]> git.proxmox.com Git - mirror_smartmontools-debian.git/blob - os_linux.cpp
Imported Upstream version 5.42+svn3521
[mirror_smartmontools-debian.git] / os_linux.cpp
1 /*
2 * os_linux.cpp
3 *
4 * Home page of code is: http://smartmontools.sourceforge.net
5 *
6 * Copyright (C) 2003-11 Bruce Allen <smartmontools-support@lists.sourceforge.net>
7 * Copyright (C) 2003-11 Doug Gilbert <dgilbert@interlog.com>
8 * Copyright (C) 2008 Hank Wu <hank@areca.com.tw>
9 * Copyright (C) 2008 Oliver Bock <brevilo@users.sourceforge.net>
10 * Copyright (C) 2008-11 Christian Franke <smartmontools-support@lists.sourceforge.net>
11 * Copyright (C) 2008 Jordan Hargrave <jordan_hargrave@dell.com>
12 *
13 * Parts of this file are derived from code that was
14 *
15 * Written By: Adam Radford <linux@3ware.com>
16 * Modifications By: Joel Jacobson <linux@3ware.com>
17 * Arnaldo Carvalho de Melo <acme@conectiva.com.br>
18 * Brad Strand <linux@3ware.com>
19 *
20 * Copyright (C) 1999-2003 3ware Inc.
21 *
22 * Kernel compatablity By: Andre Hedrick <andre@suse.com>
23 * Non-Copyright (C) 2000 Andre Hedrick <andre@suse.com>
24 *
25 * Other ars of this file are derived from code that was
26 *
27 * Copyright (C) 1999-2000 Michael Cornwell <cornwell@acm.org>
28 * Copyright (C) 2000 Andre Hedrick <andre@linux-ide.org>
29 *
30 * This program is free software; you can redistribute it and/or modify
31 * it under the terms of the GNU General Public License as published by
32 * the Free Software Foundation; either version 2, or (at your option)
33 * any later version.
34 *
35 * You should have received a copy of the GNU General Public License
36 * (for example COPYING); If not, see <http://www.gnu.org/licenses/>.
37 *
38 * This code was originally developed as a Senior Thesis by Michael Cornwell
39 * at the Concurrent Systems Laboratory (now part of the Storage Systems
40 * Research Center), Jack Baskin School of Engineering, University of
41 * California, Santa Cruz. http://ssrc.soe.ucsc.edu/
42 *
43 */
44
45 // This file contains the linux-specific IOCTL parts of
46 // smartmontools. It includes one interface routine for ATA devices,
47 // one for SCSI devices, and one for ATA devices behind escalade
48 // controllers.
49
50 #include "config.h"
51
52 #include <errno.h>
53 #include <fcntl.h>
54 #include <glob.h>
55
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_ioctl.h>
58 #include <scsi/sg.h>
59 #include <stdlib.h>
60 #include <string.h>
61 #include <sys/ioctl.h>
62 #include <sys/stat.h>
63 #include <sys/utsname.h>
64 #include <unistd.h>
65 #include <stddef.h> // for offsetof()
66 #include <sys/uio.h>
67 #include <sys/types.h>
68 #ifndef makedev // old versions of types.h do not include sysmacros.h
69 #include <sys/sysmacros.h>
70 #endif
71 #ifdef WITH_SELINUX
72 #include <selinux/selinux.h>
73 #endif
74
75 #include "int64.h"
76 #include "atacmds.h"
77 #include "os_linux.h"
78 #include "scsicmds.h"
79 #include "utility.h"
80 #include "cciss.h"
81 #include "megaraid.h"
82
83 #include "dev_interface.h"
84 #include "dev_ata_cmd_set.h"
85
86 #ifndef ENOTSUP
87 #define ENOTSUP ENOSYS
88 #endif
89
90 #define ARGUSED(x) ((void)(x))
91
92 const char * os_linux_cpp_cvsid = "$Id: os_linux.cpp 3441 2011-10-12 17:22:15Z chrfranke $"
93 OS_LINUX_H_CVSID;
94
95
96 namespace os_linux { // No need to publish anything, name provided for Doxygen
97
98 /////////////////////////////////////////////////////////////////////////////
99 /// Shared open/close routines
100
101 class linux_smart_device
102 : virtual public /*implements*/ smart_device
103 {
104 public:
105 explicit linux_smart_device(int flags, int retry_flags = -1)
106 : smart_device(never_called),
107 m_fd(-1),
108 m_flags(flags), m_retry_flags(retry_flags)
109 { }
110
111 virtual ~linux_smart_device() throw();
112
113 virtual bool is_open() const;
114
115 virtual bool open();
116
117 virtual bool close();
118
119 protected:
120 /// Return filedesc for derived classes.
121 int get_fd() const
122 { return m_fd; }
123
124 private:
125 int m_fd; ///< filedesc, -1 if not open.
126 int m_flags; ///< Flags for ::open()
127 int m_retry_flags; ///< Flags to retry ::open(), -1 if no retry
128 };
129
130
131 linux_smart_device::~linux_smart_device() throw()
132 {
133 if (m_fd >= 0)
134 ::close(m_fd);
135 }
136
137 bool linux_smart_device::is_open() const
138 {
139 return (m_fd >= 0);
140 }
141
142 bool linux_smart_device::open()
143 {
144 m_fd = ::open(get_dev_name(), m_flags);
145
146 if (m_fd < 0 && errno == EROFS && m_retry_flags != -1)
147 // Retry
148 m_fd = ::open(get_dev_name(), m_retry_flags);
149
150 if (m_fd < 0) {
151 if (errno == EBUSY && (m_flags & O_EXCL))
152 // device is locked
153 return set_err(EBUSY,
154 "The requested controller is used exclusively by another process!\n"
155 "(e.g. smartctl or smartd)\n"
156 "Please quit the impeding process or try again later...");
157 return set_err((errno==ENOENT || errno==ENOTDIR) ? ENODEV : errno);
158 }
159
160 if (m_fd >= 0) {
161 // sets FD_CLOEXEC on the opened device file descriptor. The
162 // descriptor is otherwise leaked to other applications (mail
163 // sender) which may be considered a security risk and may result
164 // in AVC messages on SELinux-enabled systems.
165 if (-1 == fcntl(m_fd, F_SETFD, FD_CLOEXEC))
166 // TODO: Provide an error printing routine in class smart_interface
167 pout("fcntl(set FD_CLOEXEC) failed, errno=%d [%s]\n", errno, strerror(errno));
168 }
169
170 return true;
171 }
172
173 // equivalent to close(file descriptor)
174 bool linux_smart_device::close()
175 {
176 int fd = m_fd; m_fd = -1;
177 if (::close(fd) < 0)
178 return set_err(errno);
179 return true;
180 }
181
182 // examples for smartctl
183 static const char smartctl_examples[] =
184 "=================================================== SMARTCTL EXAMPLES =====\n\n"
185 " smartctl --all /dev/hda (Prints all SMART information)\n\n"
186 " smartctl --smart=on --offlineauto=on --saveauto=on /dev/hda\n"
187 " (Enables SMART on first disk)\n\n"
188 " smartctl --test=long /dev/hda (Executes extended disk self-test)\n\n"
189 " smartctl --attributes --log=selftest --quietmode=errorsonly /dev/hda\n"
190 " (Prints Self-Test & Attribute errors)\n"
191 " smartctl --all --device=3ware,2 /dev/sda\n"
192 " smartctl --all --device=3ware,2 /dev/twe0\n"
193 " smartctl --all --device=3ware,2 /dev/twa0\n"
194 " smartctl --all --device=3ware,2 /dev/twl0\n"
195 " (Prints all SMART info for 3rd ATA disk on 3ware RAID controller)\n"
196 " smartctl --all --device=hpt,1/1/3 /dev/sda\n"
197 " (Prints all SMART info for the SATA disk attached to the 3rd PMPort\n"
198 " of the 1st channel on the 1st HighPoint RAID controller)\n"
199 " smartctl --all --device=areca,3 /dev/sg2\n"
200 " (Prints all SMART info for 3rd ATA disk on Areca RAID controller)\n"
201 ;
202
203
204 /////////////////////////////////////////////////////////////////////////////
205 /// Linux ATA support
206
207 class linux_ata_device
208 : public /*implements*/ ata_device_with_command_set,
209 public /*extends*/ linux_smart_device
210 {
211 public:
212 linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type);
213
214 protected:
215 virtual int ata_command_interface(smart_command_set command, int select, char * data);
216 };
217
218 linux_ata_device::linux_ata_device(smart_interface * intf, const char * dev_name, const char * req_type)
219 : smart_device(intf, dev_name, "ata", req_type),
220 linux_smart_device(O_RDONLY | O_NONBLOCK)
221 {
222 }
223
224 // PURPOSE
225 // This is an interface routine meant to isolate the OS dependent
226 // parts of the code, and to provide a debugging interface. Each
227 // different port and OS needs to provide it's own interface. This
228 // is the linux one.
229 // DETAILED DESCRIPTION OF ARGUMENTS
230 // device: is the file descriptor provided by open()
231 // command: defines the different operations.
232 // select: additional input data if needed (which log, which type of
233 // self-test).
234 // data: location to write output data, if needed (512 bytes).
235 // Note: not all commands use all arguments.
236 // RETURN VALUES
237 // -1 if the command failed
238 // 0 if the command succeeded,
239 // STATUS_CHECK routine:
240 // -1 if the command failed
241 // 0 if the command succeeded and disk SMART status is "OK"
242 // 1 if the command succeeded and disk SMART status is "FAILING"
243
244
245 #define BUFFER_LENGTH (4+512)
246
247 int linux_ata_device::ata_command_interface(smart_command_set command, int select, char * data)
248 {
249 unsigned char buff[BUFFER_LENGTH];
250 // positive: bytes to write to caller. negative: bytes to READ from
251 // caller. zero: non-data command
252 int copydata=0;
253
254 const int HDIO_DRIVE_CMD_OFFSET = 4;
255
256 // See struct hd_drive_cmd_hdr in hdreg.h. Before calling ioctl()
257 // buff[0]: ATA COMMAND CODE REGISTER
258 // buff[1]: ATA SECTOR NUMBER REGISTER == LBA LOW REGISTER
259 // buff[2]: ATA FEATURES REGISTER
260 // buff[3]: ATA SECTOR COUNT REGISTER
261
262 // Note that on return:
263 // buff[2] contains the ATA SECTOR COUNT REGISTER
264
265 // clear out buff. Large enough for HDIO_DRIVE_CMD (4+512 bytes)
266 memset(buff, 0, BUFFER_LENGTH);
267
268 buff[0]=ATA_SMART_CMD;
269 switch (command){
270 case CHECK_POWER_MODE:
271 buff[0]=ATA_CHECK_POWER_MODE;
272 copydata=1;
273 break;
274 case READ_VALUES:
275 buff[2]=ATA_SMART_READ_VALUES;
276 buff[3]=1;
277 copydata=512;
278 break;
279 case READ_THRESHOLDS:
280 buff[2]=ATA_SMART_READ_THRESHOLDS;
281 buff[1]=buff[3]=1;
282 copydata=512;
283 break;
284 case READ_LOG:
285 buff[2]=ATA_SMART_READ_LOG_SECTOR;
286 buff[1]=select;
287 buff[3]=1;
288 copydata=512;
289 break;
290 case WRITE_LOG:
291 break;
292 case IDENTIFY:
293 buff[0]=ATA_IDENTIFY_DEVICE;
294 buff[3]=1;
295 copydata=512;
296 break;
297 case PIDENTIFY:
298 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
299 buff[3]=1;
300 copydata=512;
301 break;
302 case ENABLE:
303 buff[2]=ATA_SMART_ENABLE;
304 buff[1]=1;
305 break;
306 case DISABLE:
307 buff[2]=ATA_SMART_DISABLE;
308 buff[1]=1;
309 break;
310 case STATUS:
311 // this command only says if SMART is working. It could be
312 // replaced with STATUS_CHECK below.
313 buff[2]=ATA_SMART_STATUS;
314 break;
315 case AUTO_OFFLINE:
316 // NOTE: According to ATAPI 4 and UP, this command is obsolete
317 // select == 241 for enable but no data transfer. Use TASK ioctl.
318 buff[1]=ATA_SMART_AUTO_OFFLINE;
319 buff[2]=select;
320 break;
321 case AUTOSAVE:
322 // select == 248 for enable but no data transfer. Use TASK ioctl.
323 buff[1]=ATA_SMART_AUTOSAVE;
324 buff[2]=select;
325 break;
326 case IMMEDIATE_OFFLINE:
327 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
328 buff[1]=select;
329 break;
330 case STATUS_CHECK:
331 // This command uses HDIO_DRIVE_TASK and has different syntax than
332 // the other commands.
333 buff[1]=ATA_SMART_STATUS;
334 break;
335 default:
336 pout("Unrecognized command %d in linux_ata_command_interface()\n"
337 "Please contact " PACKAGE_BUGREPORT "\n", command);
338 errno=ENOSYS;
339 return -1;
340 }
341
342 // This command uses the HDIO_DRIVE_TASKFILE ioctl(). This is the
343 // only ioctl() that can be used to WRITE data to the disk.
