]> git.proxmox.com Git - mirror_smartmontools-debian.git/blob - os_linux.cpp
Imported Upstream version 5.38+svn2993
[mirror_smartmontools-debian.git] / os_linux.cpp
1 /*
2 * os_linux.cpp
3 *
4 * Home page of code is: http://smartmontools.sourceforge.net
5 *
6 * Copyright (C) 2003-8 Bruce Allen <smartmontools-support@lists.sourceforge.net>
7 * Copyright (C) 2003-8 Doug Gilbert <dougg@torque.net>
8 * Copyright (C) 2008 Hank Wu <hank@areca.com.tw>
9 * Copyright (C) 2008 Oliver Bock <brevilo@users.sourceforge.net>
10 * Copyright (C) 2008-9 Christian Franke <smartmontools-support@lists.sourceforge.net>
11 * Copyright (C) 2008 Jordan Hargrave <jordan_hargrave@dell.com>
12 *
13 * Parts of this file are derived from code that was
14 *
15 * Written By: Adam Radford <linux@3ware.com>
16 * Modifications By: Joel Jacobson <linux@3ware.com>
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
18 * Brad Strand <linux@3ware.com>
19 *
20 * Copyright (C) 1999-2003 3ware Inc.
21 *
22 * Kernel compatablity By: Andre Hedrick <andre@suse.com>
23 * Non-Copyright (C) 2000 Andre Hedrick <andre@suse.com>
24 *
25 * Other ars of this file are derived from code that was
26 *
27 * Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
28 * Copyright (C) 2000 Andre Hedrick <andre@linux-ide.org>
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2, or (at your option)
33 * any later version.
34 *
35 * You should have received a copy of the GNU General Public License
36 * (for example COPYING); If not, see <http://www.gnu.org/licenses/>.
37 *
38 * This code was originally developed as a Senior Thesis by Michael Cornwell
39 * at the Concurrent Systems Laboratory (now part of the Storage Systems
40 * Research Center), Jack Baskin School of Engineering, University of
41 * California, Santa Cruz. http://ssrc.soe.ucsc.edu/
42 *
43 */
44
45 // This file contains the linux-specific IOCTL parts of
46 // smartmontools. It includes one interface routine for ATA devices,
47 // one for SCSI devices, and one for ATA devices behind escalade
48 // controllers.
49
50 #include "config.h"
51
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <glob.h>
55
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_ioctl.h>
58 #include <scsi/sg.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <sys/ioctl.h>
62 #include <sys/stat.h>
63 #include <sys/file.h>
64 #include <unistd.h>
65 #include <sys/uio.h>
66 #include <sys/types.h>
67 #ifndef makedev // old versions of types.h do not include sysmacros.h
68 #include <sys/sysmacros.h>
69 #endif
70 #ifdef WITH_SELINUX
71 #include <selinux/selinux.h>
72 #endif
73
74 #include "int64.h"
75 #include "atacmds.h"
76 #include "extern.h"
77 #include "os_linux.h"
78 #include "scsicmds.h"
79 #include "utility.h"
80 #include "extern.h"
81 #include "cciss.h"
82 #include "megaraid.h"
83
84 #include "dev_interface.h"
85 #include "dev_ata_cmd_set.h"
86
87 #ifndef ENOTSUP
88 #define ENOTSUP ENOSYS
89 #endif
90
91 #define ARGUSED(x) ((void)(x))
92
93 const char *os_XXXX_c_cvsid="$Id: os_linux.cpp 2993 2009-12-04 17:29:50Z chrfranke $" \
94 ATACMDS_H_CVSID CONFIG_H_CVSID INT64_H_CVSID OS_LINUX_H_CVSID SCSICMDS_H_CVSID UTILITY_H_CVSID;
95
96 /* for passing global control variables */
97 // (con->reportscsiioctl only)
98 extern smartmonctrl *con;
99
100
101 namespace os_linux { // No need to publish anything, name provided for Doxygen
102
103 /////////////////////////////////////////////////////////////////////////////
104 /// Shared open/close routines
105
106 class linux_smart_device
107 : virtual public /*implements*/ smart_device
108 {
109 public:
110 explicit linux_smart_device(int flags, int retry_flags = -1)
111 : smart_device(never_called),
112 m_fd(-1),
113 m_flags(flags), m_retry_flags(retry_flags)
114 { }
115
116 virtual ~linux_smart_device() throw();
117
118 virtual bool is_open() const;
119
120 virtual bool open();
121
122 virtual bool close();
123
124 protected:
125 /// Return filedesc for derived classes.
126 int get_fd() const
127 { return m_fd; }
128
129 private:
130 int m_fd; ///< filedesc, -1 if not open.
131 int m_flags; ///< Flags for ::open()
132 int m_retry_flags; ///< Flags to retry ::open(), -1 if no retry
133 };
134
135
136 linux_smart_device::~linux_smart_device() throw()
137 {
138 if (m_fd >= 0)
139 ::close(m_fd);
140 }
141
142 bool linux_smart_device::is_open() const
143 {
144 return (m_fd >= 0);
145 }
146
147 bool linux_smart_device::open()
148 {
149 m_fd = ::open(get_dev_name(), m_flags);
150
151 if (m_fd < 0 && errno == EROFS && m_retry_flags != -1)
152 // Retry
153 m_fd = ::open(get_dev_name(), m_retry_flags);
154
155 if (m_fd < 0) {
156 if (errno == EBUSY && (m_flags & O_EXCL))
157 // device is locked
158 return set_err(EBUSY,
159 "The requested controller is used exclusively by another process!\n"
160 "(e.g. smartctl or smartd)\n"
161 "Please quit the impeding process or try again later...");
162 return set_err((errno==ENOENT || errno==ENOTDIR) ? ENODEV : errno);
163 }
164
165 if (m_fd >= 0) {
166 // sets FD_CLOEXEC on the opened device file descriptor. The
167 // descriptor is otherwise leaked to other applications (mail
168 // sender) which may be considered a security risk and may result
169 // in AVC messages on SELinux-enabled systems.
170 if (-1 == fcntl(m_fd, F_SETFD, FD_CLOEXEC))
171 // TODO: Provide an error printing routine in class smart_interface
172 pout("fcntl(set FD_CLOEXEC) failed, errno=%d [%s]\n", errno, strerror(errno));
173 }
174
175 return true;
176 }
177
178 // equivalent to close(file descriptor)
179 bool linux_smart_device::close()
180 {
181 int fd = m_fd; m_fd = -1;
182 if (::close(fd) < 0)
183 return set_err(errno);
184 return true;
185 }
186
187 // examples for smartctl
188 static const char smartctl_examples[] =
189 "=================================================== SMARTCTL EXAMPLES =====\n\n"
190 " smartctl --all /dev/hda (Prints all SMART information)\n\n"
191 " smartctl --smart=on --offlineauto=on --saveauto=on /dev/hda\n"
192 " (Enables SMART on first disk)\n\n"
193 " smartctl --test=long /dev/hda (Executes extended disk self-test)\n\n"
194 " smartctl --attributes --log=selftest --quietmode=errorsonly /dev/hda\n"
195 " (Prints Self-Test & Attribute errors)\n"
196 " smartctl --all --device=3ware,2 /dev/sda\n"
197 " smartctl --all --device=3ware,2 /dev/twe0\n"
198 " smartctl --all --device=3ware,2 /dev/twa0\n"
199 " (Prints all SMART info for 3rd ATA disk on 3ware RAID controller)\n"
200 " smartctl --all --device=hpt,1/1/3 /dev/sda\n"
201 " (Prints all SMART info for the SATA disk attached to the 3rd PMPort\n"
202 " of the 1st channel on the 1st HighPoint RAID controller)\n"
203 " smartctl --all --device=areca,3 /dev/sg2\n"
204 " (Prints all SMART info for 3rd ATA disk on Areca RAID controller)\n"
205 ;
206
207
208 /////////////////////////////////////////////////////////////////////////////
209 /// Linux ATA support
210
211 class linux_ata_device
212 : public /*implements*/ ata_device_with_command_set,
213 public /*extends*/ linux_smart_device
214 {
215 public:
216 linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type);
217
218 protected:
219 virtual int ata_command_interface(smart_command_set command, int select, char * data);
220 };
221
222 linux_ata_device::linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type)
223 : smart_device(intf, dev_name, "ata", req_type),
224 linux_smart_device(O_RDONLY | O_NONBLOCK)
225 {
226 }
227
228 // PURPOSE
229 // This is an interface routine meant to isolate the OS dependent
230 // parts of the code, and to provide a debugging interface. Each
231 // different port and OS needs to provide it's own interface. This
232 // is the linux one.
233 // DETAILED DESCRIPTION OF ARGUMENTS
234 // device: is the file descriptor provided by open()
235 // command: defines the different operations.
236 // select: additional input data if needed (which log, which type of
237 // self-test).
238 // data: location to write output data, if needed (512 bytes).
239 // Note: not all commands use all arguments.
240 // RETURN VALUES
241 // -1 if the command failed
242 // 0 if the command succeeded,
243 // STATUS_CHECK routine:
244 // -1 if the command failed
245 // 0 if the command succeeded and disk SMART status is "OK"
246 // 1 if the command succeeded and disk SMART status is "FAILING"
247
248
249 #define BUFFER_LENGTH (4+512)
250
251 int linux_ata_device::ata_command_interface(smart_command_set command, int select, char * data)
252 {
253 unsigned char buff[BUFFER_LENGTH];
254 // positive: bytes to write to caller. negative: bytes to READ from
255 // caller. zero: non-data command
256 int copydata=0;
257
258 const int HDIO_DRIVE_CMD_OFFSET = 4;
259
260 // See struct hd_drive_cmd_hdr in hdreg.h. Before calling ioctl()
261 // buff[0]: ATA COMMAND CODE REGISTER
262 // buff[1]: ATA SECTOR NUMBER REGISTER == LBA LOW REGISTER
263 // buff[2]: ATA FEATURES REGISTER
264 // buff[3]: ATA SECTOR COUNT REGISTER
265
266 // Note that on return:
267 // buff[2] contains the ATA SECTOR COUNT REGISTER
268
269 // clear out buff. Large enough for HDIO_DRIVE_CMD (4+512 bytes)
270 memset(buff, 0, BUFFER_LENGTH);
271
272 buff[0]=ATA_SMART_CMD;
273 switch (command){
274 case CHECK_POWER_MODE:
275 buff[0]=ATA_CHECK_POWER_MODE;
276 copydata=1;
277 break;
278 case READ_VALUES:
279 buff[2]=ATA_SMART_READ_VALUES;
280 buff[3]=1;
281 copydata=512;
282 break;
283 case READ_THRESHOLDS:
284 buff[2]=ATA_SMART_READ_THRESHOLDS;
285 buff[1]=buff[3]=1;
286 copydata=512;
287 break;
288 case READ_LOG:
289 buff[2]=ATA_SMART_READ_LOG_SECTOR;
290 buff[1]=select;
291 buff[3]=1;
292 copydata=512;
293 break;
294 case WRITE_LOG:
295 break;
296 case IDENTIFY:
297 buff[0]=ATA_IDENTIFY_DEVICE;
298 buff[3]=1;
299 copydata=512;
300 break;
301 case PIDENTIFY:
302 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
303 buff[3]=1;
304 copydata=512;
305 break;
306 case ENABLE:
307 buff[2]=ATA_SMART_ENABLE;
308 buff[1]=1;
309 break;
310 case DISABLE:
311 buff[2]=ATA_SMART_DISABLE;
312 buff[1]=1;
313 break;
314 case STATUS:
315 // this command only says if SMART is working. It could be
316 // replaced with STATUS_CHECK below.
317 buff[2]=ATA_SMART_STATUS;
318 break;
319 case AUTO_OFFLINE:
320 // NOTE: According to ATAPI 4 and UP, this command is obsolete
321 // select == 241 for enable but no data transfer. Use TASK ioctl.
322 buff[1]=ATA_SMART_AUTO_OFFLINE;
323 buff[2]=select;
324 break;
325 case AUTOSAVE:
326 // select == 248 for enable but no data transfer. Use TASK ioctl.
327 buff[1]=ATA_SMART_AUTOSAVE;
328 buff[2]=select;
329 break;
330 case IMMEDIATE_OFFLINE:
331 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
332 buff[1]=select;
333 break;
334 case STATUS_CHECK:
335 // This command uses HDIO_DRIVE_TASK and has different syntax than
336 // the other commands.
337 buff[1]=ATA_SMART_STATUS;
338 break;
339 default:
340 pout("Unrecognized command %d in linux_ata_command_interface()\n"
341 "Please contact " PACKAGE_BUGREPORT "\n", command);
342 errno=ENOSYS;
343 return -1;
344 }
345
346 // This command uses the HDIO_DRIVE_TASKFILE ioctl(). This is the
347 // only ioctl() that can be used to WRITE data to the disk.
348 if (command==WRITE_LOG) {
349 unsigned char task[sizeof(ide_task_request_t)+512];
350 ide_task_request_t *reqtask=(ide_task_request_t *) task;
351 task_struct_t *taskfile=(task_struct_t *) reqtask->io_ports;
352 int retval;
353
354 memset(task, 0, sizeof(task));
355
356 taskfile->data = 0;
357 taskfile->feature = ATA_SMART_WRITE_LOG_SECTOR;
358 taskfile->sector_count = 1;
359 taskfile->sector_number = select;
360 taskfile->low_cylinder = 0x4f;
361 taskfile->high_cylinder = 0xc2;
362 taskfile->device_head = 0;
363 taskfile->command = ATA_SMART_CMD;
364
365 reqtask->data_phase = TASKFILE_OUT;
366 reqtask->req_cmd = IDE_DRIVE_TASK_OUT;
367 reqtask->out_size = 512;
368 reqtask->in_size = 0;
369
370 // copy user data into the task request structure
371 memcpy(task+sizeof(ide_task_request_t), data, 512);
372
373 if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASKFILE, task))) {
374 if (retval==-EINVAL)
375 pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
376 return -1;
377 }
378 return 0;
379 }
380
381 // There are two different types of ioctls(). The HDIO_DRIVE_TASK
382 // one is this:
383 if (command==STATUS_CHECK || command==AUTOSAVE || command==AUTO_OFFLINE){
384 int retval;
385
386 // NOT DOCUMENTED in /usr/src/linux/include/linux/hdreg.h. You
387 // have to read the IDE driver source code. Sigh.
388 // buff[0]: ATA COMMAND CODE REGISTER
389 // buff[1]: ATA FEATURES REGISTER
390 // buff[2]: ATA SECTOR_COUNT
391 // buff[3]: ATA SECTOR NUMBER
392 // buff[4]: ATA CYL LO REGISTER
393 // buff[5]: ATA CYL HI REGISTER
394 // buff[6]: ATA DEVICE HEAD
395
396 unsigned const char normal_lo=0x4f, normal_hi=0xc2;
397 unsigned const char failed_lo=0xf4, failed_hi=0x2c;
398 buff[4]=normal_lo;
399 buff[5]=normal_hi;
400
401 if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASK, buff))) {
402 if (retval==-EINVAL) {
403 pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
404 pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
405 }
406 else
407 syserror("Error SMART Status command failed");
408 return -1;
409 }
410
411 // Cyl low and Cyl high unchanged means "Good SMART status"
412 if (buff[4]==normal_lo && buff[5]==normal_hi)
413 return 0;
414
415 // These values mean "Bad SMART status"
416 if (buff[4]==failed_lo && buff[5]==failed_hi)
417 return 1;
418
419 // We haven't gotten output that makes sense; print out some debugging info
420 syserror("Error SMART Status command failed");
421 pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
422 pout("Register values returned from SMART Status command are:\n");
423 pout("ST =0x%02x\n",(int)buff[0]);
424 pout("ERR=0x%02x\n",(int)buff[1]);
425 pout("NS =0x%02x\n",(int)buff[2]);
426 pout("SC =0x%02x\n",(int)buff[3]);
427 pout("CL =0x%02x\n",(int)buff[4]);
428 pout("CH =0x%02x\n",(int)buff[5]);
429 pout("SEL=0x%02x\n",(int)buff[6]);
430 return -1;
431 }
432
433 #if 1
434 // Note to people doing ports to other OSes -- don't worry about
435 // this block -- you can safely ignore it. I have put it here
436 // because under linux when you do IDENTIFY DEVICE to a packet
437 // device, it generates an ugly kernel syslog error message. This
438 // is harmless but frightens users. So this block detects packet
439 // devices and make IDENTIFY DEVICE fail "nicely" without a syslog
440 // error message.
