]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
crypto: move common bits for all emulators to libqemuutil
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
664785ac
TH
14@set qemu_system qemu-system-x86_64
15@set qemu_system_x86 qemu-system-x86_64
16
a1a32b05
SW
17@ifinfo
18@direntry
19* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
20@end direntry
21@end ifinfo
22
0806e3f6 23@iftex
386405f7
FB
24@titlepage
25@sp 7
44cb280d 26@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
27@sp 1
28@center @titlefont{User Documentation}
386405f7
FB
29@sp 3
30@end titlepage
0806e3f6 31@end iftex
386405f7 32
debc7065
FB
33@ifnottex
34@node Top
35@top
36
37@menu
38* Introduction::
debc7065
FB
39* QEMU PC System emulator::
40* QEMU System emulator for non PC targets::
3f2ce724 41* QEMU Guest Agent::
83195237 42* QEMU User space emulator::
483c6ad4 43* System requirements::
e8412576 44* Security::
78e87797 45* Implementation notes::
eb22aeca 46* Deprecated features::
369e8f5b 47* Recently removed features::
45b47130 48* Supported build platforms::
7544a042 49* License::
debc7065
FB
50* Index::
51@end menu
52@end ifnottex
53
54@contents
55
56@node Introduction
386405f7
FB
57@chapter Introduction
58
debc7065
FB
59@menu
60* intro_features:: Features
61@end menu
62
63@node intro_features
322d0c66 64@section Features
386405f7 65
1f673135
FB
66QEMU is a FAST! processor emulator using dynamic translation to
67achieve good emulation speed.
1eb20527 68
1f3e7e41 69@cindex operating modes
1eb20527 70QEMU has two operating modes:
0806e3f6 71
d7e5edca 72@itemize
7544a042 73@cindex system emulation
1f3e7e41 74@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
75example a PC), including one or several processors and various
76peripherals. It can be used to launch different Operating Systems
77without rebooting the PC or to debug system code.
1eb20527 78
7544a042 79@cindex user mode emulation
1f3e7e41 80@item User mode emulation. In this mode, QEMU can launch
83195237 81processes compiled for one CPU on another CPU. It can be used to
70b7fba9 82launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 83to ease cross-compilation and cross-debugging.
1eb20527
FB
84
85@end itemize
86
1f3e7e41
PB
87QEMU has the following features:
88
89@itemize
90@item QEMU can run without a host kernel driver and yet gives acceptable
91performance. It uses dynamic translation to native code for reasonable speed,
92with support for self-modifying code and precise exceptions.
93
94@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
95Windows) and architectures.
96
97@item It performs accurate software emulation of the FPU.
98@end itemize
322d0c66 99
1f3e7e41 100QEMU user mode emulation has the following features:
52c00a5f 101@itemize
1f3e7e41
PB
102@item Generic Linux system call converter, including most ioctls.
103
104@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
105
106@item Accurate signal handling by remapping host signals to target signals.
107@end itemize
108
109QEMU full system emulation has the following features:
110@itemize
111@item
112QEMU uses a full software MMU for maximum portability.
113
114@item
326c4c3c 115QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
116execute most of the guest code natively, while
117continuing to emulate the rest of the machine.
118
119@item
120Various hardware devices can be emulated and in some cases, host
121devices (e.g. serial and parallel ports, USB, drives) can be used
122transparently by the guest Operating System. Host device passthrough
123can be used for talking to external physical peripherals (e.g. a
124webcam, modem or tape drive).
125
126@item
127Symmetric multiprocessing (SMP) support. Currently, an in-kernel
128accelerator is required to use more than one host CPU for emulation.
129
52c00a5f 130@end itemize
386405f7 131
0806e3f6 132
debc7065 133@node QEMU PC System emulator
3f9f3aa1 134@chapter QEMU PC System emulator
7544a042 135@cindex system emulation (PC)
1eb20527 136
debc7065
FB
137@menu
138* pcsys_introduction:: Introduction
139* pcsys_quickstart:: Quick Start
140* sec_invocation:: Invocation
a40db1b3
PM
141* pcsys_keys:: Keys in the graphical frontends
142* mux_keys:: Keys in the character backend multiplexer
debc7065 143* pcsys_monitor:: QEMU Monitor
2544e9e4 144* cpu_models:: CPU models
debc7065
FB
145* disk_images:: Disk Images
146* pcsys_network:: Network emulation
576fd0a1 147* pcsys_other_devs:: Other Devices
debc7065
FB
148* direct_linux_boot:: Direct Linux Boot
149* pcsys_usb:: USB emulation
f858dcae 150* vnc_security:: VNC security
5d19a6ea 151* network_tls:: TLS setup for network services
debc7065
FB
152* gdb_usage:: GDB usage
153* pcsys_os_specific:: Target OS specific information
154@end menu
155
156@node pcsys_introduction
0806e3f6
FB
157@section Introduction
158
159@c man begin DESCRIPTION
160
3f9f3aa1
FB
161The QEMU PC System emulator simulates the
162following peripherals:
0806e3f6
FB
163
164@itemize @minus
5fafdf24 165@item
15a34c63 166i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 167@item
15a34c63
FB
168Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
169extensions (hardware level, including all non standard modes).
0806e3f6
FB
170@item
171PS/2 mouse and keyboard
5fafdf24 172@item
15a34c63 1732 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
174@item
175Floppy disk
5fafdf24 176@item
3a2eeac0 177PCI and ISA network adapters
0806e3f6 178@item
05d5818c
FB
179Serial ports
180@item
23076bb3
CM
181IPMI BMC, either and internal or external one
182@item
c0fe3827
FB
183Creative SoundBlaster 16 sound card
184@item
185ENSONIQ AudioPCI ES1370 sound card
186@item
e5c9a13e
AZ
187Intel 82801AA AC97 Audio compatible sound card
188@item
7d72e762
GH
189Intel HD Audio Controller and HDA codec
190@item
2d983446 191Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 192@item
26463dbc
AZ
193Gravis Ultrasound GF1 sound card
194@item
cc53d26d 195CS4231A compatible sound card
196@item
a92ff8c1 197PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
198@end itemize
199
3f9f3aa1
FB
200SMP is supported with up to 255 CPUs.
201
a8ad4159 202QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
203VGA BIOS.
204
c0fe3827
FB
205QEMU uses YM3812 emulation by Tatsuyuki Satoh.
206
2d983446 207QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 208by Tibor "TS" Schütz.
423d65f4 209
1a1a0e20 210Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 211QEMU must be told to not have parallel ports to have working GUS.
720036a5 212
213@example
664785ac 214@value{qemu_system_x86} dos.img -soundhw gus -parallel none
720036a5 215@end example
216
217Alternatively:
218@example
664785ac 219@value{qemu_system_x86} dos.img -device gus,irq=5
720036a5 220@end example
221
222Or some other unclaimed IRQ.
223
cc53d26d 224CS4231A is the chip used in Windows Sound System and GUSMAX products
225
0806e3f6
FB
226@c man end
227
debc7065 228@node pcsys_quickstart
1eb20527 229@section Quick Start
7544a042 230@cindex quick start
1eb20527 231
664785ac
TH
232Download and uncompress a hard disk image with Linux installed (e.g.
233@file{linux.img}) and type:
0806e3f6
FB
234
235@example
664785ac 236@value{qemu_system} linux.img
0806e3f6
FB
237@end example
238
239Linux should boot and give you a prompt.
240
6cc721cf 241@node sec_invocation
ec410fc9
FB
242@section Invocation
243
244@example
0806e3f6 245@c man begin SYNOPSIS
664785ac 246@command{@value{qemu_system}} [@var{options}] [@var{disk_image}]
0806e3f6 247@c man end
ec410fc9
FB
248@end example
249
0806e3f6 250@c man begin OPTIONS
d2c639d6
BS
251@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
252targets do not need a disk image.
ec410fc9 253
5824d651 254@include qemu-options.texi
ec410fc9 255
3e11db9a
FB
256@c man end
257
e896d0f9
MA
258@subsection Device URL Syntax
259@c TODO merge this with section Disk Images
260
261@c man begin NOTES
262
263In addition to using normal file images for the emulated storage devices,
264QEMU can also use networked resources such as iSCSI devices. These are
265specified using a special URL syntax.
266
267@table @option
268@item iSCSI
269iSCSI support allows QEMU to access iSCSI resources directly and use as
270images for the guest storage. Both disk and cdrom images are supported.
271
272Syntax for specifying iSCSI LUNs is
273``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
274
275By default qemu will use the iSCSI initiator-name
276'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
277line or a configuration file.
278
279Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
280stalled requests and force a reestablishment of the session. The timeout
281is specified in seconds. The default is 0 which means no timeout. Libiscsi
2821.15.0 or greater is required for this feature.
283
284Example (without authentication):
285@example
664785ac 286@value{qemu_system} -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
e896d0f9
MA
287 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
288 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
289@end example
290
291Example (CHAP username/password via URL):
292@example
664785ac 293@value{qemu_system} -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
294@end example
295
296Example (CHAP username/password via environment variables):
297@example
298LIBISCSI_CHAP_USERNAME="user" \
299LIBISCSI_CHAP_PASSWORD="password" \
664785ac 300@value{qemu_system} -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
e896d0f9
MA
301@end example
302
303@item NBD
304QEMU supports NBD (Network Block Devices) both using TCP protocol as well
0c61ebb0 305as Unix Domain Sockets. With TCP, the default port is 10809.
e896d0f9 306
0c61ebb0
EB
307Syntax for specifying a NBD device using TCP, in preferred URI form:
308``nbd://<server-ip>[:<port>]/[<export>]''
309
310Syntax for specifying a NBD device using Unix Domain Sockets; remember
311that '?' is a shell glob character and may need quoting:
312``nbd+unix:///[<export>]?socket=<domain-socket>''
313
314Older syntax that is also recognized:
e896d0f9
MA
315``nbd:<server-ip>:<port>[:exportname=<export>]''
316
317Syntax for specifying a NBD device using Unix Domain Sockets
318``nbd:unix:<domain-socket>[:exportname=<export>]''
319
320Example for TCP
321@example
664785ac 322@value{qemu_system} --drive file=nbd:192.0.2.1:30000
e896d0f9
MA
323@end example
324
325Example for Unix Domain Sockets
326@example
664785ac 327@value{qemu_system} --drive file=nbd:unix:/tmp/nbd-socket
e896d0f9
MA
328@end example
329
330@item SSH
331QEMU supports SSH (Secure Shell) access to remote disks.
332
333Examples:
334@example
664785ac
TH
335@value{qemu_system} -drive file=ssh://user@@host/path/to/disk.img
336@value{qemu_system} -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
e896d0f9
MA
337@end example
338
339Currently authentication must be done using ssh-agent. Other
340authentication methods may be supported in future.
341
342@item Sheepdog
343Sheepdog is a distributed storage system for QEMU.
344QEMU supports using either local sheepdog devices or remote networked
345devices.
346
347Syntax for specifying a sheepdog device
348@example
349sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
350@end example
351
352Example
353@example
664785ac 354@value{qemu_system} --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
e896d0f9
MA
355@end example
356
357See also @url{https://sheepdog.github.io/sheepdog/}.
358
359@item GlusterFS
360GlusterFS is a user space distributed file system.
361QEMU supports the use of GlusterFS volumes for hosting VM disk images using
362TCP, Unix Domain Sockets and RDMA transport protocols.
363
364Syntax for specifying a VM disk image on GlusterFS volume is
365@example
366
367URI:
368gluster[+type]://[host[:port]]/volume/path[?socket=...][,debug=N][,logfile=...]
369
370JSON:
371'json:@{"driver":"qcow2","file":@{"driver":"gluster","volume":"testvol","path":"a.img","debug":N,"logfile":"...",
372@ "server":[@{"type":"tcp","host":"...","port":"..."@},
373@ @{"type":"unix","socket":"..."@}]@}@}'
374@end example
375
376
377Example
378@example
379URI:
664785ac 380@value{qemu_system} --drive file=gluster://192.0.2.1/testvol/a.img,
e896d0f9
MA
381@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
382
383JSON:
664785ac 384@value{qemu_system} 'json:@{"driver":"qcow2",
e896d0f9
MA
385@ "file":@{"driver":"gluster",
386@ "volume":"testvol","path":"a.img",
387@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
388@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
389@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
664785ac 390@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
e896d0f9
MA
391@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
392@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
393@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
394@end example
395
396See also @url{http://www.gluster.org}.