344 if (command==WRITE_LOG) {
345 unsigned char task[sizeof(ide_task_request_t)+512];
346 ide_task_request_t *reqtask=(ide_task_request_t *) task;
347 task_struct_t *taskfile=(task_struct_t *) reqtask->io_ports;
348 int retval;
349
350 memset(task, 0, sizeof(task));
351
352 taskfile->data = 0;
353 taskfile->feature = ATA_SMART_WRITE_LOG_SECTOR;
354 taskfile->sector_count = 1;
355 taskfile->sector_number = select;
356 taskfile->low_cylinder = 0x4f;
357 taskfile->high_cylinder = 0xc2;
358 taskfile->device_head = 0;
359 taskfile->command = ATA_SMART_CMD;
360
361 reqtask->data_phase = TASKFILE_OUT;
362 reqtask->req_cmd = IDE_DRIVE_TASK_OUT;
363 reqtask->out_size = 512;
364 reqtask->in_size = 0;
365
366 // copy user data into the task request structure
367 memcpy(task+sizeof(ide_task_request_t), data, 512);
368
369 if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASKFILE, task))) {
370 if (retval==-EINVAL)
371 pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
372 return -1;
373 }
374 return 0;
375 }
376
377 // There are two different types of ioctls(). The HDIO_DRIVE_TASK
378 // one is this:
379 if (command==STATUS_CHECK || command==AUTOSAVE || command==AUTO_OFFLINE){
380 int retval;
381
382 // NOT DOCUMENTED in /usr/src/linux/include/linux/hdreg.h. You
383 // have to read the IDE driver source code. Sigh.
384 // buff[0]: ATA COMMAND CODE REGISTER
385 // buff[1]: ATA FEATURES REGISTER
386 // buff[2]: ATA SECTOR_COUNT
387 // buff[3]: ATA SECTOR NUMBER
388 // buff[4]: ATA CYL LO REGISTER
389 // buff[5]: ATA CYL HI REGISTER
390 // buff[6]: ATA DEVICE HEAD
391
392 unsigned const char normal_lo=0x4f, normal_hi=0xc2;
393 unsigned const char failed_lo=0xf4, failed_hi=0x2c;
394 buff[4]=normal_lo;
395 buff[5]=normal_hi;
396
397 if ((retval=ioctl(get_fd(), HDIO_DRIVE_TASK, buff))) {
398 if (retval==-EINVAL) {
399 pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
400 pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
401 }
402 else
403 syserror("Error SMART Status command failed");
404 return -1;
405 }
406
407 // Cyl low and Cyl high unchanged means "Good SMART status"
408 if (buff[4]==normal_lo && buff[5]==normal_hi)
409 return 0;
410
411 // These values mean "Bad SMART status"
412 if (buff[4]==failed_lo && buff[5]==failed_hi)
413 return 1;
414
415 // We haven't gotten output that makes sense; print out some debugging info
416 syserror("Error SMART Status command failed");
417 pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
418 pout("Register values returned from SMART Status command are:\n");
419 pout("ST =0x%02x\n",(int)buff[0]);
420 pout("ERR=0x%02x\n",(int)buff[1]);
421 pout("NS =0x%02x\n",(int)buff[2]);
422 pout("SC =0x%02x\n",(int)buff[3]);
423 pout("CL =0x%02x\n",(int)buff[4]);
424 pout("CH =0x%02x\n",(int)buff[5]);
425 pout("SEL=0x%02x\n",(int)buff[6]);
426 return -1;
427 }
428
429 #if 1
430 // Note to people doing ports to other OSes -- don't worry about
431 // this block -- you can safely ignore it. I have put it here
432 // because under linux when you do IDENTIFY DEVICE to a packet
433 // device, it generates an ugly kernel syslog error message. This
434 // is harmless but frightens users. So this block detects packet
435 // devices and make IDENTIFY DEVICE fail "nicely" without a syslog
436 // error message.
437 //
438 // If you read only the ATA specs, it appears as if a packet device
439 // *might* respond to the IDENTIFY DEVICE command. This is
440 // misleading - it's because around the time that SFF-8020 was
441 // incorporated into the ATA-3/4 standard, the ATA authors were
442 // sloppy. See SFF-8020 and you will see that ATAPI devices have
443 // *always* had IDENTIFY PACKET DEVICE as a mandatory part of their
444 // command set, and return 'Command Aborted' to IDENTIFY DEVICE.
445 if (command==IDENTIFY || command==PIDENTIFY){
446 unsigned short deviceid[256];
447 // check the device identity, as seen when the system was booted
448 // or the device was FIRST registered. This will not be current
449 // if the user has subsequently changed some of the parameters. If
450 // device is a packet device, swap the command interpretations.
451 if (!ioctl(get_fd(), HDIO_GET_IDENTITY, deviceid) && (deviceid[0] & 0x8000))
452 buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
453 }
454 #endif
455
456 // We are now doing the HDIO_DRIVE_CMD type ioctl.
457 if ((ioctl(get_fd(), HDIO_DRIVE_CMD, buff)))
458 return -1;
459
460 // CHECK POWER MODE command returns information in the Sector Count
461 // register (buff[3]). Copy to return data buffer.
462 if (command==CHECK_POWER_MODE)
463 buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
464
465 // if the command returns data then copy it back
466 if (copydata)
467 memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
468
469 return 0;
470 }
471
472 // >>>>>> Start of general SCSI specific linux code
473
474 /* Linux specific code.
475 * Historically smartmontools (and smartsuite before it) used the
476 * SCSI_IOCTL_SEND_COMMAND ioctl which is available to all linux device
477 * nodes that use the SCSI subsystem. A better interface has been available
478 * via the SCSI generic (sg) driver but this involves the extra step of
479 * mapping disk devices (e.g. /dev/sda) to the corresponding sg device
480 * (e.g. /dev/sg2). In the linux kernel 2.6 series most of the facilities of
481 * the sg driver have become available via the SG_IO ioctl which is available
482 * on all SCSI devices (on SCSI tape devices from lk 2.6.6).
483 * So the strategy below is to find out if the SG_IO ioctl is available and
484 * if so use it; failing that use the older SCSI_IOCTL_SEND_COMMAND ioctl.
485 * Should work in 2.0, 2.2, 2.4 and 2.6 series linux kernels. */
486
487 #define MAX_DXFER_LEN 1024 /* can be increased if necessary */
488 #define SEND_IOCTL_RESP_SENSE_LEN 16 /* ioctl limitation */
489 #define SG_IO_RESP_SENSE_LEN 64 /* large enough see buffer */
490 #define LSCSI_DRIVER_MASK 0xf /* mask out "suggestions" */
491 #define LSCSI_DRIVER_SENSE 0x8 /* alternate CHECK CONDITION indication */
492 #define LSCSI_DID_ERROR 0x7 /* Need to work around aacraid driver quirk */
493 #define LSCSI_DRIVER_TIMEOUT 0x6
494 #define LSCSI_DID_TIME_OUT 0x3
495 #define LSCSI_DID_BUS_BUSY 0x2
496 #define LSCSI_DID_NO_CONNECT 0x1
497
498 #ifndef SCSI_IOCTL_SEND_COMMAND
499 #define SCSI_IOCTL_SEND_COMMAND 1
500 #endif
501
502 #define SG_IO_PRESENT_UNKNOWN 0
503 #define SG_IO_PRESENT_YES 1
504 #define SG_IO_PRESENT_NO 2
505
506 static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
507 int unknown);
508 static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report);
509
510 static int sg_io_state = SG_IO_PRESENT_UNKNOWN;
511
512 /* Preferred implementation for issuing SCSI commands in linux. This
513 * function uses the SG_IO ioctl. Return 0 if command issued successfully
514 * (various status values should still be checked). If the SCSI command
515 * cannot be issued then a negative errno value is returned. */
516 static int sg_io_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report,
517 int unknown)
518 {
519 #ifndef SG_IO
520 ARGUSED(dev_fd); ARGUSED(iop); ARGUSED(report);
521 return -ENOTTY;
522 #else
523 struct sg_io_hdr io_hdr;
524
525 if (report > 0) {
526 int k, j;
527 const unsigned char * ucp = iop->cmnd;
528 const char * np;
529 char buff[256];
530 const int sz = (int)sizeof(buff);
531
532 np = scsi_get_opcode_name(ucp[0]);
533 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
534 for (k = 0; k < (int)iop->cmnd_len; ++k)
535 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
536 if ((report > 1) &&
537 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
538 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
539
540 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
541 "data, len=%d%s:\n", (int)iop->dxfer_len,
542 (trunc ? " [only first 256 bytes shown]" : ""));
543 dStrHex((const char *)iop->dxferp,
544 (trunc ? 256 : iop->dxfer_len) , 1);
545 }
546 else
547 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
548 pout("%s", buff);
549 }
550 memset(&io_hdr, 0, sizeof(struct sg_io_hdr));
551 io_hdr.interface_id = 'S';
552 io_hdr.cmd_len = iop->cmnd_len;
553 io_hdr.mx_sb_len = iop->max_sense_len;
554 io_hdr.dxfer_len = iop->dxfer_len;
555 io_hdr.dxferp = iop->dxferp;
556 io_hdr.cmdp = iop->cmnd;
557 io_hdr.sbp = iop->sensep;
558 /* sg_io_hdr interface timeout has millisecond units. Timeout of 0
559 defaults to 60 seconds. */
560 io_hdr.timeout = ((0 == iop->timeout) ? 60 : iop->timeout) * 1000;
561 switch (iop->dxfer_dir) {
562 case DXFER_NONE:
563 io_hdr.dxfer_direction = SG_DXFER_NONE;
564 break;
565 case DXFER_FROM_DEVICE:
566 io_hdr.dxfer_direction = SG_DXFER_FROM_DEV;
567 break;
568 case DXFER_TO_DEVICE:
569 io_hdr.dxfer_direction = SG_DXFER_TO_DEV;
570 break;
571 default:
572 pout("do_scsi_cmnd_io: bad dxfer_dir\n");
573 return -EINVAL;
574 }
575 iop->resp_sense_len = 0;
576 iop->scsi_status = 0;
577 iop->resid = 0;
578 if (ioctl(dev_fd, SG_IO, &io_hdr) < 0) {
579 if (report && (! unknown))
580 pout(" SG_IO ioctl failed, errno=%d [%s]\n", errno,
581 strerror(errno));
582 return -errno;
583 }
584 iop->resid = io_hdr.resid;
585 iop->scsi_status = io_hdr.status;
586 if (report > 0) {
587 pout(" scsi_status=0x%x, host_status=0x%x, driver_status=0x%x\n"
588 " info=0x%x duration=%d milliseconds resid=%d\n", io_hdr.status,
589 io_hdr.host_status, io_hdr.driver_status, io_hdr.info,
590 io_hdr.duration, io_hdr.resid);
591 if (report > 1) {
592 if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
593 int trunc, len;
594
595 len = iop->dxfer_len - iop->resid;
596 trunc = (len > 256) ? 1 : 0;
597 if (len > 0) {
598 pout(" Incoming data, len=%d%s:\n", len,
599 (trunc ? " [only first 256 bytes shown]" : ""));
600 dStrHex((const char*)iop->dxferp, (trunc ? 256 : len),
601 1);
602 } else
603 pout(" Incoming data trimmed to nothing by resid\n");
604 }
605 }
606 }
607
608 if (io_hdr.info | SG_INFO_CHECK) { /* error or warning */
609 int masked_driver_status = (LSCSI_DRIVER_MASK & io_hdr.driver_status);
610
611 if (0 != io_hdr.host_status) {
612 if ((LSCSI_DID_NO_CONNECT == io_hdr.host_status) ||
613 (LSCSI_DID_BUS_BUSY == io_hdr.host_status) ||
614 (LSCSI_DID_TIME_OUT == io_hdr.host_status))
615 return -ETIMEDOUT;
616 else
617 /* Check for DID_ERROR - workaround for aacraid driver quirk */
618 if (LSCSI_DID_ERROR != io_hdr.host_status) {
619 return -EIO; /* catch all if not DID_ERR */
620 }
621 }
622 if (0 != masked_driver_status) {
623 if (LSCSI_DRIVER_TIMEOUT == masked_driver_status)
624 return -ETIMEDOUT;
625 else if (LSCSI_DRIVER_SENSE != masked_driver_status)
626 return -EIO;
627 }
628 if (LSCSI_DRIVER_SENSE == masked_driver_status)
629 iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
630 iop->resp_sense_len = io_hdr.sb_len_wr;
631 if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
632 iop->sensep && (iop->resp_sense_len > 0)) {
633 if (report > 1) {
634 pout(" >>> Sense buffer, len=%d:\n",
635 (int)iop->resp_sense_len);
636 dStrHex((const char *)iop->sensep, iop->resp_sense_len , 1);
637 }
638 }
639 if (report) {
640 if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
641 if ((iop->sensep[0] & 0x7f) > 0x71)
642 pout(" status=%x: [desc] sense_key=%x asc=%x ascq=%x\n",
643 iop->scsi_status, iop->sensep[1] & 0xf,
644 iop->sensep[2], iop->sensep[3]);
645 else
646 pout(" status=%x: sense_key=%x asc=%x ascq=%x\n",
647 iop->scsi_status, iop->sensep[2] & 0xf,
648 iop->sensep[12], iop->sensep[13]);
649 }
650 else
651 pout(" status=0x%x\n", iop->scsi_status);
652 }
653 }
654 return 0;
655 #endif
656 }
657
658 struct linux_ioctl_send_command
659 {
660 int inbufsize;
661 int outbufsize;
662 UINT8 buff[MAX_DXFER_LEN + 16];
663 };
664
665 /* The Linux SCSI_IOCTL_SEND_COMMAND ioctl is primitive and it doesn't
666 * support: CDB length (guesses it from opcode), resid and timeout.
