]> git.proxmox.com Git - mirror_qemu.git/blame - qemu-doc.texi
Use HTTPS for qemu.org and other domains
[mirror_qemu.git] / qemu-doc.texi
CommitLineData
386405f7 1\input texinfo @c -*- texinfo -*-
debc7065
FB
2@c %**start of header
3@setfilename qemu-doc.info
44cb280d 4@include version.texi
e080e785
SW
5
6@documentlanguage en
7@documentencoding UTF-8
8
44cb280d 9@settitle QEMU version @value{VERSION} User Documentation
debc7065
FB
10@exampleindent 0
11@paragraphindent 0
12@c %**end of header
386405f7 13
a1a32b05
SW
14@ifinfo
15@direntry
16* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
17@end direntry
18@end ifinfo
19
0806e3f6 20@iftex
386405f7
FB
21@titlepage
22@sp 7
44cb280d 23@center @titlefont{QEMU version @value{VERSION}}
debc7065
FB
24@sp 1
25@center @titlefont{User Documentation}
386405f7
FB
26@sp 3
27@end titlepage
0806e3f6 28@end iftex
386405f7 29
debc7065
FB
30@ifnottex
31@node Top
32@top
33
34@menu
35* Introduction::
debc7065
FB
36* QEMU PC System emulator::
37* QEMU System emulator for non PC targets::
3f2ce724 38* QEMU Guest Agent::
83195237 39* QEMU User space emulator::
78e87797 40* Implementation notes::
eb22aeca 41* Deprecated features::
7544a042 42* License::
debc7065
FB
43* Index::
44@end menu
45@end ifnottex
46
47@contents
48
49@node Introduction
386405f7
FB
50@chapter Introduction
51
debc7065
FB
52@menu
53* intro_features:: Features
54@end menu
55
56@node intro_features
322d0c66 57@section Features
386405f7 58
1f673135
FB
59QEMU is a FAST! processor emulator using dynamic translation to
60achieve good emulation speed.
1eb20527 61
1f3e7e41 62@cindex operating modes
1eb20527 63QEMU has two operating modes:
0806e3f6 64
d7e5edca 65@itemize
7544a042 66@cindex system emulation
1f3e7e41 67@item Full system emulation. In this mode, QEMU emulates a full system (for
3f9f3aa1
FB
68example a PC), including one or several processors and various
69peripherals. It can be used to launch different Operating Systems
70without rebooting the PC or to debug system code.
1eb20527 71
7544a042 72@cindex user mode emulation
1f3e7e41 73@item User mode emulation. In this mode, QEMU can launch
83195237 74processes compiled for one CPU on another CPU. It can be used to
70b7fba9 75launch the Wine Windows API emulator (@url{https://www.winehq.org}) or
1f673135 76to ease cross-compilation and cross-debugging.
1eb20527
FB
77
78@end itemize
79
1f3e7e41
PB
80QEMU has the following features:
81
82@itemize
83@item QEMU can run without a host kernel driver and yet gives acceptable
84performance. It uses dynamic translation to native code for reasonable speed,
85with support for self-modifying code and precise exceptions.
86
87@item It is portable to several operating systems (GNU/Linux, *BSD, Mac OS X,
88Windows) and architectures.
89
90@item It performs accurate software emulation of the FPU.
91@end itemize
322d0c66 92
1f3e7e41 93QEMU user mode emulation has the following features:
52c00a5f 94@itemize
1f3e7e41
PB
95@item Generic Linux system call converter, including most ioctls.
96
97@item clone() emulation using native CPU clone() to use Linux scheduler for threads.
98
99@item Accurate signal handling by remapping host signals to target signals.
100@end itemize
101
102QEMU full system emulation has the following features:
103@itemize
104@item
105QEMU uses a full software MMU for maximum portability.
106
107@item
326c4c3c 108QEMU can optionally use an in-kernel accelerator, like kvm. The accelerators
1f3e7e41
PB
109execute most of the guest code natively, while
110continuing to emulate the rest of the machine.
111
112@item
113Various hardware devices can be emulated and in some cases, host
114devices (e.g. serial and parallel ports, USB, drives) can be used
115transparently by the guest Operating System. Host device passthrough
116can be used for talking to external physical peripherals (e.g. a
117webcam, modem or tape drive).
118
119@item
120Symmetric multiprocessing (SMP) support. Currently, an in-kernel
121accelerator is required to use more than one host CPU for emulation.
122
52c00a5f 123@end itemize
386405f7 124
0806e3f6 125
debc7065 126@node QEMU PC System emulator
3f9f3aa1 127@chapter QEMU PC System emulator
7544a042 128@cindex system emulation (PC)
1eb20527 129
debc7065
FB
130@menu
131* pcsys_introduction:: Introduction
132* pcsys_quickstart:: Quick Start
133* sec_invocation:: Invocation
a40db1b3
PM
134* pcsys_keys:: Keys in the graphical frontends
135* mux_keys:: Keys in the character backend multiplexer
debc7065
FB
136* pcsys_monitor:: QEMU Monitor
137* disk_images:: Disk Images
138* pcsys_network:: Network emulation
576fd0a1 139* pcsys_other_devs:: Other Devices
debc7065
FB
140* direct_linux_boot:: Direct Linux Boot
141* pcsys_usb:: USB emulation
f858dcae 142* vnc_security:: VNC security
debc7065
FB
143* gdb_usage:: GDB usage
144* pcsys_os_specific:: Target OS specific information
145@end menu
146
147@node pcsys_introduction
0806e3f6
FB
148@section Introduction
149
150@c man begin DESCRIPTION
151
3f9f3aa1
FB
152The QEMU PC System emulator simulates the
153following peripherals:
0806e3f6
FB
154
155@itemize @minus
5fafdf24 156@item
15a34c63 157i440FX host PCI bridge and PIIX3 PCI to ISA bridge
0806e3f6 158@item
15a34c63
FB
159Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
160extensions (hardware level, including all non standard modes).
0806e3f6
FB
161@item
162PS/2 mouse and keyboard
5fafdf24 163@item
15a34c63 1642 PCI IDE interfaces with hard disk and CD-ROM support
1f673135
FB
165@item
166Floppy disk
5fafdf24 167@item
3a2eeac0 168PCI and ISA network adapters
0806e3f6 169@item
05d5818c
FB
170Serial ports
171@item
23076bb3
CM
172IPMI BMC, either and internal or external one
173@item
c0fe3827
FB
174Creative SoundBlaster 16 sound card
175@item
176ENSONIQ AudioPCI ES1370 sound card
177@item
e5c9a13e
AZ
178Intel 82801AA AC97 Audio compatible sound card
179@item
7d72e762
GH
180Intel HD Audio Controller and HDA codec
181@item
2d983446 182Adlib (OPL2) - Yamaha YM3812 compatible chip
b389dbfb 183@item
26463dbc
AZ
184Gravis Ultrasound GF1 sound card
185@item
cc53d26d 186CS4231A compatible sound card
187@item
a92ff8c1 188PCI UHCI, OHCI, EHCI or XHCI USB controller and a virtual USB-1.1 hub.
0806e3f6
FB
189@end itemize
190
3f9f3aa1
FB
191SMP is supported with up to 255 CPUs.
192
a8ad4159 193QEMU uses the PC BIOS from the Seabios project and the Plex86/Bochs LGPL
15a34c63
FB
194VGA BIOS.
195
c0fe3827
FB
196QEMU uses YM3812 emulation by Tatsuyuki Satoh.
197
2d983446 198QEMU uses GUS emulation (GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
26463dbc 199by Tibor "TS" Schütz.
423d65f4 200
1a1a0e20 201Note that, by default, GUS shares IRQ(7) with parallel ports and so
b65ee4fa 202QEMU must be told to not have parallel ports to have working GUS.
720036a5 203
204@example
3804da9d 205qemu-system-i386 dos.img -soundhw gus -parallel none
720036a5 206@end example
207
208Alternatively:
209@example
3804da9d 210qemu-system-i386 dos.img -device gus,irq=5
720036a5 211@end example
212
213Or some other unclaimed IRQ.
214
cc53d26d 215CS4231A is the chip used in Windows Sound System and GUSMAX products
216
0806e3f6
FB
217@c man end
218
debc7065 219@node pcsys_quickstart
1eb20527 220@section Quick Start
7544a042 221@cindex quick start
1eb20527 222
285dc330 223Download and uncompress the linux image (@file{linux.img}) and type:
0806e3f6
FB
224
225@example
3804da9d 226qemu-system-i386 linux.img
0806e3f6
FB
227@end example
228
229Linux should boot and give you a prompt.
230
6cc721cf 231@node sec_invocation
ec410fc9
FB
232@section Invocation
233
234@example
0806e3f6 235@c man begin SYNOPSIS
8485140f 236@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
0806e3f6 237@c man end
ec410fc9
FB
238@end example
239
0806e3f6 240@c man begin OPTIONS
d2c639d6
BS
241@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
242targets do not need a disk image.
ec410fc9 243
5824d651 244@include qemu-options.texi
ec410fc9 245
3e11db9a
FB
246@c man end
247
debc7065 248@node pcsys_keys
a40db1b3 249@section Keys in the graphical frontends
3e11db9a
FB
250
251@c man begin OPTIONS
252
de1db2a1
BH
253During the graphical emulation, you can use special key combinations to change
254modes. The default key mappings are shown below, but if you use @code{-alt-grab}
255then the modifier is Ctrl-Alt-Shift (instead of Ctrl-Alt) and if you use
256@code{-ctrl-grab} then the modifier is the right Ctrl key (instead of Ctrl-Alt):
257
a1b74fe8 258@table @key
f9859310 259@item Ctrl-Alt-f
7544a042 260@kindex Ctrl-Alt-f
a1b74fe8 261Toggle full screen
a0a821a4 262
d6a65ba3
JK
263@item Ctrl-Alt-+
264@kindex Ctrl-Alt-+
265Enlarge the screen
266
267@item Ctrl-Alt--
268@kindex Ctrl-Alt--
269Shrink the screen
270
c4a735f9 271@item Ctrl-Alt-u
7544a042 272@kindex Ctrl-Alt-u
c4a735f9 273Restore the screen's un-scaled dimensions
274
f9859310 275@item Ctrl-Alt-n
7544a042 276@kindex Ctrl-Alt-n
a0a821a4
FB
277Switch to virtual console 'n'. Standard console mappings are:
278@table @emph
279@item 1
280Target system display
281@item 2
282Monitor
283@item 3
284Serial port
a1b74fe8
FB
285@end table
286
f9859310 287@item Ctrl-Alt
7544a042 288@kindex Ctrl-Alt
a0a821a4
FB
289Toggle mouse and keyboard grab.
290@end table
291
7544a042
SW
292@kindex Ctrl-Up
293@kindex Ctrl-Down
294@kindex Ctrl-PageUp
295@kindex Ctrl-PageDown
3e11db9a
FB
296In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
297@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
298
a40db1b3
PM
299@c man end
300
301@node mux_keys
302@section Keys in the character backend multiplexer
303
304@c man begin OPTIONS
305
306During emulation, if you are using a character backend multiplexer
307(which is the default if you are using @option{-nographic}) then
308several commands are available via an escape sequence. These
309key sequences all start with an escape character, which is @key{Ctrl-a}
310by default, but can be changed with @option{-echr}. The list below assumes
311you're using the default.
ec410fc9
FB
312
313@table @key
a1b74fe8 314@item Ctrl-a h
7544a042 315@kindex Ctrl-a h
ec410fc9 316Print this help
3b46e624 317@item Ctrl-a x
7544a042 318@kindex Ctrl-a x
366dfc52 319Exit emulator
3b46e624 320@item Ctrl-a s
7544a042 321@kindex Ctrl-a s
1f47a922 322Save disk data back to file (if -snapshot)
20d8a3ed 323@item Ctrl-a t
7544a042 324@kindex Ctrl-a t
d2c639d6 325Toggle console timestamps
a1b74fe8 326@item Ctrl-a b
7544a042 327@kindex Ctrl-a b
1f673135 328Send break (magic sysrq in Linux)
a1b74fe8 329@item Ctrl-a c
7544a042 330@kindex Ctrl-a c
a40db1b3
PM
331Rotate between the frontends connected to the multiplexer (usually
332this switches between the monitor and the console)
a1b74fe8 333@item Ctrl-a Ctrl-a
a40db1b3
PM
334@kindex Ctrl-a Ctrl-a
335Send the escape character to the frontend
ec410fc9 336@end table
0806e3f6
FB
337@c man end
338
339@ignore
340
1f673135
FB
341@c man begin SEEALSO
342The HTML documentation of QEMU for more precise information and Linux
343user mode emulator invocation.