397
398@item HTTP/HTTPS/FTP/FTPS
399QEMU supports read-only access to files accessed over http(s) and ftp(s).
400
401Syntax using a single filename:
402@example
403<protocol>://[<username>[:<password>]@@]<host>/<path>
404@end example
405
406where:
407@table @option
408@item protocol
409'http', 'https', 'ftp', or 'ftps'.
410
411@item username
412Optional username for authentication to the remote server.
413
414@item password
415Optional password for authentication to the remote server.
416
417@item host
418Address of the remote server.
419
420@item path
421Path on the remote server, including any query string.
422@end table
423
424The following options are also supported:
425@table @option
426@item url
427The full URL when passing options to the driver explicitly.
428
429@item readahead
430The amount of data to read ahead with each range request to the remote server.
431This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
432does not have a suffix, it will be assumed to be in bytes. The value must be a
433multiple of 512 bytes. It defaults to 256k.
434
435@item sslverify
436Whether to verify the remote server's certificate when connecting over SSL. It
437can have the value 'on' or 'off'. It defaults to 'on'.
438
439@item cookie
440Send this cookie (it can also be a list of cookies separated by ';') with
441each outgoing request. Only supported when using protocols such as HTTP
442which support cookies, otherwise ignored.
443
444@item timeout
445Set the timeout in seconds of the CURL connection. This timeout is the time
446that CURL waits for a response from the remote server to get the size of the
447image to be downloaded. If not set, the default timeout of 5 seconds is used.
448@end table
449
450Note that when passing options to qemu explicitly, @option{driver} is the value
451of <protocol>.
452
453Example: boot from a remote Fedora 20 live ISO image
454@example
93bbbdf6 455@value{qemu_system_x86} --drive media=cdrom,file=https://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9 456
93bbbdf6 457@value{qemu_system_x86} --drive media=cdrom,file.driver=http,file.url=http://archives.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
e896d0f9
MA
458@end example
459
460Example: boot from a remote Fedora 20 cloud image using a local overlay for
461writes, copy-on-read, and a readahead of 64k
462@example
93bbbdf6 463qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"http://archives.fedoraproject.org/pub/archive/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
e896d0f9 464
664785ac 465@value{qemu_system_x86} -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
e896d0f9
MA
466@end example
467
468Example: boot from an image stored on a VMware vSphere server with a self-signed
469certificate using a local overlay for writes, a readahead of 64k and a timeout
470of 10 seconds.
471@example
472qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
473
664785ac 474@value{qemu_system_x86} -drive file=/tmp/test.qcow2
e896d0f9
MA
475@end example
476
477@end table
478
479@c man end
480
debc7065 481@node pcsys_keys
a40db1b3 482@section Keys in the graphical frontends
3e11db9a
FB
483
484@c man begin OPTIONS
485
de1db2a1
BH
486During the graphical emulation, you can use special key combinations to change
487modes. The default key mappings are shown below, but if you use @code{-alt-grab}
488then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
489@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
490
a1b74fe8 491@table @key
f9859310 492@item Ctrl-Alt-f
7544a042 493@kindex Ctrl-Alt-f
a1b74fe8 494Toggle full screen
a0a821a4 495
d6a65ba3
JK
496@item Ctrl-Alt-+
497@kindex Ctrl-Alt-+
498Enlarge the screen
499
500@item Ctrl-Alt--
501@kindex Ctrl-Alt--
502Shrink the screen
503
c4a735f9 504@item Ctrl-Alt-u
7544a042 505@kindex Ctrl-Alt-u
c4a735f9 506Restore the screen's un-scaled dimensions
507
f9859310 508@item Ctrl-Alt-n
7544a042 509@kindex Ctrl-Alt-n
a0a821a4
FB
510Switch to virtual console 'n'. Standard console mappings are:
511@table @emph
512@item 1
513Target system display
514@item 2
515Monitor
516@item 3
517Serial port
a1b74fe8
FB
518@end table
519
f9859310 520@item Ctrl-Alt
7544a042 521@kindex Ctrl-Alt
a0a821a4
FB
522Toggle mouse and keyboard grab.
523@end table
524
7544a042
SW
525@kindex Ctrl-Up
526@kindex Ctrl-Down
527@kindex Ctrl-PageUp
528@kindex Ctrl-PageDown
3e11db9a
FB
529In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
530@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
531
a40db1b3
PM
532@c man end
533
534@node mux_keys
535@section Keys in the character backend multiplexer
536
537@c man begin OPTIONS
538
539During emulation, if you are using a character backend multiplexer
540(which is the default if you are using @option{-nographic}) then
541several commands are available via an escape sequence. These
542key sequences all start with an escape character, which is @key{Ctrl-a}
543by default, but can be changed with @option{-echr}. The list below assumes
544you're using the default.
ec410fc9
FB
545
546@table @key
a1b74fe8 547@item Ctrl-a h
7544a042 548@kindex Ctrl-a h
ec410fc9 549Print this help
3b46e624 550@item Ctrl-a x
7544a042 551@kindex Ctrl-a x
366dfc52 552Exit emulator
3b46e624 553@item Ctrl-a s
7544a042 554@kindex Ctrl-a s
1f47a922 555Save disk data back to file (if -snapshot)
20d8a3ed 556@item Ctrl-a t
7544a042 557@kindex Ctrl-a t
d2c639d6 558Toggle console timestamps
a1b74fe8 559@item Ctrl-a b
7544a042 560@kindex Ctrl-a b
1f673135 561Send break (magic sysrq in Linux)
a1b74fe8 562@item Ctrl-a c
7544a042 563@kindex Ctrl-a c
a40db1b3
PM
564Rotate between the frontends connected to the multiplexer (usually
565this switches between the monitor and the console)
a1b74fe8 566@item Ctrl-a Ctrl-a
a40db1b3
PM
567@kindex Ctrl-a Ctrl-a
568Send the escape character to the frontend
ec410fc9 569@end table
0806e3f6
FB
570@c man end
571
572@ignore
573
1f673135
FB
574@c man begin SEEALSO
575The HTML documentation of QEMU for more precise information and Linux
576user mode emulator invocation.
577@c man end
578
579@c man begin AUTHOR
580Fabrice Bellard
581@c man end
582
583@end ignore
584
debc7065 585@node pcsys_monitor
1f673135 586@section QEMU Monitor
7544a042 587@cindex QEMU monitor
1f673135
FB
588
589The QEMU monitor is used to give complex commands to the QEMU
590emulator. You can use it to:
591
592@itemize @minus
593
594@item
e598752a 595Remove or insert removable media images
89dfe898 596(such as CD-ROM or floppies).
1f673135 597
5fafdf24 598@item
1f673135
FB
599Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
600from a disk file.
601
602@item Inspect the VM state without an external debugger.
603
604@end itemize
605
606@subsection Commands
607
608The following commands are available:
609
2313086a 610@include qemu-monitor.texi
0806e3f6 611
2cd8af2d
PB
612@include qemu-monitor-info.texi
613
1f673135
FB
614@subsection Integer expressions
615
616The monitor understands integers expressions for every integer
617argument. You can use register names to get the value of specifics
618CPU registers by prefixing them with @emph{$}.
ec410fc9 619
2544e9e4
DB
620@node cpu_models
621@section CPU models
622
623@include docs/qemu-cpu-models.texi
624
1f47a922
FB
625@node disk_images
626@section Disk Images
627
ee29bdb6
PB
628QEMU supports many disk image formats, including growable disk images
629(their size increase as non empty sectors are written), compressed and
630encrypted disk images.
1f47a922 631
debc7065
FB
632@menu
633* disk_images_quickstart:: Quick start for disk image creation
634* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 635* vm_snapshots:: VM snapshots
debc7065 636* qemu_img_invocation:: qemu-img Invocation
975b092b 637* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 638* disk_images_formats:: Disk image file formats
19cb3738 639* host_drives:: Using host drives
debc7065 640* disk_images_fat_images:: Virtual FAT disk images
75818250 641* disk_images_nbd:: NBD access
42af9c30 642* disk_images_sheepdog:: Sheepdog disk images
00984e39 643* disk_images_iscsi:: iSCSI LUNs
8809e289 644* disk_images_gluster:: GlusterFS disk images
0a12ec87 645* disk_images_ssh:: Secure Shell (ssh) disk images
e86de5e4 646* disk_images_nvme:: NVMe userspace driver
b1d1cb27 647* disk_image_locking:: Disk image file locking
debc7065
FB
648@end menu
649
650@node disk_images_quickstart
acd935ef
FB
651@subsection Quick start for disk image creation
652
653You can create a disk image with the command:
1f47a922 654@example
acd935ef 655qemu-img create myimage.img mysize
1f47a922 656@end example
acd935ef
FB
657where @var{myimage.img} is the disk image filename and @var{mysize} is its
658size in kilobytes. You can add an @code{M} suffix to give the size in
659megabytes and a @code{G} suffix for gigabytes.
660
debc7065 661See @ref{qemu_img_invocation} for more information.
1f47a922 662
debc7065 663@node disk_images_snapshot_mode
1f47a922
FB
664@subsection Snapshot mode
665
666If you use the option @option{-snapshot}, all disk images are
667considered as read only. When sectors in written, they are written in
668a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
669write back to the raw disk images by using the @code{commit} monitor
670command (or @key{C-a s} in the serial console).
1f47a922 671
13a2e80f
FB
672@node vm_snapshots
673@subsection VM snapshots
674
675VM snapshots are snapshots of the complete virtual machine including
676CPU state, RAM, device state and the content of all the writable
677disks. In order to use VM snapshots, you must have at least one non
678removable and writable block device using the @code{qcow2} disk image
679format. Normally this device is the first virtual hard drive.
680
681Use the monitor command @code{savevm} to create a new VM snapshot or
682replace an existing one. A human readable name can be assigned to each
19d36792 683snapshot in addition to its numerical ID.
13a2e80f
FB
684
685Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
686a VM snapshot. @code{info snapshots} lists the available snapshots
687with their associated information:
688
689@example
690(qemu) info snapshots
691Snapshot devices: hda
692Snapshot list (from hda):
693ID TAG VM SIZE DATE VM CLOCK
6941 start 41M 2006-08-06 12:38:02 00:00:14.954
6952 40M 2006-08-06 12:43:29 00:00:18.633
6963 msys 40M 2006-08-06 12:44:04 00:00:23.514
697@end example
698
699A VM snapshot is made of a VM state info (its size is shown in
700@code{info snapshots}) and a snapshot of every writable disk image.
701The VM state info is stored in the first @code{qcow2} non removable
702and writable block device. The disk image snapshots are stored in
703every disk image. The size of a snapshot in a disk image is difficult
704to evaluate and is not shown by @code{info snapshots} because the
705associated disk sectors are shared among all the snapshots to save
19d36792
FB
706disk space (otherwise each snapshot would need a full copy of all the
707disk images).
13a2e80f
FB
708
709When using the (unrelated) @code{-snapshot} option
710(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
711but they are deleted as soon as you exit QEMU.
712
713VM snapshots currently have the following known limitations:
714@itemize
5fafdf24 715@item
13a2e80f
FB
716They cannot cope with removable devices if they are removed or
717inserted after a snapshot is done.
5fafdf24 718@item
13a2e80f
FB
719A few device drivers still have incomplete snapshot support so their
720state is not saved or restored properly (in particular USB).
721@end itemize
722
acd935ef
FB
723@node qemu_img_invocation
724@subsection @code{qemu-img} Invocation
1f47a922 725
acd935ef 726@include qemu-img.texi
05efe46e 727
975b092b
TS
728@node qemu_nbd_invocation
729@subsection @code{qemu-nbd} Invocation
730
731@include qemu-nbd.texi
732
78aa8aa0 733@include docs/qemu-block-drivers.texi
0a12ec87 734
debc7065 735@node pcsys_network
9d4fb82e
FB
736@section Network emulation
737
0e0266c2
TH
738QEMU can simulate several network cards (e.g. PCI or ISA cards on the PC
739target) and can connect them to a network backend on the host or an emulated
740hub. The various host network backends can either be used to connect the NIC of
741the guest to a real network (e.g. by using a TAP devices or the non-privileged
742user mode network stack), or to other guest instances running in another QEMU
743process (e.g. by using the socket host network backend).
9d4fb82e 744
41d03949
FB
745@subsection Using TAP network interfaces
746
747This is the standard way to connect QEMU to a real network. QEMU adds
748a virtual network device on your host (called @code{tapN}), and you
749can then configure it as if it was a real ethernet card.