667 * Patches in Linux 2.4.21 and 2.5.70 to extend SEND DIAGNOSTIC timeout
668 * to 2 hours in order to allow long foreground extended self tests. */
669 static int sisc_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop, int report)
670 {
671 struct linux_ioctl_send_command wrk;
672 int status, buff_offset;
673 size_t len;
674
675 memcpy(wrk.buff, iop->cmnd, iop->cmnd_len);
676 buff_offset = iop->cmnd_len;
677 if (report > 0) {
678 int k, j;
679 const unsigned char * ucp = iop->cmnd;
680 const char * np;
681 char buff[256];
682 const int sz = (int)sizeof(buff);
683
684 np = scsi_get_opcode_name(ucp[0]);
685 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
686 for (k = 0; k < (int)iop->cmnd_len; ++k)
687 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
688 if ((report > 1) &&
689 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
690 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
691
692 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
693 "data, len=%d%s:\n", (int)iop->dxfer_len,
694 (trunc ? " [only first 256 bytes shown]" : ""));
695 dStrHex((const char *)iop->dxferp,
696 (trunc ? 256 : iop->dxfer_len) , 1);
697 }
698 else
699 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
700 pout("%s", buff);
701 }
702 switch (iop->dxfer_dir) {
703 case DXFER_NONE:
704 wrk.inbufsize = 0;
705 wrk.outbufsize = 0;
706 break;
707 case DXFER_FROM_DEVICE:
708 wrk.inbufsize = 0;
709 if (iop->dxfer_len > MAX_DXFER_LEN)
710 return -EINVAL;
711 wrk.outbufsize = iop->dxfer_len;
712 break;
713 case DXFER_TO_DEVICE:
714 if (iop->dxfer_len > MAX_DXFER_LEN)
715 return -EINVAL;
716 memcpy(wrk.buff + buff_offset, iop->dxferp, iop->dxfer_len);
717 wrk.inbufsize = iop->dxfer_len;
718 wrk.outbufsize = 0;
719 break;
720 default:
721 pout("do_scsi_cmnd_io: bad dxfer_dir\n");
722 return -EINVAL;
723 }
724 iop->resp_sense_len = 0;
725 iop->scsi_status = 0;
726 iop->resid = 0;
727 status = ioctl(dev_fd, SCSI_IOCTL_SEND_COMMAND, &wrk);
728 if (-1 == status) {
729 if (report)
730 pout(" SCSI_IOCTL_SEND_COMMAND ioctl failed, errno=%d [%s]\n",
731 errno, strerror(errno));
732 return -errno;
733 }
734 if (0 == status) {
735 if (report > 0)
736 pout(" status=0\n");
737 if (DXFER_FROM_DEVICE == iop->dxfer_dir) {
738 memcpy(iop->dxferp, wrk.buff, iop->dxfer_len);
739 if (report > 1) {
740 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
741
742 pout(" Incoming data, len=%d%s:\n", (int)iop->dxfer_len,
743 (trunc ? " [only first 256 bytes shown]" : ""));
744 dStrHex((const char*)iop->dxferp,
745 (trunc ? 256 : iop->dxfer_len) , 1);
746 }
747 }
748 return 0;
749 }
750 iop->scsi_status = status & 0x7e; /* bits 0 and 7 used to be for vendors */
751 if (LSCSI_DRIVER_SENSE == ((status >> 24) & 0xf))
752 iop->scsi_status = SCSI_STATUS_CHECK_CONDITION;
753 len = (SEND_IOCTL_RESP_SENSE_LEN < iop->max_sense_len) ?
754 SEND_IOCTL_RESP_SENSE_LEN : iop->max_sense_len;
755 if ((SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) &&
756 iop->sensep && (len > 0)) {
757 memcpy(iop->sensep, wrk.buff, len);
758 iop->resp_sense_len = len;
759 if (report > 1) {
760 pout(" >>> Sense buffer, len=%d:\n", (int)len);
761 dStrHex((const char *)wrk.buff, len , 1);
762 }
763 }
764 if (report) {
765 if (SCSI_STATUS_CHECK_CONDITION == iop->scsi_status) {
766 pout(" status=%x: sense_key=%x asc=%x ascq=%x\n", status & 0xff,
767 wrk.buff[2] & 0xf, wrk.buff[12], wrk.buff[13]);
768 }
769 else
770 pout(" status=0x%x\n", status);
771 }
772 if (iop->scsi_status > 0)
773 return 0;
774 else {
775 if (report > 0)
776 pout(" ioctl status=0x%x but scsi status=0, fail with EIO\n",
777 status);
778 return -EIO; /* give up, assume no device there */
779 }
780 }
781
782 /* SCSI command transmission interface function, linux version.
783 * Returns 0 if SCSI command successfully launched and response
784 * received. Even when 0 is returned the caller should check
785 * scsi_cmnd_io::scsi_status for SCSI defined errors and warnings
786 * (e.g. CHECK CONDITION). If the SCSI command could not be issued
787 * (e.g. device not present or timeout) or some other problem
788 * (e.g. timeout) then returns a negative errno value */
789 static int do_normal_scsi_cmnd_io(int dev_fd, struct scsi_cmnd_io * iop,
790 int report)
791 {
792 int res;
793
794 /* implementation relies on static sg_io_state variable. If not
795 * previously set tries the SG_IO ioctl. If that succeeds assume
796 * that SG_IO ioctl functional. If it fails with an errno value
797 * other than ENODEV (no device) or permission then assume
798 * SCSI_IOCTL_SEND_COMMAND is the only option. */
799 switch (sg_io_state) {
800 case SG_IO_PRESENT_UNKNOWN:
801 /* ignore report argument */
802 if (0 == (res = sg_io_cmnd_io(dev_fd, iop, report, 1))) {
803 sg_io_state = SG_IO_PRESENT_YES;
804 return 0;
805 } else if ((-ENODEV == res) || (-EACCES == res) || (-EPERM == res))
806 return res; /* wait until we see a device */
807 sg_io_state = SG_IO_PRESENT_NO;
808 /* drop through by design */
809 case SG_IO_PRESENT_NO:
810 return sisc_cmnd_io(dev_fd, iop, report);
811 case SG_IO_PRESENT_YES:
812 return sg_io_cmnd_io(dev_fd, iop, report, 0);
813 default:
814 pout(">>>> do_scsi_cmnd_io: bad sg_io_state=%d\n", sg_io_state);
815 sg_io_state = SG_IO_PRESENT_UNKNOWN;
816 return -EIO; /* report error and reset state */
817 }
818 }
819
820 // >>>>>> End of general SCSI specific linux code
821
822 /////////////////////////////////////////////////////////////////////////////
823 /// Standard SCSI support
824
825 class linux_scsi_device
826 : public /*implements*/ scsi_device,
827 public /*extends*/ linux_smart_device
828 {
829 public:
830 linux_scsi_device(smart_interface * intf, const char * dev_name,
831 const char * req_type, bool scanning = false);
832
833 virtual smart_device * autodetect_open();
834
835 virtual bool scsi_pass_through(scsi_cmnd_io * iop);
836
837 private:
838 bool m_scanning; ///< true if created within scan_smart_devices
839 };
840
841 linux_scsi_device::linux_scsi_device(smart_interface * intf,
842 const char * dev_name, const char * req_type, bool scanning /*= false*/)
843 : smart_device(intf, dev_name, "scsi", req_type),
844 // If opened with O_RDWR, a SATA disk in standby mode
845 // may spin-up after device close().
846 linux_smart_device(O_RDONLY | O_NONBLOCK),
847 m_scanning(scanning)
848 {
849 }
850
851
852 bool linux_scsi_device::scsi_pass_through(scsi_cmnd_io * iop)
853 {
854 int status = do_normal_scsi_cmnd_io(get_fd(), iop, scsi_debugmode);
855 if (status < 0)
856 return set_err(-status);
857 return true;
858 }
859
860 /////////////////////////////////////////////////////////////////////////////
861 /// LSI MegaRAID support
862
863 class linux_megaraid_device
864 : public /* implements */ scsi_device,
865 public /* extends */ linux_smart_device
866 {
867 public:
868 linux_megaraid_device(smart_interface *intf, const char *name,
869 unsigned int bus, unsigned int tgt);
870
871 virtual ~linux_megaraid_device() throw();
872
873 virtual smart_device * autodetect_open();
874
875 virtual bool open();
876 virtual bool close();
877
878 virtual bool scsi_pass_through(scsi_cmnd_io *iop);
879
880 private:
881 unsigned int m_disknum;
882 unsigned int m_busnum;
883 unsigned int m_hba;
884 int m_fd;
885
886 bool (linux_megaraid_device::*pt_cmd)(int cdblen, void *cdb, int dataLen, void *data,
887 int senseLen, void *sense, int report);
888 bool megasas_cmd(int cdbLen, void *cdb, int dataLen, void *data,
889 int senseLen, void *sense, int report);
890 bool megadev_cmd(int cdbLen, void *cdb, int dataLen, void *data,
891 int senseLen, void *sense, int report);
892 };
893
894 linux_megaraid_device::linux_megaraid_device(smart_interface *intf,
895 const char *dev_name, unsigned int bus, unsigned int tgt)
896 : smart_device(intf, dev_name, "megaraid", "megaraid"),
897 linux_smart_device(O_RDWR | O_NONBLOCK),
898 m_disknum(tgt), m_busnum(bus), m_hba(0),
899 m_fd(-1), pt_cmd(0)
900 {
901 set_info().info_name = strprintf("%s [megaraid_disk_%02d]", dev_name, m_disknum);
902 }
903
904 linux_megaraid_device::~linux_megaraid_device() throw()
905 {
906 if (m_fd >= 0)
907 ::close(m_fd);
908 }
909
910 smart_device * linux_megaraid_device::autodetect_open()
911 {
912 int report = scsi_debugmode;
913
914 // Open device
915 if (!open())
916 return this;
917
918 // The code below is based on smartd.cpp:SCSIFilterKnown()
919 if (strcmp(get_req_type(), "megaraid"))
920 return this;
921
922 // Get INQUIRY
923 unsigned char req_buff[64] = {0, };
924 int req_len = 36;
925 if (scsiStdInquiry(this, req_buff, req_len)) {
926 close();
927 set_err(EIO, "INQUIRY failed");
928 return this;
929 }
930
931 int avail_len = req_buff[4] + 5;
932 int len = (avail_len < req_len ? avail_len : req_len);
933 if (len < 36)
934 return this;
935
936 if (report)
937 pout("Got MegaRAID inquiry.. %s\n", req_buff+8);
938
939 // Use INQUIRY to detect type
940 {
941 // SAT or USB ?