344@c man end
345
346@c man begin AUTHOR
347Fabrice Bellard
348@c man end
349
350@end ignore
351
debc7065 352@node pcsys_monitor
1f673135 353@section QEMU Monitor
7544a042 354@cindex QEMU monitor
1f673135
FB
355
356The QEMU monitor is used to give complex commands to the QEMU
357emulator. You can use it to:
358
359@itemize @minus
360
361@item
e598752a 362Remove or insert removable media images
89dfe898 363(such as CD-ROM or floppies).
1f673135 364
5fafdf24 365@item
1f673135
FB
366Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
367from a disk file.
368
369@item Inspect the VM state without an external debugger.
370
371@end itemize
372
373@subsection Commands
374
375The following commands are available:
376
2313086a 377@include qemu-monitor.texi
0806e3f6 378
2cd8af2d
PB
379@include qemu-monitor-info.texi
380
1f673135
FB
381@subsection Integer expressions
382
383The monitor understands integers expressions for every integer
384argument. You can use register names to get the value of specifics
385CPU registers by prefixing them with @emph{$}.
ec410fc9 386
1f47a922
FB
387@node disk_images
388@section Disk Images
389
ee29bdb6
PB
390QEMU supports many disk image formats, including growable disk images
391(their size increase as non empty sectors are written), compressed and
392encrypted disk images.
1f47a922 393
debc7065
FB
394@menu
395* disk_images_quickstart:: Quick start for disk image creation
396* disk_images_snapshot_mode:: Snapshot mode
13a2e80f 397* vm_snapshots:: VM snapshots
debc7065 398* qemu_img_invocation:: qemu-img Invocation
975b092b 399* qemu_nbd_invocation:: qemu-nbd Invocation
d3067b02 400* disk_images_formats:: Disk image file formats
19cb3738 401* host_drives:: Using host drives
debc7065 402* disk_images_fat_images:: Virtual FAT disk images
75818250 403* disk_images_nbd:: NBD access
42af9c30 404* disk_images_sheepdog:: Sheepdog disk images
00984e39 405* disk_images_iscsi:: iSCSI LUNs
8809e289 406* disk_images_gluster:: GlusterFS disk images
0a12ec87 407* disk_images_ssh:: Secure Shell (ssh) disk images
debc7065
FB
408@end menu
409
410@node disk_images_quickstart
acd935ef
FB
411@subsection Quick start for disk image creation
412
413You can create a disk image with the command:
1f47a922 414@example
acd935ef 415qemu-img create myimage.img mysize
1f47a922 416@end example
acd935ef
FB
417where @var{myimage.img} is the disk image filename and @var{mysize} is its
418size in kilobytes. You can add an @code{M} suffix to give the size in
419megabytes and a @code{G} suffix for gigabytes.
420
debc7065 421See @ref{qemu_img_invocation} for more information.
1f47a922 422
debc7065 423@node disk_images_snapshot_mode
1f47a922
FB
424@subsection Snapshot mode
425
426If you use the option @option{-snapshot}, all disk images are
427considered as read only. When sectors in written, they are written in
428a temporary file created in @file{/tmp}. You can however force the
acd935ef
FB
429write back to the raw disk images by using the @code{commit} monitor
430command (or @key{C-a s} in the serial console).
1f47a922 431
13a2e80f
FB
432@node vm_snapshots
433@subsection VM snapshots
434
435VM snapshots are snapshots of the complete virtual machine including
436CPU state, RAM, device state and the content of all the writable
437disks. In order to use VM snapshots, you must have at least one non
438removable and writable block device using the @code{qcow2} disk image
439format. Normally this device is the first virtual hard drive.
440
441Use the monitor command @code{savevm} to create a new VM snapshot or
442replace an existing one. A human readable name can be assigned to each
19d36792 443snapshot in addition to its numerical ID.
13a2e80f
FB
444
445Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
446a VM snapshot. @code{info snapshots} lists the available snapshots
447with their associated information:
448
449@example
450(qemu) info snapshots
451Snapshot devices: hda
452Snapshot list (from hda):
453ID TAG VM SIZE DATE VM CLOCK
4541 start 41M 2006-08-06 12:38:02 00:00:14.954
4552 40M 2006-08-06 12:43:29 00:00:18.633
4563 msys 40M 2006-08-06 12:44:04 00:00:23.514
457@end example
458
459A VM snapshot is made of a VM state info (its size is shown in
460@code{info snapshots}) and a snapshot of every writable disk image.
461The VM state info is stored in the first @code{qcow2} non removable
462and writable block device. The disk image snapshots are stored in
463every disk image. The size of a snapshot in a disk image is difficult
464to evaluate and is not shown by @code{info snapshots} because the
465associated disk sectors are shared among all the snapshots to save
19d36792
FB
466disk space (otherwise each snapshot would need a full copy of all the
467disk images).
13a2e80f
FB
468
469When using the (unrelated) @code{-snapshot} option
470(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
471but they are deleted as soon as you exit QEMU.
472
473VM snapshots currently have the following known limitations:
474@itemize
5fafdf24 475@item
13a2e80f
FB
476They cannot cope with removable devices if they are removed or
477inserted after a snapshot is done.
5fafdf24 478@item
13a2e80f
FB
479A few device drivers still have incomplete snapshot support so their
480state is not saved or restored properly (in particular USB).
481@end itemize
482
acd935ef
FB
483@node qemu_img_invocation
484@subsection @code{qemu-img} Invocation
1f47a922 485
acd935ef 486@include qemu-img.texi
05efe46e 487
975b092b
TS
488@node qemu_nbd_invocation
489@subsection @code{qemu-nbd} Invocation
490
491@include qemu-nbd.texi
492
78aa8aa0 493@include docs/qemu-block-drivers.texi
0a12ec87 494
debc7065 495@node pcsys_network
9d4fb82e
FB
496@section Network emulation
497
4be456f1 498QEMU can simulate several network cards (PCI or ISA cards on the PC
41d03949
FB
499target) and can connect them to an arbitrary number of Virtual Local
500Area Networks (VLANs). Host TAP devices can be connected to any QEMU
501VLAN. VLAN can be connected between separate instances of QEMU to
4be456f1 502simulate large networks. For simpler usage, a non privileged user mode
41d03949
FB
503network stack can replace the TAP device to have a basic network
504connection.
505
506@subsection VLANs
9d4fb82e 507
41d03949
FB
508QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
509connection between several network devices. These devices can be for
510example QEMU virtual Ethernet cards or virtual Host ethernet devices
511(TAP devices).
9d4fb82e 512
41d03949
FB
513@subsection Using TAP network interfaces
514
515This is the standard way to connect QEMU to a real network. QEMU adds
516a virtual network device on your host (called @code{tapN}), and you
517can then configure it as if it was a real ethernet card.
9d4fb82e 518
8f40c388
FB
519@subsubsection Linux host
520
9d4fb82e
FB
521As an example, you can download the @file{linux-test-xxx.tar.gz}
522archive and copy the script @file{qemu-ifup} in @file{/etc} and
523configure properly @code{sudo} so that the command @code{ifconfig}
524contained in @file{qemu-ifup} can be executed as root. You must verify
41d03949 525that your host kernel supports the TAP network interfaces: the
9d4fb82e
FB
526device @file{/dev/net/tun} must be present.
527
ee0f4751
FB
528See @ref{sec_invocation} to have examples of command lines using the
529TAP network interfaces.
9d4fb82e 530
8f40c388
FB
531@subsubsection Windows host
532
533There is a virtual ethernet driver for Windows 2000/XP systems, called
534TAP-Win32. But it is not included in standard QEMU for Windows,
535so you will need to get it separately. It is part of OpenVPN package,
70b7fba9 536so download OpenVPN from : @url{https://openvpn.net/}.
8f40c388 537
9d4fb82e
FB
538@subsection Using the user mode network stack
539
41d03949
FB
540By using the option @option{-net user} (default configuration if no
541@option{-net} option is specified), QEMU uses a completely user mode
4be456f1 542network stack (you don't need root privilege to use the virtual
41d03949 543network). The virtual network configuration is the following:
9d4fb82e
FB
544
545@example
546
41d03949
FB
547 QEMU VLAN <------> Firewall/DHCP server <-----> Internet
548 | (10.0.2.2)
9d4fb82e 549 |
2518bd0d 550 ----> DNS server (10.0.2.3)
3b46e624 551 |
2518bd0d 552 ----> SMB server (10.0.2.4)
9d4fb82e
FB
553@end example
554
555The QEMU VM behaves as if it was behind a firewall which blocks all
556incoming connections. You can use a DHCP client to automatically
41d03949
FB
557configure the network in the QEMU VM. The DHCP server assign addresses
558to the hosts starting from 10.0.2.15.
9d4fb82e
FB
559
560In order to check that the user mode network is working, you can ping
561the address 10.0.2.2 and verify that you got an address in the range
56210.0.2.x from the QEMU virtual DHCP server.
563
37cbfcce
GH
564Note that ICMP traffic in general does not work with user mode networking.
565@code{ping}, aka. ICMP echo, to the local router (10.0.2.2) shall work,
566however. If you're using QEMU on Linux >= 3.0, it can use unprivileged ICMP
567ping sockets to allow @code{ping} to the Internet. The host admin has to set
568the ping_group_range in order to grant access to those sockets. To allow ping
569for GID 100 (usually users group):
570
571@example
572echo 100 100 > /proc/sys/net/ipv4/ping_group_range
573@end example
b415a407 574
9bf05444
FB
575When using the built-in TFTP server, the router is also the TFTP
576server.
577
c8c6afa8
TH
578When using the @option{'-netdev user,hostfwd=...'} option, TCP or UDP
579connections can be redirected from the host to the guest. It allows for
580example to redirect X11, telnet or SSH connections.
443f1376 581
41d03949
FB
582@subsection Connecting VLANs between QEMU instances
583
584Using the @option{-net socket} option, it is possible to make VLANs
585that span several QEMU instances. See @ref{sec_invocation} to have a
586basic example.
587
576fd0a1 588@node pcsys_other_devs
6cbf4c8c
CM
589@section Other Devices
590
591@subsection Inter-VM Shared Memory device
592
5400c02b
MA
593On Linux hosts, a shared memory device is available. The basic syntax
594is:
6cbf4c8c
CM
595
596@example
5400c02b
MA
597qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
598@end example
599
600where @var{hostmem} names a host memory backend. For a POSIX shared
601memory backend, use something like
602
603@example
604-object memory-backend-file,size=1M,share,mem-path=/dev/shm/ivshmem,id=@var{hostmem}
6cbf4c8c
CM
605@end example
606
607If desired, interrupts can be sent between guest VMs accessing the same shared
608memory region. Interrupt support requires using a shared memory server and
609using a chardev socket to connect to it. The code for the shared memory server
610is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
611memory server is:
612
613@example
a75eb03b 614# First start the ivshmem server once and for all
50d34c4e 615ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
a75eb03b
DM
616
617# Then start your qemu instances with matching arguments
5400c02b 618qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
50d34c4e 619 -chardev socket,path=@var{path},id=@var{id}
6cbf4c8c
CM
620@end example
621
622When using the server, the guest will be assigned a VM ID (>=0) that allows guests
623using the same server to communicate via interrupts. Guests can read their
1309cf44 624VM ID from a device register (see ivshmem-spec.txt).
