emulation:
1976
1977@table @option
1978
4e257e5e 1979@item -prom-env @var{string}
34a3d239
BS
1980
1981Set OpenBIOS variables in NVRAM, for example:
1982
1983@example
1984qemu-system-sparc64 -prom-env 'auto-boot?=false'
1985@end example
1986
a2664ca0 1987@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1988
1989Set the emulated machine type. The default is sun4u.
1990
1991@end table
1992
1993@c man end
1994
24d4de45
TS
1995@node MIPS System emulator
1996@section MIPS System emulator
7544a042 1997@cindex system emulation (MIPS)
9d0a8e6f 1998
f7d257cb
SM
1999@menu
2000* nanoMIPS System emulator ::
2001@end menu
2002
d9aedc32
TS
2003Four executables cover simulation of 32 and 64-bit MIPS systems in
2004both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2005@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 2006Five different machine types are emulated:
24d4de45
TS
2007
2008@itemize @minus
2009@item
2010A generic ISA PC-like machine "mips"
2011@item
2012The MIPS Malta prototype board "malta"
2013@item
d9aedc32 2014An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2015@item
f0fc6f8f 2016MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2017@item
2018A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2019@end itemize
2020
2021The generic emulation is supported by Debian 'Etch' and is able to
2022install Debian into a virtual disk image. The following devices are
2023emulated:
3f9f3aa1
FB
2024
2025@itemize @minus
5fafdf24 2026@item
6bf5b4e8 2027A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2028@item
2029PC style serial port
2030@item
24d4de45
TS
2031PC style IDE disk
2032@item
3f9f3aa1
FB
2033NE2000 network card
2034@end itemize
2035
24d4de45
TS
2036The Malta emulation supports the following devices:
2037
2038@itemize @minus
2039@item
0b64d008 2040Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2041@item
2042PIIX4 PCI/USB/SMbus controller
2043@item
2044The Multi-I/O chip's serial device
2045@item
3a2eeac0 2046PCI network cards (PCnet32 and others)
24d4de45
TS
2047@item
2048Malta FPGA serial device
2049@item
1f605a76 2050Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2051@end itemize
2052
ba182a18
AM
2053The Boston board emulation supports the following devices:
2054
2055@itemize @minus
2056@item
2057Xilinx FPGA, which includes a PCIe root port and an UART
2058@item
2059Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2060@end itemize
2061
24d4de45
TS
2062The ACER Pica emulation supports:
2063
2064@itemize @minus
2065@item
2066MIPS R4000 CPU
2067@item
2068PC-style IRQ and DMA controllers
2069@item
2070PC Keyboard
2071@item
2072IDE controller
2073@end itemize
3f9f3aa1 2074
88cb0a02
AJ
2075The MIPS Magnum R4000 emulation supports:
2076
2077@itemize @minus
2078@item
2079MIPS R4000 CPU
2080@item
2081PC-style IRQ controller
2082@item
2083PC Keyboard
2084@item
2085SCSI controller
2086@item
2087G364 framebuffer
2088@end itemize
2089
3a1b94d9
AM
2090The Fulong 2E emulation supports:
2091
2092@itemize @minus
2093@item
2094Loongson 2E CPU
2095@item
2096Bonito64 system controller as North Bridge
2097@item
2098VT82C686 chipset as South Bridge
2099@item
2100RTL8139D as a network card chipset
2101@end itemize
2102
53d21e7b
AM
2103The mipssim pseudo board emulation provides an environment similar
2104to what the proprietary MIPS emulator uses for running Linux.