9d4fb82e 750
8f40c388
FB
751@subsubsection Linux host
752
9d4fb82e
FB
753As an example, you can download the @file{linux-test-xxx.tar.gz}
754archive and copy the script @file{qemu-ifup} in @file{/etc} and
755configure properly @code{sudo} so that the command @code{ifconfig}
756contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 757that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
758device @file{/dev/net/tun} must be present.
759
ee0f4751
FB
760See @ref{sec_invocation} to have examples of command lines using the
761TAP network interfaces.
9d4fb82e 762
8f40c388
FB
763@subsubsection Windows host
764
765There is a virtual ethernet driver for Windows 2000/XP systems, called
766TAP-Win32. But it is not included in standard QEMU for Windows,
767so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 768so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 769
9d4fb82e
FB
770@subsection Using the user mode network stack
771
41d03949
FB
772By using the option @option{-net user} (default configuration if no
773@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 774network stack (you don't need root privilege to use the virtual
41d03949 775network). The virtual network configuration is the following:
9d4fb82e
FB
776
777@example
778
0e0266c2 779 guest (10.0.2.15) <------> Firewall/DHCP server <-----> Internet
41d03949 780 | (10.0.2.2)
9d4fb82e 781 |
2518bd0d 782 ----> DNS server (10.0.2.3)
3b46e624 783 |
2518bd0d 784 ----> SMB server (10.0.2.4)
9d4fb82e
FB
785@end example
786
787The QEMU VM behaves as if it was behind a firewall which blocks all
788incoming connections. You can use a DHCP client to automatically
41d03949
FB
789configure the network in the QEMU VM. The DHCP server assign addresses
790to the hosts starting from 10.0.2.15.
9d4fb82e
FB
791
792In order to check that the user mode network is working, you can ping
793the address 10.0.2.2 and verify that you got an address in the range
79410.0.2.x from the QEMU virtual DHCP server.
795
37cbfcce
GH
796Note that ICMP traffic in general does not work with user mode networking.
797@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
798however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
799ping sockets to allow @code{ping} to the Internet. The host admin has to set
800the ping_group_range in order to grant access to those sockets. To allow ping
801for GID 100 (usually users group):
802
803@example
804echo 100 100 > /proc/sys/net/ipv4/ping_group_range
805@end example
b415a407 806
9bf05444
FB
807When using the built-in TFTP server, the router is also the TFTP
808server.
809
c8c6afa8
TH
810When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
811connections can be redirected from the host to the guest. It allows for
812example to redirect X11, telnet or SSH connections.
443f1376 813
0e0266c2
TH
814@subsection Hubs
815
816QEMU can simulate several hubs. A hub can be thought of as a virtual connection
817between several network devices. These devices can be for example QEMU virtual
818ethernet cards or virtual Host ethernet devices (TAP devices). You can connect
819guest NICs or host network backends to such a hub using the @option{-netdev
820hubport} or @option{-nic hubport} options. The legacy @option{-net} option
821also connects the given device to the emulated hub with ID 0 (i.e. the default
822hub) unless you specify a netdev with @option{-net nic,netdev=xxx} here.
41d03949 823
0e0266c2 824@subsection Connecting emulated networks between QEMU instances
41d03949 825
0e0266c2
TH
826Using the @option{-netdev socket} (or @option{-nic socket} or
827@option{-net socket}) option, it is possible to create emulated
828networks that span several QEMU instances.
829See the description of the @option{-netdev socket} option in the
830@ref{sec_invocation,,Invocation chapter} to have a basic example.
41d03949 831
576fd0a1 832@node pcsys_other_devs
6cbf4c8c
CM
833@section Other Devices
834
835@subsection Inter-VM Shared Memory device
836
5400c02b
MA
837On Linux hosts, a shared memory device is available. The basic syntax
838is:
6cbf4c8c
CM
839
840@example
664785ac 841@value{qemu_system_x86} -device ivshmem-plain,memdev=@var{hostmem}
5400c02b
MA
842@end example
843
844where @var{hostmem} names a host memory backend. For a POSIX shared
845memory backend, use something like
846
847@example
848-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
849@end example
850
851If desired, interrupts can be sent between guest VMs accessing the same shared
852memory region. Interrupt support requires using a shared memory server and
853using a chardev socket to connect to it. The code for the shared memory server
854is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
855memory server is:
856
857@example
a75eb03b 858# First start the ivshmem server once and for all
50d34c4e 859ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
860
861# Then start your qemu instances with matching arguments
664785ac 862@value{qemu_system_x86} -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 863 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
864@end example
865
866When using the server, the guest will be assigned a VM ID (>=0) that allows guests
867using the same server to communicate via interrupts. Guests can read their
1309cf44 868VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 869
62a830b6
MA
870@subsubsection Migration with ivshmem
871
5400c02b
MA
872With device property @option{master=on}, the guest will copy the shared
873memory on migration to the destination host. With @option{master=off},
874the guest will not be able to migrate with the device attached. In the
875latter case, the device should be detached and then reattached after
876migration using the PCI hotplug support.
6cbf4c8c 877
62a830b6
MA
878At most one of the devices sharing the same memory can be master. The
879master must complete migration before you plug back the other devices.
880
7d4f4bda
MAL
881@subsubsection ivshmem and hugepages
882
883Instead of specifying the <shm size> using POSIX shm, you may specify
884a memory backend that has hugepage support:
885
886@example
664785ac 887@value{qemu_system_x86} -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
5400c02b 888 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
889@end example
890
891ivshmem-server also supports hugepages mount points with the
892@option{-m} memory path argument.
893
9d4fb82e
FB
894@node direct_linux_boot
895@section Direct Linux Boot
1f673135
FB
896
897This section explains how to launch a Linux kernel inside QEMU without
898having to make a full bootable image. It is very useful for fast Linux
ee0f4751 899kernel testing.
1f673135 900
ee0f4751 901The syntax is:
1f673135 902@example
664785ac 903@value{qemu_system} -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
1f673135
FB
904@end example
905
ee0f4751
FB
906Use @option{-kernel} to provide the Linux kernel image and
907@option{-append} to give the kernel command line arguments. The
908@option{-initrd} option can be used to provide an INITRD image.
1f673135 909
ee0f4751
FB
910If you do not need graphical output, you can disable it and redirect
911the virtual serial port and the QEMU monitor to the console with the
912@option{-nographic} option. The typical command line is:
1f673135 913@example
664785ac 914@value{qemu_system} -kernel bzImage -hda rootdisk.img \
3804da9d 915 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
916@end example
917
ee0f4751
FB
918Use @key{Ctrl-a c} to switch between the serial console and the
919monitor (@pxref{pcsys_keys}).
1f673135 920
debc7065 921@node pcsys_usb
b389dbfb
FB
922@section USB emulation
923
a92ff8c1
TH
924QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
925plug virtual USB devices or real host USB devices (only works with certain
926host operating systems). QEMU will automatically create and connect virtual
927USB hubs as necessary to connect multiple USB devices.
b389dbfb 928
0aff66b5
PB
929@menu
930* usb_devices::
931* host_usb_devices::
932@end menu
933@node usb_devices
934@subsection Connecting USB devices
b389dbfb 935
a92ff8c1
TH
936USB devices can be connected with the @option{-device usb-...} command line
937option or the @code{device_add} monitor command. Available devices are:
b389dbfb 938
db380c06 939@table @code
a92ff8c1 940@item usb-mouse
0aff66b5 941Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 942@item usb-tablet
c6d46c20 943Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 944This means QEMU is able to report the mouse position without having
0aff66b5 945to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
946@item usb-storage,drive=@var{drive_id}
947Mass storage device backed by @var{drive_id} (@pxref{disk_images})
948@item usb-uas
949USB attached SCSI device, see
70b7fba9 950@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
951for details
952@item usb-bot
953Bulk-only transport storage device, see
70b7fba9 954@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1 955for details here, too
1ee53067 956@item usb-mtp,rootdir=@var{dir}
a92ff8c1
TH
957Media transfer protocol device, using @var{dir} as root of the file tree
958that is presented to the guest.
959@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
960Pass through the host device identified by @var{bus} and @var{addr}
961@item usb-host,vendorid=@var{vendor},productid=@var{product}
962Pass through the host device identified by @var{vendor} and @var{product} ID
963@item usb-wacom-tablet
f6d2a316
AZ
964Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
965above but it can be used with the tslib library because in addition to touch
966coordinates it reports touch pressure.
a92ff8c1 967@item usb-kbd
47b2d338 968Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 969@item usb-serial,chardev=@var{id}
db380c06 970Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
971device @var{id}.
972@item usb-braille,chardev=@var{id}
2e4d9fb1 973Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
974or fake device referenced by @var{id}.
975@item usb-net[,netdev=@var{id}]
976Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
977specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 978For instance, user-mode networking can be used with
6c9f886c 979@example
664785ac 980@value{qemu_system} [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 981@end example
a92ff8c1
TH
982@item usb-ccid
983Smartcard reader device
984@item usb-audio
985USB audio device
0aff66b5 986@end table
b389dbfb 987
0aff66b5 988@node host_usb_devices
b389dbfb
FB
989@subsection Using host USB devices on a Linux host
990
991WARNING: this is an experimental feature. QEMU will slow down when
992using it. USB devices requiring real time streaming (i.e. USB Video
993Cameras) are not supported yet.
994
995@enumerate
5fafdf24 996@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
997is actually using the USB device. A simple way to do that is simply to
998disable the corresponding kernel module by renaming it from @file{mydriver.o}
999to @file{mydriver.o.disabled}.
1000
1001@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1002@example
1003ls /proc/bus/usb
1004001 devices drivers
1005@end example
1006
1007@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1008@example
1009chown -R myuid /proc/bus/usb
1010@end example
1011
1012@item Launch QEMU and do in the monitor:
5fafdf24 1013@example
b389dbfb
FB
1014info usbhost
1015 Device 1.2, speed 480 Mb/s
1016 Class 00: USB device 1234:5678, USB DISK
1017@end example
1018You should see the list of the devices you can use (Never try to use
1019hubs, it won't work).
1020
1021@item Add the device in QEMU by using:
5fafdf24 1022@example
a92ff8c1 1023device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
1024@end example
1025
a92ff8c1
TH
1026Normally the guest OS should report that a new USB device is plugged.
1027You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
1028
1029@item Now you can try to use the host USB device in QEMU.
1030
1031@end enumerate
1032
1033When relaunching QEMU, you may have to unplug and plug again the USB
1034device to make it work again (this is a bug).
1035
f858dcae
TS
1036@node vnc_security
1037@section VNC security
1038
1039The VNC server capability provides access to the graphical console
1040of the guest VM across the network. This has a number of security
1041considerations depending on the deployment scenarios.
1042
1043@menu
1044* vnc_sec_none::
1045* vnc_sec_password::
1046* vnc_sec_certificate::
1047* vnc_sec_certificate_verify::
1048* vnc_sec_certificate_pw::
2f9606b3
AL
1049* vnc_sec_sasl::
1050* vnc_sec_certificate_sasl::
2f9606b3 1051* vnc_setup_sasl::
f858dcae
TS
1052@end menu
1053@node vnc_sec_none
1054@subsection Without passwords
1055
1056The simplest VNC server setup does not include any form of authentication.
1057For this setup it is recommended to restrict it to listen on a UNIX domain
1058socket only. For example
1059
1060@example
664785ac 1061@value{qemu_system} [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
1062@end example
1063
1064This ensures that only users on local box with read/write access to that
1065path can access the VNC server. To securely access the VNC server from a
1066remote machine, a combination of netcat+ssh can be used to provide a secure
1067tunnel.
1068
1069@node vnc_sec_password
1070@subsection With passwords
1071
1072The VNC protocol has limited support for password based authentication. Since
1073the protocol limits passwords to 8 characters it should not be considered
1074to provide high security. The password can be fairly easily brute-forced by
1075a client making repeat connections. For this reason, a VNC server using password
1076authentication should be restricted to only listen on the loopback interface
0f66998f
PM
1077or UNIX domain sockets. Password authentication is not supported when operating
1078in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
1079authentication is requested with the @code{password} option, and then once QEMU
1080is running the password is set with the monitor. Until the monitor is used to
1081set the password all clients will be rejected.
f858dcae
TS
1082
1083@example
664785ac 1084@value{qemu_system} [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
1085(qemu) change vnc password
1086Password: ********
1087(qemu)
1088@end example
1089
1090@node vnc_sec_certificate
1091@subsection With x509 certificates
1092
1093The QEMU VNC server also implements the VeNCrypt extension allowing use of
1094TLS for encryption of the session, and x509 certificates for authentication.