6cbf4c8c 625
62a830b6
MA
626@subsubsection Migration with ivshmem
627
5400c02b
MA
628With device property @option{master=on}, the guest will copy the shared
629memory on migration to the destination host. With @option{master=off},
630the guest will not be able to migrate with the device attached. In the
631latter case, the device should be detached and then reattached after
632migration using the PCI hotplug support.
6cbf4c8c 633
62a830b6
MA
634At most one of the devices sharing the same memory can be master. The
635master must complete migration before you plug back the other devices.
636
7d4f4bda
MAL
637@subsubsection ivshmem and hugepages
638
639Instead of specifying the <shm size> using POSIX shm, you may specify
640a memory backend that has hugepage support:
641
642@example
5400c02b
MA
643qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
644 -device ivshmem-plain,memdev=mb1
7d4f4bda
MAL
645@end example
646
647ivshmem-server also supports hugepages mount points with the
648@option{-m} memory path argument.
649
9d4fb82e
FB
650@node direct_linux_boot
651@section Direct Linux Boot
1f673135
FB
652
653This section explains how to launch a Linux kernel inside QEMU without
654having to make a full bootable image. It is very useful for fast Linux
ee0f4751 655kernel testing.
1f673135 656
ee0f4751 657The syntax is:
1f673135 658@example
3804da9d 659qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1f673135
FB
660@end example
661
ee0f4751
FB
662Use @option{-kernel} to provide the Linux kernel image and
663@option{-append} to give the kernel command line arguments. The
664@option{-initrd} option can be used to provide an INITRD image.
1f673135 665
ee0f4751
FB
666When using the direct Linux boot, a disk image for the first hard disk
667@file{hda} is required because its boot sector is used to launch the
668Linux kernel.
1f673135 669
ee0f4751
FB
670If you do not need graphical output, you can disable it and redirect
671the virtual serial port and the QEMU monitor to the console with the
672@option{-nographic} option. The typical command line is:
1f673135 673@example
3804da9d
SW
674qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
675 -append "root=/dev/hda console=ttyS0" -nographic
1f673135
FB
676@end example
677
ee0f4751
FB
678Use @key{Ctrl-a c} to switch between the serial console and the
679monitor (@pxref{pcsys_keys}).
1f673135 680
debc7065 681@node pcsys_usb
b389dbfb
FB
682@section USB emulation
683
a92ff8c1
TH
684QEMU can emulate a PCI UHCI, OHCI, EHCI or XHCI USB controller. You can
685plug virtual USB devices or real host USB devices (only works with certain
686host operating systems). QEMU will automatically create and connect virtual
687USB hubs as necessary to connect multiple USB devices.
b389dbfb 688
0aff66b5
PB
689@menu
690* usb_devices::
691* host_usb_devices::
692@end menu
693@node usb_devices
694@subsection Connecting USB devices
b389dbfb 695
a92ff8c1
TH
696USB devices can be connected with the @option{-device usb-...} command line
697option or the @code{device_add} monitor command. Available devices are:
b389dbfb 698
db380c06 699@table @code
a92ff8c1 700@item usb-mouse
0aff66b5 701Virtual Mouse. This will override the PS/2 mouse emulation when activated.
a92ff8c1 702@item usb-tablet
c6d46c20 703Pointer device that uses absolute coordinates (like a touchscreen).
b65ee4fa 704This means QEMU is able to report the mouse position without having
0aff66b5 705to grab the mouse. Also overrides the PS/2 mouse emulation when activated.
a92ff8c1
TH
706@item usb-storage,drive=@var{drive_id}
707Mass storage device backed by @var{drive_id} (@pxref{disk_images})
708@item usb-uas
709USB attached SCSI device, see
70b7fba9 710@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
711for details
712@item usb-bot
713Bulk-only transport storage device, see
70b7fba9 714@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=docs/usb-storage.txt,usb-storage.txt}
a92ff8c1
TH
715for details here, too
716@item usb-mtp,x-root=@var{dir}
717Media transfer protocol device, using @var{dir} as root of the file tree
718that is presented to the guest.
719@item usb-host,hostbus=@var{bus},hostaddr=@var{addr}
720Pass through the host device identified by @var{bus} and @var{addr}
721@item usb-host,vendorid=@var{vendor},productid=@var{product}
722Pass through the host device identified by @var{vendor} and @var{product} ID
723@item usb-wacom-tablet
f6d2a316
AZ
724Virtual Wacom PenPartner tablet. This device is similar to the @code{tablet}
725above but it can be used with the tslib library because in addition to touch
726coordinates it reports touch pressure.
a92ff8c1 727@item usb-kbd
47b2d338 728Standard USB keyboard. Will override the PS/2 keyboard (if present).
a92ff8c1 729@item usb-serial,chardev=@var{id}
db380c06 730Serial converter. This emulates an FTDI FT232BM chip connected to host character
a92ff8c1
TH
731device @var{id}.
732@item usb-braille,chardev=@var{id}
2e4d9fb1 733Braille device. This will use BrlAPI to display the braille output on a real
a92ff8c1
TH
734or fake device referenced by @var{id}.
735@item usb-net[,netdev=@var{id}]
736Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
737specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
9ad97e65 738For instance, user-mode networking can be used with
6c9f886c 739@example
a92ff8c1 740qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
6c9f886c 741@end example
a92ff8c1
TH
742@item usb-ccid
743Smartcard reader device
744@item usb-audio
745USB audio device
746@item usb-bt-dongle
747Bluetooth dongle for the transport layer of HCI. It is connected to HCI
748scatternet 0 by default (corresponds to @code{-bt hci,vlan=0}).
749Note that the syntax for the @code{-device usb-bt-dongle} option is not as
750useful yet as it was with the legacy @code{-usbdevice} option. So to
751configure an USB bluetooth device, you might need to use
752"@code{-usbdevice bt}[:@var{hci-type}]" instead. This configures a
753bluetooth dongle whose type is specified in the same format as with
2d564691
AZ
754the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}. If
755no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
756This USB device implements the USB Transport Layer of HCI. Example
757usage:
758@example
8485140f 759@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
2d564691 760@end example
0aff66b5 761@end table
b389dbfb 762
0aff66b5 763@node host_usb_devices
b389dbfb
FB
764@subsection Using host USB devices on a Linux host
765
766WARNING: this is an experimental feature. QEMU will slow down when
767using it. USB devices requiring real time streaming (i.e. USB Video
768Cameras) are not supported yet.
769
770@enumerate
5fafdf24 771@item If you use an early Linux 2.4 kernel, verify that no Linux driver
b389dbfb
FB
772is actually using the USB device. A simple way to do that is simply to
773disable the corresponding kernel module by renaming it from @file{mydriver.o}
774to @file{mydriver.o.disabled}.
775
776@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
777@example
778ls /proc/bus/usb
779001 devices drivers
780@end example
781
782@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
783@example
784chown -R myuid /proc/bus/usb
785@end example
786
787@item Launch QEMU and do in the monitor:
5fafdf24 788@example
b389dbfb
FB
789info usbhost
790 Device 1.2, speed 480 Mb/s
791 Class 00: USB device 1234:5678, USB DISK
792@end example
793You should see the list of the devices you can use (Never try to use
794hubs, it won't work).
795
796@item Add the device in QEMU by using:
5fafdf24 797@example
a92ff8c1 798device_add usb-host,vendorid=0x1234,productid=0x5678
b389dbfb
FB
799@end example
800
a92ff8c1
TH
801Normally the guest OS should report that a new USB device is plugged.
802You can use the option @option{-device usb-host,...} to do the same.
b389dbfb
FB
803
804@item Now you can try to use the host USB device in QEMU.
805
806@end enumerate
807
808When relaunching QEMU, you may have to unplug and plug again the USB
809device to make it work again (this is a bug).
810
f858dcae
TS
811@node vnc_security
812@section VNC security
813
814The VNC server capability provides access to the graphical console
815of the guest VM across the network. This has a number of security
816considerations depending on the deployment scenarios.
817
818@menu
819* vnc_sec_none::
820* vnc_sec_password::
821* vnc_sec_certificate::
822* vnc_sec_certificate_verify::
823* vnc_sec_certificate_pw::
2f9606b3
AL
824* vnc_sec_sasl::
825* vnc_sec_certificate_sasl::
f858dcae 826* vnc_generate_cert::
2f9606b3 827* vnc_setup_sasl::
f858dcae
TS
828@end menu
829@node vnc_sec_none
830@subsection Without passwords
831
832The simplest VNC server setup does not include any form of authentication.
833For this setup it is recommended to restrict it to listen on a UNIX domain
834socket only. For example
835
836@example
3804da9d 837qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
f858dcae
TS
838@end example
839
840This ensures that only users on local box with read/write access to that
841path can access the VNC server. To securely access the VNC server from a
842remote machine, a combination of netcat+ssh can be used to provide a secure
843tunnel.
844
845@node vnc_sec_password
846@subsection With passwords
847
848The VNC protocol has limited support for password based authentication. Since
849the protocol limits passwords to 8 characters it should not be considered
850to provide high security. The password can be fairly easily brute-forced by
851a client making repeat connections. For this reason, a VNC server using password
852authentication should be restricted to only listen on the loopback interface
0f66998f
PM
853or UNIX domain sockets. Password authentication is not supported when operating
854in FIPS 140-2 compliance mode as it requires the use of the DES cipher. Password
855authentication is requested with the @code{password} option, and then once QEMU
856is running the password is set with the monitor. Until the monitor is used to
857set the password all clients will be rejected.
f858dcae
TS
858
859@example
3804da9d 860qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
f858dcae
TS
861(qemu) change vnc password
862Password: ********
863(qemu)
864@end example
865
866@node vnc_sec_certificate
867@subsection With x509 certificates
868
869The QEMU VNC server also implements the VeNCrypt extension allowing use of
870TLS for encryption of the session, and x509 certificates for authentication.
871The use of x509 certificates is strongly recommended, because TLS on its
872own is susceptible to man-in-the-middle attacks. Basic x509 certificate
873support provides a secure session, but no authentication. This allows any
874client to connect, and provides an encrypted session.
875
876@example
3804da9d 877qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
f858dcae
TS
878@end example
879
880In the above example @code{/etc/pki/qemu} should contain at least three files,
881@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
882users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
883NB the @code{server-key.pem} file should be protected with file mode 0600 to
884only be readable by the user owning it.
885
886@node vnc_sec_certificate_verify
887@subsection With x509 certificates and client verification
888
889Certificates can also provide a means to authenticate the client connecting.
890The server will request that the client provide a certificate, which it will
891then validate against the CA certificate. This is a good choice if deploying
892in an environment with a private internal certificate authority.
893
894@example
3804da9d 895qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
896@end example
897
898
899@node vnc_sec_certificate_pw
900@subsection With x509 certificates, client verification and passwords
901
902Finally, the previous method can be combined with VNC password authentication
903to provide two layers of authentication for clients.
904
905@example
3804da9d 906qemu-system-i386 [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
f858dcae
TS
907(qemu) change vnc password
908Password: ********
909(qemu)
910@end example
911
2f9606b3
AL
912
913@node vnc_sec_sasl
914@subsection With SASL authentication
915
916The SASL authentication method is a VNC extension, that provides an
917easily extendable, pluggable authentication method. This allows for
918integration with a wide range of authentication mechanisms, such as
919PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
920The strength of the authentication depends on the exact mechanism
921configured. If the chosen mechanism also provides a SSF layer, then
922it will encrypt the datastream as well.