2105It supports:
2106
2107@itemize @minus
2108@item
2109A range of MIPS CPUs, default is the 24Kf
2110@item
2111PC style serial port
2112@item
2113MIPSnet network emulation
2114@end itemize
2115
f7d257cb
SM
2116@node nanoMIPS System emulator
2117@subsection nanoMIPS System emulator
2118@cindex system emulation (nanoMIPS)
2119
2120Executable @file{qemu-system-mipsel} also covers simulation of
212132-bit nanoMIPS system in little endian mode:
2122
2123@itemize @minus
2124@item
2125nanoMIPS I7200 CPU
2126@end itemize
2127
2128Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2129
2130Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2131
2132Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2133
2134Start system emulation of Malta board with nanoMIPS I7200 CPU:
2135@example
2136qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2137 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2138 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2139@end example
2140
88cb0a02 2141
24d4de45
TS
2142@node ARM System emulator
2143@section ARM System emulator
7544a042 2144@cindex system emulation (ARM)
3f9f3aa1
FB
2145
2146Use the executable @file{qemu-system-arm} to simulate a ARM
2147machine. The ARM Integrator/CP board is emulated with the following
2148devices:
2149
2150@itemize @minus
2151@item
9ee6e8bb 2152ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2153@item
2154Two PL011 UARTs
5fafdf24 2155@item
3f9f3aa1 2156SMC 91c111 Ethernet adapter
00a9bf19
PB
2157@item
2158PL110 LCD controller
2159@item
2160PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2161@item
2162PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2163@end itemize
2164
2165The ARM Versatile baseboard is emulated with the following devices:
2166
2167@itemize @minus
2168@item
9ee6e8bb 2169ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2170@item
2171PL190 Vectored Interrupt Controller
2172@item
2173Four PL011 UARTs
5fafdf24 2174@item
00a9bf19
PB
2175SMC 91c111 Ethernet adapter
2176@item
2177PL110 LCD controller
2178@item
2179PL050 KMI with PS/2 keyboard and mouse.
2180@item
2181PCI host bridge. Note the emulated PCI bridge only provides access to
2182PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2183This means some devices (eg. ne2k_pci NIC) are not usable, and others
2184(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2185mapped control registers.
e6de1bad
PB
2186@item
2187PCI OHCI USB controller.
2188@item
2189LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2190@item
2191PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2192@end itemize
2193
21a88941
PB
2194Several variants of the ARM RealView baseboard are emulated,
2195including the EB, PB-A8 and PBX-A9. Due to interactions with the
2196bootloader, only certain Linux kernel configurations work out
2197of the box on these boards.
2198
2199Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2200enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2201should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2202disabled and expect 1024M RAM.
2203
40c5c6cd 2204The following devices are emulated:
d7739d75
PB
2205
2206@itemize @minus
2207@item
f7c70325 2208ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2209@item
2210ARM AMBA Generic/Distributed Interrupt Controller
2211@item
2212Four PL011 UARTs
5fafdf24 2213@item
0ef849d7 2214SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2215@item
2216PL110 LCD controller
2217@item
2218PL050 KMI with PS/2 keyboard and mouse
2219@item
2220PCI host bridge
2221@item
2222PCI OHCI USB controller
2223@item
2224LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2225@item
2226PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2227@end itemize
2228
b00052e4
AZ
2229The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2230and "Terrier") emulation includes the following peripherals:
2231
2232@itemize @minus
2233@item
2234Intel PXA270 System-on-chip (ARM V5TE core)
2235@item
2236NAND Flash memory
2237@item
2238IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2239@item
2240On-chip OHCI USB controller
2241@item
2242On-chip LCD controller
2243@item
2244On-chip Real Time Clock
2245@item
2246TI ADS7846 touchscreen controller on SSP bus
2247@item
2248Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2249@item
2250GPIO-connected keyboard controller and LEDs
2251@item
549444e1 2252Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2253@item
2254Three on-chip UARTs
2255@item
2256WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2257@end itemize
2258
02645926
AZ
2259The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2260following elements:
2261
2262@itemize @minus
2263@item
2264Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2265@item
2266ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2267@item
2268On-chip LCD controller
2269@item
2270On-chip Real Time Clock
2271@item
2272TI TSC2102i touchscreen controller / analog-digital converter / Audio
2273CODEC, connected through MicroWire and I@math{^2}S busses
2274@item
2275GPIO-connected matrix keypad
2276@item
2277Secure Digital card connected to OMAP MMC/SD host
2278@item
2279Three on-chip UARTs
2280@end itemize
2281
c30bb264
AZ
2282Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2283emulation supports the following elements:
2284
2285@itemize @minus
2286@item
2287Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2288@item
2289RAM and non-volatile OneNAND Flash memories
2290@item
2291Display connected to EPSON remote framebuffer chip and OMAP on-chip
2292display controller and a LS041y3 MIPI DBI-C controller
2293@item
2294TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2295driven through SPI bus
2296@item
2297National Semiconductor LM8323-controlled qwerty keyboard driven
2298through I@math{^2}C bus
2299@item
2300Secure Digital card connected to OMAP MMC/SD host
2301@item
2302Three OMAP on-chip UARTs and on-chip STI debugging console
2303@item
40c5c6cd 2304A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 2305@item
c30bb264
AZ
2306Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2307TUSB6010 chip - only USB host mode is supported
2308@item
2309TI TMP105 temperature sensor driven through I@math{^2}C bus
2310@item
2311TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2312@item
2313Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2314through CBUS
2315@end itemize
2316
9ee6e8bb
PB
2317The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2318devices:
2319
2320@itemize @minus
2321@item
2322Cortex-M3 CPU core.