942 ata_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
943 if (newdev) {
944 // NOTE: 'this' is now owned by '*newdev'
945 newdev->close();
946 newdev->set_err(ENOSYS, "SATA device detected,\n"
947 "MegaRAID SAT layer is reportedly buggy, use '-d sat+megaraid,N' to try anyhow");
948 return newdev;
949 }
950 }
951
952 // Nothing special found
953 return this;
954 }
955
956
957 bool linux_megaraid_device::open()
958 {
959 char line[128];
960 int mjr, n1;
961 FILE *fp;
962 int report = scsi_debugmode;
963
964 if (!linux_smart_device::open())
965 return false;
966
967 /* Get device HBA */
968 struct sg_scsi_id sgid;
969 if (ioctl(get_fd(), SG_GET_SCSI_ID, &sgid) == 0) {
970 m_hba = sgid.host_no;
971 }
972 else if (ioctl(get_fd(), SCSI_IOCTL_GET_BUS_NUMBER, &m_hba) != 0) {
973 int err = errno;
974 linux_smart_device::close();
975 return set_err(err, "can't get bus number");
976 }
977
978 /* Perform mknod of device ioctl node */
979 fp = fopen("/proc/devices", "r");
980 while (fgets(line, sizeof(line), fp) != NULL) {
981 n1=0;
982 if (sscanf(line, "%d megaraid_sas_ioctl%n", &mjr, &n1) == 1 && n1 == 22) {
983 n1=mknod("/dev/megaraid_sas_ioctl_node", S_IFCHR, makedev(mjr, 0));
984 if(report > 0)
985 pout("Creating /dev/megaraid_sas_ioctl_node = %d\n", n1 >= 0 ? 0 : errno);
986 if (n1 >= 0 || errno == EEXIST)
987 break;
988 }
989 else if (sscanf(line, "%d megadev%n", &mjr, &n1) == 1 && n1 == 11) {
990 n1=mknod("/dev/megadev0", S_IFCHR, makedev(mjr, 0));
991 if(report > 0)
992 pout("Creating /dev/megadev0 = %d\n", n1 >= 0 ? 0 : errno);
993 if (n1 >= 0 || errno == EEXIST)
994 break;
995 }
996 }
997 fclose(fp);
998
999 /* Open Device IOCTL node */
1000 if ((m_fd = ::open("/dev/megaraid_sas_ioctl_node", O_RDWR)) >= 0) {
1001 pt_cmd = &linux_megaraid_device::megasas_cmd;
1002 }
1003 else if ((m_fd = ::open("/dev/megadev0", O_RDWR)) >= 0) {
1004 pt_cmd = &linux_megaraid_device::megadev_cmd;
1005 }
1006 else {
1007 int err = errno;
1008 linux_smart_device::close();
1009 return set_err(err, "cannot open /dev/megaraid_sas_ioctl_node or /dev/megadev0");
1010 }
1011
1012 return true;
1013 }
1014
1015 bool linux_megaraid_device::close()
1016 {
1017 if (m_fd >= 0)
1018 ::close(m_fd);
1019 m_fd = -1; m_hba = 0; pt_cmd = 0;
1020 return linux_smart_device::close();
1021 }
1022
1023 bool linux_megaraid_device::scsi_pass_through(scsi_cmnd_io *iop)
1024 {
1025 int report = scsi_debugmode;
1026
1027 if (report > 0) {
1028 int k, j;
1029 const unsigned char * ucp = iop->cmnd;
1030 const char * np;
1031 char buff[256];
1032 const int sz = (int)sizeof(buff);
1033
1034 np = scsi_get_opcode_name(ucp[0]);
1035 j = snprintf(buff, sz, " [%s: ", np ? np : "<unknown opcode>");
1036 for (k = 0; k < (int)iop->cmnd_len; ++k)
1037 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "%02x ", ucp[k]);
1038 if ((report > 1) &&
1039 (DXFER_TO_DEVICE == iop->dxfer_dir) && (iop->dxferp)) {
1040 int trunc = (iop->dxfer_len > 256) ? 1 : 0;
1041
1042 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n Outgoing "
1043 "data, len=%d%s:\n", (int)iop->dxfer_len,
1044 (trunc ? " [only first 256 bytes shown]" : ""));
1045 dStrHex((const char *)iop->dxferp,
1046 (trunc ? 256 : iop->dxfer_len) , 1);
1047 }
1048 else
1049 j += snprintf(&buff[j], (sz > j ? (sz - j) : 0), "]\n");
1050 pout("%s", buff);
1051 }
1052
1053 // Controller rejects Test Unit Ready
1054 if (iop->cmnd[0] == 0x00)
1055 return true;
1056
1057 if (iop->cmnd[0] == SAT_ATA_PASSTHROUGH_12 || iop->cmnd[0] == SAT_ATA_PASSTHROUGH_16) {
1058 // Controller does not return ATA output registers in SAT sense data
1059 if (iop->cmnd[2] & (1 << 5)) // chk_cond
1060 return set_err(ENOSYS, "ATA return descriptor not supported by controller firmware");
1061 }
1062 // SMART WRITE LOG SECTOR causing media errors
1063 if ((iop->cmnd[0] == SAT_ATA_PASSTHROUGH_16 && iop->cmnd[14] == ATA_SMART_CMD
1064 && iop->cmnd[3]==0 && iop->cmnd[4] == ATA_SMART_WRITE_LOG_SECTOR) ||
1065 (iop->cmnd[0] == SAT_ATA_PASSTHROUGH_12 && iop->cmnd[9] == ATA_SMART_CMD &&
1066 iop->cmnd[3] == ATA_SMART_WRITE_LOG_SECTOR))
1067 return set_err(ENOSYS, "SMART WRITE LOG SECTOR command is not supported by controller firmware");
1068
1069 if (pt_cmd == NULL)
1070 return false;
1071 return (this->*pt_cmd)(iop->cmnd_len, iop->cmnd,
1072 iop->dxfer_len, iop->dxferp,
1073 iop->max_sense_len, iop->sensep, report);
1074 }
1075
1076 /* Issue passthrough scsi command to PERC5/6 controllers */
1077 bool linux_megaraid_device::megasas_cmd(int cdbLen, void *cdb,
1078 int dataLen, void *data,
1079 int /*senseLen*/, void * /*sense*/, int /*report*/)
1080 {
1081 struct megasas_pthru_frame *pthru;
1082 struct megasas_iocpacket uio;
1083 int rc;
1084
1085 memset(&uio, 0, sizeof(uio));
1086 pthru = &uio.frame.pthru;
1087 pthru->cmd = MFI_CMD_PD_SCSI_IO;
1088 pthru->cmd_status = 0xFF;
1089 pthru->scsi_status = 0x0;
1090 pthru->target_id = m_disknum;
1091 pthru->lun = 0;
1092 pthru->cdb_len = cdbLen;
1093 pthru->timeout = 0;
1094 pthru->flags = MFI_FRAME_DIR_READ;
1095 if (dataLen > 0) {
1096 pthru->sge_count = 1;
1097 pthru->data_xfer_len = dataLen;
1098 pthru->sgl.sge32[0].phys_addr = (intptr_t)data;
1099 pthru->sgl.sge32[0].length = (uint32_t)dataLen;
1100 }
1101 memcpy(pthru->cdb, cdb, cdbLen);
1102
1103 uio.host_no = m_hba;
1104 if (dataLen > 0) {
1105 uio.sge_count = 1;
1106 uio.sgl_off = offsetof(struct megasas_pthru_frame, sgl);
1107 uio.sgl[0].iov_base = data;
1108 uio.sgl[0].iov_len = dataLen;
1109 }
1110
1111 rc = 0;
1112 errno = 0;
1113 rc = ioctl(m_fd, MEGASAS_IOC_FIRMWARE, &uio);
1114 if (pthru->cmd_status || rc != 0) {
1115 if (pthru->cmd_status == 12) {
1116 return set_err(EIO, "megasas_cmd: Device %d does not exist\n", m_disknum);
1117 }
1118 return set_err((errno ? errno : EIO), "megasas_cmd result: %d.%d = %d/%d",
1119 m_hba, m_disknum, errno,
1120 pthru->cmd_status);
1121 }
1122 return true;
1123 }
1124
1125 /* Issue passthrough scsi commands to PERC2/3/4 controllers */
1126 bool linux_megaraid_device::megadev_cmd(int cdbLen, void *cdb,
1127 int dataLen, void *data,
1128 int /*senseLen*/, void * /*sense*/, int /*report*/)
1129 {
1130 struct uioctl_t uio;
1131 int rc;
1132
1133 /* Don't issue to the controller */
1134 if (m_disknum == 7)
1135 return false;
1136
1137 memset(&uio, 0, sizeof(uio));
1138 uio.inlen = dataLen;
1139 uio.outlen = dataLen;
1140
1141 memset(data, 0, dataLen);
1142 uio.ui.fcs.opcode = 0x80; // M_RD_IOCTL_CMD
1143 uio.ui.fcs.adapno = MKADAP(m_hba);
1144
1145 uio.data.pointer = (uint8_t *)data;
1146
1147 uio.mbox.cmd = MEGA_MBOXCMD_PASSTHRU;
1148 uio.mbox.xferaddr = (intptr_t)&uio.pthru;
1149
1150 uio.pthru.ars = 1;
1151 uio.pthru.timeout = 2;
1152 uio.pthru.channel = 0;
1153 uio.pthru.target = m_disknum;
1154 uio.pthru.cdblen = cdbLen;
1155 uio.pthru.reqsenselen = MAX_REQ_SENSE_LEN;
1156 uio.pthru.dataxferaddr = (intptr_t)data;
1157 uio.pthru.dataxferlen = dataLen;
1158 memcpy(uio.pthru.cdb, cdb, cdbLen);
1159
1160 rc=ioctl(m_fd, MEGAIOCCMD, &uio);
1161 if (uio.pthru.scsistatus || rc != 0) {
1162 return set_err((errno ? errno : EIO), "megadev_cmd result: %d.%d = %d/%d",
1163 m_hba, m_disknum, errno,
1164 uio.pthru.scsistatus);
1165 }
1166 return true;
1167 }
1168
1169 /////////////////////////////////////////////////////////////////////////////
1170 /// CCISS RAID support
1171
1172 #ifdef HAVE_LINUX_CCISS_IOCTL_H
1173
1174 class linux_cciss_device
1175 : public /*implements*/ scsi_device,
1176 public /*extends*/ linux_smart_device
1177 {
1178 public:
1179 linux_cciss_device(smart_interface * intf, const char * name, unsigned char disknum);
1180
1181 virtual bool scsi_pass_through(scsi_cmnd_io * iop);
1182
1183 private:
1184 unsigned char m_disknum; ///< Disk number.
1185 };
1186
1187 linux_cciss_device::linux_cciss_device(smart_interface * intf,
1188 const char * dev_name, unsigned char disknum)
1189 : smart_device(intf, dev_name, "cciss", "cciss"),
1190 linux_smart_device(O_RDWR | O_NONBLOCK),
1191 m_disknum(disknum)
1192 {
1193 set_info().info_name = strprintf("%s [cciss_disk_%02d]", dev_name, disknum);
1194 }
1195
1196 bool linux_cciss_device::scsi_pass_through(scsi_cmnd_io * iop)
1197 {
1198 int status = cciss_io_interface(get_fd(), m_disknum, iop, scsi_debugmode);
1199 if (status < 0)
1200 return set_err(-status);
1201 return true;
1202 }
1203
1204 #endif // HAVE_LINUX_CCISS_IOCTL_H
1205
1206 /////////////////////////////////////////////////////////////////////////////
1207 /// AMCC/3ware RAID support
1208
1209 class linux_escalade_device
1210 : public /*implements*/ ata_device,
1211 public /*extends*/ linux_smart_device
1212 {
1213 public:
1214 enum escalade_type_t {
1215 AMCC_3WARE_678K,
1216 AMCC_3WARE_678K_CHAR,
1217 AMCC_3WARE_9000_CHAR,
1218 AMCC_3WARE_9700_CHAR
1219 };
1220
1221 linux_escalade_device(smart_interface * intf, const char * dev_name,
1222 escalade_type_t escalade_type, int disknum);
1223
1224 virtual bool open();
1225
1226 virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
1227
1228 private:
1229 escalade_type_t m_escalade_type; ///< Controller type
1230 int m_disknum; ///< Disk number.
1231 };
1232
1233 linux_escalade_device::linux_escalade_device(smart_interface * intf, const char * dev_name,
1234 escalade_type_t escalade_type, int disknum)
1235 : smart_device(intf, dev_name, "3ware", "3ware"),
1236 linux_smart_device(O_RDONLY | O_NONBLOCK),
1237 m_escalade_type(escalade_type), m_disknum(disknum)
1238 {
1239 set_info().info_name = strprintf("%s [3ware_disk_%02d]", dev_name, disknum);
1240 }
1241
1242 /* This function will setup and fix device nodes for a 3ware controller. */
1243 #define MAJOR_STRING_LENGTH 3
1244 #define DEVICE_STRING_LENGTH 32
1245 #define NODE_STRING_LENGTH 16
1246 static int setup_3ware_nodes(const char *nodename, const char *driver_name)
1247 {
1248 int tw_major = 0;
1249 int index = 0;
1250 char majorstring[MAJOR_STRING_LENGTH+1];
1251 char device_name[DEVICE_STRING_LENGTH+1];
1252 char nodestring[NODE_STRING_LENGTH];
1253 struct stat stat_buf;
1254 FILE *file;
1255 int retval = 0;
1256 #ifdef WITH_SELINUX
1257 security_context_t orig_context = NULL;
1258 security_context_t node_context = NULL;
1259 int selinux_enabled = is_selinux_enabled();
1260 int selinux_enforced = security_getenforce();
1261 #endif
1262
1263
1264 /* First try to open up /proc/devices */
1265 if (!(file = fopen("/proc/devices", "r"))) {
1266 pout("Error opening /proc/devices to check/create 3ware device nodes\n");
1267 syserror("fopen");
1268 return 0; // don't fail here: user might not have /proc !
1269 }
1270
1271 /* Attempt to get device major number */
1272 while (EOF != fscanf(file, "%3s %32s", majorstring, device_name)) {
1273 majorstring[MAJOR_STRING_LENGTH]='\0';
1274 device_name[DEVICE_STRING_LENGTH]='\0';
1275 if (!strncmp(device_name, nodename, DEVICE_STRING_LENGTH)) {
1276 tw_major = atoi(majorstring);
1277 break;
1278 }
1279 }
1280 fclose(file);
1281
1282 /* See if we found a major device number */
1283 if (!tw_major) {
1284 pout("No major number for /dev/%s listed in /proc/devices. Is the %s driver loaded?\n", nodename, driver_name);
1285 return 2;
1286 }
1287 #ifdef WITH_SELINUX
1288 /* Prepare a database of contexts for files in /dev
1289 * and save the current context */
1290 if (selinux_enabled) {
1291 if (matchpathcon_init_prefix(NULL, "/dev") < 0)
1292 pout("Error initializing contexts database for /dev");
1293 if (getfscreatecon(&orig_context) < 0) {
1294 pout("Error retrieving original SELinux fscreate context");
1295 if (selinux_enforced)
1296 matchpathcon_fini();
1297 return 6;
1298 }
1299 }
1300 #endif
1301 /* Now check if nodes are correct */
1302 for (index=0; index<16; index++) {
1303 sprintf(nodestring, "/dev/%s%d", nodename, index);
1304 #ifdef WITH_SELINUX
1305 /* Get context of the node and set it as the default */
1306 if (selinux_enabled) {
1307 if (matchpathcon(nodestring, S_IRUSR | S_IWUSR, &node_context) < 0) {
1308 pout("Could not retrieve context for %s", nodestring);
1309 if (selinux_enforced) {
1310 retval = 6;
1311 break;
1312 }
1313 }
1314 if (setfscreatecon(node_context) < 0) {
1315 pout ("Error setting default fscreate context");
1316 if (selinux_enforced) {
1317 retval = 6;
1318 break;
1319 }
1320 }
1321 }
1322 #endif
1323 /* Try to stat the node */
1324 if ((stat(nodestring, &stat_buf))) {
1325 pout("Node %s does not exist and must be created. Check the udev rules.\n", nodestring);
1326 /* Create a new node if it doesn't exist */
1327 if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
1328 pout("problem creating 3ware device nodes %s", nodestring);
1329 syserror("mknod");
1330 retval = 3;
1331 break;
1332 } else {
1333 #ifdef WITH_SELINUX
1334 if (selinux_enabled && node_context) {
1335 freecon(node_context);
1336 node_context = NULL;
1337 }
1338 #endif
1339 continue;
1340 }
1341 }
1342
1343 /* See if nodes major and minor numbers are correct */
1344 if ((tw_major != (int)(major(stat_buf.st_rdev))) ||
1345 (index != (int)(minor(stat_buf.st_rdev))) ||
1346 (!S_ISCHR(stat_buf.st_mode))) {
1347 pout("Node %s has wrong major/minor number and must be created anew."