923
924Refer to the later docs on how to choose the exact SASL mechanism
925used for authentication, but assuming use of one supporting SSF,
926then QEMU can be launched with:
927
928@example
3804da9d 929qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
2f9606b3
AL
930@end example
931
932@node vnc_sec_certificate_sasl
933@subsection With x509 certificates and SASL authentication
934
935If the desired SASL authentication mechanism does not supported
936SSF layers, then it is strongly advised to run it in combination
937with TLS and x509 certificates. This provides securely encrypted
938data stream, avoiding risk of compromising of the security
939credentials. This can be enabled, by combining the 'sasl' option
940with the aforementioned TLS + x509 options:
941
942@example
3804da9d 943qemu-system-i386 [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
2f9606b3
AL
944@end example
945
946
f858dcae
TS
947@node vnc_generate_cert
948@subsection Generating certificates for VNC
949
950The GNU TLS packages provides a command called @code{certtool} which can
951be used to generate certificates and keys in PEM format. At a minimum it
40c5c6cd 952is necessary to setup a certificate authority, and issue certificates to
f858dcae
TS
953each server. If using certificates for authentication, then each client
954will also need to be issued a certificate. The recommendation is for the
955server to keep its certificates in either @code{/etc/pki/qemu} or for
956unprivileged users in @code{$HOME/.pki/qemu}.
957
958@menu
959* vnc_generate_ca::
960* vnc_generate_server::
961* vnc_generate_client::
962@end menu
963@node vnc_generate_ca
964@subsubsection Setup the Certificate Authority
965
966This step only needs to be performed once per organization / organizational
967unit. First the CA needs a private key. This key must be kept VERY secret
968and secure. If this key is compromised the entire trust chain of the certificates
969issued with it is lost.
970
971@example
972# certtool --generate-privkey > ca-key.pem
973@end example
974
975A CA needs to have a public certificate. For simplicity it can be a self-signed
976certificate, or one issue by a commercial certificate issuing authority. To
977generate a self-signed certificate requires one core piece of information, the
978name of the organization.
979
980@example
981# cat > ca.info <<EOF
982cn = Name of your organization
983ca
984cert_signing_key
985EOF
986# certtool --generate-self-signed \
987 --load-privkey ca-key.pem
988 --template ca.info \
989 --outfile ca-cert.pem
990@end example
991
992The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
993TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
994
995@node vnc_generate_server
996@subsubsection Issuing server certificates
997
998Each server (or host) needs to be issued with a key and certificate. When connecting
999the certificate is sent to the client which validates it against the CA certificate.
1000The core piece of information for a server certificate is the hostname. This should
1001be the fully qualified hostname that the client will connect with, since the client
1002will typically also verify the hostname in the certificate. On the host holding the
1003secure CA private key:
1004
1005@example
1006# cat > server.info <<EOF
1007organization = Name of your organization
1008cn = server.foo.example.com
1009tls_www_server
1010encryption_key
1011signing_key
1012EOF
1013# certtool --generate-privkey > server-key.pem
1014# certtool --generate-certificate \
1015 --load-ca-certificate ca-cert.pem \
1016 --load-ca-privkey ca-key.pem \
63c693f8 1017 --load-privkey server-key.pem \
f858dcae
TS
1018 --template server.info \
1019 --outfile server-cert.pem
1020@end example
1021
1022The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1023to the server for which they were generated. The @code{server-key.pem} is security
1024sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1025
1026@node vnc_generate_client
1027@subsubsection Issuing client certificates
1028
1029If the QEMU VNC server is to use the @code{x509verify} option to validate client
1030certificates as its authentication mechanism, each client also needs to be issued
1031a certificate. The client certificate contains enough metadata to uniquely identify
1032the client, typically organization, state, city, building, etc. On the host holding
1033the secure CA private key:
1034
1035@example
1036# cat > client.info <<EOF
1037country = GB
1038state = London
1039locality = London
63c693f8 1040organization = Name of your organization
f858dcae
TS
1041cn = client.foo.example.com
1042tls_www_client
1043encryption_key
1044signing_key
1045EOF
1046# certtool --generate-privkey > client-key.pem
1047# certtool --generate-certificate \
1048 --load-ca-certificate ca-cert.pem \
1049 --load-ca-privkey ca-key.pem \
1050 --load-privkey client-key.pem \
1051 --template client.info \
1052 --outfile client-cert.pem
1053@end example
1054
1055The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1056copied to the client for which they were generated.
1057
2f9606b3
AL
1058
1059@node vnc_setup_sasl
1060
1061@subsection Configuring SASL mechanisms
1062
1063The following documentation assumes use of the Cyrus SASL implementation on a
1064Linux host, but the principals should apply to any other SASL impl. When SASL
1065is enabled, the mechanism configuration will be loaded from system default
1066SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1067unprivileged user, an environment variable SASL_CONF_PATH can be used
1068to make it search alternate locations for the service config.
1069
c6a9a9f5
DB
1070If the TLS option is enabled for VNC, then it will provide session encryption,
1071otherwise the SASL mechanism will have to provide encryption. In the latter
1072case the list of possible plugins that can be used is drastically reduced. In
1073fact only the GSSAPI SASL mechanism provides an acceptable level of security
1074by modern standards. Previous versions of QEMU referred to the DIGEST-MD5
1075mechanism, however, it has multiple serious flaws described in detail in
1076RFC 6331 and thus should never be used any more. The SCRAM-SHA-1 mechanism
1077provides a simple username/password auth facility similar to DIGEST-MD5, but
1078does not support session encryption, so can only be used in combination with
1079TLS.
1080
1081When not using TLS the recommended configuration is
2f9606b3
AL
1082
1083@example
c6a9a9f5
DB
1084mech_list: gssapi
1085keytab: /etc/qemu/krb5.tab
2f9606b3
AL
1086@end example
1087
c6a9a9f5
DB
1088This says to use the 'GSSAPI' mechanism with the Kerberos v5 protocol, with
1089the server principal stored in /etc/qemu/krb5.tab. For this to work the
1090administrator of your KDC must generate a Kerberos principal for the server,
1091with a name of 'qemu/somehost.example.com@@EXAMPLE.COM' replacing
1092'somehost.example.com' with the fully qualified host name of the machine
1093running QEMU, and 'EXAMPLE.COM' with the Kerberos Realm.
2f9606b3 1094
c6a9a9f5
DB
1095When using TLS, if username+password authentication is desired, then a
1096reasonable configuration is
2f9606b3
AL
1097
1098@example
c6a9a9f5
DB
1099mech_list: scram-sha-1
1100sasldb_path: /etc/qemu/passwd.db
2f9606b3
AL
1101@end example
1102
c6a9a9f5
DB
1103The saslpasswd2 program can be used to populate the passwd.db file with
1104accounts.
2f9606b3 1105
c6a9a9f5
DB
1106Other SASL configurations will be left as an exercise for the reader. Note that
1107all mechanisms except GSSAPI, should be combined with use of TLS to ensure a
1108secure data channel.
2f9606b3 1109
0806e3f6 1110@node gdb_usage
da415d54
FB
1111@section GDB usage
1112
1113QEMU has a primitive support to work with gdb, so that you can do
0806e3f6 1114'Ctrl-C' while the virtual machine is running and inspect its state.
da415d54 1115
b65ee4fa 1116In order to use gdb, launch QEMU with the '-s' option. It will wait for a
da415d54
FB
1117gdb connection:
1118@example
3804da9d
SW
1119qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1120 -append "root=/dev/hda"
da415d54
FB
1121Connected to host network interface: tun0
1122Waiting gdb connection on port 1234
1123@end example
1124
1125Then launch gdb on the 'vmlinux' executable:
1126@example
1127> gdb vmlinux
1128@end example
1129
1130In gdb, connect to QEMU:
1131@example
6c9bf893 1132(gdb) target remote localhost:1234
da415d54
FB
1133@end example
1134
1135Then you can use gdb normally. For example, type 'c' to launch the kernel:
1136@example
1137(gdb) c
1138@end example
1139
0806e3f6
FB
1140Here are some useful tips in order to use gdb on system code:
1141
1142@enumerate
1143@item
1144Use @code{info reg} to display all the CPU registers.
1145@item
1146Use @code{x/10i $eip} to display the code at the PC position.
1147@item
1148Use @code{set architecture i8086} to dump 16 bit code. Then use
294e8637 1149@code{x/10i $cs*16+$eip} to dump the code at the PC position.
0806e3f6
FB
1150@end enumerate
1151
60897d36
EI
1152Advanced debugging options:
1153
b6af0975 1154The default single stepping behavior is step with the IRQs and timer service routines off. It is set this way because when gdb executes a single step it expects to advance beyond the current instruction. With the IRQs and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed. Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB. There are three commands you can query and set the single step behavior:
94d45e44 1155@table @code
60897d36
EI
1156@item maintenance packet qqemu.sstepbits
1157
1158This will display the MASK bits used to control the single stepping IE:
1159@example
1160(gdb) maintenance packet qqemu.sstepbits
1161sending: "qqemu.sstepbits"
1162received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1163@end example
1164@item maintenance packet qqemu.sstep
1165
1166This will display the current value of the mask used when single stepping IE:
1167@example
1168(gdb) maintenance packet qqemu.sstep
1169sending: "qqemu.sstep"
1170received: "0x7"
1171@end example
1172@item maintenance packet Qqemu.sstep=HEX_VALUE
1173
1174This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1175@example
1176(gdb) maintenance packet Qqemu.sstep=0x5
1177sending: "qemu.sstep=0x5"
1178received: "OK"
1179@end example
94d45e44 1180@end table
60897d36 1181
debc7065 1182@node pcsys_os_specific
1a084f3d
FB
1183@section Target OS specific information
1184
1185@subsection Linux
1186
15a34c63
FB
1187To have access to SVGA graphic modes under X11, use the @code{vesa} or
1188the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1189color depth in the guest and the host OS.
1a084f3d 1190
e3371e62
FB
1191When using a 2.6 guest Linux kernel, you should add the option
1192@code{clock=pit} on the kernel command line because the 2.6 Linux
1193kernels make very strict real time clock checks by default that QEMU
1194cannot simulate exactly.
1195
7c3fc84d
FB
1196When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1197not activated because QEMU is slower with this patch. The QEMU
1198Accelerator Module is also much slower in this case. Earlier Fedora
4be456f1 1199Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
7c3fc84d
FB
1200patch by default. Newer kernels don't have it.
1201
1a084f3d
FB
1202@subsection Windows
1203
1204If you have a slow host, using Windows 95 is better as it gives the
1205best speed. Windows 2000 is also a good choice.
1206
e3371e62
FB
1207@subsubsection SVGA graphic modes support
1208
1209QEMU emulates a Cirrus Logic GD5446 Video
15a34c63
FB
1210card. All Windows versions starting from Windows 95 should recognize
1211and use this graphic card. For optimal performances, use 16 bit color
1212depth in the guest and the host OS.
1a084f3d 1213
3cb0853a
FB
1214If you are using Windows XP as guest OS and if you want to use high
1215resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
12161280x1024x16), then you should use the VESA VBE virtual graphic card
1217(option @option{-std-vga}).
1218
e3371e62
FB
1219@subsubsection CPU usage reduction
1220
1221Windows 9x does not correctly use the CPU HLT
15a34c63
FB
1222instruction. The result is that it takes host CPU cycles even when
1223idle. You can install the utility from
70b7fba9 1224@url{https://web.archive.org/web/20060212132151/http://www.user.cityline.ru/~maxamn/amnhltm.zip}
3ba34a70 1225to solve this problem. Note that no such tool is needed for NT, 2000 or XP.