441 //
442 // If you read only the ATA specs, it appears as if a packet device
443 // *might* respond to the IDENTIFY DEVICE command. This is
444 // misleading - it's because around the time that SFF-8020 was
445 // incorporated into the ATA-3/4 standard, the ATA authors were
446 // sloppy. See SFF-8020 and you will see that ATAPI devices have
447 // *always* had IDENTIFY PACKET DEVICE as a mandatory part of their
448 // command set, and return 'Command Aborted' to IDENTIFY DEVICE.
449 if (command==IDENTIFY || command==PIDENTIFY){
450 unsigned short deviceid[256];
451 // check the device identity, as seen when the system was booted
452 // or the device was FIRST registered. This will not be current
453 // if the user has subsequently changed some of the parameters. If
454 // device is a packet device, swap the command interpretations.
455 if (!ioctl(get_fd(), HDIO_GET_IDENTITY, deviceid) && (deviceid[0] & 0x8000))
456 buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
457 }
458 #endif
459
460 // We are now doing the HDIO_DRIVE_CMD type ioctl.
461 if ((ioctl(get_fd(), HDIO_DRIVE_CMD, buff)))
462 return -1;
463
464 // CHECK POWER MODE command returns information in the Sector Count
465 // register (buff[3]). Copy to return data buffer.
466 if (command==CHECK_POWER_MODE)
467 buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
468
469 // if the command returns data then copy it back
470 if (copydata)
471 memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
472
473 return 0;
474 }
475
476 // >>>>>> Start of general SCSI specific linux code
477
478 /* Linux specific code.
479 * Historically smartmontools (and smartsuite before it) used the
480 * SCSI_IOCTL_SEND_COMMAND ioctl which is available to all linux device
481 * nodes that use the SCSI subsystem. A better interface has been available
482 * via the SCSI generic (sg) driver but this involves the extra step of
483 * mapping disk devices (e.g. /dev/sda) to the corresponding sg device
484 * (e.g. /dev/sg2). In the linux kernel 2.6 series most of the facilities of
485 * the sg driver have become available via the SG_IO ioctl which is available
486 * on all SCSI devices (on SCSI tape devices from lk 2.6.6).
487 * So the strategy below is to find out if the SG_IO ioctl is available and
488 * if so use it; failing that use the older SCSI_IOCTL_SEND_COMMAND ioctl.
489 * Should work in 2.0, 2.2, 2.4 and 2.6 series linux kernels. */
490
491 #define MAX_DXFER_LEN 1024 /* can be increased if necessary */
492 #define SEND_IOCTL_RESP_SENSE_LEN 16 /* ioctl limitation */
493 #define SG_IO_RESP_SENSE_LEN 64 /* large enough see buffer */
494 #define LSCSI_DRIVER_MASK 0xf /* mask out "suggestions" */
495 #define LSCSI_DRIVER_SENSE 0x8 /* alternate CHECK CONDITION indication */
496 #define LSCSI_DID_ERROR 0x7 /* Need to work around aacraid driver quirk */
497 #define LSCSI_DRIVER_TIMEOUT 0x6
498 #define LSCSI_DID_TIME_OUT 0x3
499 #define LSCSI_DID_BUS_BUSY 0x2
500 #define LSCSI_DID_NO_CONNECT 0x1
501
502 #ifndef SCSI_IOCTL_SEND_COMMAND
503 #define SCSI_IOCTL_SEND_COMMAND 1
504 #endif
505
506 #define SG_IO_PRESENT_UNKNOWN 0
507 #define SG_IO_PRESENT_YES 1
508 #define SG_IO_PRESENT_NO 2
509
510 static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
511 int unknown);
512 static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report);
513
514 static int sg_io_state = SG_IO_PRESENT_UNKNOWN;
515
516 /* Preferred implementation for issuing SCSI commands in linux. This
517 * function uses the SG_IO ioctl. Return 0 if command issued successfully
518 * (various status values should still be checked). If the SCSI command
519 * cannot be issued then a negative errno value is returned. */
520 static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
521 int unknown)
522 {
523 #ifndef SG_IO
524 ARGUSED(dev_fd); ARGUSED(iop); ARGUSED(report);
525 return -ENOTTY;
526 #else
527 struct sg_io_hdr io_hdr;
528
529 if (report > 0) {
530 int k, j;
531 const unsigned char * ucp = iop->cmnd;
532 const char * np;
533 char buff[256];
534 const int sz = (int)sizeof(buff);
535
536 np = scsi_get_opcode_name(ucp[0]);
537 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
538 for (k = 0; k < (int)iop->cmnd_len; ++k)
539 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
540 if ((report > 1) &&
541 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
542 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
543
544 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
545 "data, len=%d%s:\n", (int)iop->dxfer_len,
546 (trunc ? " [only first 256 bytes shown]" : ""));
547 dStrHex((const char *)iop->dxferp,
548 (trunc ? 256 : iop->dxfer_len) , 1);
549 }
550 else
551 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
552 pout("%s", buff);
553 }
554 memset(&io_hdr, 0, sizeof(struct sg_io_hdr));
555 io_hdr.interface_id = 'S';
556 io_hdr.cmd_len = iop->cmnd_len;
557 io_hdr.mx_sb_len = iop->max_sense_len;
558 io_hdr.dxfer_len = iop->dxfer_len;
559 io_hdr.dxferp = iop->dxferp;
560 io_hdr.cmdp = iop->cmnd;
561 io_hdr.sbp = iop->sensep;
562 /* sg_io_hdr interface timeout has millisecond units. Timeout of 0
563 defaults to 60 seconds. */
564 io_hdr.timeout = ((0 == iop->timeout) ? 60 : iop->timeout) * 1000;
565 switch (iop->dxfer_dir) {
566 case DXFER_NONE:
567 io_hdr.dxfer_direction = SG_DXFER_NONE;
568 break;
569 case DXFER_FROM_DEVICE:
570 io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
571 break;
572 case DXFER_TO_DEVICE:
573 io_hdr.dxfer_direction = SG_DXFER_TO_DEV;
574 break;
575 default:
576 pout("do_scsi_cmnd_io: bad dxfer_dir\n");
577 return -EINVAL;
578 }
579 iop->resp_sense_len = 0;
580 iop->scsi_status = 0;
581 iop->resid = 0;
582 if (ioctl(dev_fd, SG_IO, &io_hdr) < 0) {
583 if (report && (! unknown))
584 pout(" SG_IO ioctl failed, errno=%d [%s]\n", errno,
585 strerror(errno));
586 return -errno;
587 }
588 iop->resid = io_hdr.resid;
589 iop->scsi_status = io_hdr.status;
590 if (report > 0) {
591 pout(" scsi_status=0x%x, host_status=0x%x, driver_status=0x%x\n"
592 " info=0x%x duration=%d milliseconds resid=%d\n", io_hdr.status,
593 io_hdr.host_status, io_hdr.driver_status, io_hdr.info,
594 io_hdr.duration, io_hdr.resid);
595 if (report > 1) {
596 if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
597 int trunc, len;
598
599 len = iop->dxfer_len - iop->resid;
600 trunc = (len > 256) ? 1 : 0;
601 if (len > 0) {
602 pout(" Incoming data, len=%d%s:\n", len,
603 (trunc ? " [only first 256 bytes shown]" : ""));
604 dStrHex((const char*)iop->dxferp, (trunc ? 256 : len),
605 1);
606 } else
607 pout(" Incoming data trimmed to nothing by resid\n");
608 }
609 }
610 }
611
612 if (io_hdr.info | SG_INFO_CHECK) { /* error or warning */
613 int masked_driver_status = (LSCSI_DRIVER_MASK & io_hdr.driver_status);
614
615 if (0 != io_hdr.host_status) {
616 if ((LSCSI_DID_NO_CONNECT == io_hdr.host_status) ||
617 (LSCSI_DID_BUS_BUSY == io_hdr.host_status) ||
618 (LSCSI_DID_TIME_OUT == io_hdr.host_status))
619 return -ETIMEDOUT;
620 else
621 /* Check for DID_ERROR - workaround for aacraid driver quirk */
622 if (LSCSI_DID_ERROR != io_hdr.host_status) {
623 return -EIO; /* catch all if not DID_ERR */
624 }
625 }
626 if (0 != masked_driver_status) {
627 if (LSCSI_DRIVER_TIMEOUT == masked_driver_status)
628 return -ETIMEDOUT;
629 else if (LSCSI_DRIVER_SENSE != masked_driver_status)
630 return -EIO;
631 }
632 if (LSCSI_DRIVER_SENSE == masked_driver_status)
633 iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
634 iop->resp_sense_len = io_hdr.sb_len_wr;
635 if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
636 iop->sensep && (iop->resp_sense_len > 0)) {
637 if (report > 1) {
638 pout(" >>> Sense buffer, len=%d:\n",
639 (int)iop->resp_sense_len);
640 dStrHex((const char *)iop->sensep, iop->resp_sense_len , 1);
641 }
642 }
643 if (report) {
644 if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
645 if ((iop->sensep[0] & 0x7f) > 0x71)
646 pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n",
647 iop->scsi_status, iop->sensep[1] & 0xf,
648 iop->sensep[2], iop->sensep[3]);
649 else
650 pout(" status=%x: sense_key=%x asc=%x ascq=%x\n",
651 iop->scsi_status, iop->sensep[2] & 0xf,
652 iop->sensep[12], iop->sensep[13]);
653 }
654 else
655 pout(" status=0x%x\n", iop->scsi_status);
656 }
657 }
658 return 0;
659 #endif
660 }
661
662 struct linux_ioctl_send_command
663 {
664 int inbufsize;
665 int outbufsize;
666 UINT8 buff[MAX_DXFER_LEN + 16];
667 };
668
669 /* The Linux SCSI_IOCTL_SEND_COMMAND ioctl is primitive and it doesn't
670 * support: CDB length (guesses it from opcode), resid and timeout.
671 * Patches in Linux 2.4.21 and 2.5.70 to extend SEND DIAGNOSTIC timeout
672 * to 2 hours in order to allow long foreground extended self tests. */
673 static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report)
674 {
675 struct linux_ioctl_send_command wrk;
676 int status, buff_offset;
677 size_t len;
678
679 memcpy(wrk.buff, iop->cmnd, iop->cmnd_len);
680 buff_offset = iop->cmnd_len;
681 if (report > 0) {
682 int k, j;
683 const unsigned char * ucp = iop->cmnd;
684 const char * np;
685 char buff[256];
686 const int sz = (int)sizeof(buff);
687
688 np = scsi_get_opcode_name(ucp[0]);
689 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
690 for (k = 0; k < (int)iop->cmnd_len; ++k)
691 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
692 if ((report > 1) &&
693 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
694 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
695
696 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
697 "data, len=%d%s:\n", (int)iop->dxfer_len,
698 (trunc ? " [only first 256 bytes shown]" : ""));
699 dStrHex((const char *)iop->dxferp,
700 (trunc ? 256 : iop->dxfer_len) , 1);
701 }
702 else
703 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
704 pout("%s", buff);
705 }
706 switch (iop->dxfer_dir) {
707 case DXFER_NONE:
708 wrk.inbufsize = 0;
709 wrk.outbufsize = 0;
710 break;
711 case DXFER_FROM_DEVICE:
712 wrk.inbufsize = 0;
713 if (iop->dxfer_len > MAX_DXFER_LEN)
714 return -EINVAL;
715 wrk.outbufsize = iop->dxfer_len;
716 break;
717 case DXFER_TO_DEVICE:
718 if (iop->dxfer_len > MAX_DXFER_LEN)
719 return -EINVAL;
720 memcpy(wrk.buff + buff_offset, iop->dxferp, iop->dxfer_len);
721 wrk.inbufsize = iop->dxfer_len;
722 wrk.outbufsize = 0;
723 break;
724 default:
725 pout("do_scsi_cmnd_io: bad dxfer_dir\n");
726 return -EINVAL;
727 }
728 iop->resp_sense_len = 0;
729 iop->scsi_status = 0;
730 iop->resid = 0;
731 status = ioctl(dev_fd, SCSI_IOCTL_SEND_COMMAND, &wrk);
732 if (-1 == status) {
733 if (report)
734 pout(" SCSI_IOCTL_SEND_COMMAND ioctl failed, errno=%d [%s]\n",
735 errno, strerror(errno));
736 return -errno;
737 }
738 if (0 == status) {
739 if (report > 0)
740 pout(" status=0\n");
741 if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
742 memcpy(iop->dxferp, wrk.buff, iop->dxfer_len);
743 if (report > 1) {
744 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
745
746 pout(" Incoming data, len=%d%s:\n", (int)iop->dxfer_len,
747 (trunc ? " [only first 256 bytes shown]" : ""));
748 dStrHex((const char*)iop->dxferp,
749 (trunc ? 256 : iop->dxfer_len) , 1);
750 }
751 }
752 return 0;
753 }
754 iop->scsi_status = status & 0x7e; /* bits 0 and 7 used to be for vendors */
755 if (LSCSI_DRIVER_SENSE == ((status >> 24) & 0xf))
756 iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
757 len = (SEND_IOCTL_RESP_SENSE_LEN < iop->max_sense_len) ?
758 SEND_IOCTL_RESP_SENSE_LEN : iop->max_sense_len;
759 if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
760 iop->sensep && (len > 0)) {
761 memcpy(iop->sensep, wrk.buff, len);
762 iop->resp_sense_len = len;
763 if (report > 1) {
764 pout(" >>> Sense buffer, len=%d:\n", (int)len);
765 dStrHex((const char *)wrk.buff, len , 1);
766 }
767 }
768 if (report) {
769 if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
770 pout(" status=%x: sense_key=%x asc=%x ascq=%x\n", status & 0xff,
771 wrk.buff[2] & 0xf, wrk.buff[12], wrk.buff[13]);
772 }
773 else
774 pout(" status=0x%x\n", status);
775 }
776 if (iop->scsi_status > 0)
777 return 0;
778 else {
779 if (report > 0)
780 pout(" ioctl status=0x%x but scsi status=0, fail with EIO\n",
781 status);
782 return -EIO; /* give up, assume no device there */
783 }
784 }
785
786 /* SCSI command transmission interface function, linux version.