2323@item
232464k Flash and 8k SRAM.
2325@item
2326Timers, UARTs, ADC and I@math{^2}C interface.
2327@item
2328OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2329@end itemize
2330
2331The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2332devices:
2333
2334@itemize @minus
2335@item
2336Cortex-M3 CPU core.
2337@item
2338256k Flash and 64k SRAM.
2339@item
2340Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2341@item
2342OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2343@end itemize
2344
57cd6e97
AZ
2345The Freecom MusicPal internet radio emulation includes the following
2346elements:
2347
2348@itemize @minus
2349@item
2350Marvell MV88W8618 ARM core.
2351@item
235232 MB RAM, 256 KB SRAM, 8 MB flash.
2353@item
2354Up to 2 16550 UARTs
2355@item
2356MV88W8xx8 Ethernet controller
2357@item
2358MV88W8618 audio controller, WM8750 CODEC and mixer
2359@item
e080e785 2360128×64 display with brightness control
57cd6e97
AZ
2361@item
23622 buttons, 2 navigation wheels with button function
2363@end itemize
2364
997641a8 2365The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2366The emulation includes the following elements:
997641a8
AZ
2367
2368@itemize @minus
2369@item
2370Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2371@item
2372ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2373V1
23741 Flash of 16MB and 1 Flash of 8MB
2375V2
23761 Flash of 32MB
2377@item
2378On-chip LCD controller
2379@item
2380On-chip Real Time Clock
2381@item
2382Secure Digital card connected to OMAP MMC/SD host
2383@item
2384Three on-chip UARTs
2385@end itemize
2386
3f9f3aa1
FB
2387A Linux 2.6 test image is available on the QEMU web site. More
2388information is available in the QEMU mailing-list archive.
9d0a8e6f 2389
d2c639d6
BS
2390@c man begin OPTIONS
2391
2392The following options are specific to the ARM emulation:
2393
2394@table @option
2395
2396@item -semihosting
2397Enable semihosting syscall emulation.
2398
2399On ARM this implements the "Angel" interface.
2400
2401Note that this allows guest direct access to the host filesystem,
2402so should only be used with trusted guest OS.
2403
2404@end table
2405
abc67eb6
TH
2406@c man end
2407
24d4de45
TS
2408@node ColdFire System emulator
2409@section ColdFire System emulator
7544a042
SW
2410@cindex system emulation (ColdFire)
2411@cindex system emulation (M68K)
209a4e69
PB
2412
2413Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2414The emulator is able to boot a uClinux kernel.
707e011b
PB
2415
2416The M5208EVB emulation includes the following devices:
2417
2418@itemize @minus
5fafdf24 2419@item
707e011b
PB
2420MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2421@item
2422Three Two on-chip UARTs.
2423@item
2424Fast Ethernet Controller (FEC)
2425@end itemize
2426
2427The AN5206 emulation includes the following devices:
209a4e69
PB
2428
2429@itemize @minus
5fafdf24 2430@item
209a4e69
PB
2431MCF5206 ColdFire V2 Microprocessor.
2432@item
2433Two on-chip UARTs.
2434@end itemize
2435
d2c639d6
BS
2436@c man begin OPTIONS
2437
7544a042 2438The following options are specific to the ColdFire emulation:
d2c639d6
BS
2439
2440@table @option
2441
2442@item -semihosting
2443Enable semihosting syscall emulation.
2444
2445On M68K this implements the "ColdFire GDB" interface used by libgloss.