1a084f3d 1226
9d0a8e6f 1227@subsubsection Windows 2000 disk full problem
e3371e62 1228
9d0a8e6f
FB
1229Windows 2000 has a bug which gives a disk full problem during its
1230installation. When installing it, use the @option{-win2k-hack} QEMU
1231option to enable a specific workaround. After Windows 2000 is
1232installed, you no longer need this option (this option slows down the
1233IDE transfers).
e3371e62 1234
6cc721cf
FB
1235@subsubsection Windows 2000 shutdown
1236
1237Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1238can. It comes from the fact that Windows 2000 does not automatically
1239use the APM driver provided by the BIOS.
1240
1241In order to correct that, do the following (thanks to Struan
1242Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1243Add/Troubleshoot a device => Add a new device & Next => No, select the
1244hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1245(again) a few times. Now the driver is installed and Windows 2000 now
5fafdf24 1246correctly instructs QEMU to shutdown at the appropriate moment.
6cc721cf
FB
1247
1248@subsubsection Share a directory between Unix and Windows
1249
c8c6afa8
TH
1250See @ref{sec_invocation} about the help of the option
1251@option{'-netdev user,smb=...'}.
6cc721cf 1252
2192c332 1253@subsubsection Windows XP security problem
e3371e62
FB
1254
1255Some releases of Windows XP install correctly but give a security
1256error when booting:
1257@example
1258A problem is preventing Windows from accurately checking the
1259license for this computer. Error code: 0x800703e6.
1260@end example
e3371e62 1261
2192c332
FB
1262The workaround is to install a service pack for XP after a boot in safe
1263mode. Then reboot, and the problem should go away. Since there is no
1264network while in safe mode, its recommended to download the full
1265installation of SP1 or SP2 and transfer that via an ISO or using the
1266vvfat block device ("-hdb fat:directory_which_holds_the_SP").
e3371e62 1267
a0a821a4
FB
1268@subsection MS-DOS and FreeDOS
1269
1270@subsubsection CPU usage reduction
1271
1272DOS does not correctly use the CPU HLT instruction. The result is that
3ba34a70 1273it takes host CPU cycles even when idle. You can install the utility from
70b7fba9 1274@url{https://web.archive.org/web/20051222085335/http://www.vmware.com/software/dosidle210.zip}
3ba34a70 1275to solve this problem.
a0a821a4 1276
debc7065 1277@node QEMU System emulator for non PC targets
3f9f3aa1
FB
1278@chapter QEMU System emulator for non PC targets
1279
1280QEMU is a generic emulator and it emulates many non PC
1281machines. Most of the options are similar to the PC emulator. The
4be456f1 1282differences are mentioned in the following sections.
3f9f3aa1 1283
debc7065 1284@menu
7544a042 1285* PowerPC System emulator::
24d4de45
TS
1286* Sparc32 System emulator::
1287* Sparc64 System emulator::
1288* MIPS System emulator::
1289* ARM System emulator::
1290* ColdFire System emulator::
7544a042
SW
1291* Cris System emulator::
1292* Microblaze System emulator::
1293* SH4 System emulator::
3aeaea65 1294* Xtensa System emulator::
debc7065
FB
1295@end menu
1296
7544a042
SW
1297@node PowerPC System emulator
1298@section PowerPC System emulator
1299@cindex system emulation (PowerPC)
1a084f3d 1300
15a34c63
FB
1301Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1302or PowerMac PowerPC system.
1a084f3d 1303
b671f9ed 1304QEMU emulates the following PowerMac peripherals:
1a084f3d 1305
15a34c63 1306@itemize @minus
5fafdf24 1307@item
006f3a48 1308UniNorth or Grackle PCI Bridge
15a34c63
FB
1309@item
1310PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1311@item
15a34c63 13122 PMAC IDE interfaces with hard disk and CD-ROM support
5fafdf24 1313@item
15a34c63
FB
1314NE2000 PCI adapters
1315@item
1316Non Volatile RAM
1317@item
1318VIA-CUDA with ADB keyboard and mouse.
1a084f3d
FB
1319@end itemize
1320
b671f9ed 1321QEMU emulates the following PREP peripherals:
52c00a5f
FB
1322
1323@itemize @minus
5fafdf24 1324@item
15a34c63
FB
1325PCI Bridge
1326@item
1327PCI VGA compatible card with VESA Bochs Extensions
5fafdf24 1328@item
52c00a5f
FB
13292 IDE interfaces with hard disk and CD-ROM support
1330@item
1331Floppy disk
5fafdf24 1332@item
15a34c63 1333NE2000 network adapters
52c00a5f
FB
1334@item
1335Serial port
1336@item
1337PREP Non Volatile RAM
15a34c63
FB
1338@item
1339PC compatible keyboard and mouse.
52c00a5f
FB
1340@end itemize
1341
15a34c63 1342QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
3f9f3aa1 1343@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
52c00a5f 1344
70b7fba9 1345Since version 0.9.1, QEMU uses OpenBIOS @url{https://www.openbios.org/}
006f3a48
BS
1346for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1347v2) portable firmware implementation. The goal is to implement a 100%
1348IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
992e5acd 1349
15a34c63
FB
1350@c man begin OPTIONS
1351
1352The following options are specific to the PowerPC emulation:
1353
1354@table @option
1355
4e257e5e 1356@item -g @var{W}x@var{H}[x@var{DEPTH}]
15a34c63 1357
340fb41b 1358Set the initial VGA graphic mode. The default is 800x600x32.
15a34c63 1359
4e257e5e 1360@item -prom-env @var{string}
95efd11c
BS
1361
1362Set OpenBIOS variables in NVRAM, for example:
1363
1364@example
1365qemu-system-ppc -prom-env 'auto-boot?=false' \
1366 -prom-env 'boot-device=hd:2,\yaboot' \
1367 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1368@end example
1369
1370These variables are not used by Open Hack'Ware.
1371
15a34c63
FB
1372@end table
1373
5fafdf24 1374@c man end
15a34c63
FB
1375
1376
52c00a5f 1377More information is available at
3f9f3aa1 1378@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
52c00a5f 1379
24d4de45
TS
1380@node Sparc32 System emulator
1381@section Sparc32 System emulator
7544a042 1382@cindex system emulation (Sparc32)
e80cfcfc 1383
34a3d239
BS
1384Use the executable @file{qemu-system-sparc} to simulate the following
1385Sun4m architecture machines:
1386@itemize @minus
1387@item
1388SPARCstation 4
1389@item
1390SPARCstation 5
1391@item
1392SPARCstation 10
1393@item
1394SPARCstation 20
1395@item
1396SPARCserver 600MP
1397@item
1398SPARCstation LX
1399@item
1400SPARCstation Voyager
1401@item
1402SPARCclassic
1403@item
1404SPARCbook
1405@end itemize
1406
1407The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1408but Linux limits the number of usable CPUs to 4.
e80cfcfc 1409
6a4e1771 1410QEMU emulates the following sun4m peripherals:
e80cfcfc
FB
1411
1412@itemize @minus
3475187d 1413@item
6a4e1771 1414IOMMU
e80cfcfc 1415@item
33632788 1416TCX or cgthree Frame buffer
5fafdf24 1417@item
e80cfcfc
FB
1418Lance (Am7990) Ethernet
1419@item
34a3d239 1420Non Volatile RAM M48T02/M48T08
e80cfcfc 1421@item
3475187d
FB
1422Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1423and power/reset logic
1424@item
1425ESP SCSI controller with hard disk and CD-ROM support
1426@item
6a3b9cc9 1427Floppy drive (not on SS-600MP)
a2502b58
BS
1428@item
1429CS4231 sound device (only on SS-5, not working yet)
e80cfcfc
FB
1430@end itemize
1431
6a3b9cc9
BS
1432The number of peripherals is fixed in the architecture. Maximum
1433memory size depends on the machine type, for SS-5 it is 256MB and for
7d85892b 1434others 2047MB.
3475187d 1435
30a604f3 1436Since version 0.8.2, QEMU uses OpenBIOS
70b7fba9 1437@url{https://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
0986ac3b
FB
1438firmware implementation. The goal is to implement a 100% IEEE
14391275-1994 (referred to as Open Firmware) compliant firmware.
3475187d
FB
1440
1441A sample Linux 2.6 series kernel and ram disk image are available on
34a3d239 1442the QEMU web site. There are still issues with NetBSD and OpenBSD, but
9bb9f217 1443most kernel versions work. Please note that currently older Solaris kernels
34a3d239
BS
1444don't work probably due to interface issues between OpenBIOS and
1445Solaris.
3475187d
FB
1446
1447@c man begin OPTIONS
1448
a2502b58 1449The following options are specific to the Sparc32 emulation:
3475187d
FB
1450
1451@table @option
1452
4e257e5e 1453@item -g @var{W}x@var{H}x[x@var{DEPTH}]
3475187d 1454
33632788
MCA
1455Set the initial graphics mode. For TCX, the default is 1024x768x8 with the
1456option of 1024x768x24. For cgthree, the default is 1024x768x8 with the option
1457of 1152x900x8 for people who wish to use OBP.
3475187d 1458
4e257e5e 1459@item -prom-env @var{string}
66508601
BS
1460
1461Set OpenBIOS variables in NVRAM, for example:
1462
1463@example
1464qemu-system-sparc -prom-env 'auto-boot?=false' \
1465 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1466@end example
1467
6a4e1771 1468@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook]
a2502b58
BS
1469
1470Set the emulated machine type. Default is SS-5.
1471
3475187d
FB
1472@end table
1473
5fafdf24 1474@c man end
3475187d 1475
24d4de45
TS
1476@node Sparc64 System emulator
1477@section Sparc64 System emulator
7544a042 1478@cindex system emulation (Sparc64)
e80cfcfc 1479
34a3d239
BS
1480Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1481(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
9bb9f217
MCA
1482Niagara (T1) machine. The Sun4u emulator is mostly complete, being
1483able to run Linux, NetBSD and OpenBSD in headless (-nographic) mode. The
a2664ca0
AT
1484Sun4v emulator is still a work in progress.
1485
1486The Niagara T1 emulator makes use of firmware and OS binaries supplied in the S10image/ directory
1487of the OpenSPARC T1 project @url{http://download.oracle.com/technetwork/systems/opensparc/OpenSPARCT1_Arch.1.5.tar.bz2}
1488and is able to boot the disk.s10hw2 Solaris image.
1489@example
1490qemu-system-sparc64 -M niagara -L /path-to/S10image/ \
1491 -nographic -m 256 \
1492 -drive if=pflash,readonly=on,file=/S10image/disk.s10hw2
1493@end example
1494
b756921a 1495
c7ba218d 1496QEMU emulates the following peripherals:
83469015
FB
1497
1498@itemize @minus
1499@item
5fafdf24 1500UltraSparc IIi APB PCI Bridge
83469015
FB
1501@item
1502PCI VGA compatible card with VESA Bochs Extensions
1503@item
34a3d239
BS
1504PS/2 mouse and keyboard
1505@item
83469015
FB
1506Non Volatile RAM M48T59
1507@item
1508PC-compatible serial ports
c7ba218d
BS
1509@item
15102 PCI IDE interfaces with hard disk and CD-ROM support
34a3d239
BS
1511@item
1512Floppy disk
83469015
FB
1513@end itemize
1514
c7ba218d
BS
1515@c man begin OPTIONS
1516
1517The following options are specific to the Sparc64 emulation:
1518
1519@table @option
1520
4e257e5e 1521@item -prom-env @var{string}
34a3d239
BS
1522
1523Set OpenBIOS variables in NVRAM, for example:
1524
1525@example
1526qemu-system-sparc64 -prom-env 'auto-boot?=false'
1527@end example
1528
a2664ca0 1529@item -M [sun4u|sun4v|niagara]
c7ba218d
BS
1530
1531Set the emulated machine type. The default is sun4u.