787 * Returns 0 if SCSI command successfully launched and response
788 * received. Even when 0 is returned the caller should check
789 * scsi_cmnd_io::scsi_status for SCSI defined errors and warnings
790 * (e.g. CHECK CONDITION). If the SCSI command could not be issued
791 * (e.g. device not present or timeout) or some other problem
792 * (e.g. timeout) then returns a negative errno value */
793 static int do_normal_scsi_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop,
794 int report)
795 {
796 int res;
797
798 /* implementation relies on static sg_io_state variable. If not
799 * previously set tries the SG_IO ioctl. If that succeeds assume
800 * that SG_IO ioctl functional. If it fails with an errno value
801 * other than ENODEV (no device) or permission then assume
802 * SCSI_IOCTL_SEND_COMMAND is the only option. */
803 switch (sg_io_state) {
804 case SG_IO_PRESENT_UNKNOWN:
805 /* ignore report argument */
806 if (0 == (res = sg_io_cmnd_io(dev_fd, iop, report, 1))) {
807 sg_io_state = SG_IO_PRESENT_YES;
808 return 0;
809 } else if ((-ENODEV == res) || (-EACCES == res) || (-EPERM == res))
810 return res; /* wait until we see a device */
811 sg_io_state = SG_IO_PRESENT_NO;
812 /* drop through by design */
813 case SG_IO_PRESENT_NO:
814 return sisc_cmnd_io(dev_fd, iop, report);
815 case SG_IO_PRESENT_YES:
816 return sg_io_cmnd_io(dev_fd, iop, report, 0);
817 default:
818 pout(">>>> do_scsi_cmnd_io: bad sg_io_state=%d\n", sg_io_state);
819 sg_io_state = SG_IO_PRESENT_UNKNOWN;
820 return -EIO; /* report error and reset state */
821 }
822 }
823
824 // >>>>>> End of general SCSI specific linux code
825
826 /////////////////////////////////////////////////////////////////////////////
827 /// Standard SCSI support
828
829 class linux_scsi_device
830 : public /*implements*/ scsi_device,
831 public /*extends*/ linux_smart_device
832 {
833 public:
834 linux_scsi_device(smart_interface * intf, const char * dev_name, const char * req_type);
835
836 virtual smart_device * autodetect_open();
837
838 virtual bool scsi_pass_through(scsi_cmnd_io * iop);
839 };
840
841 linux_scsi_device::linux_scsi_device(smart_interface * intf,
842 const char * dev_name, const char * req_type)
843 : smart_device(intf, dev_name, "scsi", req_type),
844 linux_smart_device(O_RDWR | O_NONBLOCK, O_RDONLY | O_NONBLOCK)
845 {
846 }
847
848
849 bool linux_scsi_device::scsi_pass_through(scsi_cmnd_io * iop)
850 {
851 int status = do_normal_scsi_cmnd_io(get_fd(), iop, con->reportscsiioctl);
852 if (status < 0)
853 return set_err(-status);
854 return true;
855 }
856
857 /////////////////////////////////////////////////////////////////////////////
858 /// LSI MegaRAID support
859
860 class linux_megaraid_device
861 : public /* implements */ scsi_device,
862 public /* extends */ linux_smart_device
863 {
864 public:
865 linux_megaraid_device(smart_interface *intf, const char *name,
866 unsigned int bus, unsigned int tgt);
867
868 virtual ~linux_megaraid_device() throw();
869
870 virtual smart_device * autodetect_open();
871
872 virtual bool open();
873 virtual bool close();
874
875 virtual bool scsi_pass_through(scsi_cmnd_io *iop);
876
877 private:
878 unsigned int m_disknum;
879 unsigned int m_busnum;
880 unsigned int m_hba;
881 int m_fd;
882
883 bool (linux_megaraid_device::*pt_cmd)(int cdblen, void *cdb, int dataLen, void *data,
884 int senseLen, void *sense, int report);
885 bool megasas_cmd(int cdbLen, void *cdb, int dataLen, void *data,
886 int senseLen, void *sense, int report);
887 bool megadev_cmd(int cdbLen, void *cdb, int dataLen, void *data,
888 int senseLen, void *sense, int report);
889 };
890
891 linux_megaraid_device::linux_megaraid_device(smart_interface *intf,
892 const char *dev_name, unsigned int bus, unsigned int tgt)
893 : smart_device(intf, dev_name, "megaraid", "megaraid"),
894 linux_smart_device(O_RDWR | O_NONBLOCK),
895 m_disknum(tgt), m_busnum(bus), m_hba(0),
896 m_fd(-1), pt_cmd(0)
897 {
898 set_info().info_name = strprintf("%s [megaraid_disk_%02d]", dev_name, m_disknum);
899 }
900
901 linux_megaraid_device::~linux_megaraid_device() throw()
902 {
903 if (m_fd >= 0)
904 ::close(m_fd);
905 }
906
907 smart_device * linux_megaraid_device::autodetect_open()
908 {
909 int report = con->reportscsiioctl;
910
911 // Open device
912 if (!open())
913 return this;
914
915 // The code below is based on smartd.cpp:SCSIFilterKnown()
916 if (strcmp(get_req_type(), "megaraid"))
917 return this;
918
919 // Get INQUIRY
920 unsigned char req_buff[64] = {0, };
921 int req_len = 36;
922 if (scsiStdInquiry(this, req_buff, req_len)) {
923 close();
924 set_err(EIO, "INQUIRY failed");
925 return this;
926 }
927
928 int avail_len = req_buff[4] + 5;
929 int len = (avail_len < req_len ? avail_len : req_len);
930 if (len < 36)
931 return this;
932
933 if (report)
934 printf("Got MegaRAID inquiry.. %s\n", req_buff+8);
935
936 // Use INQUIRY to detect type
937 {
938 // SAT or USB ?
939 ata_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
940 if (newdev)
941 // NOTE: 'this' is now owned by '*newdev'
942 return newdev;
943 }
944
945 // Nothing special found
946 return this;
947 }
948
949
950 bool linux_megaraid_device::open()
951 {
952 char line[128];
953 int mjr, n1;
954 FILE *fp;
955 int report = con->reportscsiioctl;
956
957 if (!linux_smart_device::open())
958 return false;
959
960 /* Get device HBA */
961 struct sg_scsi_id sgid;
962 if (ioctl(get_fd(), SG_GET_SCSI_ID, &sgid) == 0) {
963 m_hba = sgid.host_no;
964 }
965 else if (ioctl(get_fd(), SCSI_IOCTL_GET_BUS_NUMBER, &m_hba) != 0) {
966 int err = errno;
967 linux_smart_device::close();
968 return set_err(err, "can't get bus number");
969 }
970
971 /* Perform mknod of device ioctl node */
972 fp = fopen("/proc/devices", "r");
973 while (fgets(line, sizeof(line), fp) != NULL) {
974 n1=0;
975 if (sscanf(line, "%d megaraid_sas_ioctl%n", &mjr, &n1) == 1 && n1 == 22) {
976 n1=mknod("/dev/megaraid_sas_ioctl_node", S_IFCHR, makedev(mjr, 0));
977 if(report > 0)
978 printf("Creating /dev/megaraid_sas_ioctl_node = %d\n", n1 >= 0 ? 0 : errno);
979 if (n1 >= 0 || errno == EEXIST)
980 break;
981 }
982 else if (sscanf(line, "%d megadev%n", &mjr, &n1) == 1 && n1 == 11) {
983 n1=mknod("/dev/megadev0", S_IFCHR, makedev(mjr, 0));
984 if(report > 0)
985 printf("Creating /dev/megadev0 = %d\n", n1 >= 0 ? 0 : errno);
986 if (n1 >= 0 || errno == EEXIST)
987 break;
988 }
989 }
990 fclose(fp);
991
992 /* Open Device IOCTL node */
993 if ((m_fd = ::open("/dev/megaraid_sas_ioctl_node", O_RDWR)) >= 0) {
994 pt_cmd = &linux_megaraid_device::megasas_cmd;
995 }
996 else if ((m_fd = ::open("/dev/megadev0", O_RDWR)) >= 0) {
997 pt_cmd = &linux_megaraid_device::megadev_cmd;
998 }
999 else {
1000 int err = errno;
1001 linux_smart_device::close();
1002 return set_err(err, "cannot open /dev/megaraid_sas_ioctl_node or /dev/megadev0");
1003 }
1004
1005 return true;
1006 }
1007
1008 bool linux_megaraid_device::close()
1009 {
1010 if (m_fd >= 0)
1011 ::close(m_fd);
1012 m_fd = -1; m_hba = 0; pt_cmd = 0;
1013 return linux_smart_device::close();
1014 }
1015
1016 bool linux_megaraid_device::scsi_pass_through(scsi_cmnd_io *iop)
1017 {
1018 int report = con->reportscsiioctl;
1019
1020 if (report > 0) {
1021 int k, j;
1022 const unsigned char * ucp = iop->cmnd;
1023 const char * np;
1024 char buff[256];
1025 const int sz = (int)sizeof(buff);
1026
1027 np = scsi_get_opcode_name(ucp[0]);
1028 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
1029 for (k = 0; k < (int)iop->cmnd_len; ++k)
1030 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
1031 if ((report > 1) &&
1032 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
1033 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
1034
1035 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
1036 "data, len=%d%s:\n", (int)iop->dxfer_len,
1037 (trunc ? " [only first 256 bytes shown]" : ""));
1038 dStrHex((const char *)iop->dxferp,
1039 (trunc ? 256 : iop->dxfer_len) , 1);
1040 }
1041 else
1042 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
1043 pout("%s", buff);
1044 }
1045
1046 /* Controller rejects Enable SMART and Test Unit Ready */
1047 if (iop->cmnd[0] == 0x00)
1048 return true;
1049 if (iop->cmnd[0] == 0x85 && iop->cmnd[1] == 0x06) {
1050 if(report > 0)
1051 pout("Rejecting SMART/ATA command to controller\n");
1052 // Emulate SMART STATUS CHECK drive reply
1053 // smartctl fail to work without this
1054 if(iop->cmnd[2]==0x2c) {
1055 iop->resp_sense_len=22; // copied from real response
1056 iop->sensep[0]=0x72; // descriptor format
1057 iop->sensep[7]=0x0e; // additional length
1058 iop->sensep[8]=0x09; // description pointer
1059 iop->sensep[17]=0x4f; // low cylinder GOOD smart status
1060 iop->sensep[19]=0xc2; // high cylinder GOOD smart status
1061 }
1062 return true;
1063 }
1064
1065 if (pt_cmd == NULL)
1066 return false;
1067 return (this->*pt_cmd)(iop->cmnd_len, iop->cmnd,
1068 iop->dxfer_len, iop->dxferp,
1069 iop->max_sense_len, iop->sensep, report);
1070 }
1071
1072 /* Issue passthrough scsi command to PERC5/6 controllers */
1073 bool linux_megaraid_device::megasas_cmd(int cdbLen, void *cdb,
1074 int dataLen, void *data,
1075 int /*senseLen*/, void * /*sense*/, int /*report*/)
1076 {
1077 struct megasas_pthru_frame *pthru;
1078 struct megasas_iocpacket uio;
1079 int rc;
1080
1081 memset(&uio, 0, sizeof(uio));
1082 pthru = (struct megasas_pthru_frame *)uio.frame.raw;
1083 pthru->cmd = MFI_CMD_PD_SCSI_IO;
1084 pthru->cmd_status = 0xFF;
1085 pthru->scsi_status = 0x0;
1086 pthru->target_id = m_disknum;
1087 pthru->lun = 0;
1088 pthru->cdb_len = cdbLen;
1089 pthru->timeout = 0;
1090 pthru->flags = MFI_FRAME_DIR_READ;
1091 pthru->sge_count = 1;
1092 pthru->data_xfer_len = dataLen;
1093 pthru->sgl.sge32[0].phys_addr = (intptr_t)data;
1094 pthru->sgl.sge32[0].length = (uint32_t)dataLen;
1095 memcpy(pthru->cdb, cdb, cdbLen);
1096
1097 uio.host_no = m_hba;
1098 uio.sge_count = 1;
1099 uio.sgl_off = offsetof(struct megasas_pthru_frame, sgl);
1100 uio.sgl[0].iov_base = data;
1101 uio.sgl[0].iov_len = dataLen;
1102
1103 rc = 0;
1104 errno = 0;
1105 rc = ioctl(m_fd, MEGASAS_IOC_FIRMWARE, &uio);
1106 if (pthru->cmd_status || rc != 0) {
1107 if (pthru->cmd_status == 12) {
1108 return set_err(EIO, "megasas_cmd: Device %d does not exist\n", m_disknum);
1109 }
1110 return set_err((errno ? errno : EIO), "megasas_cmd result: %d.%d = %d/%d",
1111 m_hba, m_disknum, errno,
1112 pthru->cmd_status);
1113 }
1114 return true;
1115 }
1116
1117 /* Issue passthrough scsi commands to PERC2/3/4 controllers */
1118 bool linux_megaraid_device::megadev_cmd(int cdbLen, void *cdb,
1119 int dataLen, void *data,
1120 int senseLen, void *sense, int /*report*/)
1121 {
1122 struct uioctl_t uio;
1123 int rc;
1124
1125 sense = NULL;
1126 senseLen = 0;
1127
1128 /* Don't issue to the controller */
1129 if (m_disknum == 7)
1130 return false;
1131
1132 memset(&uio, 0, sizeof(uio));
1133 uio.inlen = dataLen;
1134 uio.outlen = dataLen;
1135
1136 memset(data, 0, dataLen);
1137 uio.ui.fcs.opcode = 0x80; // M_RD_IOCTL_CMD
1138 uio.ui.fcs.adapno = MKADAP(m_hba);
1139
1140 uio.data.pointer = (uint8_t *)data;
1141
1142 uio.mbox.cmd = MEGA_MBOXCMD_PASSTHRU;
1143 uio.mbox.xferaddr = (intptr_t)&uio.pthru;
1144
1145 uio.pthru.ars = 1;
1146 uio.pthru.timeout = 2;
1147 uio.pthru.channel = 0;
1148 uio.pthru.target = m_disknum;
1149 uio.pthru.cdblen = cdbLen;
1150 uio.pthru.reqsenselen = MAX_REQ_SENSE_LEN;
1151 uio.pthru.dataxferaddr = (intptr_t)data;
1152 uio.pthru.dataxferlen = dataLen;
1153 memcpy(uio.pthru.cdb, cdb, cdbLen);
1154
1155 rc=ioctl(m_fd, MEGAIOCCMD, &uio);
1156 if (uio.pthru.scsistatus || rc != 0) {
1157 return set_err((errno ? errno : EIO), "megadev_cmd result: %d.%d = %d/%d",
1158 m_hba, m_disknum, errno,
1159 uio.pthru.scsistatus);
1160 }
1161 return true;
1162 }
1163
1164 /////////////////////////////////////////////////////////////////////////////
1165 /// CCISS RAID support
1166
1167 #ifdef HAVE_LINUX_CCISS_IOCTL_H
1168
1169 class linux_cciss_device
1170 : public /*implements*/ scsi_device,
1171 public /*extends*/ linux_smart_device
1172 {
1173 public:
1174 linux_cciss_device(smart_interface * intf, const char * name, unsigned char disknum);
1175
1176 virtual bool scsi_pass_through(scsi_cmnd_io * iop);
1177
1178 private:
1179 unsigned char m_disknum; ///< Disk number.
1180 };
1181
1182 linux_cciss_device::linux_cciss_device(smart_interface * intf,
1183 const char * dev_name, unsigned char disknum)
1184 : smart_device(intf, dev_name, "cciss", "cciss"),
1185 linux_smart_device(O_RDWR | O_NONBLOCK),
1186 m_disknum(disknum)
1187 {
1188 set_info().info_name = strprintf("%s [cciss_disk_%02d]", dev_name, disknum);
1189 }
1190
1191 bool linux_cciss_device::scsi_pass_through(scsi_cmnd_io * iop)
1192 {
1193 int status = cciss_io_interface(get_fd(), m_disknum, iop, con->reportscsiioctl);
1194 if (status < 0)
1195 return set_err(-status);
1196 return true;
1197 }
1198
1199 #endif // HAVE_LINUX_CCISS_IOCTL_H
1200
1201 /////////////////////////////////////////////////////////////////////////////
1202 /// AMCC/3ware RAID support
1203
1204 class linux_escalade_device
1205 : public /*implements*/ ata_device,
1206 public /*extends*/ linux_smart_device
1207 {
1208 public:
1209 enum escalade_type_t {
1210 AMCC_3WARE_678K,
1211 AMCC_3WARE_678K_CHAR,
1212 AMCC_3WARE_9000_CHAR
1213 };
1214
1215 linux_escalade_device(smart_interface * intf, const char * dev_name,
1216 escalade_type_t escalade_type, int disknum);
1217
1218 virtual bool open();
1219
1220 virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
1221
1222 private:
1223 escalade_type_t m_escalade_type; ///< Controller type
1224 int m_disknum; ///< Disk number.