1348 " Check the udev rules.\n", nodestring);
1349 /* Delete the old node */
1350 if (unlink(nodestring)) {
1351 pout("problem unlinking stale 3ware device node %s", nodestring);
1352 syserror("unlink");
1353 retval = 4;
1354 break;
1355 }
1356
1357 /* Make a new node */
1358 if (mknod(nodestring, S_IFCHR|0600, makedev(tw_major, index))) {
1359 pout("problem creating 3ware device nodes %s", nodestring);
1360 syserror("mknod");
1361 retval = 5;
1362 break;
1363 }
1364 }
1365 #ifdef WITH_SELINUX
1366 if (selinux_enabled && node_context) {
1367 freecon(node_context);
1368 node_context = NULL;
1369 }
1370 #endif
1371 }
1372
1373 #ifdef WITH_SELINUX
1374 if (selinux_enabled) {
1375 if(setfscreatecon(orig_context) < 0) {
1376 pout("Error re-setting original fscreate context");
1377 if (selinux_enforced)
1378 retval = 6;
1379 }
1380 if(orig_context)
1381 freecon(orig_context);
1382 if(node_context)
1383 freecon(node_context);
1384 matchpathcon_fini();
1385 }
1386 #endif
1387 return retval;
1388 }
1389
1390 bool linux_escalade_device::open()
1391 {
1392 if (m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR ||
1393 m_escalade_type == AMCC_3WARE_678K_CHAR) {
1394 // the device nodes for these controllers are dynamically assigned,
1395 // so we need to check that they exist with the correct major
1396 // numbers and if not, create them
1397 const char * node = (m_escalade_type == AMCC_3WARE_9700_CHAR ? "twl" :
1398 m_escalade_type == AMCC_3WARE_9000_CHAR ? "twa" :
1399 "twe" );
1400 const char * driver = (m_escalade_type == AMCC_3WARE_9700_CHAR ? "3w-sas" :
1401 m_escalade_type == AMCC_3WARE_9000_CHAR ? "3w-9xxx" :
1402 "3w-xxxx" );
1403 if (setup_3ware_nodes(node, driver))
1404 return set_err((errno ? errno : ENXIO), "setup_3ware_nodes(\"%s\", \"%s\") failed", node, driver);
1405 }
1406 // Continue with default open
1407 return linux_smart_device::open();
1408 }
1409
1410 // TODO: Function no longer useful
1411 //void printwarning(smart_command_set command);
1412
1413 // PURPOSE
1414 // This is an interface routine meant to isolate the OS dependent
1415 // parts of the code, and to provide a debugging interface. Each
1416 // different port and OS needs to provide it's own interface. This
1417 // is the linux interface to the 3ware 3w-xxxx driver. It allows ATA
1418 // commands to be passed through the SCSI driver.
1419 // DETAILED DESCRIPTION OF ARGUMENTS
1420 // fd: is the file descriptor provided by open()
1421 // disknum is the disk number (0 to 15) in the RAID array
1422 // escalade_type indicates the type of controller type, and if scsi or char interface is used
1423 // command: defines the different operations.
1424 // select: additional input data if needed (which log, which type of
1425 // self-test).
1426 // data: location to write output data, if needed (512 bytes).
1427 // Note: not all commands use all arguments.
1428 // RETURN VALUES
1429 // -1 if the command failed
1430 // 0 if the command succeeded,
1431 // STATUS_CHECK routine:
1432 // -1 if the command failed
1433 // 0 if the command succeeded and disk SMART status is "OK"
1434 // 1 if the command succeeded and disk SMART status is "FAILING"
1435
1436
1437 /* 512 is the max payload size: increase if needed */
1438 #define BUFFER_LEN_678K ( sizeof(TW_Ioctl) ) // 1044 unpacked, 1041 packed
1439 #define BUFFER_LEN_678K_CHAR ( sizeof(TW_New_Ioctl)+512-1 ) // 1539 unpacked, 1536 packed
1440 #define BUFFER_LEN_9000 ( sizeof(TW_Ioctl_Buf_Apache)+512-1 ) // 2051 unpacked, 2048 packed
1441 #define TW_IOCTL_BUFFER_SIZE ( MAX(MAX(BUFFER_LEN_678K, BUFFER_LEN_9000), BUFFER_LEN_678K_CHAR) )
1442
1443 bool linux_escalade_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
1444 {
1445 if (!ata_cmd_is_ok(in,
1446 true, // data_out_support
1447 false, // TODO: multi_sector_support
1448 true) // ata_48bit_support
1449 )
1450 return false;
1451
1452 // Used by both the SCSI and char interfaces
1453 TW_Passthru *passthru=NULL;
1454 char ioctl_buffer[TW_IOCTL_BUFFER_SIZE];
1455
1456 // only used for SCSI device interface
1457 TW_Ioctl *tw_ioctl=NULL;
1458 TW_Output *tw_output=NULL;
1459
1460 // only used for 6000/7000/8000 char device interface
1461 TW_New_Ioctl *tw_ioctl_char=NULL;
1462
1463 // only used for 9000 character device interface
1464 TW_Ioctl_Buf_Apache *tw_ioctl_apache=NULL;
1465
1466 memset(ioctl_buffer, 0, TW_IOCTL_BUFFER_SIZE);
1467
1468 // TODO: Handle controller differences by different classes
1469 if (m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR) {
1470 tw_ioctl_apache = (TW_Ioctl_Buf_Apache *)ioctl_buffer;
1471 tw_ioctl_apache->driver_command.control_code = TW_IOCTL_FIRMWARE_PASS_THROUGH;
1472 tw_ioctl_apache->driver_command.buffer_length = 512; /* payload size */
1473 passthru = (TW_Passthru *)&(tw_ioctl_apache->firmware_command.command.oldcommand);
1474 }
1475 else if (m_escalade_type==AMCC_3WARE_678K_CHAR) {
1476 tw_ioctl_char = (TW_New_Ioctl *)ioctl_buffer;
1477 tw_ioctl_char->data_buffer_length = 512;
1478 passthru = (TW_Passthru *)&(tw_ioctl_char->firmware_command);
1479 }
1480 else if (m_escalade_type==AMCC_3WARE_678K) {
1481 tw_ioctl = (TW_Ioctl *)ioctl_buffer;
1482 tw_ioctl->cdb[0] = TW_IOCTL;
1483 tw_ioctl->opcode = TW_ATA_PASSTHRU;
1484 tw_ioctl->input_length = 512; // correct even for non-data commands
1485 tw_ioctl->output_length = 512; // correct even for non-data commands
1486 tw_output = (TW_Output *)tw_ioctl;
1487 passthru = (TW_Passthru *)&(tw_ioctl->input_data);
1488 }
1489 else {
1490 return set_err(ENOSYS,
1491 "Unrecognized escalade_type %d in linux_3ware_command_interface(disk %d)\n"
1492 "Please contact " PACKAGE_BUGREPORT "\n", (int)m_escalade_type, m_disknum);
1493 }
1494
1495 // Same for (almost) all commands - but some reset below
1496 passthru->byte0.opcode = TW_OP_ATA_PASSTHRU;
1497 passthru->request_id = 0xFF;
1498 passthru->unit = m_disknum;
1499 passthru->status = 0;
1500 passthru->flags = 0x1;
1501
1502 // Set registers
1503 {
1504 const ata_in_regs_48bit & r = in.in_regs;
1505 passthru->features = r.features_16;
1506 passthru->sector_count = r.sector_count_16;
1507 passthru->sector_num = r.lba_low_16;
1508 passthru->cylinder_lo = r.lba_mid_16;
1509 passthru->cylinder_hi = r.lba_high_16;
1510 passthru->drive_head = r.device;
1511 passthru->command = r.command;
1512 }
1513
1514 // Is this a command that reads or returns 512 bytes?
1515 // passthru->param values are:
1516 // 0x0 - non data command without TFR write check,
1517 // 0x8 - non data command with TFR write check,
1518 // 0xD - data command that returns data to host from device
1519 // 0xF - data command that writes data from host to device
1520 // passthru->size values are 0x5 for non-data and 0x07 for data
1521 bool readdata = false;
1522 if (in.direction == ata_cmd_in::data_in) {
1523 readdata=true;
1524 passthru->byte0.sgloff = 0x5;
1525 passthru->size = 0x7; // TODO: Other value for multi-sector ?
1526 passthru->param = 0xD;
1527 // For 64-bit to work correctly, up the size of the command packet
1528 // in dwords by 1 to account for the 64-bit single sgl 'address'
1529 // field. Note that this doesn't agree with the typedefs but it's
1530 // right (agree with kernel driver behavior/typedefs).
1531 if ((m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR)
1532 && sizeof(long) == 8)
1533 passthru->size++;
1534 }
1535 else if (in.direction == ata_cmd_in::no_data) {
1536 // Non data command -- but doesn't use large sector
1537 // count register values.
1538 passthru->byte0.sgloff = 0x0;
1539 passthru->size = 0x5;
1540 passthru->param = 0x8;
1541 passthru->sector_count = 0x0;
1542 }
1543 else if (in.direction == ata_cmd_in::data_out) {
1544 if (m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR)
1545 memcpy(tw_ioctl_apache->data_buffer, in.buffer, in.size);
1546 else if (m_escalade_type == AMCC_3WARE_678K_CHAR)
1547 memcpy(tw_ioctl_char->data_buffer, in.buffer, in.size);
1548 else {
1549 // COMMAND NOT SUPPORTED VIA SCSI IOCTL INTERFACE
1550 // memcpy(tw_output->output_data, data, 512);
1551 // printwarning(command); // TODO: Parameter no longer valid
1552 return set_err(ENOTSUP, "DATA OUT not supported for this 3ware controller type");
1553 }
1554 passthru->byte0.sgloff = 0x5;
1555 passthru->size = 0x7; // TODO: Other value for multi-sector ?
1556 passthru->param = 0xF; // PIO data write
1557 if ((m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR)
1558 && sizeof(long) == 8)
1559 passthru->size++;
1560 }
1561 else
1562 return set_err(EINVAL);
1563
1564 // Now send the command down through an ioctl()
1565 int ioctlreturn;
1566 if (m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR)
1567 ioctlreturn=ioctl(get_fd(), TW_IOCTL_FIRMWARE_PASS_THROUGH, tw_ioctl_apache);
1568 else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
1569 ioctlreturn=ioctl(get_fd(), TW_CMD_PACKET_WITH_DATA, tw_ioctl_char);
1570 else
1571 ioctlreturn=ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, tw_ioctl);
1572
1573 // Deal with the different error cases
1574 if (ioctlreturn) {
1575 if (AMCC_3WARE_678K==m_escalade_type
1576 && in.in_regs.command==ATA_SMART_CMD
1577 && ( in.in_regs.features == ATA_SMART_AUTO_OFFLINE
1578 || in.in_regs.features == ATA_SMART_AUTOSAVE )
1579 && in.in_regs.lba_low) {
1580 // error here is probably a kernel driver whose version is too old
1581 // printwarning(command); // TODO: Parameter no longer valid
1582 return set_err(ENOTSUP, "Probably kernel driver too old");
1583 }
1584 return set_err(EIO);
1585 }
1586
1587 // The passthru structure is valid after return from an ioctl if:
1588 // - we are using the character interface OR
1589 // - we are using the SCSI interface and this is a NON-READ-DATA command
1590 // For SCSI interface, note that we set passthru to a different
1591 // value after ioctl().
1592 if (AMCC_3WARE_678K==m_escalade_type) {
1593 if (readdata)
1594 passthru=NULL;
1595 else
1596 passthru=(TW_Passthru *)&(tw_output->output_data);
1597 }
1598
1599 // See if the ATA command failed. Now that we have returned from
1600 // the ioctl() call, if passthru is valid, then:
1601 // - passthru->status contains the 3ware controller STATUS
1602 // - passthru->command contains the ATA STATUS register
1603 // - passthru->features contains the ATA ERROR register
1604 //
1605 // Check bits 0 (error bit) and 5 (device fault) of the ATA STATUS
1606 // If bit 0 (error bit) is set, then ATA ERROR register is valid.
1607 // While we *might* decode the ATA ERROR register, at the moment it
1608 // doesn't make much sense: we don't care in detail why the error
1609 // happened.
1610
1611 if (passthru && (passthru->status || (passthru->command & 0x21))) {
1612 return set_err(EIO);
1613 }
1614
1615 // If this is a read data command, copy data to output buffer
1616 if (readdata) {
1617 if (m_escalade_type == AMCC_3WARE_9700_CHAR || m_escalade_type == AMCC_3WARE_9000_CHAR)
1618 memcpy(in.buffer, tw_ioctl_apache->data_buffer, in.size);
1619 else if (m_escalade_type==AMCC_3WARE_678K_CHAR)
1620 memcpy(in.buffer, tw_ioctl_char->data_buffer, in.size);
1621 else
1622 memcpy(in.buffer, tw_output->output_data, in.size);
1623 }
1624
1625 // Return register values
1626 if (passthru) {
1627 ata_out_regs_48bit & r = out.out_regs;
1628 r.error = passthru->features;
1629 r.sector_count_16 = passthru->sector_count;
1630 r.lba_low_16 = passthru->sector_num;
1631 r.lba_mid_16 = passthru->cylinder_lo;
1632 r.lba_high_16 = passthru->cylinder_hi;
1633 r.device = passthru->drive_head;
1634 r.status = passthru->command;
1635 }
1636
1637 // look for nonexistent devices/ports
1638 if ( in.in_regs.command == ATA_IDENTIFY_DEVICE
1639 && !nonempty(in.buffer, in.size)) {
1640 return set_err(ENODEV, "No drive on port %d", m_disknum);
1641 }
1642
1643 return true;
1644 }
1645
1646
1647 /////////////////////////////////////////////////////////////////////////////
1648 /// Areca RAID support
1649
1650 class linux_areca_device
1651 : public /*implements*/ ata_device,
1652 public /*extends*/ linux_smart_device
1653 {
1654 public:
1655 linux_areca_device(smart_interface * intf, const char * dev_name, int disknum);
1656
1657 protected:
1658 virtual bool ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out);
1659
1660 private:
1661 int m_disknum; ///< Disk number.