1532
1533@end table
1534
1535@c man end
1536
24d4de45
TS
1537@node MIPS System emulator
1538@section MIPS System emulator
7544a042 1539@cindex system emulation (MIPS)
9d0a8e6f 1540
d9aedc32
TS
1541Four executables cover simulation of 32 and 64-bit MIPS systems in
1542both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1543@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
88cb0a02 1544Five different machine types are emulated:
24d4de45
TS
1545
1546@itemize @minus
1547@item
1548A generic ISA PC-like machine "mips"
1549@item
1550The MIPS Malta prototype board "malta"
1551@item
d9aedc32 1552An ACER Pica "pica61". This machine needs the 64-bit emulator.
6bf5b4e8 1553@item
f0fc6f8f 1554MIPS emulator pseudo board "mipssim"
88cb0a02
AJ
1555@item
1556A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
24d4de45
TS
1557@end itemize
1558
1559The generic emulation is supported by Debian 'Etch' and is able to
1560install Debian into a virtual disk image. The following devices are
1561emulated:
3f9f3aa1
FB
1562
1563@itemize @minus
5fafdf24 1564@item
6bf5b4e8 1565A range of MIPS CPUs, default is the 24Kf
3f9f3aa1
FB
1566@item
1567PC style serial port
1568@item
24d4de45
TS
1569PC style IDE disk
1570@item
3f9f3aa1
FB
1571NE2000 network card
1572@end itemize
1573
24d4de45
TS
1574The Malta emulation supports the following devices:
1575
1576@itemize @minus
1577@item
0b64d008 1578Core board with MIPS 24Kf CPU and Galileo system controller
24d4de45
TS
1579@item
1580PIIX4 PCI/USB/SMbus controller
1581@item
1582The Multi-I/O chip's serial device
1583@item
3a2eeac0 1584PCI network cards (PCnet32 and others)
24d4de45
TS
1585@item
1586Malta FPGA serial device
1587@item
1f605a76 1588Cirrus (default) or any other PCI VGA graphics card
24d4de45
TS
1589@end itemize
1590
1591The ACER Pica emulation supports:
1592
1593@itemize @minus
1594@item
1595MIPS R4000 CPU
1596@item
1597PC-style IRQ and DMA controllers
1598@item
1599PC Keyboard
1600@item
1601IDE controller
1602@end itemize
3f9f3aa1 1603
b5e4946f 1604The mipssim pseudo board emulation provides an environment similar
f0fc6f8f
TS
1605to what the proprietary MIPS emulator uses for running Linux.
1606It supports:
6bf5b4e8
TS
1607
1608@itemize @minus
1609@item
1610A range of MIPS CPUs, default is the 24Kf
1611@item
1612PC style serial port
1613@item
1614MIPSnet network emulation
1615@end itemize
1616
88cb0a02
AJ
1617The MIPS Magnum R4000 emulation supports:
1618
1619@itemize @minus
1620@item
1621MIPS R4000 CPU
1622@item
1623PC-style IRQ controller
1624@item
1625PC Keyboard
1626@item
1627SCSI controller
1628@item
1629G364 framebuffer
1630@end itemize
1631
1632
24d4de45
TS
1633@node ARM System emulator
1634@section ARM System emulator
7544a042 1635@cindex system emulation (ARM)
3f9f3aa1
FB
1636
1637Use the executable @file{qemu-system-arm} to simulate a ARM
1638machine. The ARM Integrator/CP board is emulated with the following
1639devices:
1640
1641@itemize @minus
1642@item
9ee6e8bb 1643ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
3f9f3aa1
FB
1644@item
1645Two PL011 UARTs
5fafdf24 1646@item
3f9f3aa1 1647SMC 91c111 Ethernet adapter
00a9bf19
PB
1648@item
1649PL110 LCD controller
1650@item
1651PL050 KMI with PS/2 keyboard and mouse.
a1bb27b1
PB
1652@item
1653PL181 MultiMedia Card Interface with SD card.
00a9bf19
PB
1654@end itemize
1655
1656The ARM Versatile baseboard is emulated with the following devices:
1657
1658@itemize @minus
1659@item
9ee6e8bb 1660ARM926E, ARM1136 or Cortex-A8 CPU
00a9bf19
PB
1661@item
1662PL190 Vectored Interrupt Controller
1663@item
1664Four PL011 UARTs
5fafdf24 1665@item
00a9bf19
PB
1666SMC 91c111 Ethernet adapter
1667@item
1668PL110 LCD controller
1669@item
1670PL050 KMI with PS/2 keyboard and mouse.
1671@item
1672PCI host bridge. Note the emulated PCI bridge only provides access to
1673PCI memory space. It does not provide access to PCI IO space.
4be456f1
TS
1674This means some devices (eg. ne2k_pci NIC) are not usable, and others
1675(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
00a9bf19 1676mapped control registers.
e6de1bad
PB
1677@item
1678PCI OHCI USB controller.
1679@item
1680LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
a1bb27b1
PB
1681@item
1682PL181 MultiMedia Card Interface with SD card.
3f9f3aa1
FB
1683@end itemize
1684
21a88941
PB
1685Several variants of the ARM RealView baseboard are emulated,
1686including the EB, PB-A8 and PBX-A9. Due to interactions with the
1687bootloader, only certain Linux kernel configurations work out
1688of the box on these boards.
1689
1690Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1691enabled in the kernel, and expect 512M RAM. Kernels for The PBX-A9 board
1692should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1693disabled and expect 1024M RAM.
1694
40c5c6cd 1695The following devices are emulated:
d7739d75
PB
1696
1697@itemize @minus
1698@item
f7c70325 1699ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
d7739d75
PB
1700@item
1701ARM AMBA Generic/Distributed Interrupt Controller
1702@item
1703Four PL011 UARTs
5fafdf24 1704@item
0ef849d7 1705SMC 91c111 or SMSC LAN9118 Ethernet adapter
d7739d75
PB
1706@item
1707PL110 LCD controller
1708@item
1709PL050 KMI with PS/2 keyboard and mouse
1710@item
1711PCI host bridge
1712@item
1713PCI OHCI USB controller
1714@item
1715LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
a1bb27b1
PB
1716@item
1717PL181 MultiMedia Card Interface with SD card.
d7739d75
PB
1718@end itemize
1719
b00052e4
AZ
1720The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1721and "Terrier") emulation includes the following peripherals:
1722
1723@itemize @minus
1724@item
1725Intel PXA270 System-on-chip (ARM V5TE core)
1726@item
1727NAND Flash memory
1728@item
1729IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1730@item
1731On-chip OHCI USB controller
1732@item
1733On-chip LCD controller
1734@item
1735On-chip Real Time Clock
1736@item
1737TI ADS7846 touchscreen controller on SSP bus
1738@item
1739Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1740@item
1741GPIO-connected keyboard controller and LEDs
1742@item
549444e1 1743Secure Digital card connected to PXA MMC/SD host
b00052e4
AZ
1744@item
1745Three on-chip UARTs
1746@item
1747WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1748@end itemize
1749
02645926
AZ
1750The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1751following elements:
1752
1753@itemize @minus
1754@item
1755Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1756@item
1757ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1758@item
1759On-chip LCD controller
1760@item
1761On-chip Real Time Clock
1762@item
1763TI TSC2102i touchscreen controller / analog-digital converter / Audio
1764CODEC, connected through MicroWire and I@math{^2}S busses
1765@item
1766GPIO-connected matrix keypad
1767@item
1768Secure Digital card connected to OMAP MMC/SD host
1769@item
1770Three on-chip UARTs
1771@end itemize
1772
c30bb264
AZ
1773Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1774emulation supports the following elements:
1775
1776@itemize @minus
1777@item
1778Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1779@item
1780RAM and non-volatile OneNAND Flash memories
1781@item
1782Display connected to EPSON remote framebuffer chip and OMAP on-chip
1783display controller and a LS041y3 MIPI DBI-C controller
1784@item
1785TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1786driven through SPI bus
1787@item
1788National Semiconductor LM8323-controlled qwerty keyboard driven
1789through I@math{^2}C bus
1790@item
1791Secure Digital card connected to OMAP MMC/SD host
1792@item
1793Three OMAP on-chip UARTs and on-chip STI debugging console
1794@item
40c5c6cd 1795A Bluetooth(R) transceiver and HCI connected to an UART
2d564691 1796@item
c30bb264
AZ
1797Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1798TUSB6010 chip - only USB host mode is supported
1799@item
1800TI TMP105 temperature sensor driven through I@math{^2}C bus
1801@item
1802TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1803@item
1804Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1805through CBUS
1806@end itemize
1807
9ee6e8bb
PB
1808The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1809devices:
1810
1811@itemize @minus
1812@item
1813Cortex-M3 CPU core.
1814@item
181564k Flash and 8k SRAM.
1816@item
1817Timers, UARTs, ADC and I@math{^2}C interface.
1818@item
1819OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1820@end itemize
1821
1822The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1823devices:
1824
1825@itemize @minus
1826@item
1827Cortex-M3 CPU core.
1828@item
1829256k Flash and 64k SRAM.
1830@item
1831Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1832@item
1833OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1834@end itemize
1835
57cd6e97
AZ
1836The Freecom MusicPal internet radio emulation includes the following
1837elements:
1838
1839@itemize @minus
1840@item
1841Marvell MV88W8618 ARM core.
1842@item
184332 MB RAM, 256 KB SRAM, 8 MB flash.
1844@item
1845Up to 2 16550 UARTs
1846@item
1847MV88W8xx8 Ethernet controller
1848@item
1849MV88W8618 audio controller, WM8750 CODEC and mixer
1850@item
e080e785 1851128×64 display with brightness control
57cd6e97
AZ
1852@item
18532 buttons, 2 navigation wheels with button function
1854@end itemize
1855
997641a8 1856The Siemens SX1 models v1 and v2 (default) basic emulation.
40c5c6cd 1857The emulation includes the following elements:
997641a8
AZ
1858
1859@itemize @minus
1860@item
1861Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1862@item
1863ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1864V1
18651 Flash of 16MB and 1 Flash of 8MB
1866V2
18671 Flash of 32MB
1868@item
1869On-chip LCD controller
1870@item
1871On-chip Real Time Clock
1872@item
1873Secure Digital card connected to OMAP MMC/SD host
1874@item
1875Three on-chip UARTs
1876@end itemize
1877
3f9f3aa1
FB
1878A Linux 2.6 test image is available on the QEMU web site. More
1879information is available in the QEMU mailing-list archive.
9d0a8e6f 1880
d2c639d6
BS
1881@c man begin OPTIONS
1882
1883The following options are specific to the ARM emulation:
1884
1885@table @option
1886
1887@item -semihosting
1888Enable semihosting syscall emulation.
1889
1890On ARM this implements the "Angel" interface.
1891
1892Note that this allows guest direct access to the host filesystem,
1893so should only be used with trusted guest OS.
1894
1895@end table
1896
abc67eb6
TH
1897@c man end
1898
24d4de45
TS
1899@node ColdFire System emulator
1900@section ColdFire System emulator
7544a042
SW
1901@cindex system emulation (ColdFire)
1902@cindex system emulation (M68K)
209a4e69
PB
1903
1904Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1905The emulator is able to boot a uClinux kernel.
707e011b
PB
1906
1907The M5208EVB emulation includes the following devices:
1908
1909@itemize @minus
5fafdf24 1910@item
707e011b
PB
1911MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1912@item
1913Three Two on-chip UARTs.
1914@item
1915Fast Ethernet Controller (FEC)
1916@end itemize
1917
1918The AN5206 emulation includes the following devices:
209a4e69
PB
1919
1920@itemize @minus
5fafdf24 1921@item
209a4e69
PB
1922MCF5206 ColdFire V2 Microprocessor.
1923@item
1924Two on-chip UARTs.
1925@end itemize
1926
d2c639d6
BS
1927@c man begin OPTIONS
1928
7544a042 1929The following options are specific to the ColdFire emulation:
d2c639d6
BS
1930
1931@table @option
1932
1933@item -semihosting
1934Enable semihosting syscall emulation.