2446
2447Note that this allows guest direct access to the host filesystem,
2448so should only be used with trusted guest OS.
2449
2450@end table
2451
abc67eb6
TH
2452@c man end
2453
7544a042
SW
2454@node Cris System emulator
2455@section Cris System emulator
2456@cindex system emulation (Cris)
2457
2458TODO
2459
2460@node Microblaze System emulator
2461@section Microblaze System emulator
2462@cindex system emulation (Microblaze)
2463
2464TODO
2465
2466@node SH4 System emulator
2467@section SH4 System emulator
2468@cindex system emulation (SH4)
2469
2470TODO
2471
3aeaea65
MF
2472@node Xtensa System emulator
2473@section Xtensa System emulator
2474@cindex system emulation (Xtensa)
2475
2476Two executables cover simulation of both Xtensa endian options,
2477@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2478Two different machine types are emulated:
2479
2480@itemize @minus
2481@item
2482Xtensa emulator pseudo board "sim"
2483@item
2484Avnet LX60/LX110/LX200 board
2485@end itemize
2486
b5e4946f 2487The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2488to one provided by the proprietary Tensilica ISS.
2489It supports:
2490
2491@itemize @minus
2492@item
2493A range of Xtensa CPUs, default is the DC232B
2494@item
2495Console and filesystem access via semihosting calls
2496@end itemize
2497
2498The Avnet LX60/LX110/LX200 emulation supports:
2499
2500@itemize @minus
2501@item
2502A range of Xtensa CPUs, default is the DC232B
2503@item
250416550 UART
2505@item
2506OpenCores 10/100 Mbps Ethernet MAC
2507@end itemize
2508
2509@c man begin OPTIONS
2510
2511The following options are specific to the Xtensa emulation:
2512
2513@table @option
2514
2515@item -semihosting
2516Enable semihosting syscall emulation.
2517
2518Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2519Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2520
2521Note that this allows guest direct access to the host filesystem,
2522so should only be used with trusted guest OS.
2523
2524@end table
3f2ce724 2525
abc67eb6
TH
2526@c man end
2527
3f2ce724
TH
2528@node QEMU Guest Agent
2529@chapter QEMU Guest Agent invocation
2530
2531@include qemu-ga.texi
2532
5fafdf24
TS
2533@node QEMU User space emulator
2534@chapter QEMU User space emulator
83195237
FB
2535
2536@menu
2537* Supported Operating Systems ::
0722cc42 2538* Features::
83195237 2539* Linux User space emulator::
84778508 2540* BSD User space emulator ::
83195237
FB
2541@end menu
2542
2543@node Supported Operating Systems
2544@section Supported Operating Systems
2545
2546The following OS are supported in user space emulation:
2547
2548@itemize @minus
2549@item
4be456f1 2550Linux (referred as qemu-linux-user)
83195237 2551@item
84778508 2552BSD (referred as qemu-bsd-user)
83195237
FB
2553@end itemize
2554
0722cc42
PB
2555@node Features
2556@section Features
2557
2558QEMU user space emulation has the following notable features:
2559
2560@table @strong
2561@item System call translation:
2562QEMU includes a generic system call translator. This means that
2563the parameters of the system calls can be converted to fix
2564endianness and 32/64-bit mismatches between hosts and targets.
2565IOCTLs can be converted too.
2566
2567@item POSIX signal handling:
2568QEMU can redirect to the running program all signals coming from
2569the host (such as @code{SIGALRM}), as well as synthesize signals from
2570virtual CPU exceptions (for example @code{SIGFPE} when the program
2571executes a division by zero).
2572
2573QEMU relies on the host kernel to emulate most signal system
2574calls, for example to emulate the signal mask. On Linux, QEMU
2575supports both normal and real-time signals.
2576
2577@item Threading:
2578On Linux, QEMU can emulate the @code{clone} syscall and create a real
2579host thread (with a separate virtual CPU) for each emulated thread.
2580Note that not all targets currently emulate atomic operations correctly.
2581x86 and ARM use a global lock in order to preserve their semantics.
2582@end table
2583
2584QEMU was conceived so that ultimately it can emulate itself. Although
2585it is not very useful, it is an important test to show the power of the
2586emulator.