1095The use of x509 certificates is strongly recommended, because TLS on its
1096own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1097support provides a secure session, but no authentication. This allows any
1098client to connect, and provides an encrypted session.
1099
1100@example
664785ac 1101@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1102 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
1103 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1104@end example
1105
1106In the above example @code{/etc/pki/qemu} should contain at least three files,
1107@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1108users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1109NB the @code{server-key.pem} file should be protected with file mode 0600 to
1110only be readable by the user owning it.
1111
1112@node vnc_sec_certificate_verify
1113@subsection With x509 certificates and client verification
1114
1115Certificates can also provide a means to authenticate the client connecting.
1116The server will request that the client provide a certificate, which it will
1117then validate against the CA certificate. This is a good choice if deploying
756b9da7
DB
1118in an environment with a private internal certificate authority. It uses the
1119same syntax as previously, but with @code{verify-peer} set to @code{yes}
1120instead.
f858dcae
TS
1121
1122@example
664785ac 1123@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1124 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1125 -vnc :1,tls-creds=tls0 -monitor stdio
f858dcae
TS
1126@end example
1127
1128
1129@node vnc_sec_certificate_pw
1130@subsection With x509 certificates, client verification and passwords
1131
1132Finally, the previous method can be combined with VNC password authentication
1133to provide two layers of authentication for clients.
1134
1135@example
664785ac 1136@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1137 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1138 -vnc :1,tls-creds=tls0,password -monitor stdio
f858dcae
TS
1139(qemu) change vnc password
1140Password: ********
1141(qemu)
1142@end example
1143
2f9606b3
AL
1144
1145@node vnc_sec_sasl
1146@subsection With SASL authentication
1147
1148The SASL authentication method is a VNC extension, that provides an
1149easily extendable, pluggable authentication method. This allows for
1150integration with a wide range of authentication mechanisms, such as
1151PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1152The strength of the authentication depends on the exact mechanism
1153configured. If the chosen mechanism also provides a SSF layer, then
1154it will encrypt the datastream as well.
1155
1156Refer to the later docs on how to choose the exact SASL mechanism
1157used for authentication, but assuming use of one supporting SSF,
1158then QEMU can be launched with:
1159
1160@example
664785ac 1161@value{qemu_system} [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
1162@end example
1163
1164@node vnc_sec_certificate_sasl
1165@subsection With x509 certificates and SASL authentication
1166
1167If the desired SASL authentication mechanism does not supported
1168SSF layers, then it is strongly advised to run it in combination
1169with TLS and x509 certificates. This provides securely encrypted
1170data stream, avoiding risk of compromising of the security
1171credentials. This can be enabled, by combining the 'sasl' option
1172with the aforementioned TLS + x509 options:
1173
1174@example
664785ac 1175@value{qemu_system} [...OPTIONS...] \
756b9da7
DB
1176 -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
1177 -vnc :1,tls-creds=tls0,sasl -monitor stdio
2f9606b3
AL
1178@end example
1179
5d19a6ea
DB
1180@node vnc_setup_sasl
1181
1182@subsection Configuring SASL mechanisms
1183
1184The following documentation assumes use of the Cyrus SASL implementation on a
1185Linux host, but the principles should apply to any other SASL implementation
1186or host. When SASL is enabled, the mechanism configuration will be loaded from
1187system default SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1188unprivileged user, an environment variable SASL_CONF_PATH can be used to make
1189it search alternate locations for the service config file.
1190
1191If the TLS option is enabled for VNC, then it will provide session encryption,
1192otherwise the SASL mechanism will have to provide encryption. In the latter
1193case the list of possible plugins that can be used is drastically reduced. In
1194fact only the GSSAPI SASL mechanism provides an acceptable level of security
1195by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1196mechanism, however, it has multiple serious flaws described in detail in
1197RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1198provides a simple username/password auth facility similar to DIGEST-MD5, but
1199does not support session encryption, so can only be used in combination with
1200TLS.
2f9606b3 1201
5d19a6ea 1202When not using TLS the recommended configuration is
f858dcae 1203
5d19a6ea
DB
1204@example
1205mech_list: gssapi
1206keytab: /etc/qemu/krb5.tab
1207@end example
1208
1209This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1210the server principal stored in /etc/qemu/krb5.tab. For this to work the
1211administrator of your KDC must generate a Kerberos principal for the server,
1212with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1213'somehost.example.com' with the fully qualified host name of the machine
1214running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
1215
1216When using TLS, if username+password authentication is desired, then a
1217reasonable configuration is
1218
1219@example
1220mech_list: scram-sha-1
1221sasldb_path: /etc/qemu/passwd.db
1222@end example
1223
1224The @code{saslpasswd2} program can be used to populate the @code{passwd.db}
1225file with accounts.
1226
1227Other SASL configurations will be left as an exercise for the reader. Note that
1228all mechanisms, except GSSAPI, should be combined with use of TLS to ensure a
1229secure data channel.
1230
1231
1232@node network_tls
1233@section TLS setup for network services
1234
1235Almost all network services in QEMU have the ability to use TLS for
1236session data encryption, along with x509 certificates for simple
1237client authentication. What follows is a description of how to
1238generate certificates suitable for usage with QEMU, and applies to
1239the VNC server, character devices with the TCP backend, NBD server
1240and client, and migration server and client.
1241
1242At a high level, QEMU requires certificates and private keys to be
1243provided in PEM format. Aside from the core fields, the certificates
1244should include various extension data sets, including v3 basic
1245constraints data, key purpose, key usage and subject alt name.
1246
1247The GnuTLS package includes a command called @code{certtool} which can
1248be used to easily generate certificates and keys in the required format
1249with expected data present. Alternatively a certificate management
1250service may be used.
1251
1252At a minimum it is necessary to setup a certificate authority, and
1253issue certificates to each server. If using x509 certificates for
1254authentication, then each client will also need to be issued a
1255certificate.
1256
1257Assuming that the QEMU network services will only ever be exposed to
1258clients on a private intranet, there is no need to use a commercial
1259certificate authority to create certificates. A self-signed CA is
1260sufficient, and in fact likely to be more secure since it removes
1261the ability of malicious 3rd parties to trick the CA into mis-issuing
1262certs for impersonating your services. The only likely exception
1263where a commercial CA might be desirable is if enabling the VNC
1264websockets server and exposing it directly to remote browser clients.
1265In such a case it might be useful to use a commercial CA to avoid
1266needing to install custom CA certs in the web browsers.
1267
1268The recommendation is for the server to keep its certificates in either
1269@code{/etc/pki/qemu} or for unprivileged users in @code{$HOME/.pki/qemu}.
f858dcae
TS
1270
1271@menu
5d19a6ea
DB
1272* tls_generate_ca::
1273* tls_generate_server::
1274* tls_generate_client::
1275* tls_creds_setup::
e1a6dc91 1276* tls_psk::
f858dcae 1277@end menu
5d19a6ea
DB
1278@node tls_generate_ca
1279@subsection Setup the Certificate Authority
f858dcae
TS
1280
1281This step only needs to be performed once per organization / organizational
1282unit. First the CA needs a private key. This key must be kept VERY secret
1283and secure. If this key is compromised the entire trust chain of the certificates
1284issued with it is lost.
1285
1286@example
1287# certtool --generate-privkey > ca-key.pem
1288@end example
1289
5d19a6ea
DB
1290To generate a self-signed certificate requires one core piece of information,
1291the name of the organization. A template file @code{ca.info} should be
1292populated with the desired data to avoid having to deal with interactive
1293prompts from certtool:
f858dcae
TS
1294@example
1295# cat > ca.info <<EOF
1296cn = Name of your organization
1297ca
1298cert_signing_key
1299EOF
1300# certtool --generate-self-signed \
1301 --load-privkey ca-key.pem
1302 --template ca.info \
1303 --outfile ca-cert.pem
1304@end example
1305
5d19a6ea
DB
1306The @code{ca} keyword in the template sets the v3 basic constraints extension
1307to indicate this certificate is for a CA, while @code{cert_signing_key} sets
1308the key usage extension to indicate this will be used for signing other keys.
1309The generated @code{ca-cert.pem} file should be copied to all servers and
1310clients wishing to utilize TLS support in the VNC server. The @code{ca-key.pem}
1311must not be disclosed/copied anywhere except the host responsible for issuing
1312certificates.
f858dcae 1313
5d19a6ea
DB
1314@node tls_generate_server
1315@subsection Issuing server certificates
f858dcae
TS
1316
1317Each server (or host) needs to be issued with a key and certificate. When connecting
1318the certificate is sent to the client which validates it against the CA certificate.
5d19a6ea
DB
1319The core pieces of information for a server certificate are the hostnames and/or IP
1320addresses that will be used by clients when connecting. The hostname / IP address
1321that the client specifies when connecting will be validated against the hostname(s)
1322and IP address(es) recorded in the server certificate, and if no match is found
1323the client will close the connection.
1324
1325Thus it is recommended that the server certificate include both the fully qualified
1326and unqualified hostnames. If the server will have permanently assigned IP address(es),
1327and clients are likely to use them when connecting, they may also be included in the
1328certificate. Both IPv4 and IPv6 addresses are supported. Historically certificates
1329only included 1 hostname in the @code{CN} field, however, usage of this field for
1330validation is now deprecated. Instead modern TLS clients will validate against the
1331Subject Alt Name extension data, which allows for multiple entries. In the future
1332usage of the @code{CN} field may be discontinued entirely, so providing SAN
1333extension data is strongly recommended.
1334
1335On the host holding the CA, create template files containing the information
1336for each server, and use it to issue server certificates.
f858dcae
TS
1337
1338@example
5d19a6ea 1339# cat > server-hostNNN.info <<EOF
f858dcae 1340organization = Name of your organization
5d19a6ea
DB
1341cn = hostNNN.foo.example.com
1342dns_name = hostNNN
1343dns_name = hostNNN.foo.example.com
1344ip_address = 10.0.1.87
1345ip_address = 192.8.0.92
1346ip_address = 2620:0:cafe::87
1347ip_address = 2001:24::92
f858dcae
TS
1348tls_www_server
1349encryption_key
1350signing_key
1351EOF
5d19a6ea 1352# certtool --generate-privkey > server-hostNNN-key.pem
f858dcae
TS
1353# certtool --generate-certificate \
1354 --load-ca-certificate ca-cert.pem \
1355 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1356 --load-privkey server-hostNNN-key.pem \
1357 --template server-hostNNN.info \
1358 --outfile server-hostNNN-cert.pem
f858dcae
TS
1359@end example
1360
5d19a6ea
DB
1361The @code{dns_name} and @code{ip_address} fields in the template are setting
1362the subject alt name extension data. The @code{tls_www_server} keyword is the
1363key purpose extension to indicate this certificate is intended for usage in
1364a web server. Although QEMU network services are not in fact HTTP servers
1365(except for VNC websockets), setting this key purpose is still recommended.
1366The @code{encryption_key} and @code{signing_key} keyword is the key usage
1367extension to indicate this certificate is intended for usage in the data
1368session.
1369
1370The @code{server-hostNNN-key.pem} and @code{server-hostNNN-cert.pem} files
1371should now be securely copied to the server for which they were generated,
1372and renamed to @code{server-key.pem} and @code{server-cert.pem} when added
1373to the @code{/etc/pki/qemu} directory on the target host. The @code{server-key.pem}
1374file is security sensitive and should be kept protected with file mode 0600
1375to prevent disclosure.
1376
1377@node tls_generate_client
1378@subsection Issuing client certificates
f858dcae 1379
5d19a6ea
DB
1380The QEMU x509 TLS credential setup defaults to enabling client verification
1381using certificates, providing a simple authentication mechanism. If this
1382default is used, each client also needs to be issued a certificate. The client
1383certificate contains enough metadata to uniquely identify the client with the
1384scope of the certificate authority. The client certificate would typically
1385include fields for organization, state, city, building, etc.