1225 };
1226
1227 linux_escalade_device::linux_escalade_device(smart_interface * intf, const char * dev_name,
1228 escalade_type_t escalade_type, int disknum)
1229 : smart_device(intf, dev_name, "3ware", "3ware"),
1230 linux_smart_device(O_RDONLY | O_NONBLOCK),
1231 m_escalade_type(escalade_type), m_disknum(disknum)
1232 {
1233 set_info().info_name = strprintf("%s [3ware_disk_%02d]", dev_name, disknum);
1234 }
1235
1236 /* This function will setup and fix device nodes for a 3ware controller. */
1237 #define MAJOR_STRING_LENGTH 3
1238 #define DEVICE_STRING_LENGTH 32
1239 #define NODE_STRING_LENGTH 16
1240 int setup_3ware_nodes(const char *nodename, const char *driver_name) {
1241 int tw_major = 0;
1242 int index = 0;
1243 char majorstring[MAJOR_STRING_LENGTH+1];
1244 char device_name[DEVICE_STRING_LENGTH+1];
1245 char nodestring[NODE_STRING_LENGTH];
1246 struct stat stat_buf;
1247 FILE *file;
1248 int retval = 0;
1249 #ifdef WITH_SELINUX
1250 security_context_t orig_context = NULL;
1251 security_context_t node_context = NULL;
1252 int selinux_enabled = is_selinux_enabled();
1253 int selinux_enforced = security_getenforce();
1254 #endif
1255
1256
1257 /* First try to open up /proc/devices */
1258 if (!(file = fopen("/proc/devices", "r"))) {
1259 pout("Error opening /proc/devices to check/create 3ware device nodes\n");
1260 syserror("fopen");
1261 return 0; // don't fail here: user might not have /proc !
1262 }
1263
1264 /* Attempt to get device major number */
1265 while (EOF != fscanf(file, "%3s %32s", majorstring, device_name)) {
1266 majorstring[MAJOR_STRING_LENGTH]='\0';
1267 device_name[DEVICE_STRING_LENGTH]='\0';
1268 if (!strncmp(device_name, nodename, DEVICE_STRING_LENGTH)) {
1269 tw_major = atoi(majorstring);
1270 break;
1271 }
1272 }
1273 fclose(file);
1274
1275 /* See if we found a major device number */
1276 if (!tw_major) {
1277 pout("No major number for /dev/%s listed in /proc/devices. Is the %s driver loaded?\n", nodename, driver_name);
1278 return 2;
1279 }
1280 #ifdef WITH_SELINUX
1281 /* Prepare a database of contexts for files in /dev
1282 * and save the current context */
1283 if (selinux_enabled) {
1284 if (matchpathcon_init_prefix(NULL, "/dev") < 0)
1285 pout("Error initializing contexts database for /dev");
1286 if (getfscreatecon(&orig_context) < 0) {
1287 pout("Error retrieving original SELinux fscreate context");
1288 if (selinux_enforced)
1289 matchpathcon_fini();
1290 return 6;
1291 }
1292 }
1293 #endif
1294 /* Now check if nodes are correct */
1295 for (index=0; index<16; index++) {
1296 sprintf(nodestring, "/dev/%s%d", nodename, index);
1297 #ifdef WITH_SELINUX
1298 /* Get context of the node and set it as the default */
1299 if (selinux_enabled) {
1300 if (matchpathcon(nodestring, S_IRUSR | S_IWUSR, &node_context) < 0) {
1301 pout("Could not retrieve context for %s", nodestring);
1302 if (selinux_enforced) {
1303 retval = 6;
1304 break;
1305 }
1306 }
1307 if (setfscreatecon(node_context) < 0) {
1308 pout ("Error setting default fscreate context");
1309 if (selinux_enforced) {
1310 retval = 6;
1311 break;
1312 }
1313 }
1314 }
1315 #endif
1316 /* Try to stat the node */
1317 if ((stat(nodestring, &stat_buf))) {
1318 pout("Node %s does not exist and must be created. Check the udev rules.\n", nodestring);
1319 /* Create a new node if it doesn't exist */
1320 if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
1321 pout("problem creating 3ware device nodes %s", nodestring);
1322 syserror("mknod");
1323 retval = 3;
1324 break;
1325 } else {
1326 #ifdef WITH_SELINUX
1327 if (selinux_enabled && node_context) {
1328 freecon(node_context);
1329 node_context = NULL;
1330 }
1331 #endif
1332 continue;
1333 }
1334 }
1335
1336 /* See if nodes major and minor numbers are correct */
1337 if ((tw_major != (int)(major(stat_buf.st_rdev))) ||
1338 (index != (int)(minor(stat_buf.st_rdev))) ||
1339 (!S_ISCHR(stat_buf.st_mode))) {
1340 pout("Node %s has wrong major/minor number and must be created anew."
1341 " Check the udev rules.\n", nodestring);
1342 /* Delete the old node */
1343 if (unlink(nodestring)) {
1344 pout("problem unlinking stale 3ware device node %s", nodestring);
1345 syserror("unlink");
1346 retval = 4;
1347 break;
1348 }
1349
1350 /* Make a new node */
1351 if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
1352 pout("problem creating 3ware device nodes %s", nodestring);
1353 syserror("mknod");
1354 retval = 5;
1355 break;
1356 }
1357 }
1358 #ifdef WITH_SELINUX
1359 if (selinux_enabled && node_context) {
1360 freecon(node_context);
1361 node_context = NULL;
1362 }
1363 #endif
1364 }
1365
1366 #ifdef WITH_SELINUX
1367 if (selinux_enabled) {
1368 if(setfscreatecon(orig_context) < 0) {
1369 pout("Error re-setting original fscreate context");
1370 if (selinux_enforced)
1371 retval = 6;
1372 }
1373 if(orig_context)
1374 freecon(orig_context);
1375 if(node_context)
1376 freecon(node_context);
1377 matchpathcon_fini();
1378 }
1379 #endif
1380 return retval;
1381 }
1382
1383 bool linux_escalade_device::open()
1384 {
1385 if (m_escalade_type == AMCC_3WARE_9000_CHAR || m_escalade_type == AMCC_3WARE_678K_CHAR) {
1386 // the device nodes for these controllers are dynamically assigned,
1387 // so we need to check that they exist with the correct major
1388 // numbers and if not, create them
1389 const char * node = (m_escalade_type == AMCC_3WARE_9000_CHAR ? "twa" : "twe" );
1390 const char * driver = (m_escalade_type == AMCC_3WARE_9000_CHAR ? "3w-9xxx": "3w-xxxx");
1391 if (setup_3ware_nodes(node, driver))
1392 return set_err((errno ? errno : ENXIO), "setup_3ware_nodes(\"%s\", \"%s\") failed", node, driver);
1393 }
1394 // Continue with default open
1395 return linux_smart_device::open();
1396 }
1397
1398 // TODO: Function no longer useful
1399 //void printwarning(smart_command_set command);
1400
1401 // PURPOSE
1402 // This is an interface routine meant to isolate the OS dependent
1403 // parts of the code, and to provide a debugging interface. Each
1404 // different port and OS needs to provide it's own interface. This
1405 // is the linux interface to the 3ware 3w-xxxx driver. It allows ATA
1406 // commands to be passed through the SCSI driver.
1407 // DETAILED DESCRIPTION OF ARGUMENTS
1408 // fd: is the file descriptor provided by open()
1409 // disknum is the disk number (0 to 15) in the RAID array
1410 // escalade_type indicates the type of controller type, and if scsi or char interface is used
1411 // command: defines the different operations.
1412 // select: additional input data if needed (which log, which type of
1413 // self-test).
1414 // data: location to write output data, if needed (512 bytes).
1415 // Note: not all commands use all arguments.
1416 // RETURN VALUES
1417 // -1 if the command failed
1418 // 0 if the command succeeded,
1419 // STATUS_CHECK routine:
1420 // -1 if the command failed
1421 // 0 if the command succeeded and disk SMART status is "OK"
1422 // 1 if the command succeeded and disk SMART status is "FAILING"
1423
1424
1425 /* 512 is the max payload size: increase if needed */
1426 #define BUFFER_LEN_678K ( sizeof(TW_Ioctl) ) // 1044 unpacked, 1041 packed
1427 #define BUFFER_LEN_678K_CHAR ( sizeof(TW_New_Ioctl)+512-1 ) // 1539 unpacked, 1536 packed
1428 #define BUFFER_LEN_9000 ( sizeof(TW_Ioctl_Buf_Apache)+512-1 ) // 2051 unpacked, 2048 packed
1429 #define TW_IOCTL_BUFFER_SIZE ( MAX(MAX(BUFFER_LEN_678K, BUFFER_LEN_9000), BUFFER_LEN_678K_CHAR) )
1430
1431 bool linux_escalade_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
1432 {
1433 if (!ata_cmd_is_ok(in,
1434 true, // data_out_support
1435 false, // TODO: multi_sector_support
1436 true) // ata_48bit_support
1437 )
1438 return false;
1439
1440 // Used by both the SCSI and char interfaces
1441 TW_Passthru *passthru=NULL;
1442 char ioctl_buffer[TW_IOCTL_BUFFER_SIZE];
1443
1444 // only used for SCSI device interface
1445 TW_Ioctl *tw_ioctl=NULL;
1446 TW_Output *tw_output=NULL;
1447
1448 // only used for 6000/7000/8000 char device interface
1449 TW_New_Ioctl *tw_ioctl_char=NULL;
1450
1451 // only used for 9000 character device interface
1452 TW_Ioctl_Buf_Apache *tw_ioctl_apache=NULL;
1453
1454 memset(ioctl_buffer, 0, TW_IOCTL_BUFFER_SIZE);
1455
1456 // TODO: Handle controller differences by different classes
1457 if (m_escalade_type==AMCC_3WARE_9000_CHAR) {
1458 tw_ioctl_apache = (TW_Ioctl_Buf_Apache *)ioctl_buffer;
1459 tw_ioctl_apache->driver_command.control_code = TW_IOCTL_FIRMWARE_PASS_THROUGH;
1460 tw_ioctl_apache->driver_command.buffer_length = 512; /* payload size */
1461 passthru = (TW_Passthru *)&(tw_ioctl_apache->firmware_command.command.oldcommand);
1462 }
1463 else if (m_escalade_type==AMCC_3WARE_678K_CHAR) {
1464 tw_ioctl_char = (TW_New_Ioctl *)ioctl_buffer;
1465 tw_ioctl_char->data_buffer_length = 512;
1466 passthru = (TW_Passthru *)&(tw_ioctl_char->firmware_command);
1467 }
1468 else if (m_escalade_type==AMCC_3WARE_678K) {
1469 tw_ioctl = (TW_Ioctl *)ioctl_buffer;
1470 tw_ioctl->cdb[0] = TW_IOCTL;
1471 tw_ioctl->opcode = TW_ATA_PASSTHRU;
1472 tw_ioctl->input_length = 512; // correct even for non-data commands
1473 tw_ioctl->output_length = 512; // correct even for non-data commands
1474 tw_output = (TW_Output *)tw_ioctl;
1475 passthru = (TW_Passthru *)&(tw_ioctl->input_data);
1476 }
1477 else {
1478 return set_err(ENOSYS,
1479 "Unrecognized escalade_type %d in linux_3ware_command_interface(disk %d)\n"
1480 "Please contact " PACKAGE_BUGREPORT "\n", (int)m_escalade_type, m_disknum);
1481 }
1482
1483 // Same for (almost) all commands - but some reset below
1484 passthru->byte0.opcode = TW_OP_ATA_PASSTHRU;
1485 passthru->request_id = 0xFF;
1486 passthru->unit = m_disknum;
1487 passthru->status = 0;
1488 passthru->flags = 0x1;
1489
1490 // Set registers
1491 {
1492 const ata_in_regs_48bit & r = in.in_regs;
1493 passthru->features = r.features_16;
1494 passthru->sector_count = r.sector_count_16;
1495 passthru->sector_num = r.lba_low_16;
1496 passthru->cylinder_lo = r.lba_mid_16;
1497 passthru->cylinder_hi = r.lba_high_16;
1498 passthru->drive_head = r.device;
1499 passthru->command = r.command;
1500 }
1501
1502 // Is this a command that reads or returns 512 bytes?
1503 // passthru->param values are:
1504 // 0x0 - non data command without TFR write check,
1505 // 0x8 - non data command with TFR write check,
1506 // 0xD - data command that returns data to host from device
1507 // 0xF - data command that writes data from host to device
1508 // passthru->size values are 0x5 for non-data and 0x07 for data
1509 bool readdata = false;
1510 if (in.direction == ata_cmd_in::data_in) {
1511 readdata=true;
1512 passthru->byte0.sgloff = 0x5;
1513 passthru->size = 0x7; // TODO: Other value for multi-sector ?
1514 passthru->param = 0xD;
1515 // For 64-bit to work correctly, up the size of the command packet
1516 // in dwords by 1 to account for the 64-bit single sgl 'address'
1517 // field. Note that this doesn't agree with the typedefs but it's
1518 // right (agree with kernel driver behavior/typedefs).
1519 if (m_escalade_type==AMCC_3WARE_9000_CHAR && sizeof(long)==8)
1520 passthru->size++;
1521 }
1522 else if (in.direction == ata_cmd_in::no_data) {
1523 // Non data command -- but doesn't use large sector
1524 // count register values.
1525 passthru->byte0.sgloff = 0x0;
1526 passthru->size = 0x5;
1527 passthru->param = 0x8;
1528 passthru->sector_count = 0x0;
1529 }
1530 else if (in.direction == ata_cmd_in::data_out) {
1531 if (m_escalade_type == AMCC_3WARE_9000_CHAR)
1532 memcpy(tw_ioctl_apache->data_buffer, in.buffer, in.size);
1533 else if (m_escalade_type == AMCC_3WARE_678K_CHAR)
1534 memcpy(tw_ioctl_char->data_buffer, in.buffer, in.size);
1535 else {
1536 // COMMAND NOT SUPPORTED VIA SCSI IOCTL INTERFACE
1537 // memcpy(tw_output->output_data, data, 512);
1538 // printwarning(command); // TODO: Parameter no longer valid
1539 return set_err(ENOTSUP, "DATA OUT not supported for this 3ware controller type");
1540 }
1541 passthru->byte0.sgloff = 0x5;
1542 passthru->size = 0x7; // TODO: Other value for multi-sector ?
1543 passthru->param = 0xF; // PIO data write
1544 if (m_escalade_type==AMCC_3WARE_9000_CHAR && sizeof(long)==8)
1545 passthru->size++;
1546 }
1547 else
1548 return set_err(EINVAL);
1549
1550 // Now send the command down through an ioctl()
1551 int ioctlreturn;
1552 if (m_escalade_type==AMCC_3WARE_9000_CHAR)
1553 ioctlreturn=ioctl(get_fd(), TW_IOCTL_FIRMWARE_PASS_THROUGH, tw_ioctl_apache);
1554 else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
1555 ioctlreturn=ioctl(get_fd(), TW_CMD_PACKET_WITH_DATA, tw_ioctl_char);
1556 else
1557 ioctlreturn=ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, tw_ioctl);
1558
1559 // Deal with the different error cases
1560 if (ioctlreturn) {
1561 if (AMCC_3WARE_678K==m_escalade_type
1562 && in.in_regs.command==ATA_SMART_CMD
1563 && ( in.in_regs.features == ATA_SMART_AUTO_OFFLINE
1564 || in.in_regs.features == ATA_SMART_AUTOSAVE )
1565 && in.in_regs.lba_low) {
1566 // error here is probably a kernel driver whose version is too old
1567 // printwarning(command); // TODO: Parameter no longer valid
1568 return set_err(ENOTSUP, "Probably kernel driver too old");
1569 }
1570 return set_err(EIO);
1571 }
1572
1573 // The passthru structure is valid after return from an ioctl if:
1574 // - we are using the character interface OR
1575 // - we are using the SCSI interface and this is a NON-READ-DATA command
1576 // For SCSI interface, note that we set passthru to a different
1577 // value after ioctl().