1935
1936On M68K this implements the "ColdFire GDB" interface used by libgloss.
1937
1938Note that this allows guest direct access to the host filesystem,
1939so should only be used with trusted guest OS.
1940
1941@end table
1942
abc67eb6
TH
1943@c man end
1944
7544a042
SW
1945@node Cris System emulator
1946@section Cris System emulator
1947@cindex system emulation (Cris)
1948
1949TODO
1950
1951@node Microblaze System emulator
1952@section Microblaze System emulator
1953@cindex system emulation (Microblaze)
1954
1955TODO
1956
1957@node SH4 System emulator
1958@section SH4 System emulator
1959@cindex system emulation (SH4)
1960
1961TODO
1962
3aeaea65
MF
1963@node Xtensa System emulator
1964@section Xtensa System emulator
1965@cindex system emulation (Xtensa)
1966
1967Two executables cover simulation of both Xtensa endian options,
1968@file{qemu-system-xtensa} and @file{qemu-system-xtensaeb}.
1969Two different machine types are emulated:
1970
1971@itemize @minus
1972@item
1973Xtensa emulator pseudo board "sim"
1974@item
1975Avnet LX60/LX110/LX200 board
1976@end itemize
1977
b5e4946f 1978The sim pseudo board emulation provides an environment similar
3aeaea65
MF
1979to one provided by the proprietary Tensilica ISS.
1980It supports:
1981
1982@itemize @minus
1983@item
1984A range of Xtensa CPUs, default is the DC232B
1985@item
1986Console and filesystem access via semihosting calls
1987@end itemize
1988
1989The Avnet LX60/LX110/LX200 emulation supports:
1990
1991@itemize @minus
1992@item
1993A range of Xtensa CPUs, default is the DC232B
1994@item
199516550 UART
1996@item
1997OpenCores 10/100 Mbps Ethernet MAC
1998@end itemize
1999
2000@c man begin OPTIONS
2001
2002The following options are specific to the Xtensa emulation:
2003
2004@table @option
2005
2006@item -semihosting
2007Enable semihosting syscall emulation.
2008
2009Xtensa semihosting provides basic file IO calls, such as open/read/write/seek/select.
2010Tensilica baremetal libc for ISS and linux platform "sim" use this interface.
2011
2012Note that this allows guest direct access to the host filesystem,
2013so should only be used with trusted guest OS.
2014
2015@end table
3f2ce724 2016
abc67eb6
TH
2017@c man end
2018
3f2ce724
TH
2019@node QEMU Guest Agent
2020@chapter QEMU Guest Agent invocation
2021
2022@include qemu-ga.texi
2023
5fafdf24
TS
2024@node QEMU User space emulator
2025@chapter QEMU User space emulator
83195237
FB
2026
2027@menu
2028* Supported Operating Systems ::
0722cc42 2029* Features::
83195237 2030* Linux User space emulator::
84778508 2031* BSD User space emulator ::
83195237
FB
2032@end menu
2033
2034@node Supported Operating Systems
2035@section Supported Operating Systems
2036
2037The following OS are supported in user space emulation:
2038
2039@itemize @minus
2040@item
4be456f1 2041Linux (referred as qemu-linux-user)
83195237 2042@item
84778508 2043BSD (referred as qemu-bsd-user)
83195237
FB
2044@end itemize
2045
0722cc42
PB
2046@node Features
2047@section Features
2048
2049QEMU user space emulation has the following notable features:
2050
2051@table @strong
2052@item System call translation:
2053QEMU includes a generic system call translator. This means that
2054the parameters of the system calls can be converted to fix
2055endianness and 32/64-bit mismatches between hosts and targets.
2056IOCTLs can be converted too.
2057
2058@item POSIX signal handling:
2059QEMU can redirect to the running program all signals coming from
2060the host (such as @code{SIGALRM}), as well as synthesize signals from
2061virtual CPU exceptions (for example @code{SIGFPE} when the program
2062executes a division by zero).
2063
2064QEMU relies on the host kernel to emulate most signal system
2065calls, for example to emulate the signal mask. On Linux, QEMU
2066supports both normal and real-time signals.
2067
2068@item Threading:
2069On Linux, QEMU can emulate the @code{clone} syscall and create a real
2070host thread (with a separate virtual CPU) for each emulated thread.
2071Note that not all targets currently emulate atomic operations correctly.
2072x86 and ARM use a global lock in order to preserve their semantics.
2073@end table
2074
2075QEMU was conceived so that ultimately it can emulate itself. Although
2076it is not very useful, it is an important test to show the power of the
2077emulator.
2078
83195237
FB
2079@node Linux User space emulator
2080@section Linux User space emulator
386405f7 2081
debc7065
FB
2082@menu
2083* Quick Start::
2084* Wine launch::
2085* Command line options::
79737e4a 2086* Other binaries::
debc7065
FB
2087@end menu
2088
2089@node Quick Start
83195237 2090@subsection Quick Start
df0f11a0 2091
1f673135 2092In order to launch a Linux process, QEMU needs the process executable
5fafdf24 2093itself and all the target (x86) dynamic libraries used by it.
386405f7 2094
1f673135 2095@itemize
386405f7 2096
1f673135
FB
2097@item On x86, you can just try to launch any process by using the native
2098libraries:
386405f7 2099
5fafdf24 2100@example
1f673135
FB
2101qemu-i386 -L / /bin/ls
2102@end example
386405f7 2103
1f673135
FB
2104@code{-L /} tells that the x86 dynamic linker must be searched with a
2105@file{/} prefix.
386405f7 2106
b65ee4fa
SW
2107@item Since QEMU is also a linux process, you can launch QEMU with
2108QEMU (NOTE: you can only do that if you compiled QEMU from the sources):
386405f7 2109
5fafdf24 2110@example
1f673135
FB
2111qemu-i386 -L / qemu-i386 -L / /bin/ls
2112@end example
386405f7 2113
1f673135
FB
2114@item On non x86 CPUs, you need first to download at least an x86 glibc
2115(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2116@code{LD_LIBRARY_PATH} is not set:
df0f11a0 2117
1f673135 2118@example
5fafdf24 2119unset LD_LIBRARY_PATH
1f673135 2120@end example
1eb87257 2121
1f673135 2122Then you can launch the precompiled @file{ls} x86 executable:
1eb87257 2123
1f673135
FB
2124@example
2125qemu-i386 tests/i386/ls
2126@end example
4c3b5a48 2127You can look at @file{scripts/qemu-binfmt-conf.sh} so that
1f673135
FB
2128QEMU is automatically launched by the Linux kernel when you try to
2129launch x86 executables. It requires the @code{binfmt_misc} module in the
2130Linux kernel.
1eb87257 2131
1f673135
FB
2132@item The x86 version of QEMU is also included. You can try weird things such as:
2133@example
debc7065
FB
2134qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2135 /usr/local/qemu-i386/bin/ls-i386
1f673135 2136@end example
1eb20527 2137
1f673135 2138@end itemize
1eb20527 2139
debc7065 2140@node Wine launch
83195237 2141@subsection Wine launch
1eb20527 2142
1f673135 2143@itemize
386405f7 2144
1f673135
FB
2145@item Ensure that you have a working QEMU with the x86 glibc
2146distribution (see previous section). In order to verify it, you must be
2147able to do:
386405f7 2148
1f673135
FB
2149@example
2150qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2151@end example
386405f7 2152
1f673135 2153@item Download the binary x86 Wine install
5fafdf24 2154(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
386405f7 2155
1f673135 2156@item Configure Wine on your account. Look at the provided script
debc7065 2157@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
1f673135 2158@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
386405f7 2159
1f673135 2160@item Then you can try the example @file{putty.exe}:
386405f7 2161
1f673135 2162@example
debc7065
FB
2163qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2164 /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
1f673135 2165@end example
386405f7 2166
1f673135 2167@end itemize
fd429f2f 2168
debc7065 2169@node Command line options
83195237 2170@subsection Command line options
1eb20527 2171
1f673135 2172@example
8485140f 2173@command{qemu-i386} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-cpu} @var{model}] [@option{-g} @var{port}] [@option{-B} @var{offset}] [@option{-R} @var{size}] @var{program} [@var{arguments}...]
1f673135 2174@end example
1eb20527 2175
1f673135
FB
2176@table @option
2177@item -h
2178Print the help
3b46e624 2179@item -L path
1f673135
FB
2180Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2181@item -s size
2182Set the x86 stack size in bytes (default=524288)
34a3d239 2183@item -cpu model
c8057f95 2184Select CPU model (-cpu help for list and additional feature selection)
f66724c9
SW
2185@item -E @var{var}=@var{value}
2186Set environment @var{var} to @var{value}.
2187@item -U @var{var}
2188Remove @var{var} from the environment.
379f6698
PB
2189@item -B offset
2190Offset guest address by the specified number of bytes. This is useful when
1f5c3f8c
SW
2191the address region required by guest applications is reserved on the host.
2192This option is currently only supported on some hosts.
68a1c816
PB
2193@item -R size
2194Pre-allocate a guest virtual address space of the given size (in bytes).
0d6753e5 2195"G", "M", and "k" suffixes may be used when specifying the size.
386405f7
FB
2196@end table
2197
1f673135 2198Debug options:
386405f7 2199
1f673135 2200@table @option
989b697d
PM
2201@item -d item1,...
2202Activate logging of the specified items (use '-d help' for a list of log items)
1f673135
FB
2203@item -p pagesize
2204Act as if the host page size was 'pagesize' bytes
34a3d239
BS
2205@item -g port
2206Wait gdb connection to port
1b530a6d
AJ
2207@item -singlestep
2208Run the emulation in single step mode.
1f673135 2209@end table
386405f7 2210
b01bcae6
AZ
2211Environment variables:
2212
2213@table @env
2214@item QEMU_STRACE
2215Print system calls and arguments similar to the 'strace' program
2216(NOTE: the actual 'strace' program will not work because the user
2217space emulator hasn't implemented ptrace). At the moment this is
2218incomplete. All system calls that don't have a specific argument
2219format are printed with information for six arguments. Many
2220flag-style arguments don't have decoders and will show up as numbers.
5cfdf930 2221@end table
b01bcae6 2222
79737e4a 2223@node Other binaries
83195237 2224@subsection Other binaries
79737e4a 2225
7544a042
SW
2226@cindex user mode (Alpha)
2227@command{qemu-alpha} TODO.
2228
2229@cindex user mode (ARM)
2230@command{qemu-armeb} TODO.
2231
2232@cindex user mode (ARM)
79737e4a
PB
2233@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2234binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2235configurations), and arm-uclinux bFLT format binaries.
2236
7544a042
SW
2237@cindex user mode (ColdFire)
2238@cindex user mode (M68K)
e6e5906b
PB
2239@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2240(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2241coldfire uClinux bFLT format binaries.
2242
79737e4a
PB
2243The binary format is detected automatically.
2244
7544a042
SW
2245@cindex user mode (Cris)
2246@command{qemu-cris} TODO.
2247
2248@cindex user mode (i386)
2249@command{qemu-i386} TODO.
2250@command{qemu-x86_64} TODO.
2251
2252@cindex user mode (Microblaze)
2253@command{qemu-microblaze} TODO.
2254
2255@cindex user mode (MIPS)
2256@command{qemu-mips} TODO.
2257@command{qemu-mipsel} TODO.
2258
e671711c
MV
2259@cindex user mode (NiosII)
2260@command{qemu-nios2} TODO.
2261
7544a042
SW
2262@cindex user mode (PowerPC)
2263@command{qemu-ppc64abi32} TODO.
2264@command{qemu-ppc64} TODO.
2265@command{qemu-ppc} TODO.
2266
2267@cindex user mode (SH4)
2268@command{qemu-sh4eb} TODO.
2269@command{qemu-sh4} TODO.