2587
83195237
FB
2588@node Linux User space emulator
2589@section Linux User space emulator
386405f7 2590
debc7065
FB
2591@menu
2592* Quick Start::
2593* Wine launch::
2594* Command line options::
79737e4a 2595* Other binaries::
debc7065
FB
2596@end menu
2597
2598@node Quick Start
83195237 2599@subsection Quick Start
df0f11a0 2600
1f673135 2601In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2602itself and all the target (x86) dynamic libraries used by it.
386405f7 2603
1f673135 2604@itemize
386405f7 2605
1f673135
FB
2606@item On x86, you can just try to launch any process by using the native
2607libraries:
386405f7 2608
5fafdf24 2609@example
1f673135
FB
2610qemu-i386 -L / /bin/ls
2611@end example
386405f7 2612
1f673135
FB
2613@code{-L /} tells that the x86 dynamic linker must be searched with a
2614@file{/} prefix.
386405f7 2615
b65ee4fa
SW
2616@item Since QEMU is also a linux process, you can launch QEMU with
2617QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2618
5fafdf24 2619@example
1f673135
FB
2620qemu-i386 -L / qemu-i386 -L / /bin/ls
2621@end example
386405f7 2622
1f673135
FB
2623@item On non x86 CPUs, you need first to download at least an x86 glibc
2624(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2625@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2626
1f673135 2627@example
5fafdf24 2628unset LD_LIBRARY_PATH
1f673135 2629@end example
1eb87257 2630
1f673135 2631Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2632
1f673135
FB
2633@example
2634qemu-i386 tests/i386/ls
2635@end example
4c3b5a48 2636You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2637QEMU is automatically launched by the Linux kernel when you try to
2638launch x86 executables. It requires the @code{binfmt_misc} module in the
2639Linux kernel.
1eb87257 2640
1f673135
FB
2641@item The x86 version of QEMU is also included. You can try weird things such as:
2642@example
debc7065
FB
2643qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2644 /usr/local/qemu-i386/bin/ls-i386
1f673135 2645@end example
1eb20527 2646
1f673135 2647@end itemize
1eb20527 2648
debc7065 2649@node Wine launch
83195237 2650@subsection Wine launch
1eb20527 2651
1f673135 2652@itemize
386405f7 2653
1f673135
FB
2654@item Ensure that you have a working QEMU with the x86 glibc
2655distribution (see previous section). In order to verify it, you must be
2656able to do:
386405f7 2657
1f673135
FB
2658@example
2659qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2660@end example
386405f7 2661
1f673135 2662@item Download the binary x86 Wine install
5fafdf24 2663(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2664
1f673135 2665@item Configure Wine on your account. Look at the provided script
debc7065 2666@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2667@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2668
1f673135 2669@item Then you can try the example @file{putty.exe}:
386405f7 2670
1f673135 2671@example
debc7065
FB
2672qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2673 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2674@end example
386405f7 2675
1f673135 2676@end itemize
fd429f2f 2677
debc7065 2678@node Command line options
83195237 2679@subsection Command line options
1eb20527 2680
1f673135 2681@example
8485140f 2682@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2683@end example
1eb20527 2684
1f673135
FB
2685@table @option
2686@item -h
2687Print the help
3b46e624 2688@item -L path
1f673135
FB
2689Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2690@item -s size
2691Set the x86 stack size in bytes (default=524288)
34a3d239 2692@item -cpu model
c8057f95 2693Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2694@item -E @var{var}=@var{value}
2695Set environment @var{var} to @var{value}.
2696@item -U @var{var}
2697Remove @var{var} from the environment.
379f6698
PB
2698@item -B offset
2699Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2700the address region required by guest applications is reserved on the host.
2701This option is currently only supported on some hosts.
68a1c816
PB
2702@item -R size
2703Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2704"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2705@end table
2706
1f673135 2707Debug options:
386405f7 2708
1f673135 2709@table @option
989b697d
PM
2710@item -d item1,...
2711Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2712@item -p pagesize
2713Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2714@item -g port
2715Wait gdb connection to port
1b530a6d
AJ
2716@item -singlestep
2717Run the emulation in single step mode.