1578 if (AMCC_3WARE_678K==m_escalade_type) {
1579 if (readdata)
1580 passthru=NULL;
1581 else
1582 passthru=(TW_Passthru *)&(tw_output->output_data);
1583 }
1584
1585 // See if the ATA command failed. Now that we have returned from
1586 // the ioctl() call, if passthru is valid, then:
1587 // - passthru->status contains the 3ware controller STATUS
1588 // - passthru->command contains the ATA STATUS register
1589 // - passthru->features contains the ATA ERROR register
1590 //
1591 // Check bits 0 (error bit) and 5 (device fault) of the ATA STATUS
1592 // If bit 0 (error bit) is set, then ATA ERROR register is valid.
1593 // While we *might* decode the ATA ERROR register, at the moment it
1594 // doesn't make much sense: we don't care in detail why the error
1595 // happened.
1596
1597 if (passthru && (passthru->status || (passthru->command & 0x21))) {
1598 return set_err(EIO);
1599 }
1600
1601 // If this is a read data command, copy data to output buffer
1602 if (readdata) {
1603 if (m_escalade_type==AMCC_3WARE_9000_CHAR)
1604 memcpy(in.buffer, tw_ioctl_apache->data_buffer, in.size);
1605 else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
1606 memcpy(in.buffer, tw_ioctl_char->data_buffer, in.size);
1607 else
1608 memcpy(in.buffer, tw_output->output_data, in.size);
1609 }
1610
1611 // Return register values
1612 if (passthru) {
1613 ata_out_regs_48bit & r = out.out_regs;
1614 r.error = passthru->features;
1615 r.sector_count_16 = passthru->sector_count;
1616 r.lba_low_16 = passthru->sector_num;
1617 r.lba_mid_16 = passthru->cylinder_lo;
1618 r.lba_high_16 = passthru->cylinder_hi;
1619 r.device = passthru->drive_head;
1620 r.status = passthru->command;
1621 }
1622
1623 // look for nonexistent devices/ports
1624 if ( in.in_regs.command == ATA_IDENTIFY_DEVICE
1625 && !nonempty((unsigned char *)in.buffer, in.size)) {
1626 return set_err(ENODEV, "No drive on port %d", m_disknum);
1627 }
1628
1629 return true;
1630 }
1631
1632
1633 /////////////////////////////////////////////////////////////////////////////
1634 /// Areca RAID support
1635
1636 class linux_areca_device
1637 : public /*implements*/ ata_device_with_command_set,
1638 public /*extends*/ linux_smart_device
1639 {
1640 public:
1641 linux_areca_device(smart_interface * intf, const char * dev_name, int disknum);
1642
1643 protected:
1644 virtual int ata_command_interface(smart_command_set command, int select, char * data);
1645
1646 private:
1647 int m_disknum; ///< Disk number.
1648 };
1649
1650
1651 // PURPOSE
1652 // This is an interface routine meant to isolate the OS dependent
1653 // parts of the code, and to provide a debugging interface. Each
1654 // different port and OS needs to provide it's own interface. This
1655 // is the linux interface to the Areca "arcmsr" driver. It allows ATA
1656 // commands to be passed through the SCSI driver.
1657 // DETAILED DESCRIPTION OF ARGUMENTS
1658 // fd: is the file descriptor provided by open()
1659 // disknum is the disk number (0 to 15) in the RAID array
1660 // command: defines the different operations.
1661 // select: additional input data if needed (which log, which type of
1662 // self-test).
1663 // data: location to write output data, if needed (512 bytes).
1664 // Note: not all commands use all arguments.
1665 // RETURN VALUES
1666 // -1 if the command failed
1667 // 0 if the command succeeded,
1668 // STATUS_CHECK routine:
1669 // -1 if the command failed
1670 // 0 if the command succeeded and disk SMART status is "OK"
1671 // 1 if the command succeeded and disk SMART status is "FAILING"
1672
1673
1674 /*DeviceType*/
1675 #define ARECA_SATA_RAID 0x90000000
1676 /*FunctionCode*/
1677 #define FUNCTION_READ_RQBUFFER 0x0801
1678 #define FUNCTION_WRITE_WQBUFFER 0x0802
1679 #define FUNCTION_CLEAR_RQBUFFER 0x0803
1680 #define FUNCTION_CLEAR_WQBUFFER 0x0804
1681
1682 /* ARECA IO CONTROL CODE*/
1683 #define ARCMSR_IOCTL_READ_RQBUFFER (ARECA_SATA_RAID | FUNCTION_READ_RQBUFFER)
1684 #define ARCMSR_IOCTL_WRITE_WQBUFFER (ARECA_SATA_RAID | FUNCTION_WRITE_WQBUFFER)
1685 #define ARCMSR_IOCTL_CLEAR_RQBUFFER (ARECA_SATA_RAID | FUNCTION_CLEAR_RQBUFFER)
1686 #define ARCMSR_IOCTL_CLEAR_WQBUFFER (ARECA_SATA_RAID | FUNCTION_CLEAR_WQBUFFER)
1687 #define ARECA_SIG_STR "ARCMSR"
1688
1689 // The SRB_IO_CONTROL & SRB_BUFFER structures are used to communicate(to/from) to areca driver
1690 typedef struct _SRB_IO_CONTROL
1691 {
1692 unsigned int HeaderLength;
1693 unsigned char Signature[8];
1694 unsigned int Timeout;
1695 unsigned int ControlCode;
1696 unsigned int ReturnCode;
1697 unsigned int Length;
1698 } sSRB_IO_CONTROL;
1699
1700 typedef struct _SRB_BUFFER
1701 {
1702 sSRB_IO_CONTROL srbioctl;
1703 unsigned char ioctldatabuffer[1032]; // the buffer to put the command data to/from firmware
1704 } sSRB_BUFFER;
1705
1706 // Looks in /proc/scsi to suggest correct areca devices
1707 // If hint not NULL, return device path guess
1708 int find_areca_in_proc(char *hint) {
1709
1710 const char* proc_format_string="host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\tonline\n";
1711
1712 // check data formwat
1713 FILE *fp=fopen("/proc/scsi/sg/device_hdr", "r");
1714 if (!fp) {
1715 pout("Unable to open /proc/scsi/sg/device_hdr for reading\n");
1716 return 1;
1717 }
1718
1719 // get line, compare to format
1720 char linebuf[256];
1721 linebuf[255]='\0';
1722 char *out = fgets(linebuf, 256, fp);
1723 fclose(fp);
1724 if (!out) {
1725 pout("Unable to read contents of /proc/scsi/sg/device_hdr\n");
1726 return 2;
1727 }
1728
1729 if (strcmp(linebuf, proc_format_string)) {
1730 // wrong format!
1731 // Fix this by comparing only tokens not white space!!
1732 pout("Unexpected format %s in /proc/scsi/sg/device_hdr\n", proc_format_string);
1733 return 3;
1734 }
1735
1736 // Format is understood, now search for correct device
1737 fp=fopen("/proc/scsi/sg/devices", "r");
1738 if (!fp) return 1;
1739 int host, chan, id, lun, type, opens, qdepth, busy, online;
1740 int dev=-1;
1741 int found=0;
1742 // search all lines of /proc/scsi/sg/devices
1743 while (9 == fscanf(fp, "%d %d %d %d %d %d %d %d %d", &host, &chan, &id, &lun, &type, &opens, &qdepth, &busy, &online)) {
1744 dev++;
1745 if (id == 16 && type == 3) {
1746 // devices with id=16 and type=3 might be Areca controllers
1747 if (!found && hint) {
1748 sprintf(hint, "/dev/sg%d", dev);
1749 }
1750 pout("Device /dev/sg%d appears to be an Areca controller.\n", dev);
1751 found++;
1752 }
1753 }
1754 fclose(fp);
1755 return 0;
1756 }
1757
1758
1759
1760 void dumpdata( unsigned char *block, int len)
1761 {
1762 int ln = (len / 16) + 1; // total line#
1763 unsigned char c;
1764 int pos = 0;
1765
1766 printf(" Address = %p, Length = (0x%x)%d\n", block, len, len);
1767 printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII \n");
1768 printf("=====================================================================\n");
1769
1770 for ( int l = 0; l < ln && len; l++ )
1771 {
1772 // printf the line# and the HEX data
1773 // if a line data length < 16 then append the space to the tail of line to reach 16 chars
1774 printf("%02X | ", l);
1775 for ( pos = 0; pos < 16 && len; pos++, len-- )
1776 {
1777 c = block[l*16+pos];
1778 printf("%02X ", c);
1779 }
1780
1781 if ( pos < 16 )
1782 {
1783 for ( int loop = pos; loop < 16; loop++ )
1784 {
1785 printf(" ");
1786 }
1787 }
1788
1789 // print ASCII char
1790 for ( int loop = 0; loop < pos; loop++ )
1791 {
1792 c = block[l*16+loop];
1793 if ( c >= 0x20 && c <= 0x7F )
1794 {
1795 printf("%c", c);
1796 }
1797 else
1798 {
1799 printf(".");
1800 }
1801 }
1802 printf("\n");
1803 }
1804 printf("=====================================================================\n");
1805 }
1806
1807
1808
1809 int arcmsr_command_handler(int fd, unsigned long arcmsr_cmd, unsigned char *data, int data_len, void *ext_data /* reserved for further use */)
1810 {
1811 ARGUSED(ext_data);
1812
1813 int ioctlreturn = 0;
1814 sSRB_BUFFER sBuf;
1815 struct scsi_cmnd_io io_hdr;
1816 int dir = DXFER_TO_DEVICE;
1817
1818 UINT8 cdb[10];
1819 UINT8 sense[32];
1820
1821 unsigned char *areca_return_packet;
1822 int total = 0;
1823 int expected = -1;
1824 unsigned char return_buff[2048];
1825 unsigned char *ptr = &return_buff[0];
1826 memset(return_buff, 0, sizeof(return_buff));
1827
1828 memset((unsigned char *)&sBuf, 0, sizeof(sBuf));
1829 memset(&io_hdr, 0, sizeof(io_hdr));
1830 memset(cdb, 0, sizeof(cdb));
1831 memset(sense, 0, sizeof(sense));
1832
1833
1834 sBuf.srbioctl.HeaderLength = sizeof(sSRB_IO_CONTROL);
1835 memcpy(sBuf.srbioctl.Signature, ARECA_SIG_STR, strlen(ARECA_SIG_STR));
1836 sBuf.srbioctl.Timeout = 10000;
1837 sBuf.srbioctl.ControlCode = ARCMSR_IOCTL_READ_RQBUFFER;
1838
1839 switch ( arcmsr_cmd )
1840 {
1841 // command for writing data to driver
1842 case ARCMSR_IOCTL_WRITE_WQBUFFER:
1843 if ( data && data_len )
1844 {
1845 sBuf.srbioctl.Length = data_len;
1846 memcpy((unsigned char *)sBuf.ioctldatabuffer, (unsigned char *)data, data_len);
1847 }
1848 // commands for clearing related buffer of driver
1849 case ARCMSR_IOCTL_CLEAR_RQBUFFER:
1850 case ARCMSR_IOCTL_CLEAR_WQBUFFER:
1851 cdb[0] = 0x3B; //SCSI_WRITE_BUF command;
1852 break;
1853 // command for reading data from driver
1854 case ARCMSR_IOCTL_READ_RQBUFFER:
1855 cdb[0] = 0x3C; //SCSI_READ_BUF command;
1856 dir = DXFER_FROM_DEVICE;
1857 break;
1858 default:
1859 // unknown arcmsr commands
1860 return -1;
1861 }
1862
1863 cdb[1] = 0x01;
1864 cdb[2] = 0xf0;
1865 //
1866 // cdb[5][6][7][8] areca defined command code( to/from driver )
1867 //
1868 cdb[5] = (char)( arcmsr_cmd >> 24);
1869 cdb[6] = (char)( arcmsr_cmd >> 16);
1870 cdb[7] = (char)( arcmsr_cmd >> 8);
1871 cdb[8] = (char)( arcmsr_cmd & 0x0F );
1872
1873 io_hdr.dxfer_dir = dir;
1874 io_hdr.dxfer_len = sizeof(sBuf);
1875 io_hdr.dxferp = (unsigned char *)&sBuf;
1876 io_hdr.cmnd = cdb;
1877 io_hdr.cmnd_len = sizeof(cdb);
1878 io_hdr.sensep = sense;
1879 io_hdr.max_sense_len = sizeof(sense);
1880 io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
1881
1882 while ( 1 )
1883 {
1884 ioctlreturn = do_normal_scsi_cmnd_io(fd, &io_hdr, 0);
1885 if ( ioctlreturn || io_hdr.scsi_status )
1886 {
1887 // errors found
1888 break;
1889 }
1890
1891 if ( arcmsr_cmd != ARCMSR_IOCTL_READ_RQBUFFER )
1892 {
1893 // if succeeded, just returns the length of outgoing data
1894 return data_len;
1895 }
1896
1897 if ( sBuf.srbioctl.Length )
1898 {
1899 //dumpdata(&sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
1900 memcpy(ptr, &sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
1901 ptr += sBuf.srbioctl.Length;
1902 total += sBuf.srbioctl.Length;
1903 // the returned bytes enough to compute payload length ?