1662 };
1663
1664
1665 // PURPOSE
1666 // This is an interface routine meant to isolate the OS dependent
1667 // parts of the code, and to provide a debugging interface. Each
1668 // different port and OS needs to provide it's own interface. This
1669 // is the linux interface to the Areca "arcmsr" driver. It allows ATA
1670 // commands to be passed through the SCSI driver.
1671 // DETAILED DESCRIPTION OF ARGUMENTS
1672 // fd: is the file descriptor provided by open()
1673 // disknum is the disk number (0 to 15) in the RAID array
1674 // command: defines the different operations.
1675 // select: additional input data if needed (which log, which type of
1676 // self-test).
1677 // data: location to write output data, if needed (512 bytes).
1678 // Note: not all commands use all arguments.
1679 // RETURN VALUES
1680 // -1 if the command failed
1681 // 0 if the command succeeded,
1682 // STATUS_CHECK routine:
1683 // -1 if the command failed
1684 // 0 if the command succeeded and disk SMART status is "OK"
1685 // 1 if the command succeeded and disk SMART status is "FAILING"
1686
1687
1688 /*DeviceType*/
1689 #define ARECA_SATA_RAID 0x90000000
1690 /*FunctionCode*/
1691 #define FUNCTION_READ_RQBUFFER 0x0801
1692 #define FUNCTION_WRITE_WQBUFFER 0x0802
1693 #define FUNCTION_CLEAR_RQBUFFER 0x0803
1694 #define FUNCTION_CLEAR_WQBUFFER 0x0804
1695
1696 /* ARECA IO CONTROL CODE*/
1697 #define ARCMSR_IOCTL_READ_RQBUFFER (ARECA_SATA_RAID | FUNCTION_READ_RQBUFFER)
1698 #define ARCMSR_IOCTL_WRITE_WQBUFFER (ARECA_SATA_RAID | FUNCTION_WRITE_WQBUFFER)
1699 #define ARCMSR_IOCTL_CLEAR_RQBUFFER (ARECA_SATA_RAID | FUNCTION_CLEAR_RQBUFFER)
1700 #define ARCMSR_IOCTL_CLEAR_WQBUFFER (ARECA_SATA_RAID | FUNCTION_CLEAR_WQBUFFER)
1701 #define ARECA_SIG_STR "ARCMSR"
1702
1703 // The SRB_IO_CONTROL & SRB_BUFFER structures are used to communicate(to/from) to areca driver
1704 typedef struct _SRB_IO_CONTROL
1705 {
1706 unsigned int HeaderLength;
1707 unsigned char Signature[8];
1708 unsigned int Timeout;
1709 unsigned int ControlCode;
1710 unsigned int ReturnCode;
1711 unsigned int Length;
1712 } sSRB_IO_CONTROL;
1713
1714 typedef struct _SRB_BUFFER
1715 {
1716 sSRB_IO_CONTROL srbioctl;
1717 unsigned char ioctldatabuffer[1032]; // the buffer to put the command data to/from firmware
1718 } sSRB_BUFFER;
1719
1720 // Looks in /proc/scsi to suggest correct areca devices
1721 // If hint not NULL, return device path guess
1722 static int find_areca_in_proc(char *hint)
1723 {
1724 const char* proc_format_string="host\tchan\tid\tlun\ttype\topens\tqdepth\tbusy\tonline\n";
1725
1726 // check data formwat
1727 FILE *fp=fopen("/proc/scsi/sg/device_hdr", "r");
1728 if (!fp) {
1729 pout("Unable to open /proc/scsi/sg/device_hdr for reading\n");
1730 return 1;
1731 }
1732
1733 // get line, compare to format
1734 char linebuf[256];
1735 linebuf[255]='\0';
1736 char *out = fgets(linebuf, 256, fp);
1737 fclose(fp);
1738 if (!out) {
1739 pout("Unable to read contents of /proc/scsi/sg/device_hdr\n");
1740 return 2;
1741 }
1742
1743 if (strcmp(linebuf, proc_format_string)) {
1744 // wrong format!
1745 // Fix this by comparing only tokens not white space!!
1746 pout("Unexpected format %s in /proc/scsi/sg/device_hdr\n", proc_format_string);
1747 return 3;
1748 }
1749
1750 // Format is understood, now search for correct device
1751 fp=fopen("/proc/scsi/sg/devices", "r");
1752 if (!fp) return 1;
1753 int host, chan, id, lun, type, opens, qdepth, busy, online;
1754 int dev=-1;
1755 int found=0;
1756 // search all lines of /proc/scsi/sg/devices
1757 while (9 == fscanf(fp, "%d %d %d %d %d %d %d %d %d", &host, &chan, &id, &lun, &type, &opens, &qdepth, &busy, &online)) {
1758 dev++;
1759 if (id == 16 && type == 3) {
1760 // devices with id=16 and type=3 might be Areca controllers
1761 if (!found && hint) {
1762 sprintf(hint, "/dev/sg%d", dev);
1763 }
1764 pout("Device /dev/sg%d appears to be an Areca controller.\n", dev);
1765 found++;
1766 }
1767 }
1768 fclose(fp);
1769 return 0;
1770 }
1771
1772
1773 #if 0 // For debugging areca code
1774
1775 static void dumpdata(unsigned char *block, int len)
1776 {
1777 int ln = (len / 16) + 1; // total line#
1778 unsigned char c;
1779 int pos = 0;
1780
1781 printf(" Address = %p, Length = (0x%x)%d\n", block, len, len);
1782 printf(" 0 1 2 3 4 5 6 7 8 9 A B C D E F ASCII \n");
1783 printf("=====================================================================\n");
1784
1785 for ( int l = 0; l < ln && len; l++ )
1786 {
1787 // printf the line# and the HEX data
1788 // if a line data length < 16 then append the space to the tail of line to reach 16 chars
1789 printf("%02X | ", l);
1790 for ( pos = 0; pos < 16 && len; pos++, len-- )
1791 {
1792 c = block[l*16+pos];
1793 printf("%02X ", c);
1794 }
1795
1796 if ( pos < 16 )
1797 {
1798 for ( int loop = pos; loop < 16; loop++ )
1799 {
1800 printf(" ");
1801 }
1802 }
1803
1804 // print ASCII char
1805 for ( int loop = 0; loop < pos; loop++ )
1806 {
1807 c = block[l*16+loop];
1808 if ( c >= 0x20 && c <= 0x7F )
1809 {
1810 printf("%c", c);
1811 }
1812 else
1813 {
1814 printf(".");
1815 }
1816 }
1817 printf("\n");
1818 }
1819 printf("=====================================================================\n");
1820 }
1821
1822 #endif
1823
1824 static int arcmsr_command_handler(int fd, unsigned long arcmsr_cmd, unsigned char *data, int data_len, void *ext_data /* reserved for further use */)
1825 {
1826 ARGUSED(ext_data);
1827
1828 int ioctlreturn = 0;
1829 sSRB_BUFFER sBuf;
1830 struct scsi_cmnd_io io_hdr;
1831 int dir = DXFER_TO_DEVICE;
1832
1833 UINT8 cdb[10];
1834 UINT8 sense[32];
1835
1836 unsigned char *areca_return_packet;
1837 int total = 0;
1838 int expected = -1;
1839 unsigned char return_buff[2048];
1840 unsigned char *ptr = &return_buff[0];
1841 memset(return_buff, 0, sizeof(return_buff));
1842
1843 memset((unsigned char *)&sBuf, 0, sizeof(sBuf));
1844 memset(&io_hdr, 0, sizeof(io_hdr));
1845 memset(cdb, 0, sizeof(cdb));
1846 memset(sense, 0, sizeof(sense));
1847
1848
1849 sBuf.srbioctl.HeaderLength = sizeof(sSRB_IO_CONTROL);
1850 memcpy(sBuf.srbioctl.Signature, ARECA_SIG_STR, strlen(ARECA_SIG_STR));
1851 sBuf.srbioctl.Timeout = 10000;
1852 sBuf.srbioctl.ControlCode = ARCMSR_IOCTL_READ_RQBUFFER;
1853
1854 switch ( arcmsr_cmd )
1855 {
1856 // command for writing data to driver
1857 case ARCMSR_IOCTL_WRITE_WQBUFFER:
1858 if ( data && data_len )
1859 {
1860 sBuf.srbioctl.Length = data_len;
1861 memcpy((unsigned char *)sBuf.ioctldatabuffer, (unsigned char *)data, data_len);
1862 }
1863 // commands for clearing related buffer of driver
1864 case ARCMSR_IOCTL_CLEAR_RQBUFFER:
1865 case ARCMSR_IOCTL_CLEAR_WQBUFFER:
1866 cdb[0] = 0x3B; //SCSI_WRITE_BUF command;
1867 break;
1868 // command for reading data from driver
1869 case ARCMSR_IOCTL_READ_RQBUFFER:
1870 cdb[0] = 0x3C; //SCSI_READ_BUF command;
1871 dir = DXFER_FROM_DEVICE;
1872 break;
1873 default:
1874 // unknown arcmsr commands
1875 return -1;
1876 }
1877
1878 cdb[1] = 0x01;
1879 cdb[2] = 0xf0;
1880 //
1881 // cdb[5][6][7][8] areca defined command code( to/from driver )
1882 //
1883 cdb[5] = (char)( arcmsr_cmd >> 24);
1884 cdb[6] = (char)( arcmsr_cmd >> 16);
1885 cdb[7] = (char)( arcmsr_cmd >> 8);
1886 cdb[8] = (char)( arcmsr_cmd & 0x0F );
1887
1888 io_hdr.dxfer_dir = dir;
1889 io_hdr.dxfer_len = sizeof(sBuf);
1890 io_hdr.dxferp = (unsigned char *)&sBuf;
1891 io_hdr.cmnd = cdb;
1892 io_hdr.cmnd_len = sizeof(cdb);
1893 io_hdr.sensep = sense;
1894 io_hdr.max_sense_len = sizeof(sense);
1895 io_hdr.timeout = SCSI_TIMEOUT_DEFAULT;
1896
1897 while ( 1 )
1898 {
1899 ioctlreturn = do_normal_scsi_cmnd_io(fd, &io_hdr, 0);
1900 if ( ioctlreturn || io_hdr.scsi_status )
1901 {
1902 // errors found
1903 break;
1904 }
1905
1906 if ( arcmsr_cmd != ARCMSR_IOCTL_READ_RQBUFFER )
1907 {
1908 // if succeeded, just returns the length of outgoing data
1909 return data_len;
1910 }
1911
1912 if ( sBuf.srbioctl.Length )
1913 {
1914 //dumpdata(&sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
1915 memcpy(ptr, &sBuf.ioctldatabuffer[0], sBuf.srbioctl.Length);
1916 ptr += sBuf.srbioctl.Length;
1917 total += sBuf.srbioctl.Length;
1918 // the returned bytes enough to compute payload length ?