1386
1387Once again on the host holding the CA, create template files containing the
1388information for each client, and use it to issue client certificates.
f858dcae 1389
f858dcae
TS
1390
1391@example
5d19a6ea 1392# cat > client-hostNNN.info <<EOF
f858dcae
TS
1393country = GB
1394state = London
5d19a6ea 1395locality = City Of London
63c693f8 1396organization = Name of your organization
5d19a6ea 1397cn = hostNNN.foo.example.com
f858dcae
TS
1398tls_www_client
1399encryption_key
1400signing_key
1401EOF
5d19a6ea 1402# certtool --generate-privkey > client-hostNNN-key.pem
f858dcae
TS
1403# certtool --generate-certificate \
1404 --load-ca-certificate ca-cert.pem \
1405 --load-ca-privkey ca-key.pem \
5d19a6ea
DB
1406 --load-privkey client-hostNNN-key.pem \
1407 --template client-hostNNN.info \
1408 --outfile client-hostNNN-cert.pem
f858dcae
TS
1409@end example
1410
5d19a6ea
DB
1411The subject alt name extension data is not required for clients, so the
1412the @code{dns_name} and @code{ip_address} fields are not included.
1413The @code{tls_www_client} keyword is the key purpose extension to indicate
1414this certificate is intended for usage in a web client. Although QEMU
1415network clients are not in fact HTTP clients, setting this key purpose is
1416still recommended. The @code{encryption_key} and @code{signing_key} keyword
1417is the key usage extension to indicate this certificate is intended for
1418usage in the data session.
1419
1420The @code{client-hostNNN-key.pem} and @code{client-hostNNN-cert.pem} files
1421should now be securely copied to the client for which they were generated,
1422and renamed to @code{client-key.pem} and @code{client-cert.pem} when added
1423to the @code{/etc/pki/qemu} directory on the target host. The @code{client-key.pem}
1424file is security sensitive and should be kept protected with file mode 0600
1425to prevent disclosure.
1426
1427If a single host is going to be using TLS in both a client and server
1428role, it is possible to create a single certificate to cover both roles.
1429This would be quite common for the migration and NBD services, where a
1430QEMU process will be started by accepting a TLS protected incoming migration,
1431and later itself be migrated out to another host. To generate a single
1432certificate, simply include the template data from both the client and server
1433instructions in one.
2f9606b3 1434
5d19a6ea
DB
1435@example
1436# cat > both-hostNNN.info <<EOF
1437country = GB
1438state = London
1439locality = City Of London
1440organization = Name of your organization
1441cn = hostNNN.foo.example.com
1442dns_name = hostNNN
1443dns_name = hostNNN.foo.example.com
1444ip_address = 10.0.1.87
1445ip_address = 192.8.0.92
1446ip_address = 2620:0:cafe::87
1447ip_address = 2001:24::92
1448tls_www_server
1449tls_www_client
1450encryption_key
1451signing_key
1452EOF
1453# certtool --generate-privkey > both-hostNNN-key.pem
1454# certtool --generate-certificate \
1455 --load-ca-certificate ca-cert.pem \
1456 --load-ca-privkey ca-key.pem \
1457 --load-privkey both-hostNNN-key.pem \
1458 --template both-hostNNN.info \
1459 --outfile both-hostNNN-cert.pem
1460@end example
c6a9a9f5 1461
5d19a6ea
DB
1462When copying the PEM files to the target host, save them twice,
1463once as @code{server-cert.pem} and @code{server-key.pem}, and
1464again as @code{client-cert.pem} and @code{client-key.pem}.
1465
1466@node tls_creds_setup
1467@subsection TLS x509 credential configuration
1468
1469QEMU has a standard mechanism for loading x509 credentials that will be
1470used for network services and clients. It requires specifying the
1471@code{tls-creds-x509} class name to the @code{--object} command line
1472argument for the system emulators. Each set of credentials loaded should
1473be given a unique string identifier via the @code{id} parameter. A single
1474set of TLS credentials can be used for multiple network backends, so VNC,
1475migration, NBD, character devices can all share the same credentials. Note,
1476however, that credentials for use in a client endpoint must be loaded
1477separately from those used in a server endpoint.
1478
1479When specifying the object, the @code{dir} parameters specifies which
1480directory contains the credential files. This directory is expected to
1481contain files with the names mentioned previously, @code{ca-cert.pem},
1482@code{server-key.pem}, @code{server-cert.pem}, @code{client-key.pem}
1483and @code{client-cert.pem} as appropriate. It is also possible to
1484include a set of pre-generated Diffie-Hellman (DH) parameters in a file
1485@code{dh-params.pem}, which can be created using the
1486@code{certtool --generate-dh-params} command. If omitted, QEMU will
1487dynamically generate DH parameters when loading the credentials.
1488
1489The @code{endpoint} parameter indicates whether the credentials will
1490be used for a network client or server, and determines which PEM
1491files are loaded.
1492
1493The @code{verify} parameter determines whether x509 certificate
1494validation should be performed. This defaults to enabled, meaning
1495clients will always validate the server hostname against the
1496certificate subject alt name fields and/or CN field. It also
1497means that servers will request that clients provide a certificate
1498and validate them. Verification should never be turned off for
1499client endpoints, however, it may be turned off for server endpoints
1500if an alternative mechanism is used to authenticate clients. For
1501example, the VNC server can use SASL to authenticate clients
1502instead.
1503
1504To load server credentials with client certificate validation
1505enabled
2f9606b3
AL
1506
1507@example
664785ac 1508@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
2f9606b3
AL
1509@end example
1510
5d19a6ea 1511while to load client credentials use
2f9606b3
AL
1512
1513@example
664785ac 1514@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
2f9606b3
AL
1515@end example
1516
5d19a6ea
DB
1517Network services which support TLS will all have a @code{tls-creds}
1518parameter which expects the ID of the TLS credentials object. For
1519example with VNC:
2f9606b3 1520
5d19a6ea 1521@example
664785ac 1522@value{qemu_system} -vnc 0.0.0.0:0,tls-creds=tls0
5d19a6ea 1523@end example
2f9606b3 1524
e1a6dc91
RJ
1525@node tls_psk
1526@subsection TLS Pre-Shared Keys (PSK)
1527
1528Instead of using certificates, you may also use TLS Pre-Shared Keys
1529(TLS-PSK). This can be simpler to set up than certificates but is
1530less scalable.
1531
1532Use the GnuTLS @code{psktool} program to generate a @code{keys.psk}
1533file containing one or more usernames and random keys:
1534
1535@example
1536mkdir -m 0700 /tmp/keys
1537psktool -u rich -p /tmp/keys/keys.psk
1538@end example
1539
1540TLS-enabled servers such as qemu-nbd can use this directory like so:
1541
1542@example
1543qemu-nbd \
1544 -t -x / \
1545 --object tls-creds-psk,id=tls0,endpoint=server,dir=/tmp/keys \
1546 --tls-creds tls0 \
1547 image.qcow2
1548@end example
1549
1550When connecting from a qemu-based client you must specify the
1551directory containing @code{keys.psk} and an optional @var{username}
1552(defaults to ``qemu''):
1553
1554@example
1555qemu-img info \
1556 --object tls-creds-psk,id=tls0,dir=/tmp/keys,username=rich,endpoint=client \
1557 --image-opts \
1558 file.driver=nbd,file.host=localhost,file.port=10809,file.tls-creds=tls0,file.export=/
1559@end example
1560
0806e3f6 1561@node gdb_usage
da415d54
FB
1562@section GDB usage
1563
1564QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1565'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1566
b65ee4fa 1567In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1568gdb connection:
1569@example
664785ac 1570@value{qemu_system} -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
da415d54
FB
1571Connected to host network interface: tun0
1572Waiting gdb connection on port 1234
1573@end example
1574
1575Then launch gdb on the 'vmlinux' executable:
1576@example
1577> gdb vmlinux
1578@end example
1579
1580In gdb, connect to QEMU:
1581@example
6c9bf893 1582(gdb) target remote localhost:1234
da415d54
FB
1583@end example
1584
1585Then you can use gdb normally. For example, type 'c' to launch the kernel:
1586@example
1587(gdb) c
1588@end example
1589
0806e3f6
FB
1590Here are some useful tips in order to use gdb on system code:
1591
1592@enumerate
1593@item
1594Use @code{info reg} to display all the CPU registers.
1595@item
1596Use @code{x/10i $eip} to display the code at the PC position.
1597@item
1598Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1599@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1600@end enumerate
1601
60897d36
EI
1602Advanced debugging options:
1603
b6af0975 1604The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1605@table @code
60897d36
EI
1606@item maintenance packet qqemu.sstepbits
1607
1608This will display the MASK bits used to control the single stepping IE:
1609@example
1610(gdb) maintenance packet qqemu.sstepbits
1611sending: "qqemu.sstepbits"
1612received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1613@end example
1614@item maintenance packet qqemu.sstep
1615
1616This will display the current value of the mask used when single stepping IE:
1617@example
1618(gdb) maintenance packet qqemu.sstep
1619sending: "qqemu.sstep"
1620received: "0x7"
1621@end example
1622@item maintenance packet Qqemu.sstep=HEX_VALUE
1623
1624This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1625@example
1626(gdb) maintenance packet Qqemu.sstep=0x5
1627sending: "qemu.sstep=0x5"
1628received: "OK"
1629@end example
94d45e44 1630@end table
60897d36 1631
debc7065 1632@node pcsys_os_specific
1a084f3d
FB
1633@section Target OS specific information
1634
1635@subsection Linux
1636
15a34c63
FB
1637To have access to SVGA graphic modes under X11, use the @code{vesa} or
1638the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1639color depth in the guest and the host OS.
1a084f3d 1640
e3371e62
FB
1641When using a 2.6 guest Linux kernel, you should add the option
1642@code{clock=pit} on the kernel command line because the 2.6 Linux
1643kernels make very strict real time clock checks by default that QEMU
1644cannot simulate exactly.
1645
7c3fc84d
FB
1646When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1647not activated because QEMU is slower with this patch. The QEMU
1648Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1649Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1650patch by default. Newer kernels don't have it.
1651
1a084f3d
FB
1652@subsection Windows
1653
1654If you have a slow host, using Windows 95 is better as it gives the
1655best speed. Windows 2000 is also a good choice.
1656
e3371e62
FB
1657@subsubsection SVGA graphic modes support
1658
1659QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1660card. All Windows versions starting from Windows 95 should recognize
1661and use this graphic card. For optimal performances, use 16 bit color
1662depth in the guest and the host OS.
1a084f3d 1663
3cb0853a
FB
1664If you are using Windows XP as guest OS and if you want to use high
1665resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
16661280x1024x16), then you should use the VESA VBE virtual graphic card
1667(option @option{-std-vga}).
1668
e3371e62
FB
1669@subsubsection CPU usage reduction
1670
1671Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1672instruction. The result is that it takes host CPU cycles even when
1673idle. You can install the utility from
70b7fba9 1674@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1675to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1676
9d0a8e6f 1677@subsubsection Windows 2000 disk full problem
e3371e62 1678
9d0a8e6f
FB
1679Windows 2000 has a bug which gives a disk full problem during its
1680installation. When installing it, use the @option{-win2k-hack} QEMU
1681option to enable a specific workaround. After Windows 2000 is
1682installed, you no longer need this option (this option slows down the
1683IDE transfers).
e3371e62 1684
6cc721cf
FB
1685@subsubsection Windows 2000 shutdown
1686
1687Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1688can. It comes from the fact that Windows 2000 does not automatically
1689use the APM driver provided by the BIOS.
1690
1691In order to correct that, do the following (thanks to Struan
1692Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1693Add/Troubleshoot a device => Add a new device & Next => No, select the
1694hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1695(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1696correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1697
1698@subsubsection Share a directory between Unix and Windows
1699
c8c6afa8
TH
1700See @ref{sec_invocation} about the help of the option
1701@option{'-netdev user,smb=...'}.
6cc721cf 1702
2192c332 1703@subsubsection Windows XP security problem
e3371e62
FB
1704
1705Some releases of Windows XP install correctly but give a security
1706error when booting:
1707@example
1708A problem is preventing Windows from accurately checking the
1709license for this computer. Error code: 0x800703e6.
1710@end example
e3371e62 1711
2192c332
FB
1712The workaround is to install a service pack for XP after a boot in safe
1713mode. Then reboot, and the problem should go away. Since there is no
1714network while in safe mode, its recommended to download the full
1715installation of SP1 or SP2 and transfer that via an ISO or using the
1716vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1717
a0a821a4
FB
1718@subsection MS-DOS and FreeDOS
1719
1720@subsubsection CPU usage reduction
1721
1722DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1723it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1724@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1725to solve this problem.
a0a821a4 1726
debc7065 1727@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1728@chapter QEMU System emulator for non PC targets
1729
1730QEMU is a generic emulator and it emulates many non PC
1731machines. Most of the options are similar to the PC emulator. The
4be456f1 1732differences are mentioned in the following sections.