1f673135 2718@end table
386405f7 2719
b01bcae6
AZ
2720Environment variables:
2721
2722@table @env
2723@item QEMU_STRACE
2724Print system calls and arguments similar to the 'strace' program
2725(NOTE: the actual 'strace' program will not work because the user
2726space emulator hasn't implemented ptrace). At the moment this is
2727incomplete. All system calls that don't have a specific argument
2728format are printed with information for six arguments. Many
2729flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2730@end table
b01bcae6 2731
79737e4a 2732@node Other binaries
83195237 2733@subsection Other binaries
79737e4a 2734
7544a042
SW
2735@cindex user mode (Alpha)
2736@command{qemu-alpha} TODO.
2737
2738@cindex user mode (ARM)
2739@command{qemu-armeb} TODO.
2740
2741@cindex user mode (ARM)
79737e4a
PB
2742@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2743binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2744configurations), and arm-uclinux bFLT format binaries.
2745
7544a042
SW
2746@cindex user mode (ColdFire)
2747@cindex user mode (M68K)
e6e5906b
PB
2748@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2749(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2750coldfire uClinux bFLT format binaries.
2751
79737e4a
PB
2752The binary format is detected automatically.
2753
7544a042
SW
2754@cindex user mode (Cris)
2755@command{qemu-cris} TODO.
2756
2757@cindex user mode (i386)
2758@command{qemu-i386} TODO.
2759@command{qemu-x86_64} TODO.
2760
2761@cindex user mode (Microblaze)
2762@command{qemu-microblaze} TODO.
2763
2764@cindex user mode (MIPS)
8639c5c9
AM
2765@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2766
2767@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2768
2769@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2770
2771@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2772
2773@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2774
2775@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2776
e671711c
MV
2777@cindex user mode (NiosII)
2778@command{qemu-nios2} TODO.
2779
7544a042
SW
2780@cindex user mode (PowerPC)
2781@command{qemu-ppc64abi32} TODO.
2782@command{qemu-ppc64} TODO.
2783@command{qemu-ppc} TODO.
2784
2785@cindex user mode (SH4)
2786@command{qemu-sh4eb} TODO.
2787@command{qemu-sh4} TODO.
2788
2789@cindex user mode (SPARC)
34a3d239
BS
2790@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2791
a785e42e
BS
2792@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2793(Sparc64 CPU, 32 bit ABI).
2794
2795@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2796SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2797
84778508
BS
2798@node BSD User space emulator
2799@section BSD User space emulator
2800
2801@menu
2802* BSD Status::
2803* BSD Quick Start::
2804* BSD Command line options::
2805@end menu
2806
2807@node BSD Status
2808@subsection BSD Status
2809
2810@itemize @minus
2811@item
2812target Sparc64 on Sparc64: Some trivial programs work.
2813@end itemize
2814
2815@node BSD Quick Start
2816@subsection Quick Start
2817
2818In order to launch a BSD process, QEMU needs the process executable
2819itself and all the target dynamic libraries used by it.
2820
2821@itemize
2822
2823@item On Sparc64, you can just try to launch any process by using the native
2824libraries:
2825
2826@example
2827qemu-sparc64 /bin/ls
2828@end example
2829
2830@end itemize
2831
2832@node BSD Command line options
2833@subsection Command line options
2834
2835@example
8485140f 2836@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2837@end example
2838
2839@table @option
2840@item -h
2841Print the help
2842@item -L path
2843Set the library root path (default=/)
2844@item -s size
2845Set the stack size in bytes (default=524288)
f66724c9
SW
2846@item -ignore-environment
2847Start with an empty environment. Without this option,
40c5c6cd 2848the initial environment is a copy of the caller's environment.
f66724c9
SW
2849@item -E @var{var}=@var{value}
2850Set environment @var{var} to @var{value}.
2851@item -U @var{var}
2852Remove @var{var} from the environment.
84778508
BS
2853@item -bsd type
2854Set the type of the emulated BSD Operating system. Valid values are
2855FreeBSD, NetBSD and OpenBSD (default).
2856@end table
2857
2858Debug options:
2859
2860@table @option
989b697d
PM
2861@item -d item1,...
2862Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2863@item -p pagesize
2864Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2865@item -singlestep
2866Run the emulation in single step mode.