1919 if ( expected < 0 && total >= 5 )
1920 {
1921 areca_return_packet = (unsigned char *)&return_buff[0];
1922 if ( areca_return_packet[0] == 0x5E &&
1923 areca_return_packet[1] == 0x01 &&
1924 areca_return_packet[2] == 0x61 )
1925 {
1926 // valid header, let's compute the returned payload length,
1927 // we expected the total length is
1928 // payload + 3 bytes header + 2 bytes length + 1 byte checksum
1929 expected = areca_return_packet[4] * 256 + areca_return_packet[3] + 6;
1930 }
1931 }
1932
1933 if ( total >= 7 && total >= expected )
1934 {
1935 //printf("total bytes received = %d, expected length = %d\n", total, expected);
1936
1937 // ------ Okay! we received enough --------
1938 break;
1939 }
1940 }
1941 }
1942
1943 // Deal with the different error cases
1944 if ( ioctlreturn )
1945 {
1946 pout("do_scsi_cmnd_io with write buffer failed code = %x\n", ioctlreturn);
1947 return -2;
1948 }
1949
1950
1951 if ( io_hdr.scsi_status )
1952 {
1953 pout("io_hdr.scsi_status with write buffer failed code = %x\n", io_hdr.scsi_status);
1954 return -3;
1955 }
1956
1957
1958 if ( data )
1959 {
1960 memcpy(data, return_buff, total);
1961 }
1962
1963 return total;
1964 }
1965
1966
1967 linux_areca_device::linux_areca_device(smart_interface * intf, const char * dev_name, int disknum)
1968 : smart_device(intf, dev_name, "areca", "areca"),
1969 linux_smart_device(O_RDWR | O_EXCL | O_NONBLOCK),
1970 m_disknum(disknum)
1971 {
1972 set_info().info_name = strprintf("%s [areca_%02d]", dev_name, disknum);
1973 }
1974
1975 // Areca RAID Controller
1976 // int linux_areca_device::ata_command_interface(smart_command_set command, int select, char * data)
1977 bool linux_areca_device::ata_pass_through(const ata_cmd_in & in, ata_cmd_out & out)
1978 {
1979 if (!ata_cmd_is_ok(in,
1980 true, // data_out_support
1981 false, // TODO: multi_sector_support
1982 true) // ata_48bit_support
1983 )
1984 return false;
1985
1986 // ATA input registers
1987 typedef struct _ATA_INPUT_REGISTERS
1988 {
1989 unsigned char features;
1990 unsigned char sector_count;
1991 unsigned char sector_number;
1992 unsigned char cylinder_low;
1993 unsigned char cylinder_high;
1994 unsigned char device_head;
1995 unsigned char command;
1996 unsigned char reserved[8];
1997 unsigned char data[512]; // [in/out] buffer for outgoing/incoming data
1998 } sATA_INPUT_REGISTERS;
1999
2000 // ATA output registers
2001 // Note: The output registers is re-sorted for areca internal use only
2002 typedef struct _ATA_OUTPUT_REGISTERS
2003 {
2004 unsigned char error;
2005 unsigned char status;
2006 unsigned char sector_count;
2007 unsigned char sector_number;
2008 unsigned char cylinder_low;
2009 unsigned char cylinder_high;
2010 }sATA_OUTPUT_REGISTERS;
2011
2012 // Areca packet format for outgoing:
2013 // B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
2014 // B[3~4] : 2 bytes command length + variant data length, little endian
2015 // B[5] : 1 bytes areca defined command code, ATA passthrough command code is 0x1c
2016 // B[6~last-1] : variant bytes payload data
2017 // B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
2018 //
2019 //
2020 // header 3 bytes length 2 bytes cmd 1 byte payload data x bytes cs 1 byte
2021 // +--------------------------------------------------------------------------------+
2022 // + 0x5E 0x01 0x61 | 0x00 0x00 | 0x1c | .................... | 0x00 |
2023 // +--------------------------------------------------------------------------------+
2024 //
2025
2026 //Areca packet format for incoming:
2027 // B[0~2] : 3 bytes header, fixed value 0x5E, 0x01, 0x61
2028 // B[3~4] : 2 bytes payload length, little endian
2029 // B[5~last-1] : variant bytes returned payload data
2030 // B[last] : 1 byte checksum, simply sum(B[3] ~ B[last -1])
2031 //
2032 //
2033 // header 3 bytes length 2 bytes payload data x bytes cs 1 byte
2034 // +-------------------------------------------------------------------+
2035 // + 0x5E 0x01 0x61 | 0x00 0x00 | .................... | 0x00 |
2036 // +-------------------------------------------------------------------+
2037 unsigned char areca_packet[640];
2038 int areca_packet_len = sizeof(areca_packet);
2039 unsigned char cs = 0;
2040
2041 sATA_INPUT_REGISTERS *ata_cmd;
2042
2043 // For debugging
2044 #if 0
2045 memset(sInq, 0, sizeof(sInq));
2046 scsiStdInquiry(fd, (unsigned char *)sInq, (int)sizeof(sInq));
2047 dumpdata((unsigned char *)sInq, sizeof(sInq));
2048 #endif
2049 memset(areca_packet, 0, areca_packet_len);
2050
2051 // ----- BEGIN TO SETUP HEADERS -------
2052 areca_packet[0] = 0x5E;
2053 areca_packet[1] = 0x01;
2054 areca_packet[2] = 0x61;
2055 areca_packet[3] = (unsigned char)((areca_packet_len - 6) & 0xff);
2056 areca_packet[4] = (unsigned char)(((areca_packet_len - 6) >> 8) & 0xff);
2057 areca_packet[5] = 0x1c; // areca defined code for ATA passthrough command
2058
2059 // ----- BEGIN TO SETUP PAYLOAD DATA -----
2060 memcpy(&areca_packet[7], "SmrT", 4); // areca defined password
2061 ata_cmd = (sATA_INPUT_REGISTERS *)&areca_packet[12];
2062
2063 // Set registers
2064 {
2065 const ata_in_regs_48bit & r = in.in_regs;
2066 ata_cmd->features = r.features_16;
2067 ata_cmd->sector_count = r.sector_count_16;
2068 ata_cmd->sector_number = r.lba_low_16;
2069 ata_cmd->cylinder_low = r.lba_mid_16;
2070 ata_cmd->cylinder_high = r.lba_high_16;
2071 ata_cmd->device_head = r.device;
2072 ata_cmd->command = r.command;
2073 }
2074 bool readdata = false;
2075 if (in.direction == ata_cmd_in::data_in) {
2076 readdata = true;
2077 // the command will read data
2078 areca_packet[6] = 0x13;
2079 }
2080 else if ( in.direction == ata_cmd_in::no_data )
2081 {
2082 // the commands will return no data
2083 areca_packet[6] = 0x15;
2084 }
2085 else if (in.direction == ata_cmd_in::data_out)
2086 {
2087 // the commands will write data
2088 memcpy(ata_cmd->data, in.buffer, in.size);
2089 areca_packet[6] = 0x14;
2090 }
2091 else {
2092 // COMMAND NOT SUPPORTED VIA ARECA IOCTL INTERFACE
2093 return set_err(ENOTSUP, "DATA OUT not supported for this Areca controller type");
2094 }
2095
2096 areca_packet[11] = m_disknum - 1; // drive number
2097
2098 // ----- BEGIN TO SETUP CHECKSUM -----
2099 for ( int loop = 3; loop < areca_packet_len - 1; loop++ )
2100 {
2101 cs += areca_packet[loop];
2102 }
2103 areca_packet[areca_packet_len-1] = cs;
2104
2105 // ----- BEGIN TO SEND TO ARECA DRIVER ------
2106 int expected = 0;
2107 unsigned char return_buff[2048];
2108 memset(return_buff, 0, sizeof(return_buff));
2109
2110 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_RQBUFFER, NULL, 0, NULL);
2111 if (expected==-3) {
2112 find_areca_in_proc(NULL);
2113 return set_err(EIO);
2114 }
2115
2116 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_CLEAR_WQBUFFER, NULL, 0, NULL);
2117 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_WRITE_WQBUFFER, areca_packet, areca_packet_len, NULL);
2118 if ( expected > 0 )
2119 {
2120 expected = arcmsr_command_handler(get_fd(), ARCMSR_IOCTL_READ_RQBUFFER, return_buff, sizeof(return_buff), NULL);
2121 }
2122 if ( expected < 0 )
2123 {
2124 return -1;
2125 }
2126
2127 // ----- VERIFY THE CHECKSUM -----
2128 cs = 0;
2129 for ( int loop = 3; loop < expected - 1; loop++ )
2130 {
2131 cs += return_buff[loop];
2132 }
2133
2134 if ( return_buff[expected - 1] != cs )
2135 {
2136 return set_err(EIO);
2137 }
2138
2139 sATA_OUTPUT_REGISTERS *ata_out = (sATA_OUTPUT_REGISTERS *)&return_buff[5] ;
2140 if ( ata_out->status )
2141 {
2142 if ( in.in_regs.command == ATA_IDENTIFY_DEVICE
2143 && !nonempty((unsigned char *)in.buffer, in.size))
2144 {
2145 return set_err(ENODEV, "No drive on port %d", m_disknum);
2146 }
2147 }
2148
2149 // returns with data
2150 if (readdata)
2151 {
2152 memcpy(in.buffer, &return_buff[7], in.size);
2153 }
2154
2155 // Return register values
2156 {
2157 ata_out_regs_48bit & r = out.out_regs;
2158 r.error = ata_out->error;
2159 r.sector_count_16 = ata_out->sector_count;
2160 r.lba_low_16 = ata_out->sector_number;
2161 r.lba_mid_16 = ata_out->cylinder_low;
2162 r.lba_high_16 = ata_out->cylinder_high;
2163 r.status = ata_out->status;
2164 }
2165 return true;
2166 }
2167
2168
2169 /////////////////////////////////////////////////////////////////////////////
2170 /// Marvell support
2171
2172 class linux_marvell_device
2173 : public /*implements*/ ata_device_with_command_set,
2174 public /*extends*/ linux_smart_device
2175 {
2176 public:
2177 linux_marvell_device(smart_interface * intf, const char * dev_name, const char * req_type);
2178
2179 protected:
2180 virtual int ata_command_interface(smart_command_set command, int select, char * data);
2181 };
2182
2183 linux_marvell_device::linux_marvell_device(smart_interface * intf,
2184 const char * dev_name, const char * req_type)
2185 : smart_device(intf, dev_name, "marvell", req_type),
2186 linux_smart_device(O_RDONLY | O_NONBLOCK)
2187 {
2188 }
2189
2190 int linux_marvell_device::ata_command_interface(smart_command_set command, int select, char * data)
2191 {
2192 typedef struct {
2193 int inlen;
2194 int outlen;
2195 char cmd[540];
2196 } mvsata_scsi_cmd;
2197
2198 int copydata = 0;
2199 mvsata_scsi_cmd smart_command;
2200 unsigned char *buff = (unsigned char *)&smart_command.cmd[6];
2201 // See struct hd_drive_cmd_hdr in hdreg.h
2202 // buff[0]: ATA COMMAND CODE REGISTER
2203 // buff[1]: ATA SECTOR NUMBER REGISTER
2204 // buff[2]: ATA FEATURES REGISTER
2205 // buff[3]: ATA SECTOR COUNT REGISTER
2206
2207 // clear out buff. Large enough for HDIO_DRIVE_CMD (4+512 bytes)
2208 memset(&smart_command, 0, sizeof(smart_command));
2209 smart_command.inlen = 540;
2210 smart_command.outlen = 540;
2211 smart_command.cmd[0] = 0xC; //Vendor-specific code
2212 smart_command.cmd[4] = 6; //command length
2213
2214 buff[0] = ATA_SMART_CMD;
2215 switch (command){
2216 case CHECK_POWER_MODE:
2217 buff[0]=ATA_CHECK_POWER_MODE;
2218 break;
2219 case READ_VALUES:
2220 buff[2]=ATA_SMART_READ_VALUES;
2221 copydata=buff[3]=1;
2222 break;
2223 case READ_THRESHOLDS:
2224 buff[2]=ATA_SMART_READ_THRESHOLDS;
2225 copydata=buff[1]=buff[3]=1;
2226 break;
2227 case READ_LOG:
2228 buff[2]=ATA_SMART_READ_LOG_SECTOR;
2229 buff[1]=select;
2230 copydata=buff[3]=1;
2231 break;
2232 case IDENTIFY:
2233 buff[0]=ATA_IDENTIFY_DEVICE;
2234 copydata=buff[3]=1;
2235 break;
2236 case PIDENTIFY:
2237 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
2238 copydata=buff[3]=1;
2239 break;
2240 case ENABLE:
2241 buff[2]=ATA_SMART_ENABLE;
2242 buff[1]=1;
2243 break;
2244 case DISABLE:
2245 buff[2]=ATA_SMART_DISABLE;
2246 buff[1]=1;
2247 break;
2248 case STATUS:
2249 case STATUS_CHECK:
2250 // this command only says if SMART is working. It could be
2251 // replaced with STATUS_CHECK below.
2252 buff[2] = ATA_SMART_STATUS;
2253 break;
2254 case AUTO_OFFLINE:
2255 buff[2]=ATA_SMART_AUTO_OFFLINE;
2256 buff[3]=select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
2257 break;
2258 case AUTOSAVE:
2259 buff[2]=ATA_SMART_AUTOSAVE;
2260 buff[3]=select; // YET NOTE - THIS IS A NON-DATA COMMAND!!
2261 break;
2262 case IMMEDIATE_OFFLINE:
2263 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
2264 buff[1]=select;
2265 break;
2266 default:
2267 pout("Unrecognized command %d in mvsata_os_specific_handler()\n", command);
2268 EXIT(1);
2269 break;
2270 }
2271 // There are two different types of ioctls(). The HDIO_DRIVE_TASK
2272 // one is this:
2273 // We are now doing the HDIO_DRIVE_CMD type ioctl.
2274 if (ioctl(get_fd(), SCSI_IOCTL_SEND_COMMAND, (void *)&smart_command))
2275 return -1;
2276
2277 if (command==CHECK_POWER_MODE) {
2278 // LEON -- CHECK THIS PLEASE. THIS SHOULD BE THE SECTOR COUNT
2279 // REGISTER, AND IT MIGHT BE buff[2] NOT buff[3]. Bruce
2280 data[0]=buff[3];
2281 return 0;
2282 }
2283
2284 // Always succeed on a SMART status, as a disk that failed returned
2285 // buff[4]=0xF4, buff[5]=0x2C, i.e. "Bad SMART status" (see below).