3f9f3aa1 1733
debc7065 1734@menu
7544a042 1735* PowerPC System emulator::
24d4de45
TS
1736* Sparc32 System emulator::
1737* Sparc64 System emulator::
1738* MIPS System emulator::
1739* ARM System emulator::
1740* ColdFire System emulator::
7544a042
SW
1741* Cris System emulator::
1742* Microblaze System emulator::
1743* SH4 System emulator::
3aeaea65 1744* Xtensa System emulator::
debc7065
FB
1745@end menu
1746
7544a042
SW
1747@node PowerPC System emulator
1748@section PowerPC System emulator
1749@cindex system emulation (PowerPC)
1a084f3d 1750
15a34c63
FB
1751Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1752or PowerMac PowerPC system.
1a084f3d 1753
b671f9ed 1754QEMU emulates the following PowerMac peripherals:
1a084f3d 1755
15a34c63 1756@itemize @minus
5fafdf24 1757@item
006f3a48 1758UniNorth or Grackle PCI Bridge
15a34c63
FB
1759@item
1760PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1761@item
15a34c63 17622 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1763@item
15a34c63
FB
1764NE2000 PCI adapters
1765@item
1766Non Volatile RAM
1767@item
1768VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1769@end itemize
1770
b671f9ed 1771QEMU emulates the following PREP peripherals:
52c00a5f
FB
1772
1773@itemize @minus
5fafdf24 1774@item
15a34c63
FB
1775PCI Bridge
1776@item
1777PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1778@item
52c00a5f
FB
17792 IDE interfaces with hard disk and CD-ROM support
1780@item
1781Floppy disk
5fafdf24 1782@item
15a34c63 1783NE2000 network adapters
52c00a5f
FB
1784@item
1785Serial port
1786@item
1787PREP Non Volatile RAM
15a34c63
FB
1788@item
1789PC compatible keyboard and mouse.
52c00a5f
FB
1790@end itemize
1791
15a34c63 1792QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1793@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1794
70b7fba9 1795Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1796for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1797v2) portable firmware implementation. The goal is to implement a 100%
1798IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1799
15a34c63
FB
1800@c man begin OPTIONS
1801
1802The following options are specific to the PowerPC emulation:
1803
1804@table @option
1805
4e257e5e 1806@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1807
340fb41b 1808Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1809
4e257e5e 1810@item -prom-env @var{string}
95efd11c
BS
1811
1812Set OpenBIOS variables in NVRAM, for example:
1813
1814@example
1815qemu-system-ppc -prom-env 'auto-boot?=false' \
1816 -prom-env 'boot-device=hd:2,\yaboot' \
1817 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1818@end example
1819
1820These variables are not used by Open Hack'Ware.
1821
15a34c63
FB
1822@end table
1823
5fafdf24 1824@c man end
15a34c63
FB
1825
1826
52c00a5f 1827More information is available at
3f9f3aa1 1828@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1829
24d4de45
TS
1830@node Sparc32 System emulator
1831@section Sparc32 System emulator
7544a042 1832@cindex system emulation (Sparc32)
e80cfcfc 1833
34a3d239
BS
1834Use the executable @file{qemu-system-sparc} to simulate the following
1835Sun4m architecture machines:
1836@itemize @minus
1837@item
1838SPARCstation 4
1839@item
1840SPARCstation 5
1841@item
1842SPARCstation 10
1843@item
1844SPARCstation 20
1845@item
1846SPARCserver 600MP
1847@item
1848SPARCstation LX
1849@item
1850SPARCstation Voyager
1851@item
1852SPARCclassic
1853@item
1854SPARCbook
1855@end itemize
1856
1857The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1858but Linux limits the number of usable CPUs to 4.
e80cfcfc 1859
6a4e1771 1860QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1861
1862@itemize @minus
3475187d 1863@item
6a4e1771 1864IOMMU
e80cfcfc 1865@item
33632788 1866TCX or cgthree Frame buffer
5fafdf24 1867@item
e80cfcfc
FB
1868Lance (Am7990) Ethernet
1869@item
34a3d239 1870Non Volatile RAM M48T02/M48T08
e80cfcfc 1871@item
3475187d
FB
1872Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1873and power/reset logic
1874@item
1875ESP SCSI controller with hard disk and CD-ROM support
1876@item
6a3b9cc9 1877Floppy drive (not on SS-600MP)
a2502b58
BS
1878@item
1879CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1880@end itemize
1881
6a3b9cc9
BS
1882The number of peripherals is fixed in the architecture. Maximum
1883memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1884others 2047MB.
3475187d 1885
30a604f3 1886Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1887@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1888firmware implementation. The goal is to implement a 100% IEEE
18891275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1890
1891A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1892the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1893most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1894don't work probably due to interface issues between OpenBIOS and
1895Solaris.
3475187d
FB
1896
1897@c man begin OPTIONS
1898
a2502b58 1899The following options are specific to the Sparc32 emulation:
3475187d
FB
1900
1901@table @option
1902
4e257e5e 1903@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1904
33632788
MCA
1905Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1906option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1907of 1152x900x8 for people who wish to use OBP.
3475187d 1908
4e257e5e 1909@item -prom-env @var{string}
66508601
BS
1910
1911Set OpenBIOS variables in NVRAM, for example:
1912
1913@example
1914qemu-system-sparc -prom-env 'auto-boot?=false' \
1915 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1916@end example
1917
6a4e1771 1918@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1919
1920Set the emulated machine type. Default is SS-5.
1921
3475187d
FB
1922@end table
1923
5fafdf24 1924@c man end
3475187d 1925
24d4de45
TS
1926@node Sparc64 System emulator
1927@section Sparc64 System emulator
7544a042 1928@cindex system emulation (Sparc64)
e80cfcfc 1929
34a3d239
BS
1930Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1931(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1932Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1933able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1934Sun4v emulator is still a work in progress.
1935
1936The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1937of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1938and is able to boot the disk.s10hw2 Solaris image.
1939@example
1940qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1941 -nographic -m 256 \
1942 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1943@end example
1944
b756921a 1945
c7ba218d 1946QEMU emulates the following peripherals:
83469015
FB
1947
1948@itemize @minus
1949@item
5fafdf24 1950UltraSparc IIi APB PCI Bridge
83469015
FB
1951@item
1952PCI VGA compatible card with VESA Bochs Extensions
1953@item
34a3d239
BS
1954PS/2 mouse and keyboard
1955@item
83469015
FB
1956Non Volatile RAM M48T59
1957@item
1958PC-compatible serial ports
c7ba218d
BS
1959@item
19602 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1961@item
1962Floppy disk
83469015
FB
1963@end itemize
1964
c7ba218d
BS
1965@c man begin OPTIONS
1966
1967The following options are specific to the Sparc64 emulation:
1968
1969@table @option
1970
4e257e5e 1971@item -prom-env @var{string}
34a3d239
BS
1972
1973Set OpenBIOS variables in NVRAM, for example:
1974
1975@example
1976qemu-system-sparc64 -prom-env 'auto-boot?=false'
1977@end example
1978
a2664ca0 1979@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1980
1981Set the emulated machine type. The default is sun4u.
1982
1983@end table
1984
1985@c man end
1986
24d4de45
TS
1987@node MIPS System emulator
1988@section MIPS System emulator
7544a042 1989@cindex system emulation (MIPS)
9d0a8e6f 1990
f7d257cb
SM
1991@menu
1992* nanoMIPS System emulator ::
1993@end menu
1994
d9aedc32
TS
1995Four executables cover simulation of 32 and 64-bit MIPS systems in
1996both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1997@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1998Five different machine types are emulated:
24d4de45
TS
1999
2000@itemize @minus
2001@item
2002A generic ISA PC-like machine "mips"
2003@item
2004The MIPS Malta prototype board "malta"
2005@item
d9aedc32 2006An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 2007@item
f0fc6f8f 2008MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
2009@item
2010A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
2011@end itemize
2012
2013The generic emulation is supported by Debian 'Etch' and is able to
2014install Debian into a virtual disk image. The following devices are
2015emulated:
3f9f3aa1
FB
2016
2017@itemize @minus
5fafdf24 2018@item
6bf5b4e8 2019A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
2020@item
2021PC style serial port
2022@item
24d4de45
TS
2023PC style IDE disk
2024@item
3f9f3aa1
FB
2025NE2000 network card
2026@end itemize
2027
24d4de45
TS
2028The Malta emulation supports the following devices:
2029
2030@itemize @minus
2031@item
0b64d008 2032Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
2033@item
2034PIIX4 PCI/USB/SMbus controller
2035@item
2036The Multi-I/O chip's serial device
2037@item
3a2eeac0 2038PCI network cards (PCnet32 and others)
24d4de45
TS
2039@item
2040Malta FPGA serial device
2041@item
1f605a76 2042Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
2043@end itemize
2044
ba182a18
AM
2045The Boston board emulation supports the following devices:
2046
2047@itemize @minus
2048@item
2049Xilinx FPGA, which includes a PCIe root port and an UART
2050@item
2051Intel EG20T PCH connects the I/O peripherals, but only the SATA bus is emulated
2052@end itemize
2053
24d4de45
TS
2054The ACER Pica emulation supports:
2055
2056@itemize @minus
2057@item
2058MIPS R4000 CPU
2059@item
2060PC-style IRQ and DMA controllers
2061@item
2062PC Keyboard
2063@item
2064IDE controller
2065@end itemize
3f9f3aa1 2066
88cb0a02
AJ
2067The MIPS Magnum R4000 emulation supports:
2068
2069@itemize @minus
2070@item
2071MIPS R4000 CPU
2072@item
2073PC-style IRQ controller
2074@item
2075PC Keyboard
2076@item
2077SCSI controller
2078@item
2079G364 framebuffer
2080@end itemize
2081
3a1b94d9
AM
2082The Fulong 2E emulation supports:
2083
2084@itemize @minus
2085@item
2086Loongson 2E CPU
2087@item
2088Bonito64 system controller as North Bridge
2089@item
2090VT82C686 chipset as South Bridge
2091@item
2092RTL8139D as a network card chipset
2093@end itemize
2094
53d21e7b
AM
2095The mipssim pseudo board emulation provides an environment similar
2096to what the proprietary MIPS emulator uses for running Linux.
2097It supports:
2098
2099@itemize @minus
2100@item
2101A range of MIPS CPUs, default is the 24Kf
2102@item
2103PC style serial port
2104@item
2105MIPSnet network emulation
2106@end itemize
2107
f7d257cb
SM
2108@node nanoMIPS System emulator
2109@subsection nanoMIPS System emulator
2110@cindex system emulation (nanoMIPS)
2111
2112Executable @file{qemu-system-mipsel} also covers simulation of
211332-bit nanoMIPS system in little endian mode:
2114
2115@itemize @minus
2116@item
2117nanoMIPS I7200 CPU
2118@end itemize
2119
2120Example of @file{qemu-system-mipsel} usage for nanoMIPS is shown below:
2121
2122Download @code{<disk_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/buildroot/index.html}.
2123
2124Download @code{<kernel_image_file>} from @url{https://mipsdistros.mips.com/LinuxDistro/nanomips/kernels/v4.15.18-432-gb2eb9a8b07a1-20180627102142/index.html}.
2125
2126Start system emulation of Malta board with nanoMIPS I7200 CPU:
2127@example
2128qemu-system-mipsel -cpu I7200 -kernel @code{<kernel_image_file>} \
2129 -M malta -serial stdio -m @code{<memory_size>} -hda @code{<disk_image_file>} \
2130 -append "mem=256m@@0x0 rw console=ttyS0 vga=cirrus vesa=0x111 root=/dev/sda"
2131@end example
2132
88cb0a02 2133
24d4de45
TS
2134@node ARM System emulator
2135@section ARM System emulator
7544a042 2136@cindex system emulation (ARM)
3f9f3aa1
FB
2137
2138Use the executable @file{qemu-system-arm} to simulate a ARM
2139machine. The ARM Integrator/CP board is emulated with the following
2140devices:
2141
2142@itemize @minus
2143@item
9ee6e8bb 2144ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
2145@item
2146Two PL011 UARTs
5fafdf24 2147@item
3f9f3aa1 2148SMC 91c111 Ethernet adapter
00a9bf19
PB
2149@item
2150PL110 LCD controller
2151@item
2152PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
2153@item
2154PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
2155@end itemize
2156
2157The ARM Versatile baseboard is emulated with the following devices:
2158
2159@itemize @minus
2160@item
9ee6e8bb 2161ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
2162@item
2163PL190 Vectored Interrupt Controller
2164@item
2165Four PL011 UARTs
5fafdf24 2166@item
00a9bf19
PB
2167SMC 91c111 Ethernet adapter
2168@item
2169PL110 LCD controller
2170@item
2171PL050 KMI with PS/2 keyboard and mouse.