2270
2271@cindex user mode (SPARC)
34a3d239
BS
2272@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2273
a785e42e
BS
2274@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2275(Sparc64 CPU, 32 bit ABI).
2276
2277@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2278SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2279
84778508
BS
2280@node BSD User space emulator
2281@section BSD User space emulator
2282
2283@menu
2284* BSD Status::
2285* BSD Quick Start::
2286* BSD Command line options::
2287@end menu
2288
2289@node BSD Status
2290@subsection BSD Status
2291
2292@itemize @minus
2293@item
2294target Sparc64 on Sparc64: Some trivial programs work.
2295@end itemize
2296
2297@node BSD Quick Start
2298@subsection Quick Start
2299
2300In order to launch a BSD process, QEMU needs the process executable
2301itself and all the target dynamic libraries used by it.
2302
2303@itemize
2304
2305@item On Sparc64, you can just try to launch any process by using the native
2306libraries:
2307
2308@example
2309qemu-sparc64 /bin/ls
2310@end example
2311
2312@end itemize
2313
2314@node BSD Command line options
2315@subsection Command line options
2316
2317@example
8485140f 2318@command{qemu-sparc64} [@option{-h]} [@option{-d]} [@option{-L} @var{path}] [@option{-s} @var{size}] [@option{-bsd} @var{type}] @var{program} [@var{arguments}...]
84778508
BS
2319@end example
2320
2321@table @option
2322@item -h
2323Print the help
2324@item -L path
2325Set the library root path (default=/)
2326@item -s size
2327Set the stack size in bytes (default=524288)
f66724c9
SW
2328@item -ignore-environment
2329Start with an empty environment. Without this option,
40c5c6cd 2330the initial environment is a copy of the caller's environment.
f66724c9
SW
2331@item -E @var{var}=@var{value}
2332Set environment @var{var} to @var{value}.
2333@item -U @var{var}
2334Remove @var{var} from the environment.
84778508
BS
2335@item -bsd type
2336Set the type of the emulated BSD Operating system. Valid values are
2337FreeBSD, NetBSD and OpenBSD (default).
2338@end table
2339
2340Debug options:
2341
2342@table @option
989b697d
PM
2343@item -d item1,...
2344Activate logging of the specified items (use '-d help' for a list of log items)
84778508
BS
2345@item -p pagesize
2346Act as if the host page size was 'pagesize' bytes
1b530a6d
AJ
2347@item -singlestep
2348Run the emulation in single step mode.
84778508
BS
2349@end table
2350
47eacb4f 2351
78e87797
PB
2352@include qemu-tech.texi
2353
eb22aeca
DB
2354@node Deprecated features
2355@appendix Deprecated features
2356
2357In general features are intended to be supported indefinitely once
2358introduced into QEMU. In the event that a feature needs to be removed,
2359it will be listed in this appendix. The feature will remain functional
2360for 2 releases prior to actual removal. Deprecated features may also
2361generate warnings on the console when QEMU starts up, or if activated
2362via a monitor command, however, this is not a mandatory requirement.
2363
2364Prior to the 2.10.0 release there was no official policy on how
2365long features would be deprecated prior to their removal, nor
2366any documented list of which features were deprecated. Thus
2367any features deprecated prior to 2.10.0 will be treated as if
2368they were first deprecated in the 2.10.0 release.
2369
2370What follows is a list of all features currently marked as
2371deprecated.
2372
2373@section System emulator command line arguments
2374
2375@subsection -drive boot=on|off (since 1.3.0)
2376
2377The ``boot=on|off'' option to the ``-drive'' argument is
2378ignored. Applications should use the ``bootindex=N'' parameter
2379to set an absolute ordering between devices instead.
2380
2381@subsection -tdf (since 1.3.0)
2382
2383The ``-tdf'' argument is ignored. The behaviour implemented
2384by this argument is now the default when using the KVM PIT,
2385but can be requested explicitly using
2386``-global kvm-pit.lost_tick_policy=slew''.
2387
2388@subsection -no-kvm-pit-reinjection (since 1.3.0)
2389
2390The ``-no-kvm-pit-reinjection'' argument is now a
2391synonym for setting ``-global kvm-pit.lost_tick_policy=discard''.
2392
2393@subsection -no-kvm-irqchip (since 1.3.0)
2394
2395The ``-no-kvm-irqchip'' argument is now a synonym for
2396setting ``-machine kernel_irqchip=off''.
2397
2398@subsection -no-kvm-pit (since 1.3.0)
2399
2400The ``-no-kvm-pit'' argument is ignored. It is no longer
2401possible to disable the KVM PIT directly.
2402
2403@subsection -no-kvm (since 1.3.0)
2404
2405The ``-no-kvm'' argument is now a synonym for setting
2406``-machine accel=tcg''.
2407
2408@subsection -mon default=on (since 2.4.0)
2409
2410The ``default'' option to the ``-mon'' argument is
2411now ignored. When multiple monitors were enabled, it
2412indicated which monitor would receive log messages
2413from the various subsystems. This feature is no longer
2414required as messages are now only sent to the monitor
2415in response to explicitly monitor commands.
2416
2417@subsection -vnc tls (since 2.5.0)
2418
2419The ``-vnc tls'' argument is now a synonym for setting
2420``-object tls-creds-anon,id=tls0'' combined with
2421``-vnc tls-creds=tls0'
2422
2423@subsection -vnc x509 (since 2.5.0)
2424
2425The ``-vnc x509=/path/to/certs'' argument is now a
2426synonym for setting
2427``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=no''
2428combined with ``-vnc tls-creds=tls0'
2429
2430@subsection -vnc x509verify (since 2.5.0)
2431
2432The ``-vnc x509verify=/path/to/certs'' argument is now a
2433synonym for setting
2434``-object tls-creds-x509,dir=/path/to/certs,id=tls0,verify-peer=yes''
2435combined with ``-vnc tls-creds=tls0'
2436
2437@subsection -tftp (since 2.6.0)
2438
2439The ``-tftp /some/dir'' argument is now a synonym for setting
2440the ``-netdev user,tftp=/some/dir' argument. The new syntax
2441allows different settings to be provided per NIC.
2442
2443@subsection -bootp (since 2.6.0)
2444
2445The ``-bootp /some/file'' argument is now a synonym for setting
2446the ``-netdev user,bootp=/some/file' argument. The new syntax
2447allows different settings to be provided per NIC.
2448
2449@subsection -redir (since 2.6.0)
2450
2451The ``-redir ARGS'' argument is now a synonym for setting
2452the ``-netdev user,hostfwd=ARGS'' argument instead. The new
2453syntax allows different settings to be provided per NIC.
2454
2455@subsection -smb (since 2.6.0)
2456
2457The ``-smb /some/dir'' argument is now a synonym for setting
2458the ``-netdev user,smb=/some/dir'' argument instead. The new
2459syntax allows different settings to be provided per NIC.
2460
2461@subsection -net channel (since 2.6.0)
2462
2463The ``--net channel,ARGS'' argument is now a synonym for setting
2464the ``-netdev user,guestfwd=ARGS'' argument instead.
2465
2466@subsection -net vlan (since 2.9.0)
2467
69001917 2468The ``-net vlan=NN'' argument is partially replaced with the
eb22aeca
DB
2469new ``-netdev'' argument. The remaining use cases will no
2470longer be directly supported in QEMU.
2471
2472@subsection -drive if=scsi (since 2.9.0)
2473
2474The ``-drive if=scsi'' argument is replaced by the the
2475``-device BUS-TYPE'' argument combined with ``-drive if=none''.
2476
2477@subsection -net dump (since 2.10.0)
2478
2479The ``--net dump'' argument is now replaced with the
2480``-object filter-dump'' argument which works in combination
2481with the modern ``-netdev`` backends instead.
2482
2483@subsection -hdachs (since 2.10.0)
2484
2485The ``-hdachs'' argument is now a synonym for setting
2486the ``cyls'', ``heads'', ``secs'', and ``trans'' properties
2487on the ``ide-hd'' device using the ``-device'' argument.
2488The new syntax allows different settings to be provided
2489per disk.
2490
2491@subsection -usbdevice (since 2.10.0)
2492
2493The ``-usbdevice DEV'' argument is now a synonym for setting
2494the ``-device usb-DEV'' argument instead. The deprecated syntax
2495would automatically enable USB support on the machine type.
2496If using the new syntax, USB support must be explicitly
2497enabled via the ``-machine usb=on'' argument.
2498
3478eae9
EH
2499@subsection -nodefconfig (since 2.11.0)
2500
2501The ``-nodefconfig`` argument is a synonym for ``-no-user-config``.
2502
eb22aeca
DB
2503@section qemu-img command line arguments
2504
2505@subsection convert -s (since 2.0.0)
2506
2507The ``convert -s snapshot_id_or_name'' argument is obsoleted
2508by the ``convert -l snapshot_param'' argument instead.
2509
2510@section System emulator human monitor commands
2511
bd7adc84
TH
2512@subsection host_net_add (since 2.10.0)
2513
2514The ``host_net_add'' command is replaced by the ``netdev_add'' command.
2515
2516@subsection host_net_remove (since 2.10.0)
2517
2518The ``host_net_remove'' command is replaced by the ``netdev_del'' command.
2519
eb22aeca
DB
2520@subsection usb_add (since 2.10.0)
2521
2522The ``usb_add'' command is replaced by the ``device_add'' command.
2523
2524@subsection usb_del (since 2.10.0)
2525
2526The ``usb_del'' command is replaced by the ``device_del'' command.
2527
2528@section System emulator devices
2529
2530@subsection ivshmem (since 2.6.0)
2531
2532The ``ivshmem'' device type is replaced by either the ``ivshmem-plain''
2533or ``ivshmem-doorbell`` device types.
2534
2535@subsection spapr-pci-vfio-host-bridge (since 2.6.0)
2536
2537The ``spapr-pci-vfio-host-bridge'' device type is replaced by
2538the ``spapr-pci-host-bridge'' device type.
2539
83926ad5
AF
2540@section System emulator machines
2541
2542@subsection Xilinx EP108 (since 2.11.0)
2543
2544The ``xlnx-ep108'' machine has been replaced by the ``xlnx-zcu102'' machine.
2545The ``xlnx-zcu102'' machine has the same features and capabilites in QEMU.
2546
7544a042
SW
2547@node License
2548@appendix License
2549
2550QEMU is a trademark of Fabrice Bellard.
2551
2f8d8f01
TH
2552QEMU is released under the
2553@url{https://www.gnu.org/licenses/gpl-2.0.txt,GNU General Public License},
2554version 2. Parts of QEMU have specific licenses, see file
70b7fba9 2555@url{https://git.qemu.org/?p=qemu.git;a=blob_plain;f=LICENSE,LICENSE}.
7544a042 2556
debc7065 2557@node Index
7544a042
SW
2558@appendix Index
2559@menu
2560* Concept Index::
2561* Function Index::
2562* Keystroke Index::
2563* Program Index::
2564* Data Type Index::
2565* Variable Index::
2566@end menu
2567
2568@node Concept Index
2569@section Concept Index
2570This is the main index. Should we combine all keywords in one index? TODO
debc7065
FB
2571@printindex cp
2572
7544a042
SW
2573@node Function Index
2574@section Function Index
2575This index could be used for command line options and monitor functions.
2576@printindex fn
2577
2578@node Keystroke Index
2579@section Keystroke Index
2580
2581This is a list of all keystrokes which have a special function
2582in system emulation.
2583
2584@printindex ky
2585
2586@node Program Index
2587@section Program Index
2588@printindex pg
2589
2590@node Data Type Index
2591@section Data Type Index
2592
2593This index could be used for qdev device names and options.
2594
2595@printindex tp
2596
2597@node Variable Index
2598@section Variable Index
2599@printindex vr
2600
debc7065 2601@bye