1904 if ( expected < 0 && total >= 5 )
1905 {
1906 areca_return_packet = (unsigned char *)&return_buff[0];
1907 if ( areca_return_packet[0] == 0x5E &&
1908 areca_return_packet[1] == 0x01 &&
1909 areca_return_packet[2] == 0x61 )
1910 {
1911 // valid header, let's compute the returned payload length,
1912 // we expected the total length is
1913 // payload + 3 bytes header + 2 bytes length + 1 byte checksum
1914 expected = areca_return_packet[4] * 256 + areca_return_packet[3] + 6;
1915 }
1916 }
1917
1918 if ( total >= 7 && total >= expected )
1919 {
1920 //printf("total bytes received = %d, expected length = %d\n", total, expected);
1921
1922 // ------ Okay! we received enough --------
1923 break;
1924 }
1925 }
1926 }
1927
1928 // Deal with the different error cases
1929 if ( ioctlreturn )
1930 {
1931 printf("do_scsi_cmnd_io with write buffer failed code = %x\n", ioctlreturn);
1932 return -2;
1933 }
1934
1935
1936 if ( io_hdr.scsi_status )
1937 {
1938 printf("io_hdr.scsi_status with write buffer failed code = %x\n", io_hdr.scsi_status);
1939 return -3;
1940 }
1941
1942
1943 if ( data )
1944 {
1945 memcpy(data, return_buff, total);
1946 }
1947
1948 return total;
1949 }
1950
1951
1952 linux_areca_device::linux_areca_device(smart_interface * intf, const char * dev_name, int disknum)
1953 : smart_device(intf, dev_name, "areca", "areca"),
1954 linux_smart_device(O_RDWR | O_EXCL | O_NONBLOCK),
1955 m_disknum(disknum)
1956 {
1957 set_info().info_name = strprintf("%s [areca_%02d]", dev_name, disknum);
1958 }
1959
1960 // Areca RAID Controller
1961 int linux_areca_device::ata_command_interface(smart_command_set command, int select, char * data)
1962 {
1963 // ATA input registers
1964 typedef struct _ATA_INPUT_REGISTERS
1965 {
1966 unsigned char features;
1967 unsigned char sector_count;
1968 unsigned char sector_number;
1969 unsigned char cylinder_low;
1970 unsigned char cylinder_high;
1971 unsigned char device_head;
1972 unsigned char command;
1973 unsigned char reserved[8];
1974 unsigned char data[512]; // [in/out] buffer for outgoing/incoming data
1975 } sATA_INPUT_REGISTERS;
1976
1977 // ATA output registers
1978 // Note: The output registers is re-sorted for areca internal use only
1979 typedef struct _ATA_OUTPUT_REGISTERS
1980 {
1981 unsigned char error;
1982 unsigned char status;
1983 unsigned char sector_count;
1984 unsigned char sector_number;
1985 unsigned char cylinder_low;
1986 unsigned char cylinder_high;
1987 }sATA_OUTPUT_REGISTERS;
1988
1989 // Areca packet format for outgoing:
1990 // B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
1991 // B[3~4] : 2 bytes command length + variant data length, little endian
1992 // B[5] : 1 bytes areca defined command code, ATA passthrough command code is 0x1c
1993 // B[6~last-1] : variant bytes payload data
1994 // B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
1995 //
1996 //
1997 // header 3 bytes length 2 bytes cmd 1 byte payload data x bytes cs 1 byte
1998 // +--------------------------------------------------------------------------------+
1999 // + 0x5E 0x01 0x61 | 0x00 0x00 | 0x1c | .................... | 0x00 |
2000 // +--------------------------------------------------------------------------------+
2001 //
2002
2003 //Areca packet format for incoming:
2004 // B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
2005 // B[3~4] : 2 bytes payload length, little endian
2006 // B[5~last-1] : variant bytes returned payload data
2007 // B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
2008 //
2009 //
2010 // header 3 bytes length 2 bytes payload data x bytes cs 1 byte
2011 // +-------------------------------------------------------------------+
2012 // + 0x5E 0x01 0x61 | 0x00 0x00 | .................... | 0x00 |
2013 // +-------------------------------------------------------------------+
2014 unsigned char areca_packet[640];
2015 int areca_packet_len = sizeof(areca_packet);
2016 unsigned char cs = 0;
2017
2018 sATA_INPUT_REGISTERS *ata_cmd;
2019
2020 // For debugging
2021 #if 0
2022 memset(sInq, 0, sizeof(sInq));
2023 scsiStdInquiry(fd, (unsigned char *)sInq, (int)sizeof(sInq));
2024 dumpdata((unsigned char *)sInq, sizeof(sInq));
2025 #endif
2026 memset(areca_packet, 0, areca_packet_len);
2027
2028 // ----- BEGIN TO SETUP HEADERS -------
2029 areca_packet[0] = 0x5E;
2030 areca_packet[1] = 0x01;
2031 areca_packet[2] = 0x61;
2032 areca_packet[3] = (unsigned char)((areca_packet_len - 6) & 0xff);
2033 areca_packet[4] = (unsigned char)(((areca_packet_len - 6) >> 8) & 0xff);
2034 areca_packet[5] = 0x1c; // areca defined code for ATA passthrough command
2035
2036
2037 // ----- BEGIN TO SETUP PAYLOAD DATA -----
2038
2039 memcpy(&areca_packet[7], "SmrT", 4); // areca defined password
2040
2041 ata_cmd = (sATA_INPUT_REGISTERS *)&areca_packet[12];
2042 ata_cmd->cylinder_low = 0x4F;
2043 ata_cmd->cylinder_high = 0xC2;
2044
2045
2046 if ( command == READ_VALUES ||
2047 command == READ_THRESHOLDS ||
2048 command == READ_LOG ||
2049 command == IDENTIFY ||
2050 command == PIDENTIFY )
2051 {
2052 // the commands will return data
2053 areca_packet[6] = 0x13;
2054 ata_cmd->sector_count = 0x1;
2055 }
2056 else if ( command == WRITE_LOG )
2057 {
2058 // the commands will write data
2059 areca_packet[6] = 0x14;
2060 }
2061 else
2062 {
2063 // the commands will return no data
2064 areca_packet[6] = 0x15;
2065 }
2066
2067
2068 ata_cmd->command = ATA_SMART_CMD;
2069 // Now set ATA registers depending upon command
2070 switch ( command )
2071 {
2072 case CHECK_POWER_MODE:
2073 //printf("command = CHECK_POWER_MODE\n");
2074 ata_cmd->command = ATA_CHECK_POWER_MODE;
2075 break;
2076 case READ_VALUES:
2077 //printf("command = READ_VALUES\n");
2078 ata_cmd->features = ATA_SMART_READ_VALUES;
2079 break;
2080 case READ_THRESHOLDS:
2081 //printf("command = READ_THRESHOLDS\n");
2082 ata_cmd->features = ATA_SMART_READ_THRESHOLDS;
2083 break;
2084 case READ_LOG:
2085 //printf("command = READ_LOG\n");
2086 ata_cmd->features = ATA_SMART_READ_LOG_SECTOR;
2087 ata_cmd->sector_number = select;
2088 break;
2089 case WRITE_LOG:
2090 //printf("command = WRITE_LOG\n");
2091 ata_cmd->features = ATA_SMART_WRITE_LOG_SECTOR;
2092 memcpy(ata_cmd->data, data, 512);
2093 ata_cmd->sector_count = 1;
2094 ata_cmd->sector_number = select;
2095 break;
2096 case IDENTIFY:
2097 //printf("command = IDENTIFY\n");
2098 ata_cmd->command = ATA_IDENTIFY_DEVICE;
2099 break;
2100 case PIDENTIFY:
2101 //printf("command = PIDENTIFY\n");
2102 errno=ENODEV;
2103 return -1;
2104 case ENABLE:
2105 //printf("command = ENABLE\n");
2106 ata_cmd->features = ATA_SMART_ENABLE;
2107 break;
2108 case DISABLE:
2109 //printf("command = DISABLE\n");
2110 ata_cmd->features = ATA_SMART_DISABLE;
2111 break;
2112 case AUTO_OFFLINE:
2113 //printf("command = AUTO_OFFLINE\n");
2114 ata_cmd->features = ATA_SMART_AUTO_OFFLINE;
2115 // Enable or disable?
2116 ata_cmd->sector_count = select;
2117 break;
2118 case AUTOSAVE:
2119 //printf("command = AUTOSAVE\n");
2120 ata_cmd->features = ATA_SMART_AUTOSAVE;
2121 // Enable or disable?
2122 ata_cmd->sector_count = select;
2123 break;
2124 case IMMEDIATE_OFFLINE:
2125 //printf("command = IMMEDIATE_OFFLINE\n");
2126 ata_cmd->features = ATA_SMART_IMMEDIATE_OFFLINE;
2127 // What test type to run?
2128 ata_cmd->sector_number = select;
2129 break;
2130 case STATUS_CHECK:
2131 //printf("command = STATUS_CHECK\n");
2132 ata_cmd->features = ATA_SMART_STATUS;
2133 break;
2134 case STATUS:
2135 //printf("command = STATUS\n");
2136 ata_cmd->features = ATA_SMART_STATUS;
2137 break;
2138 default:
2139 //printf("command = UNKNOWN\n");
2140 errno=ENOSYS;
2141 return -1;
2142 };
2143
2144 areca_packet[11] = m_disknum - 1; // drive number
2145
2146 // ----- BEGIN TO SETUP CHECKSUM -----
2147 for ( int loop = 3; loop < areca_packet_len - 1; loop++ )
2148 {
2149 cs += areca_packet[loop];
2150 }
2151 areca_packet[areca_packet_len-1] = cs;
2152
2153 // ----- BEGIN TO SEND TO ARECA DRIVER ------
2154 int expected = 0;
2155 unsigned char return_buff[2048];
2156 memset(return_buff, 0, sizeof(return_buff));
2157
2158 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_RQBUFFER, NULL, 0, NULL);
2159 if (expected==-3) {
2160 find_areca_in_proc(NULL);
2161 return -1;
2162 }
2163
2164 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_WQBUFFER, NULL, 0, NULL);
2165 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_WRITE_WQBUFFER, areca_packet, areca_packet_len, NULL);
2166 if ( expected > 0 )
2167 {
2168 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_READ_RQBUFFER, return_buff, sizeof(return_buff), NULL);
2169 }
2170 if ( expected < 0 )
2171 {
2172 return -1;
2173 }
2174
2175 // ----- VERIFY THE CHECKSUM -----
2176 cs = 0;
2177 for ( int loop = 3; loop < expected - 1; loop++ )
2178 {
2179 cs += return_buff[loop];
2180 }
2181
2182 if ( return_buff[expected - 1] != cs )
2183 {
2184 errno = EIO;
2185 return -1;
2186 }
2187
2188 sATA_OUTPUT_REGISTERS *ata_out = (sATA_OUTPUT_REGISTERS *)&return_buff[5] ;
2189 if ( ata_out->status )
2190 {
2191 if ( command == IDENTIFY )
2192 {
2193 pout("The firmware of your Areca RAID controller appears to be outdated!\n" \
2194 "Please update your controller to firmware version 1.46 or later.\n" \
2195 "You may download it here: ftp://ftp.areca.com.tw/RaidCards/BIOS_Firmware\n\n");
2196 }
2197 errno = EIO;
2198 return -1;
2199 }
2200
2201 // returns with data
2202 if ( command == READ_VALUES ||
2203 command == READ_THRESHOLDS ||
2204 command == READ_LOG ||
2205 command == IDENTIFY ||
2206 command == PIDENTIFY )
2207 {
2208 memcpy(data, &return_buff[7], 512);
2209 }
2210
2211 if ( command == CHECK_POWER_MODE )
2212 {
2213 data[0] = ata_out->sector_count;
2214 }
2215
2216 if ( command == STATUS_CHECK &&
2217 ( ata_out->cylinder_low == 0xF4 && ata_out->cylinder_high == 0x2C ) )
2218 {
2219 return 1;
2220 }
2221
2222 return 0;
2223 }
2224
2225
2226 /////////////////////////////////////////////////////////////////////////////
2227 /// Marvell support
2228
2229 class linux_marvell_device
2230 : public /*implements*/ ata_device_with_command_set,
2231 public /*extends*/ linux_smart_device
2232 {
2233 public:
2234 linux_marvell_device(smart_interface * intf, const char * dev_name, const char * req_type);
2235
2236 protected:
2237 virtual int ata_command_interface(smart_command_set command, int select, char * data);
2238 };
2239
2240 linux_marvell_device::linux_marvell_device(smart_interface * intf,
2241 const char * dev_name, const char * req_type)
2242 : smart_device(intf, dev_name, "marvell", req_type),
2243 linux_smart_device(O_RDONLY | O_NONBLOCK)
2244 {
2245 }
2246
2247 int linux_marvell_device::ata_command_interface(smart_command_set command, int select, char * data)
2248 {
2249 typedef struct {
2250 int inlen;
2251 int outlen;
2252 char cmd[540];
2253 } mvsata_scsi_cmd;
2254
2255 int copydata = 0;
2256 mvsata_scsi_cmd smart_command;
2257 unsigned char *buff = (unsigned char *)&smart_command.cmd[6];
2258 // See struct hd_drive_cmd_hdr in hdreg.h
2259 // buff[0]: ATA COMMAND CODE REGISTER
2260 // buff[1]: ATA SECTOR NUMBER REGISTER
2261 // buff[2]: ATA FEATURES REGISTER
2262 // buff[3]: ATA SECTOR COUNT REGISTER
2263
2264 // clear out buff. Large enough for HDIO_DRIVE_CMD (4+512 bytes)
2265 memset(&smart_command, 0, sizeof(smart_command));
2266 smart_command.inlen = 540;
2267 smart_command.outlen = 540;
2268 smart_command.cmd[0] = 0xC; //Vendor-specific code
2269 smart_command.cmd[4] = 6; //command length
2270
2271 buff[0] = ATA_SMART_CMD;
2272 switch (command){
2273 case CHECK_POWER_MODE:
2274 buff[0]=ATA_CHECK_POWER_MODE;
2275 break;
2276 case READ_VALUES:
2277 buff[2]=ATA_SMART_READ_VALUES;
2278 copydata=buff[3]=1;
2279 break;
2280 case READ_THRESHOLDS:
2281 buff[2]=ATA_SMART_READ_THRESHOLDS;
2282 copydata=buff[1]=buff[3]=1;
2283 break;
2284 case READ_LOG:
2285 buff[2]=ATA_SMART_READ_LOG_SECTOR;
2286 buff[1]=select;
2287 copydata=buff[3]=1;
2288 break;
2289 case IDENTIFY:
2290 buff[0]=ATA_IDENTIFY_DEVICE;
2291 copydata=buff[3]=1;
2292 break;
2293 case PIDENTIFY:
2294 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
2295 copydata=buff[3]=1;
2296 break;
2297 case ENABLE:
2298 buff[2]=ATA_SMART_ENABLE;
2299 buff[1]=1;
2300 break;
2301 case DISABLE:
2302 buff[2]=ATA_SMART_DISABLE;
2303 buff[1]=1;
2304 break;
2305 case STATUS:
2306 case STATUS_CHECK:
2307 // this command only says if SMART is working. It could be
2308 // replaced with STATUS_CHECK below.
2309 buff[2] = ATA_SMART_STATUS;
2310 break;
2311 case AUTO_OFFLINE:
2312 buff[2]=ATA_SMART_AUTO_OFFLINE;
2313 buff[3]=select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
2314 break;
2315 case AUTOSAVE:
2316 buff[2]=ATA_SMART_AUTOSAVE;
2317 buff[3]=select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
2318 break;
2319 case IMMEDIATE_OFFLINE:
2320 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
2321 buff[1]=select;
2322 break;
2323 default:
2324 pout("Unrecognized command %d in mvsata_os_specific_handler()\n", command);
2325 EXIT(1);
2326 break;
2327 }
2328 // There are two different types of ioctls(). The HDIO_DRIVE_TASK
2329 // one is this:
2330 // We are now doing the HDIO_DRIVE_CMD type ioctl.
2331 if (ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, (void *)&smart_command))
2332 return -1;
2333
2334 if (command==CHECK_POWER_MODE) {
2335 // LEON -- CHECK THIS PLEASE. THIS SHOULD BE THE SECTOR COUNT
2336 // REGISTER, AND IT MIGHT BE buff[2] NOT buff[3]. Bruce
2337 data[0]=buff[3];
2338 return 0;
2339 }
2340
2341 // Always succeed on a SMART status, as a disk that failed returned
2342 // buff[4]=0xF4, buff[5]=0x2C, i.e. "Bad SMART status" (see below).