2172@item
2173PCI host bridge. Note the emulated PCI bridge only provides access to
2174PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
2175This means some devices (eg. ne2k_pci NIC) are not usable, and others
2176(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 2177mapped control registers.
e6de1bad
PB
2178@item
2179PCI OHCI USB controller.
2180@item
2181LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
2182@item
2183PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
2184@end itemize
2185
21a88941
PB
2186Several variants of the ARM RealView baseboard are emulated,
2187including the EB, PB-A8 and PBX-A9. Due to interactions with the
2188bootloader, only certain Linux kernel configurations work out
2189of the box on these boards.
2190
2191Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2192enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
2193should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
2194disabled and expect 1024M RAM.
2195
40c5c6cd 2196The following devices are emulated:
d7739d75
PB
2197
2198@itemize @minus
2199@item
f7c70325 2200ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
2201@item
2202ARM AMBA Generic/Distributed Interrupt Controller
2203@item
2204Four PL011 UARTs
5fafdf24 2205@item
0ef849d7 2206SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
2207@item
2208PL110 LCD controller
2209@item
2210PL050 KMI with PS/2 keyboard and mouse
2211@item
2212PCI host bridge
2213@item
2214PCI OHCI USB controller
2215@item
2216LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
2217@item
2218PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
2219@end itemize
2220
b00052e4
AZ
2221The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2222and "Terrier") emulation includes the following peripherals:
2223
2224@itemize @minus
2225@item
2226Intel PXA270 System-on-chip (ARM V5TE core)
2227@item
2228NAND Flash memory
2229@item
2230IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2231@item
2232On-chip OHCI USB controller
2233@item
2234On-chip LCD controller
2235@item
2236On-chip Real Time Clock
2237@item
2238TI ADS7846 touchscreen controller on SSP bus
2239@item
2240Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2241@item
2242GPIO-connected keyboard controller and LEDs
2243@item
549444e1 2244Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
2245@item
2246Three on-chip UARTs
2247@item
2248WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2249@end itemize
2250
02645926
AZ
2251The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2252following elements:
2253
2254@itemize @minus
2255@item
2256Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2257@item
2258ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2259@item
2260On-chip LCD controller
2261@item
2262On-chip Real Time Clock
2263@item
2264TI TSC2102i touchscreen controller / analog-digital converter / Audio
2265CODEC, connected through MicroWire and I@math{^2}S busses
2266@item
2267GPIO-connected matrix keypad
2268@item
2269Secure Digital card connected to OMAP MMC/SD host
2270@item
2271Three on-chip UARTs
2272@end itemize
2273
c30bb264
AZ
2274Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2275emulation supports the following elements:
2276
2277@itemize @minus
2278@item
2279Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2280@item
2281RAM and non-volatile OneNAND Flash memories
2282@item
2283Display connected to EPSON remote framebuffer chip and OMAP on-chip
2284display controller and a LS041y3 MIPI DBI-C controller
2285@item
2286TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2287driven through SPI bus
2288@item
2289National Semiconductor LM8323-controlled qwerty keyboard driven
2290through I@math{^2}C bus
2291@item
2292Secure Digital card connected to OMAP MMC/SD host
2293@item
2294Three OMAP on-chip UARTs and on-chip STI debugging console
2295@item
2296Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2297TUSB6010 chip - only USB host mode is supported
2298@item
2299TI TMP105 temperature sensor driven through I@math{^2}C bus
2300@item
2301TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2302@item
2303Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2304through CBUS
2305@end itemize
2306
9ee6e8bb
PB
2307The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2308devices:
2309
2310@itemize @minus
2311@item
2312Cortex-M3 CPU core.
2313@item
231464k Flash and 8k SRAM.
2315@item
2316Timers, UARTs, ADC and I@math{^2}C interface.
2317@item
2318OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2319@end itemize
2320
2321The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2322devices:
2323
2324@itemize @minus
2325@item
2326Cortex-M3 CPU core.
2327@item
2328256k Flash and 64k SRAM.
2329@item
2330Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2331@item
2332OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2333@end itemize
2334
57cd6e97
AZ
2335The Freecom MusicPal internet radio emulation includes the following
2336elements:
2337
2338@itemize @minus
2339@item
2340Marvell MV88W8618 ARM core.
2341@item
234232 MB RAM, 256 KB SRAM, 8 MB flash.
2343@item
2344Up to 2 16550 UARTs
2345@item
2346MV88W8xx8 Ethernet controller
2347@item
2348MV88W8618 audio controller, WM8750 CODEC and mixer
2349@item
e080e785 2350128×64 display with brightness control
57cd6e97
AZ
2351@item
23522 buttons, 2 navigation wheels with button function
2353@end itemize
2354
997641a8 2355The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 2356The emulation includes the following elements:
997641a8
AZ
2357
2358@itemize @minus
2359@item
2360Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2361@item
2362ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2363V1
23641 Flash of 16MB and 1 Flash of 8MB
2365V2
23661 Flash of 32MB
2367@item
2368On-chip LCD controller
2369@item
2370On-chip Real Time Clock
2371@item
2372Secure Digital card connected to OMAP MMC/SD host
2373@item
2374Three on-chip UARTs
2375@end itemize
2376
3f9f3aa1
FB
2377A Linux 2.6 test image is available on the QEMU web site. More
2378information is available in the QEMU mailing-list archive.
9d0a8e6f 2379
d2c639d6
BS
2380@c man begin OPTIONS
2381
2382The following options are specific to the ARM emulation:
2383
2384@table @option
2385
2386@item -semihosting
2387Enable semihosting syscall emulation.
2388
2389On ARM this implements the "Angel" interface.
2390
2391Note that this allows guest direct access to the host filesystem,
2392so should only be used with trusted guest OS.
2393
2394@end table
2395
abc67eb6
TH
2396@c man end
2397
24d4de45
TS
2398@node ColdFire System emulator
2399@section ColdFire System emulator
7544a042
SW
2400@cindex system emulation (ColdFire)
2401@cindex system emulation (M68K)
209a4e69
PB
2402
2403Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2404The emulator is able to boot a uClinux kernel.
707e011b
PB
2405
2406The M5208EVB emulation includes the following devices:
2407
2408@itemize @minus
5fafdf24 2409@item
707e011b
PB
2410MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2411@item
2412Three Two on-chip UARTs.
2413@item
2414Fast Ethernet Controller (FEC)
2415@end itemize
2416
2417The AN5206 emulation includes the following devices:
209a4e69
PB
2418
2419@itemize @minus
5fafdf24 2420@item
209a4e69
PB
2421MCF5206 ColdFire V2 Microprocessor.
2422@item
2423Two on-chip UARTs.
2424@end itemize
2425
d2c639d6
BS
2426@c man begin OPTIONS
2427
7544a042 2428The following options are specific to the ColdFire emulation:
d2c639d6
BS
2429
2430@table @option
2431
2432@item -semihosting
2433Enable semihosting syscall emulation.
2434
2435On M68K this implements the "ColdFire GDB" interface used by libgloss.
2436
2437Note that this allows guest direct access to the host filesystem,
2438so should only be used with trusted guest OS.
2439
2440@end table
2441
abc67eb6
TH
2442@c man end
2443
7544a042
SW
2444@node Cris System emulator
2445@section Cris System emulator
2446@cindex system emulation (Cris)
2447
2448TODO
2449
2450@node Microblaze System emulator
2451@section Microblaze System emulator
2452@cindex system emulation (Microblaze)
2453
2454TODO
2455
2456@node SH4 System emulator
2457@section SH4 System emulator
2458@cindex system emulation (SH4)
2459
2460TODO
2461
3aeaea65
MF
2462@node Xtensa System emulator
2463@section Xtensa System emulator
2464@cindex system emulation (Xtensa)
2465
2466Two executables cover simulation of both Xtensa endian options,
2467@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
2468Two different machine types are emulated:
2469
2470@itemize @minus
2471@item
2472Xtensa emulator pseudo board "sim"
2473@item
2474Avnet LX60/LX110/LX200 board
2475@end itemize
2476
b5e4946f 2477The sim pseudo board emulation provides an environment similar
3aeaea65
MF
2478to one provided by the proprietary Tensilica ISS.
2479It supports:
2480
2481@itemize @minus
2482@item
2483A range of Xtensa CPUs, default is the DC232B
2484@item
2485Console and filesystem access via semihosting calls
2486@end itemize
2487
2488The Avnet LX60/LX110/LX200 emulation supports:
2489
2490@itemize @minus
2491@item
2492A range of Xtensa CPUs, default is the DC232B
2493@item
249416550 UART
2495@item
2496OpenCores 10/100 Mbps Ethernet MAC
2497@end itemize
2498
2499@c man begin OPTIONS
2500
2501The following options are specific to the Xtensa emulation:
2502
2503@table @option
2504
2505@item -semihosting
2506Enable semihosting syscall emulation.
2507
2508Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2509Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2510
2511Note that this allows guest direct access to the host filesystem,
2512so should only be used with trusted guest OS.
2513
2514@end table
3f2ce724 2515
abc67eb6
TH
2516@c man end
2517
5fafdf24
TS
2518@node QEMU User space emulator
2519@chapter QEMU User space emulator
83195237
FB
2520
2521@menu
2522* Supported Operating Systems ::
0722cc42 2523* Features::
83195237 2524* Linux User space emulator::
84778508 2525* BSD User space emulator ::
83195237
FB
2526@end menu
2527
2528@node Supported Operating Systems
2529@section Supported Operating Systems
2530
2531The following OS are supported in user space emulation:
2532
2533@itemize @minus
2534@item
4be456f1 2535Linux (referred as qemu-linux-user)
83195237 2536@item
84778508 2537BSD (referred as qemu-bsd-user)
83195237
FB
2538@end itemize
2539
0722cc42
PB
2540@node Features
2541@section Features
2542
2543QEMU user space emulation has the following notable features:
2544
2545@table @strong
2546@item System call translation:
2547QEMU includes a generic system call translator. This means that
2548the parameters of the system calls can be converted to fix
2549endianness and 32/64-bit mismatches between hosts and targets.
2550IOCTLs can be converted too.
2551
2552@item POSIX signal handling:
2553QEMU can redirect to the running program all signals coming from
2554the host (such as @code{SIGALRM}), as well as synthesize signals from
2555virtual CPU exceptions (for example @code{SIGFPE} when the program
2556executes a division by zero).
2557
2558QEMU relies on the host kernel to emulate most signal system
2559calls, for example to emulate the signal mask. On Linux, QEMU
2560supports both normal and real-time signals.
2561
2562@item Threading:
2563On Linux, QEMU can emulate the @code{clone} syscall and create a real
2564host thread (with a separate virtual CPU) for each emulated thread.
2565Note that not all targets currently emulate atomic operations correctly.
2566x86 and ARM use a global lock in order to preserve their semantics.
2567@end table
2568
2569QEMU was conceived so that ultimately it can emulate itself. Although
2570it is not very useful, it is an important test to show the power of the
2571emulator.
2572
83195237
FB
2573@node Linux User space emulator
2574@section Linux User space emulator
386405f7 2575
debc7065
FB
2576@menu
2577* Quick Start::
2578* Wine launch::
2579* Command line options::
79737e4a 2580* Other binaries::
debc7065
FB
2581@end menu
2582
2583@node Quick Start
83195237 2584@subsection Quick Start
df0f11a0 2585
1f673135 2586In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2587itself and all the target (x86) dynamic libraries used by it.
386405f7 2588
1f673135 2589@itemize
386405f7 2590
1f673135
FB
2591@item On x86, you can just try to launch any process by using the native
2592libraries:
386405f7 2593
5fafdf24 2594@example
1f673135
FB
2595qemu-i386 -L / /bin/ls
2596@end example
386405f7 2597
1f673135
FB
2598@code{-L /} tells that the x86 dynamic linker must be searched with a
2599@file{/} prefix.