84778508
BS
2867@end table
2868
483c6ad4
BP
2869@node System requirements
2870@chapter System requirements
2871
2872@section KVM kernel module
2873
2874On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2875require the host to be running Linux v4.5 or newer.
2876
2877The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2878added with Linux 4.5 which is supported by the major distros. And even
2879if RHEL7 has kernel 3.10, KVM there has the required functionality there
2880to make it close to a 4.5 or newer kernel.
47eacb4f 2881
e8412576
SH
2882@include docs/security.texi
2883
78e87797
PB
2884@include qemu-tech.texi
2885
44c67847 2886@include qemu-deprecated.texi
efe2add7 2887
45b47130
DB
2888@node Supported build platforms
2889@appendix Supported build platforms
2890
2891QEMU aims to support building and executing on multiple host OS platforms.
2892This appendix outlines which platforms are the major build targets. These
2893platforms are used as the basis for deciding upon the minimum required
2894versions of 3rd party software QEMU depends on. The supported platforms
2895are the targets for automated testing performed by the project when patches
2896are submitted for review, and tested before and after merge.
2897
2898If a platform is not listed here, it does not imply that QEMU won't work.
2899If an unlisted platform has comparable software versions to a listed platform,
2900there is every expectation that it will work. Bug reports are welcome for
2901problems encountered on unlisted platforms unless they are clearly older
2902vintage than what is described here.
2903
2904Note that when considering software versions shipped in distros as support
2905targets, QEMU considers only the version number, and assumes the features in
2906that distro match the upstream release with the same version. In other words,
2907if a distro backports extra features to the software in their distro, QEMU
2908upstream code will not add explicit support for those backports, unless the
2909feature is auto-detectable in a manner that works for the upstream releases
2910too.
2911
2912The Repology site @url{https://repology.org} is a useful resource to identify
2913currently shipped versions of software in various operating systems, though
2914it does not cover all distros listed below.
2915
2916@section Linux OS
2917
2918For distributions with frequent, short-lifetime releases, the project will
2919aim to support all versions that are not end of life by their respective
2920vendors. For the purposes of identifying supported software versions, the
2921project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2922lifetime distros will be assumed to ship similar software versions.
2923
2924For distributions with long-lifetime releases, the project will aim to support
2925the most recent major version at all times. Support for the previous major
2926version will be dropped 2 years after the new major version is released. For
2927the purposes of identifying supported software versions, the project will look
2928at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2929be assumed to ship similar software versions.
2930
2931@section Windows
2932
2933The project supports building with current versions of the MinGW toolchain,
2934hosted on Linux.
2935
2936@section macOS
2937
2938The project supports building with the two most recent versions of macOS, with
2939the current homebrew package set available.
2940
2941@section FreeBSD
2942
2943The project aims to support the all the versions which are not end of life.
2944
2945@section NetBSD
2946
2947The project aims to support the most recent major version at all times. Support
2948for the previous major version will be dropped 2 years after the new major
2949version is released.
2950
2951@section OpenBSD
2952
2953The project aims to support the all the versions which are not end of life.
2954
7544a042
SW
2955@node License
2956@appendix License
2957
2958QEMU is a trademark of Fabrice Bellard.
2959
2f8d8f01
TH
2960QEMU is released under the
2961@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2962version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2963@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2964
debc7065 2965@node Index
7544a042
SW
2966@appendix Index
2967@menu
2968* Concept Index::
2969* Function Index::
2970* Keystroke Index::
2971* Program Index::
2972* Data Type Index::
2973* Variable Index::
2974@end menu
2975
2976@node Concept Index
2977@section Concept Index
2978This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2979@printindex cp
2980
7544a042
SW
2981@node Function Index
2982@section Function Index
2983This index could be used for command line options and monitor functions.
2984@printindex fn
2985
2986@node Keystroke Index
2987@section Keystroke Index
2988
2989This is a list of all keystrokes which have a special function
2990in system emulation.
2991
2992@printindex ky
2993
2994@node Program Index
2995@section Program Index
2996@printindex pg
2997
2998@node Data Type Index
2999@section Data Type Index
3000
3001This index could be used for qdev device names and options.
3002
3003@printindex tp
3004
3005@node Variable Index
3006@section Variable Index
3007@printindex vr
3008
debc7065 3009@bye