2343 if (command == STATUS)
2344 return 0;
2345 //Data returned is starting from 0 offset
2346 if (command == STATUS_CHECK)
2347 {
2348 // Cyl low and Cyl high unchanged means "Good SMART status"
2349 if (buff[4] == 0x4F && buff[5] == 0xC2)
2350 return 0;
2351 // These values mean "Bad SMART status"
2352 if (buff[4] == 0xF4 && buff[5] == 0x2C)
2353 return 1;
2354 // We haven't gotten output that makes sense; print out some debugging info
2355 syserror("Error SMART Status command failed");
2356 pout("Please get assistance from %s\n",PACKAGE_BUGREPORT);
2357 pout("Register values returned from SMART Status command are:\n");
2358 pout("CMD =0x%02x\n",(int)buff[0]);
2359 pout("FR =0x%02x\n",(int)buff[1]);
2360 pout("NS =0x%02x\n",(int)buff[2]);
2361 pout("SC =0x%02x\n",(int)buff[3]);
2362 pout("CL =0x%02x\n",(int)buff[4]);
2363 pout("CH =0x%02x\n",(int)buff[5]);
2364 pout("SEL=0x%02x\n",(int)buff[6]);
2365 return -1;
2366 }
2367
2368 if (copydata)
2369 memcpy(data, buff, 512);
2370 return 0;
2371 }
2372
2373
2374 /////////////////////////////////////////////////////////////////////////////
2375 /// Highpoint RAID support
2376
2377 class linux_highpoint_device
2378 : public /*implements*/ ata_device_with_command_set,
2379 public /*extends*/ linux_smart_device
2380 {
2381 public:
2382 linux_highpoint_device(smart_interface * intf, const char * dev_name,
2383 unsigned char controller, unsigned char channel, unsigned char port);
2384
2385 protected:
2386 virtual int ata_command_interface(smart_command_set command, int select, char * data);
2387
2388 private:
2389 unsigned char m_hpt_data[3]; ///< controller/channel/port
2390 };
2391
2392 linux_highpoint_device::linux_highpoint_device(smart_interface * intf, const char * dev_name,
2393 unsigned char controller, unsigned char channel, unsigned char port)
2394 : smart_device(intf, dev_name, "hpt", "hpt"),
2395 linux_smart_device(O_RDONLY | O_NONBLOCK)
2396 {
2397 m_hpt_data[0] = controller; m_hpt_data[1] = channel; m_hpt_data[2] = port;
2398 set_info().info_name = strprintf("%s [hpt_disk_%u/%u/%u]", dev_name, m_hpt_data[0], m_hpt_data[1], m_hpt_data[2]);
2399 }
2400
2401 // this implementation is derived from ata_command_interface with a header
2402 // packing for highpoint linux driver ioctl interface
2403 //
2404 // ioctl(fd,HPTIO_CTL,buff)
2405 // ^^^^^^^^^
2406 //
2407 // structure of hpt_buff
2408 // +----+----+----+----+--------------------.....---------------------+
2409 // | 1 | 2 | 3 | 4 | 5 |
2410 // +----+----+----+----+--------------------.....---------------------+
2411 //
2412 // 1: The target controller [ int ( 4 Bytes ) ]
2413 // 2: The channel of the target controllee [ int ( 4 Bytes ) ]
2414 // 3: HDIO_ ioctl call [ int ( 4 Bytes ) ]
2415 // available from ${LINUX_KERNEL_SOURCE}/Documentation/ioctl/hdio
2416 // 4: the pmport that disk attached, [ int ( 4 Bytes ) ]
2417 // if no pmport device, set to 1 or leave blank
2418 // 5: data [ void * ( var leangth ) ]
2419 //
2420 #define STRANGE_BUFFER_LENGTH (4+512*0xf8)
2421
2422 int linux_highpoint_device::ata_command_interface(smart_command_set command, int select, char * data)
2423 {
2424 unsigned char hpt_buff[4*sizeof(int) + STRANGE_BUFFER_LENGTH];
2425 unsigned int *hpt = (unsigned int *)hpt_buff;
2426 unsigned char *buff = &hpt_buff[4*sizeof(int)];
2427 int copydata = 0;
2428 const int HDIO_DRIVE_CMD_OFFSET = 4;
2429
2430 memset(hpt_buff, 0, 4*sizeof(int) + STRANGE_BUFFER_LENGTH);
2431 hpt[0] = m_hpt_data[0]; // controller id
2432 hpt[1] = m_hpt_data[1]; // channel number
2433 hpt[3] = m_hpt_data[2]; // pmport number
2434
2435 buff[0]=ATA_SMART_CMD;
2436 switch (command){
2437 case CHECK_POWER_MODE:
2438 buff[0]=ATA_CHECK_POWER_MODE;
2439 copydata=1;
2440 break;
2441 case READ_VALUES:
2442 buff[2]=ATA_SMART_READ_VALUES;
2443 buff[3]=1;
2444 copydata=512;
2445 break;
2446 case READ_THRESHOLDS:
2447 buff[2]=ATA_SMART_READ_THRESHOLDS;
2448 buff[1]=buff[3]=1;
2449 copydata=512;
2450 break;
2451 case READ_LOG:
2452 buff[2]=ATA_SMART_READ_LOG_SECTOR;
2453 buff[1]=select;
2454 buff[3]=1;
2455 copydata=512;
2456 break;
2457 case WRITE_LOG:
2458 break;
2459 case IDENTIFY:
2460 buff[0]=ATA_IDENTIFY_DEVICE;
2461 buff[3]=1;
2462 copydata=512;
2463 break;
2464 case PIDENTIFY:
2465 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
2466 buff[3]=1;
2467 copydata=512;
2468 break;
2469 case ENABLE:
2470 buff[2]=ATA_SMART_ENABLE;
2471 buff[1]=1;
2472 break;
2473 case DISABLE:
2474 buff[2]=ATA_SMART_DISABLE;
2475 buff[1]=1;
2476 break;
2477 case STATUS:
2478 buff[2]=ATA_SMART_STATUS;
2479 break;
2480 case AUTO_OFFLINE:
2481 buff[2]=ATA_SMART_AUTO_OFFLINE;
2482 buff[3]=select;
2483 break;
2484 case AUTOSAVE:
2485 buff[2]=ATA_SMART_AUTOSAVE;
2486 buff[3]=select;
2487 break;
2488 case IMMEDIATE_OFFLINE:
2489 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
2490 buff[1]=select;
2491 break;
2492 case STATUS_CHECK:
2493 buff[1]=ATA_SMART_STATUS;
2494 break;
2495 default:
2496 pout("Unrecognized command %d in linux_highpoint_command_interface()\n"
2497 "Please contact " PACKAGE_BUGREPORT "\n", command);
2498 errno=ENOSYS;
2499 return -1;
2500 }
2501
2502 if (command==WRITE_LOG) {
2503 unsigned char task[4*sizeof(int)+sizeof(ide_task_request_t)+512];
2504 unsigned int *hpt = (unsigned int *)task;
2505 ide_task_request_t *reqtask = (ide_task_request_t *)(&task[4*sizeof(int)]);
2506 task_struct_t *taskfile = (task_struct_t *)reqtask->io_ports;
2507 int retval;
2508
2509 memset(task, 0, sizeof(task));
2510
2511 hpt[0] = m_hpt_data[0]; // controller id
2512 hpt[1] = m_hpt_data[1]; // channel number
2513 hpt[3] = m_hpt_data[2]; // pmport number
2514 hpt[2] = HDIO_DRIVE_TASKFILE; // real hd ioctl
2515
2516 taskfile->data = 0;
2517 taskfile->feature = ATA_SMART_WRITE_LOG_SECTOR;
2518 taskfile->sector_count = 1;
2519 taskfile->sector_number = select;
2520 taskfile->low_cylinder = 0x4f;
2521 taskfile->high_cylinder = 0xc2;
2522 taskfile->device_head = 0;
2523 taskfile->command = ATA_SMART_CMD;
2524
2525 reqtask->data_phase = TASKFILE_OUT;
2526 reqtask->req_cmd = IDE_DRIVE_TASK_OUT;
2527 reqtask->out_size = 512;
2528 reqtask->in_size = 0;
2529
2530 memcpy(task+sizeof(ide_task_request_t)+4*sizeof(int), data, 512);
2531
2532 if ((retval=ioctl(get_fd(), HPTIO_CTL, task))) {
2533 if (retval==-EINVAL)
2534 pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
2535 return -1;
2536 }
2537 return 0;
2538 }
2539
2540 if (command==STATUS_CHECK){
2541 int retval;
2542 unsigned const char normal_lo=0x4f, normal_hi=0xc2;
2543 unsigned const char failed_lo=0xf4, failed_hi=0x2c;
2544 buff[4]=normal_lo;
2545 buff[5]=normal_hi;
2546
2547 hpt[2] = HDIO_DRIVE_TASK;
2548
2549 if ((retval=ioctl(get_fd(), HPTIO_CTL, hpt_buff))) {
2550 if (retval==-EINVAL) {
2551 pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
2552 pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
2553 }
2554 else
2555 syserror("Error SMART Status command failed");
2556 return -1;
2557 }
2558
2559 if (buff[4]==normal_lo && buff[5]==normal_hi)
2560 return 0;
2561
2562 if (buff[4]==failed_lo && buff[5]==failed_hi)
2563 return 1;
2564
2565 syserror("Error SMART Status command failed");
2566 pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
2567 pout("Register values returned from SMART Status command are:\n");
2568 pout("CMD=0x%02x\n",(int)buff[0]);
2569 pout("FR =0x%02x\n",(int)buff[1]);
2570 pout("NS =0x%02x\n",(int)buff[2]);
2571 pout("SC =0x%02x\n",(int)buff[3]);
2572 pout("CL =0x%02x\n",(int)buff[4]);
2573 pout("CH =0x%02x\n",(int)buff[5]);
2574 pout("SEL=0x%02x\n",(int)buff[6]);
2575 return -1;
2576 }
2577
2578 #if 1
2579 if (command==IDENTIFY || command==PIDENTIFY) {
2580 unsigned char deviceid[4*sizeof(int)+512*sizeof(char)];
2581 unsigned int *hpt = (unsigned int *)deviceid;
2582
2583 hpt[0] = m_hpt_data[0]; // controller id
2584 hpt[1] = m_hpt_data[1]; // channel number
2585 hpt[3] = m_hpt_data[2]; // pmport number
2586
2587 hpt[2] = HDIO_GET_IDENTITY;
2588 if (!ioctl(get_fd(), HPTIO_CTL, deviceid) && (deviceid[4*sizeof(int)] & 0x8000))
2589 buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
2590 }
2591 #endif
2592
2593 hpt[2] = HDIO_DRIVE_CMD;
2594 if ((ioctl(get_fd(), HPTIO_CTL, hpt_buff)))
2595 return -1;
2596
2597 if (command==CHECK_POWER_MODE)
2598 buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
2599
2600 if (copydata)
2601 memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
2602
2603 return 0;
2604 }
2605
2606
2607 #if 0 // TODO: Migrate from 'smart_command_set' to 'ata_in_regs' OR remove the function
2608 // Utility function for printing warnings
2609 void printwarning(smart_command_set command){
2610 static int printed[4]={0,0,0,0};
2611 const char* message=
2612 "can not be passed through the 3ware 3w-xxxx driver. This can be fixed by\n"
2613 "applying a simple 3w-xxxx driver patch that can be found here:\n"
2614 PACKAGE_HOMEPAGE "\n"
2615 "Alternatively, upgrade your 3w-xxxx driver to version 1.02.00.037 or greater.\n\n";
2616
2617 if (command==AUTO_OFFLINE && !printed[0]) {
2618 printed[0]=1;
2619 pout("The SMART AUTO-OFFLINE ENABLE command (smartmontools -o on option/Directive)\n%s", message);
2620 }
2621 else if (command==AUTOSAVE && !printed[1]) {
2622 printed[1]=1;
2623 pout("The SMART AUTOSAVE ENABLE command (smartmontools -S on option/Directive)\n%s", message);
2624 }
2625 else if (command==STATUS_CHECK && !printed[2]) {
2626 printed[2]=1;
2627 pout("The SMART RETURN STATUS return value (smartmontools -H option/Directive)\n%s", message);
2628 }
2629 else if (command==WRITE_LOG && !printed[3]) {
2630 printed[3]=1;
2631 pout("The SMART WRITE LOG command (smartmontools -t selective) only supported via char /dev/tw[ae] interface\n");
2632 }
2633
2634 return;
2635 }
2636 #endif
2637
2638
2639 /////////////////////////////////////////////////////////////////////////////
2640 /// SCSI open with autodetection support
2641
2642 smart_device * linux_scsi_device::autodetect_open()
2643 {
2644 // Open device
2645 if (!open())
2646 return this;
2647
2648 // No Autodetection if device type was specified by user
2649 if (*get_req_type())
2650 return this;
2651
2652 // The code below is based on smartd.cpp:SCSIFilterKnown()
2653
2654 // Get INQUIRY
2655 unsigned char req_buff[64] = {0, };
2656 int req_len = 36;
2657 if (scsiStdInquiry(this, req_buff, req_len)) {
2658 // Marvell controllers fail on a 36 bytes StdInquiry, but 64 suffices
2659 // watch this spot ... other devices could lock up here
2660 req_len = 64;
2661 if (scsiStdInquiry(this, req_buff, req_len)) {
2662 // device doesn't like INQUIRY commands
2663 close();
2664 set_err(EIO, "INQUIRY failed");
2665 return this;
2666 }
2667 }
2668
2669 int avail_len = req_buff[4] + 5;
2670 int len = (avail_len < req_len ? avail_len : req_len);
2671 if (len < 36)
2672 return this;
2673
2674 // Use INQUIRY to detect type
2675
2676 // 3ware ?
2677 if (!memcmp(req_buff + 8, "3ware", 5) || !memcmp(req_buff + 8, "AMCC", 4)) {
2678 close();
2679 set_err(EINVAL, "AMCC/3ware controller, please try adding '-d 3ware,N',\n"
2680 "you may need to replace %s with /dev/twaN or /dev/tweN", get_dev_name());
2681 return this;
2682 }
2683
2684 // DELL?
2685 if (!memcmp(req_buff + 8, "DELL PERC", 12) || !memcmp(req_buff + 8, "MegaRAID", 8)) {
2686 close();
2687 set_err(EINVAL, "DELL or MegaRaid controller, please try adding '-d megaraid,N'");
2688 return this;
2689 }
2690
2691 // Marvell ?
2692 if (len >= 42 && !memcmp(req_buff + 36, "MVSATA", 6)) {
2693 //pout("Device %s: using '-d marvell' for ATA disk with Marvell driver\n", get_dev_name());
2694 close();
2695 smart_device_auto_ptr newdev(
2696 new linux_marvell_device(smi(), get_dev_name(), get_req_type())
2697 );
2698 newdev->open(); // TODO: Can possibly pass open fd
2699 delete this;
2700 return newdev.release();
2701 }
2702
2703 // SAT or USB ?
2704 {
2705 smart_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
2706 if (newdev)
2707 // NOTE: 'this' is now owned by '*newdev'
2708 return newdev;
2709 }
2710
2711 // Nothing special found
2712 return this;
2713 }
2714
2715
2716 //////////////////////////////////////////////////////////////////////
2717 // USB bridge ID detection
2718
2719 // Read USB ID from /sys file
2720 static bool read_id(const std::string & path, unsigned short & id)
2721 {
2722 FILE * f = fopen(path.c_str(), "r");
2723 if (!f)
2724 return false;
2725 int n = -1;
2726 bool ok = (fscanf(f, "%hx%n", &id, &n) == 1 && n == 4);
2727 fclose(f);
2728 return ok;
2729 }
2730
2731 // Get USB bridge ID for "sdX"
2732 static bool get_usb_id(const char * name, unsigned short & vendor_id,
2733 unsigned short & product_id, unsigned short & version)
2734 {
2735 // Only "sdX" supported
2736 if (!(!strncmp(name, "sd", 2) && !strchr(name, '/')))
2737 return false;
2738
2739 // Start search at dir referenced by symlink "/sys/block/sdX/device"
2740 // -> "/sys/devices/.../usb*/.../host*/target*/..."
2741 std::string dir = strprintf("/sys/block/%s/device", name);
2742
2743 // Stop search at "/sys/devices"
2744 struct stat st;
2745 if (stat("/sys/devices", &st))
2746 return false;
2747 ino_t stop_ino = st.st_ino;
2748
2749 // Search in parent directories until "idVendor" is found,
2750 // fail if "/sys/devices" reached or too many iterations
2751 int cnt = 0;
2752 do {
2753 dir += "/..";
2754 if (!(++cnt < 10 && !stat(dir.c_str(), &st) && st.st_ino != stop_ino))
2755 return false;
2756 } while (access((dir + "/idVendor").c_str(), 0));
2757
2758 // Read IDs
2759 if (!( read_id(dir + "/idVendor", vendor_id)
2760 && read_id(dir + "/idProduct", product_id)
2761 && read_id(dir + "/bcdDevice", version) ))
2762 return false;
2763
2764 if (con->reportscsiioctl > 1)
2765 pout("USB ID = 0x%04x:0x%04x (0x%03x)\n", vendor_id, product_id, version);
2766 return true;
2767 }
2768
2769
2770 //////////////////////////////////////////////////////////////////////
2771 /// Linux interface
2772
2773 class linux_smart_interface
2774 : public /*implements*/ smart_interface
2775 {
2776 public:
2777 virtual std::string get_app_examples(const char * appname);
2778
2779 virtual bool scan_smart_devices(smart_device_list & devlist, const char * type,
2780 const char * pattern = 0);
2781
2782 protected:
2783 virtual ata_device * get_ata_device(const char * name, const char * type);
2784
2785 virtual scsi_device * get_scsi_device(const char * name, const char * type);
2786
2787 virtual smart_device * autodetect_smart_device(const char * name);
2788
2789 virtual smart_device * get_custom_smart_device(const char * name, const char * type);
2790
2791 virtual std::string get_valid_custom_dev_types_str();
2792
2793 private:
2794 bool get_dev_list(smart_device_list & devlist, const char * pattern,
2795 bool scan_ata, bool scan_scsi, const char * req_type, bool autodetect);
2796
2797 smart_device * missing_option(const char * opt);
2798 };
2799
2800 std::string linux_smart_interface::get_app_examples(const char * appname)
2801 {
2802 if (!strcmp(appname, "smartctl"))
2803 return smartctl_examples;
2804 return "";
2805 }
2806
2807
2808 // we are going to take advantage of the fact that Linux's devfs will only
2809 // have device entries for devices that exist. So if we get the equivalent of
2810 // ls /dev/hd[a-t], we have all the ATA devices on the system
2811 bool linux_smart_interface::get_dev_list(smart_device_list & devlist,
2812 const char * pattern, bool scan_ata, bool scan_scsi,
2813 const char * req_type, bool autodetect)
2814 {
2815 // Use glob to look for any directory entries matching the pattern
2816 glob_t globbuf;
2817 memset(&globbuf, 0, sizeof(globbuf));
2818 int retglob = glob(pattern, GLOB_ERR, NULL, &globbuf);
2819 if (retglob) {
2820 // glob failed: free memory and return
2821 globfree(&globbuf);
2822
2823 if (retglob==GLOB_NOMATCH){
2824 pout("glob(3) found no matches for pattern %s\n", pattern);
2825 return true;
2826 }
2827
2828 if (retglob==GLOB_NOSPACE)
2829 set_err(ENOMEM, "glob(3) ran out of memory matching pattern %s", pattern);
2830 #ifdef GLOB_ABORTED // missing in old versions of glob.h
2831 else if (retglob==GLOB_ABORTED)
2832 set_err(EINVAL, "glob(3) aborted matching pattern %s", pattern);
2833 #endif
2834 else
2835 set_err(EINVAL, "Unexplained error in glob(3) of pattern %s", pattern);
2836
2837 return false;
2838 }
2839
2840 // did we find too many paths?