386405f7 2600
b65ee4fa
SW
2601@item Since QEMU is also a linux process, you can launch QEMU with
2602QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2603
5fafdf24 2604@example
1f673135
FB
2605qemu-i386 -L / qemu-i386 -L / /bin/ls
2606@end example
386405f7 2607
1f673135
FB
2608@item On non x86 CPUs, you need first to download at least an x86 glibc
2609(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2610@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2611
1f673135 2612@example
5fafdf24 2613unset LD_LIBRARY_PATH
1f673135 2614@end example
1eb87257 2615
1f673135 2616Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2617
1f673135
FB
2618@example
2619qemu-i386 tests/i386/ls
2620@end example
4c3b5a48 2621You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2622QEMU is automatically launched by the Linux kernel when you try to
2623launch x86 executables. It requires the @code{binfmt_misc} module in the
2624Linux kernel.
1eb87257 2625
1f673135
FB
2626@item The x86 version of QEMU is also included. You can try weird things such as:
2627@example
debc7065
FB
2628qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2629 /usr/local/qemu-i386/bin/ls-i386
1f673135 2630@end example
1eb20527 2631
1f673135 2632@end itemize
1eb20527 2633
debc7065 2634@node Wine launch
83195237 2635@subsection Wine launch
1eb20527 2636
1f673135 2637@itemize
386405f7 2638
1f673135
FB
2639@item Ensure that you have a working QEMU with the x86 glibc
2640distribution (see previous section). In order to verify it, you must be
2641able to do:
386405f7 2642
1f673135
FB
2643@example
2644qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2645@end example
386405f7 2646
1f673135 2647@item Download the binary x86 Wine install
5fafdf24 2648(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2649
1f673135 2650@item Configure Wine on your account. Look at the provided script
debc7065 2651@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2652@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2653
1f673135 2654@item Then you can try the example @file{putty.exe}:
386405f7 2655
1f673135 2656@example
debc7065
FB
2657qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2658 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2659@end example
386405f7 2660
1f673135 2661@end itemize
fd429f2f 2662
debc7065 2663@node Command line options
83195237 2664@subsection Command line options
1eb20527 2665
1f673135 2666@example
8485140f 2667@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2668@end example
1eb20527 2669
1f673135
FB
2670@table @option
2671@item -h
2672Print the help
3b46e624 2673@item -L path
1f673135
FB
2674Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2675@item -s size
2676Set the x86 stack size in bytes (default=524288)
34a3d239 2677@item -cpu model
c8057f95 2678Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2679@item -E @var{var}=@var{value}
2680Set environment @var{var} to @var{value}.
2681@item -U @var{var}
2682Remove @var{var} from the environment.
379f6698
PB
2683@item -B offset
2684Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2685the address region required by guest applications is reserved on the host.
2686This option is currently only supported on some hosts.
68a1c816
PB
2687@item -R size
2688Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2689"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2690@end table
2691
1f673135 2692Debug options:
386405f7 2693
1f673135 2694@table @option
989b697d
PM
2695@item -d item1,...
2696Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2697@item -p pagesize
2698Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2699@item -g port
2700Wait gdb connection to port
1b530a6d
AJ
2701@item -singlestep
2702Run the emulation in single step mode.
1f673135 2703@end table
386405f7 2704
b01bcae6
AZ
2705Environment variables:
2706
2707@table @env
2708@item QEMU_STRACE
2709Print system calls and arguments similar to the 'strace' program
2710(NOTE: the actual 'strace' program will not work because the user
2711space emulator hasn't implemented ptrace). At the moment this is
2712incomplete. All system calls that don't have a specific argument
2713format are printed with information for six arguments. Many
2714flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2715@end table
b01bcae6 2716
79737e4a 2717@node Other binaries
83195237 2718@subsection Other binaries
79737e4a 2719
7544a042
SW
2720@cindex user mode (Alpha)
2721@command{qemu-alpha} TODO.
2722
2723@cindex user mode (ARM)
2724@command{qemu-armeb} TODO.
2725
2726@cindex user mode (ARM)
79737e4a
PB
2727@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2728binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2729configurations), and arm-uclinux bFLT format binaries.
2730
7544a042
SW
2731@cindex user mode (ColdFire)
2732@cindex user mode (M68K)
e6e5906b
PB
2733@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2734(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2735coldfire uClinux bFLT format binaries.
2736
79737e4a
PB
2737The binary format is detected automatically.
2738
7544a042
SW
2739@cindex user mode (Cris)
2740@command{qemu-cris} TODO.
2741
2742@cindex user mode (i386)
2743@command{qemu-i386} TODO.
2744@command{qemu-x86_64} TODO.
2745
2746@cindex user mode (Microblaze)
2747@command{qemu-microblaze} TODO.
2748
2749@cindex user mode (MIPS)
8639c5c9
AM
2750@command{qemu-mips} executes 32-bit big endian MIPS binaries (MIPS O32 ABI).
2751
2752@command{qemu-mipsel} executes 32-bit little endian MIPS binaries (MIPS O32 ABI).
2753
2754@command{qemu-mips64} executes 64-bit big endian MIPS binaries (MIPS N64 ABI).
2755
2756@command{qemu-mips64el} executes 64-bit little endian MIPS binaries (MIPS N64 ABI).
2757
2758@command{qemu-mipsn32} executes 32-bit big endian MIPS binaries (MIPS N32 ABI).
2759
2760@command{qemu-mipsn32el} executes 32-bit little endian MIPS binaries (MIPS N32 ABI).
7544a042 2761
e671711c
MV
2762@cindex user mode (NiosII)
2763@command{qemu-nios2} TODO.
2764
7544a042
SW
2765@cindex user mode (PowerPC)
2766@command{qemu-ppc64abi32} TODO.
2767@command{qemu-ppc64} TODO.
2768@command{qemu-ppc} TODO.
2769
2770@cindex user mode (SH4)
2771@command{qemu-sh4eb} TODO.
2772@command{qemu-sh4} TODO.
2773
2774@cindex user mode (SPARC)
34a3d239
BS
2775@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2776
a785e42e
BS
2777@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2778(Sparc64 CPU, 32 bit ABI).
2779
2780@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2781SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2782
84778508
BS
2783@node BSD User space emulator
2784@section BSD User space emulator
2785
2786@menu
2787* BSD Status::
2788* BSD Quick Start::
2789* BSD Command line options::
2790@end menu
2791
2792@node BSD Status
2793@subsection BSD Status
2794
2795@itemize @minus
2796@item
2797target Sparc64 on Sparc64: Some trivial programs work.
2798@end itemize
2799
2800@node BSD Quick Start
2801@subsection Quick Start
2802
2803In order to launch a BSD process, QEMU needs the process executable
2804itself and all the target dynamic libraries used by it.
2805
2806@itemize
2807
2808@item On Sparc64, you can just try to launch any process by using the native
2809libraries:
2810
2811@example
2812qemu-sparc64 /bin/ls
2813@end example
2814
2815@end itemize
2816
2817@node BSD Command line options
2818@subsection Command line options
2819
2820@example
8485140f 2821@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2822@end example
2823
2824@table @option
2825@item -h
2826Print the help
2827@item -L path
2828Set the library root path (default=/)
2829@item -s size
2830Set the stack size in bytes (default=524288)
f66724c9
SW
2831@item -ignore-environment
2832Start with an empty environment. Without this option,
40c5c6cd 2833the initial environment is a copy of the caller's environment.
f66724c9
SW
2834@item -E @var{var}=@var{value}
2835Set environment @var{var} to @var{value}.
2836@item -U @var{var}
2837Remove @var{var} from the environment.
84778508
BS
2838@item -bsd type
2839Set the type of the emulated BSD Operating system. Valid values are
2840FreeBSD, NetBSD and OpenBSD (default).
2841@end table
2842
2843Debug options:
2844
2845@table @option
989b697d
PM
2846@item -d item1,...
2847Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2848@item -p pagesize
2849Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2850@item -singlestep
2851Run the emulation in single step mode.
84778508
BS
2852@end table
2853
483c6ad4
BP
2854@node System requirements
2855@chapter System requirements
2856
2857@section KVM kernel module
2858
2859On x86_64 hosts, the default set of CPU features enabled by the KVM accelerator
2860require the host to be running Linux v4.5 or newer.
2861
2862The OpteronG[345] CPU models require KVM support for RDTSCP, which was
2863added with Linux 4.5 which is supported by the major distros. And even
2864if RHEL7 has kernel 3.10, KVM there has the required functionality there
2865to make it close to a 4.5 or newer kernel.
47eacb4f 2866
e8412576
SH
2867@include docs/security.texi
2868
78e87797
PB
2869@include qemu-tech.texi
2870
44c67847 2871@include qemu-deprecated.texi
efe2add7 2872
45b47130
DB
2873@node Supported build platforms
2874@appendix Supported build platforms
2875
2876QEMU aims to support building and executing on multiple host OS platforms.
2877This appendix outlines which platforms are the major build targets. These
2878platforms are used as the basis for deciding upon the minimum required
2879versions of 3rd party software QEMU depends on. The supported platforms
2880are the targets for automated testing performed by the project when patches
2881are submitted for review, and tested before and after merge.
2882
2883If a platform is not listed here, it does not imply that QEMU won't work.
2884If an unlisted platform has comparable software versions to a listed platform,
2885there is every expectation that it will work. Bug reports are welcome for
2886problems encountered on unlisted platforms unless they are clearly older
2887vintage than what is described here.
2888
2889Note that when considering software versions shipped in distros as support
2890targets, QEMU considers only the version number, and assumes the features in
2891that distro match the upstream release with the same version. In other words,
2892if a distro backports extra features to the software in their distro, QEMU
2893upstream code will not add explicit support for those backports, unless the
2894feature is auto-detectable in a manner that works for the upstream releases
2895too.
2896
2897The Repology site @url{https://repology.org} is a useful resource to identify
2898currently shipped versions of software in various operating systems, though
2899it does not cover all distros listed below.
2900
2901@section Linux OS
2902
2903For distributions with frequent, short-lifetime releases, the project will
2904aim to support all versions that are not end of life by their respective
2905vendors. For the purposes of identifying supported software versions, the
2906project will look at Fedora, Ubuntu, and openSUSE distros. Other short-
2907lifetime distros will be assumed to ship similar software versions.
2908
2909For distributions with long-lifetime releases, the project will aim to support
2910the most recent major version at all times. Support for the previous major
2911version will be dropped 2 years after the new major version is released. For
2912the purposes of identifying supported software versions, the project will look
2913at RHEL, Debian, Ubuntu LTS, and SLES distros. Other long-lifetime distros will
2914be assumed to ship similar software versions.
2915
2916@section Windows
2917
2918The project supports building with current versions of the MinGW toolchain,
2919hosted on Linux.
2920
2921@section macOS
2922
2923The project supports building with the two most recent versions of macOS, with
2924the current homebrew package set available.
2925
2926@section FreeBSD
2927
2928The project aims to support the all the versions which are not end of life.
2929
2930@section NetBSD
2931
2932The project aims to support the most recent major version at all times. Support
2933for the previous major version will be dropped 2 years after the new major
2934version is released.
2935
2936@section OpenBSD
2937
2938The project aims to support the all the versions which are not end of life.
2939
7544a042
SW
2940@node License
2941@appendix License
2942
2943QEMU is a trademark of Fabrice Bellard.
2944
2f8d8f01
TH
2945QEMU is released under the
2946@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2947version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2948@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2949
debc7065 2950@node Index
7544a042
SW
2951@appendix Index
2952@menu
2953* Concept Index::
2954* Function Index::
2955* Keystroke Index::
2956* Program Index::
2957* Data Type Index::
2958* Variable Index::
2959@end menu
2960
2961@node Concept Index
2962@section Concept Index
2963This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2964@printindex cp
2965
7544a042
SW
2966@node Function Index
2967@section Function Index
2968This index could be used for command line options and monitor functions.
2969@printindex fn
2970
2971@node Keystroke Index
2972@section Keystroke Index
2973
2974This is a list of all keystrokes which have a special function
2975in system emulation.
2976
2977@printindex ky
2978
2979@node Program Index
2980@section Program Index
2981@printindex pg
2982
2983@node Data Type Index
2984@section Data Type Index
2985
2986This index could be used for qdev device names and options.
2987
2988@printindex tp
2989
2990@node Variable Index
2991@section Variable Index
2992@printindex vr
2993
debc7065 2994@bye