2841 const int max_pathc = 32;
2842 int n = (int)globbuf.gl_pathc;
2843 if (n > max_pathc) {
2844 pout("glob(3) found %d > MAX=%d devices matching pattern %s: ignoring %d paths\n",
2845 n, max_pathc, pattern, n - max_pathc);
2846 n = max_pathc;
2847 }
2848
2849 // now step through the list returned by glob. If not a link, copy
2850 // to list. If it is a link, evaluate it and see if the path ends
2851 // in "disc".
2852 for (int i = 0; i < n; i++){
2853 // see if path is a link
2854 char linkbuf[1024];
2855 int retlink = readlink(globbuf.gl_pathv[i], linkbuf, sizeof(linkbuf)-1);
2856
2857 char tmpname[1024]={0};
2858 const char * name = 0;
2859 bool is_scsi = scan_scsi;
2860 // if not a link (or a strange link), keep it
2861 if (retlink<=0 || retlink>1023)
2862 name = globbuf.gl_pathv[i];
2863 else {
2864 // or if it's a link that points to a disc, follow it
2865 linkbuf[retlink] = 0;
2866 const char *p;
2867 if ((p=strrchr(linkbuf, '/')) && !strcmp(p+1, "disc"))
2868 // This is the branch of the code that gets followed if we are
2869 // using devfs WITH traditional compatibility links. In this
2870 // case, we add the traditional device name to the list that
2871 // is returned.
2872 name = globbuf.gl_pathv[i];
2873 else {
2874 // This is the branch of the code that gets followed if we are
2875 // using devfs WITHOUT traditional compatibility links. In
2876 // this case, we check that the link to the directory is of
2877 // the correct type, and then append "disc" to it.
2878 bool match_ata = strstr(linkbuf, "ide");
2879 bool match_scsi = strstr(linkbuf, "scsi");
2880 if (((match_ata && scan_ata) || (match_scsi && scan_scsi)) && !(match_ata && match_scsi)) {
2881 is_scsi = match_scsi;
2882 snprintf(tmpname, sizeof(tmpname), "%s/disc", globbuf.gl_pathv[i]);
2883 name = tmpname;
2884 }
2885 }
2886 }
2887
2888 if (name) {
2889 // Found a name, add device to list.
2890 smart_device * dev;
2891 if (autodetect)
2892 dev = autodetect_smart_device(name);
2893 else if (is_scsi)
2894 dev = new linux_scsi_device(this, name, req_type);
2895 else
2896 dev = new linux_ata_device(this, name, req_type);
2897 if (dev) // autodetect_smart_device() may return nullptr.
2898 devlist.push_back(dev);
2899 }
2900 }
2901
2902 // free memory
2903 globfree(&globbuf);
2904
2905 return true;
2906 }
2907
2908 bool linux_smart_interface::scan_smart_devices(smart_device_list & devlist,
2909 const char * type, const char * pattern /*= 0*/)
2910 {
2911 if (pattern) {
2912 set_err(EINVAL, "DEVICESCAN with pattern not implemented yet");
2913 return false;
2914 }
2915
2916 if (!type)
2917 type = "";
2918
2919 bool scan_ata = (!*type || !strcmp(type, "ata" ));
2920 bool scan_scsi = (!*type || !strcmp(type, "scsi"));
2921 if (!(scan_ata || scan_scsi))
2922 return true;
2923
2924 if (scan_ata)
2925 get_dev_list(devlist, "/dev/hd[a-t]", true, false, type, false);
2926 if (scan_scsi) // Try USB autodetection if no type specifed
2927 get_dev_list(devlist, "/dev/sd[a-z]", false, true, type, !*type);
2928
2929 // if we found traditional links, we are done
2930 if (devlist.size() > 0)
2931 return true;
2932
2933 // else look for devfs entries without traditional links
2934 // TODO: Add udev support
2935 return get_dev_list(devlist, "/dev/discs/disc*", scan_ata, scan_scsi, type, false);
2936 }
2937
2938 ata_device * linux_smart_interface::get_ata_device(const char * name, const char * type)
2939 {
2940 return new linux_ata_device(this, name, type);
2941 }
2942
2943 scsi_device * linux_smart_interface::get_scsi_device(const char * name, const char * type)
2944 {
2945 return new linux_scsi_device(this, name, type);
2946 }
2947
2948 smart_device * linux_smart_interface::missing_option(const char * opt)
2949 {
2950 set_err(EINVAL, "requires option '%s'", opt);
2951 return 0;
2952 }
2953
2954 // Return true if STR starts with PREFIX.
2955 static bool str_starts_with(const char * str, const char * prefix)
2956 {
2957 return !strncmp(str, prefix, strlen(prefix));
2958 }
2959
2960 // Guess device type (ata or scsi) based on device name (Linux
2961 // specific) SCSI device name in linux can be sd, sr, scd, st, nst,
2962 // osst, nosst and sg.
2963 static const char * lin_dev_prefix = "/dev/";
2964 static const char * lin_dev_ata_disk_plus = "h";
2965 static const char * lin_dev_ata_devfs_disk_plus = "ide/";
2966 static const char * lin_dev_scsi_devfs_disk_plus = "scsi/";
2967 static const char * lin_dev_scsi_disk_plus = "s";
2968 static const char * lin_dev_scsi_tape1 = "ns";
2969 static const char * lin_dev_scsi_tape2 = "os";
2970 static const char * lin_dev_scsi_tape3 = "nos";
2971 static const char * lin_dev_3ware_9000_char = "twa";
2972 static const char * lin_dev_3ware_678k_char = "twe";
2973 static const char * lin_dev_cciss_dir = "cciss/";
2974 static const char * lin_dev_areca = "sg";
2975
2976 smart_device * linux_smart_interface::autodetect_smart_device(const char * name)
2977 {
2978 const char * dev_name = name; // TODO: Remove this hack
2979 int dev_prefix_len = strlen(lin_dev_prefix);
2980
2981 // if dev_name null, or string length zero
2982 int len;
2983 if (!dev_name || !(len = strlen(dev_name)))
2984 return 0;
2985
2986 // Dereference if /dev/disk/by-*/* symlink
2987 char linkbuf[100];
2988 if ( str_starts_with(dev_name, "/dev/disk/by-")
2989 && readlink(dev_name, linkbuf, sizeof(linkbuf)) > 0
2990 && str_starts_with(linkbuf, "../../")) {
2991 dev_name = linkbuf + sizeof("../../")-1;
2992 }
2993 // Remove the leading /dev/... if it's there
2994 else if (!strncmp(lin_dev_prefix, dev_name, dev_prefix_len)) {
2995 if (len <= dev_prefix_len)
2996 // if nothing else in the string, unrecognized
2997 return 0;
2998 // else advance pointer to following characters
2999 dev_name += dev_prefix_len;
3000 }
3001
3002 // form /dev/h* or h*
3003 if (!strncmp(lin_dev_ata_disk_plus, dev_name,
3004 strlen(lin_dev_ata_disk_plus)))
3005 return new linux_ata_device(this, name, "");
3006
3007 // form /dev/ide/* or ide/*
3008 if (!strncmp(lin_dev_ata_devfs_disk_plus, dev_name,
3009 strlen(lin_dev_ata_devfs_disk_plus)))
3010 return new linux_ata_device(this, name, "");
3011
3012 // form /dev/s* or s*
3013 if (!strncmp(lin_dev_scsi_disk_plus, dev_name,
3014 strlen(lin_dev_scsi_disk_plus))) {
3015
3016 // Try to detect possible USB->(S)ATA bridge
3017 unsigned short vendor_id = 0, product_id = 0, version = 0;
3018 if (get_usb_id(dev_name, vendor_id, product_id, version)) {
3019 const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id, version);
3020 if (!usbtype)
3021 return 0;
3022 // Linux USB layer does not support 16 byte SAT pass through command
3023 if (!strcmp(usbtype, "sat"))
3024 usbtype = "sat,12";
3025 // Return SAT/USB device for this type
3026 // (Note: linux_scsi_device::autodetect_open() will not be called in this case)
3027 return get_sat_device(usbtype, new linux_scsi_device(this, name, ""));
3028 }
3029
3030 // No USB bridge found, assume regular SCSI device
3031 return new linux_scsi_device(this, name, "");
3032 }
3033
3034 // form /dev/scsi/* or scsi/*
3035 if (!strncmp(lin_dev_scsi_devfs_disk_plus, dev_name,
3036 strlen(lin_dev_scsi_devfs_disk_plus)))
3037 return new linux_scsi_device(this, name, "");
3038
3039 // form /dev/ns* or ns*
3040 if (!strncmp(lin_dev_scsi_tape1, dev_name,
3041 strlen(lin_dev_scsi_tape1)))
3042 return new linux_scsi_device(this, name, "");
3043
3044 // form /dev/os* or os*
3045 if (!strncmp(lin_dev_scsi_tape2, dev_name,
3046 strlen(lin_dev_scsi_tape2)))
3047 return new linux_scsi_device(this, name, "");
3048
3049 // form /dev/nos* or nos*
3050 if (!strncmp(lin_dev_scsi_tape3, dev_name,
3051 strlen(lin_dev_scsi_tape3)))
3052 return new linux_scsi_device(this, name, "");
3053
3054 // form /dev/twa*
3055 if (!strncmp(lin_dev_3ware_9000_char, dev_name,
3056 strlen(lin_dev_3ware_9000_char)))
3057 return missing_option("-d 3ware,N");
3058
3059 // form /dev/twe*
3060 if (!strncmp(lin_dev_3ware_678k_char, dev_name,
3061 strlen(lin_dev_3ware_678k_char)))
3062 return missing_option("-d 3ware,N");
3063
3064 // form /dev/cciss*
3065 if (!strncmp(lin_dev_cciss_dir, dev_name,
3066 strlen(lin_dev_cciss_dir)))
3067 return missing_option("-d cciss,N");
3068
3069 // form /dev/sg*
3070 if ( !strncmp(lin_dev_areca, dev_name,
3071 strlen(lin_dev_areca)) )
3072 return missing_option("-d areca,N");
3073
3074 // we failed to recognize any of the forms
3075 return 0;
3076 }
3077
3078 smart_device * linux_smart_interface::get_custom_smart_device(const char * name, const char * type)
3079 {
3080 // Marvell ?
3081 if (!strcmp(type, "marvell"))
3082 return new linux_marvell_device(this, name, type);
3083
3084 // 3Ware ?
3085 int disknum = -1, n1 = -1, n2 = -1;
3086 if (sscanf(type, "3ware,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3087 if (n2 != (int)strlen(type)) {
3088 set_err(EINVAL, "Option -d 3ware,N requires N to be a non-negative integer");
3089 return 0;
3090 }
3091 if (!(0 <= disknum && disknum <= 127)) {
3092 set_err(EINVAL, "Option -d 3ware,N (N=%d) must have 0 <= N <= 127", disknum);
3093 return 0;
3094 }
3095
3096 if (!strncmp(name, "/dev/twa", 8))
3097 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_9000_CHAR, disknum);
3098 else if (!strncmp(name, "/dev/twe", 8))
3099 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K_CHAR, disknum);
3100 else
3101 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K, disknum);
3102 }
3103
3104 // Areca?
3105 disknum = n1 = n2 = -1;
3106 if (sscanf(type, "areca,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3107 if (n2 != (int)strlen(type)) {
3108 set_err(EINVAL, "Option -d areca,N requires N to be a non-negative integer");
3109 return 0;
3110 }
3111 if (!(1 <= disknum && disknum <= 24)) {
3112 set_err(EINVAL, "Option -d areca,N (N=%d) must have 1 <= N <= 24", disknum);
3113 return 0;
3114 }
3115 return new linux_areca_device(this, name, disknum);
3116 }
3117
3118 // Highpoint ?
3119 int controller = -1, channel = -1; disknum = 1;
3120 n1 = n2 = -1; int n3 = -1;
3121 if (sscanf(type, "hpt,%n%d/%d%n/%d%n", &n1, &controller, &channel, &n2, &disknum, &n3) >= 2 || n1 == 4) {
3122 int len = strlen(type);
3123 if (!(n2 == len || n3 == len)) {
3124 set_err(EINVAL, "Option '-d hpt,L/M/N' supports 2-3 items");
3125 return 0;
3126 }
3127 if (!(1 <= controller && controller <= 8)) {
3128 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid controller id L supplied");
3129 return 0;
3130 }
3131 if (!(1 <= channel && channel <= 8)) {
3132 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid channel number M supplied");
3133 return 0;
3134 }
3135 if (!(1 <= disknum && disknum <= 15)) {
3136 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid pmport number N supplied");
3137 return 0;
3138 }
3139 return new linux_highpoint_device(this, name, controller, channel, disknum);
3140 }
3141
3142 #ifdef HAVE_LINUX_CCISS_IOCTL_H
3143 // CCISS ?
3144 disknum = n1 = n2 = -1;
3145 if (sscanf(type, "cciss,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3146 if (n2 != (int)strlen(type)) {
3147 set_err(EINVAL, "Option -d cciss,N requires N to be a non-negative integer");
3148 return 0;
3149 }
3150 if (!(0 <= disknum && disknum <= 15)) {
3151 set_err(EINVAL, "Option -d cciss,N (N=%d) must have 0 <= N <= 15", disknum);
3152 return 0;
3153 }
3154 return new linux_cciss_device(this, name, disknum);
3155 }
3156 #endif // HAVE_LINUX_CCISS_IOCTL_H
3157
3158 // MegaRAID ?
3159 if (sscanf(type, "megaraid,%d", &disknum) == 1) {
3160 return new linux_megaraid_device(this, name, 0, disknum);
3161 }
3162 return 0;
3163 }
3164
3165 std::string linux_smart_interface::get_valid_custom_dev_types_str()
3166 {
3167 return "marvell, areca,N, 3ware,N, hpt,L/M/N, megaraid,N"
3168 #ifdef HAVE_LINUX_CCISS_IOCTL_H
3169 ", cciss,N"
3170 #endif
3171 ;
3172 }
3173
3174 } // namespace
3175
3176
3177 /////////////////////////////////////////////////////////////////////////////
3178 /// Initialize platform interface and register with smi()
3179
3180 void smart_interface::init()
3181 {
3182 static os_linux::linux_smart_interface the_interface;
3183 smart_interface::set(&the_interface);
3184 }