2286 if (command == STATUS)
2287 return 0;
2288 //Data returned is starting from 0 offset
2289 if (command == STATUS_CHECK)
2290 {
2291 // Cyl low and Cyl high unchanged means "Good SMART status"
2292 if (buff[4] == 0x4F && buff[5] == 0xC2)
2293 return 0;
2294 // These values mean "Bad SMART status"
2295 if (buff[4] == 0xF4 && buff[5] == 0x2C)
2296 return 1;
2297 // We haven't gotten output that makes sense; print out some debugging info
2298 syserror("Error SMART Status command failed");
2299 pout("Please get assistance from %s\n",PACKAGE_BUGREPORT);
2300 pout("Register values returned from SMART Status command are:\n");
2301 pout("CMD =0x%02x\n",(int)buff[0]);
2302 pout("FR =0x%02x\n",(int)buff[1]);
2303 pout("NS =0x%02x\n",(int)buff[2]);
2304 pout("SC =0x%02x\n",(int)buff[3]);
2305 pout("CL =0x%02x\n",(int)buff[4]);
2306 pout("CH =0x%02x\n",(int)buff[5]);
2307 pout("SEL=0x%02x\n",(int)buff[6]);
2308 return -1;
2309 }
2310
2311 if (copydata)
2312 memcpy(data, buff, 512);
2313 return 0;
2314 }
2315
2316
2317 /////////////////////////////////////////////////////////////////////////////
2318 /// Highpoint RAID support
2319
2320 class linux_highpoint_device
2321 : public /*implements*/ ata_device_with_command_set,
2322 public /*extends*/ linux_smart_device
2323 {
2324 public:
2325 linux_highpoint_device(smart_interface * intf, const char * dev_name,
2326 unsigned char controller, unsigned char channel, unsigned char port);
2327
2328 protected:
2329 virtual int ata_command_interface(smart_command_set command, int select, char * data);
2330
2331 private:
2332 unsigned char m_hpt_data[3]; ///< controller/channel/port
2333 };
2334
2335 linux_highpoint_device::linux_highpoint_device(smart_interface * intf, const char * dev_name,
2336 unsigned char controller, unsigned char channel, unsigned char port)
2337 : smart_device(intf, dev_name, "hpt", "hpt"),
2338 linux_smart_device(O_RDONLY | O_NONBLOCK)
2339 {
2340 m_hpt_data[0] = controller; m_hpt_data[1] = channel; m_hpt_data[2] = port;
2341 set_info().info_name = strprintf("%s [hpt_disk_%u/%u/%u]", dev_name, m_hpt_data[0], m_hpt_data[1], m_hpt_data[2]);
2342 }
2343
2344 // this implementation is derived from ata_command_interface with a header
2345 // packing for highpoint linux driver ioctl interface
2346 //
2347 // ioctl(fd,HPTIO_CTL,buff)
2348 // ^^^^^^^^^
2349 //
2350 // structure of hpt_buff
2351 // +----+----+----+----+--------------------.....---------------------+
2352 // | 1 | 2 | 3 | 4 | 5 |
2353 // +----+----+----+----+--------------------.....---------------------+
2354 //
2355 // 1: The target controller [ int ( 4 Bytes ) ]
2356 // 2: The channel of the target controllee [ int ( 4 Bytes ) ]
2357 // 3: HDIO_ ioctl call [ int ( 4 Bytes ) ]
2358 // available from ${LINUX_KERNEL_SOURCE}/Documentation/ioctl/hdio
2359 // 4: the pmport that disk attached, [ int ( 4 Bytes ) ]
2360 // if no pmport device, set to 1 or leave blank
2361 // 5: data [ void * ( var leangth ) ]
2362 //
2363 #define STRANGE_BUFFER_LENGTH (4+512*0xf8)
2364
2365 int linux_highpoint_device::ata_command_interface(smart_command_set command, int select, char * data)
2366 {
2367 unsigned char hpt_buff[4*sizeof(int) + STRANGE_BUFFER_LENGTH];
2368 unsigned int *hpt = (unsigned int *)hpt_buff;
2369 unsigned char *buff = &hpt_buff[4*sizeof(int)];
2370 int copydata = 0;
2371 const int HDIO_DRIVE_CMD_OFFSET = 4;
2372
2373 memset(hpt_buff, 0, 4*sizeof(int) + STRANGE_BUFFER_LENGTH);
2374 hpt[0] = m_hpt_data[0]; // controller id
2375 hpt[1] = m_hpt_data[1]; // channel number
2376 hpt[3] = m_hpt_data[2]; // pmport number
2377
2378 buff[0]=ATA_SMART_CMD;
2379 switch (command){
2380 case CHECK_POWER_MODE:
2381 buff[0]=ATA_CHECK_POWER_MODE;
2382 copydata=1;
2383 break;
2384 case READ_VALUES:
2385 buff[2]=ATA_SMART_READ_VALUES;
2386 buff[3]=1;
2387 copydata=512;
2388 break;
2389 case READ_THRESHOLDS:
2390 buff[2]=ATA_SMART_READ_THRESHOLDS;
2391 buff[1]=buff[3]=1;
2392 copydata=512;
2393 break;
2394 case READ_LOG:
2395 buff[2]=ATA_SMART_READ_LOG_SECTOR;
2396 buff[1]=select;
2397 buff[3]=1;
2398 copydata=512;
2399 break;
2400 case WRITE_LOG:
2401 break;
2402 case IDENTIFY:
2403 buff[0]=ATA_IDENTIFY_DEVICE;
2404 buff[3]=1;
2405 copydata=512;
2406 break;
2407 case PIDENTIFY:
2408 buff[0]=ATA_IDENTIFY_PACKET_DEVICE;
2409 buff[3]=1;
2410 copydata=512;
2411 break;
2412 case ENABLE:
2413 buff[2]=ATA_SMART_ENABLE;
2414 buff[1]=1;
2415 break;
2416 case DISABLE:
2417 buff[2]=ATA_SMART_DISABLE;
2418 buff[1]=1;
2419 break;
2420 case STATUS:
2421 buff[2]=ATA_SMART_STATUS;
2422 break;
2423 case AUTO_OFFLINE:
2424 buff[2]=ATA_SMART_AUTO_OFFLINE;
2425 buff[3]=select;
2426 break;
2427 case AUTOSAVE:
2428 buff[2]=ATA_SMART_AUTOSAVE;
2429 buff[3]=select;
2430 break;
2431 case IMMEDIATE_OFFLINE:
2432 buff[2]=ATA_SMART_IMMEDIATE_OFFLINE;
2433 buff[1]=select;
2434 break;
2435 case STATUS_CHECK:
2436 buff[1]=ATA_SMART_STATUS;
2437 break;
2438 default:
2439 pout("Unrecognized command %d in linux_highpoint_command_interface()\n"
2440 "Please contact " PACKAGE_BUGREPORT "\n", command);
2441 errno=ENOSYS;
2442 return -1;
2443 }
2444
2445 if (command==WRITE_LOG) {
2446 unsigned char task[4*sizeof(int)+sizeof(ide_task_request_t)+512];
2447 unsigned int *hpt_tf = (unsigned int *)task;
2448 ide_task_request_t *reqtask = (ide_task_request_t *)(&task[4*sizeof(int)]);
2449 task_struct_t *taskfile = (task_struct_t *)reqtask->io_ports;
2450 int retval;
2451
2452 memset(task, 0, sizeof(task));
2453
2454 hpt_tf[0] = m_hpt_data[0]; // controller id
2455 hpt_tf[1] = m_hpt_data[1]; // channel number
2456 hpt_tf[3] = m_hpt_data[2]; // pmport number
2457 hpt_tf[2] = HDIO_DRIVE_TASKFILE; // real hd ioctl
2458
2459 taskfile->data = 0;
2460 taskfile->feature = ATA_SMART_WRITE_LOG_SECTOR;
2461 taskfile->sector_count = 1;
2462 taskfile->sector_number = select;
2463 taskfile->low_cylinder = 0x4f;
2464 taskfile->high_cylinder = 0xc2;
2465 taskfile->device_head = 0;
2466 taskfile->command = ATA_SMART_CMD;
2467
2468 reqtask->data_phase = TASKFILE_OUT;
2469 reqtask->req_cmd = IDE_DRIVE_TASK_OUT;
2470 reqtask->out_size = 512;
2471 reqtask->in_size = 0;
2472
2473 memcpy(task+sizeof(ide_task_request_t)+4*sizeof(int), data, 512);
2474
2475 if ((retval=ioctl(get_fd(), HPTIO_CTL, task))) {
2476 if (retval==-EINVAL)
2477 pout("Kernel lacks HDIO_DRIVE_TASKFILE support; compile kernel with CONFIG_IDE_TASKFILE_IO set\n");
2478 return -1;
2479 }
2480 return 0;
2481 }
2482
2483 if (command==STATUS_CHECK){
2484 int retval;
2485 unsigned const char normal_lo=0x4f, normal_hi=0xc2;
2486 unsigned const char failed_lo=0xf4, failed_hi=0x2c;
2487 buff[4]=normal_lo;
2488 buff[5]=normal_hi;
2489
2490 hpt[2] = HDIO_DRIVE_TASK;
2491
2492 if ((retval=ioctl(get_fd(), HPTIO_CTL, hpt_buff))) {
2493 if (retval==-EINVAL) {
2494 pout("Error SMART Status command via HDIO_DRIVE_TASK failed");
2495 pout("Rebuild older linux 2.2 kernels with HDIO_DRIVE_TASK support added\n");
2496 }
2497 else
2498 syserror("Error SMART Status command failed");
2499 return -1;
2500 }
2501
2502 if (buff[4]==normal_lo && buff[5]==normal_hi)
2503 return 0;
2504
2505 if (buff[4]==failed_lo && buff[5]==failed_hi)
2506 return 1;
2507
2508 syserror("Error SMART Status command failed");
2509 pout("Please get assistance from " PACKAGE_HOMEPAGE "\n");
2510 pout("Register values returned from SMART Status command are:\n");
2511 pout("CMD=0x%02x\n",(int)buff[0]);
2512 pout("FR =0x%02x\n",(int)buff[1]);
2513 pout("NS =0x%02x\n",(int)buff[2]);
2514 pout("SC =0x%02x\n",(int)buff[3]);
2515 pout("CL =0x%02x\n",(int)buff[4]);
2516 pout("CH =0x%02x\n",(int)buff[5]);
2517 pout("SEL=0x%02x\n",(int)buff[6]);
2518 return -1;
2519 }
2520
2521 #if 1
2522 if (command==IDENTIFY || command==PIDENTIFY) {
2523 unsigned char deviceid[4*sizeof(int)+512*sizeof(char)];
2524 unsigned int *hpt_id = (unsigned int *)deviceid;
2525
2526 hpt_id[0] = m_hpt_data[0]; // controller id
2527 hpt_id[1] = m_hpt_data[1]; // channel number
2528 hpt_id[3] = m_hpt_data[2]; // pmport number
2529
2530 hpt_id[2] = HDIO_GET_IDENTITY;
2531 if (!ioctl(get_fd(), HPTIO_CTL, deviceid) && (deviceid[4*sizeof(int)] & 0x8000))
2532 buff[0]=(command==IDENTIFY)?ATA_IDENTIFY_PACKET_DEVICE:ATA_IDENTIFY_DEVICE;
2533 }
2534 #endif
2535
2536 hpt[2] = HDIO_DRIVE_CMD;
2537 if ((ioctl(get_fd(), HPTIO_CTL, hpt_buff)))
2538 return -1;
2539
2540 if (command==CHECK_POWER_MODE)
2541 buff[HDIO_DRIVE_CMD_OFFSET]=buff[2];
2542
2543 if (copydata)
2544 memcpy(data, buff+HDIO_DRIVE_CMD_OFFSET, copydata);
2545
2546 return 0;
2547 }
2548
2549
2550 #if 0 // TODO: Migrate from 'smart_command_set' to 'ata_in_regs' OR remove the function
2551 // Utility function for printing warnings
2552 void printwarning(smart_command_set command){
2553 static int printed[4]={0,0,0,0};
2554 const char* message=
2555 "can not be passed through the 3ware 3w-xxxx driver. This can be fixed by\n"
2556 "applying a simple 3w-xxxx driver patch that can be found here:\n"
2557 PACKAGE_HOMEPAGE "\n"
2558 "Alternatively, upgrade your 3w-xxxx driver to version 1.02.00.037 or greater.\n\n";
2559
2560 if (command==AUTO_OFFLINE && !printed[0]) {
2561 printed[0]=1;
2562 pout("The SMART AUTO-OFFLINE ENABLE command (smartmontools -o on option/Directive)\n%s", message);
2563 }
2564 else if (command==AUTOSAVE && !printed[1]) {
2565 printed[1]=1;
2566 pout("The SMART AUTOSAVE ENABLE command (smartmontools -S on option/Directive)\n%s", message);
2567 }
2568 else if (command==STATUS_CHECK && !printed[2]) {
2569 printed[2]=1;
2570 pout("The SMART RETURN STATUS return value (smartmontools -H option/Directive)\n%s", message);
2571 }
2572 else if (command==WRITE_LOG && !printed[3]) {
2573 printed[3]=1;
2574 pout("The SMART WRITE LOG command (smartmontools -t selective) only supported via char /dev/tw[ae] interface\n");
2575 }
2576
2577 return;
2578 }
2579 #endif
2580
2581
2582 /////////////////////////////////////////////////////////////////////////////
2583 /// SCSI open with autodetection support
2584
2585 smart_device * linux_scsi_device::autodetect_open()
2586 {
2587 // Open device
2588 if (!open())
2589 return this;
2590
2591 // No Autodetection if device type was specified by user
2592 bool sat_only = false;
2593 if (*get_req_type()) {
2594 // Detect SAT if device object was created by scan_smart_devices().
2595 if (!(m_scanning && !strcmp(get_req_type(), "sat")))
2596 return this;
2597 sat_only = true;
2598 }
2599
2600 // The code below is based on smartd.cpp:SCSIFilterKnown()
2601
2602 // Get INQUIRY
2603 unsigned char req_buff[64] = {0, };
2604 int req_len = 36;
2605 if (scsiStdInquiry(this, req_buff, req_len)) {
2606 // Marvell controllers fail on a 36 bytes StdInquiry, but 64 suffices
2607 // watch this spot ... other devices could lock up here
2608 req_len = 64;
2609 if (scsiStdInquiry(this, req_buff, req_len)) {
2610 // device doesn't like INQUIRY commands
2611 close();
2612 set_err(EIO, "INQUIRY failed");
2613 return this;
2614 }
2615 }
2616
2617 int avail_len = req_buff[4] + 5;
2618 int len = (avail_len < req_len ? avail_len : req_len);
2619 if (len < 36) {
2620 if (sat_only) {
2621 close();
2622 set_err(EIO, "INQUIRY too short for SAT");
2623 }
2624 return this;
2625 }
2626
2627 // Use INQUIRY to detect type
2628 if (!sat_only) {
2629
2630 // 3ware ?
2631 if (!memcmp(req_buff + 8, "3ware", 5) || !memcmp(req_buff + 8, "AMCC", 4)) {
2632 close();
2633 set_err(EINVAL, "AMCC/3ware controller, please try adding '-d 3ware,N',\n"
2634 "you may need to replace %s with /dev/twlN, /dev/twaN or /dev/tweN", get_dev_name());
2635 return this;
2636 }
2637
2638 // DELL?
2639 if (!memcmp(req_buff + 8, "DELL PERC", 12) || !memcmp(req_buff + 8, "MegaRAID", 8)) {
2640 close();
2641 set_err(EINVAL, "DELL or MegaRaid controller, please try adding '-d megaraid,N'");
2642 return this;
2643 }
2644
2645 // Marvell ?
2646 if (len >= 42 && !memcmp(req_buff + 36, "MVSATA", 6)) {
2647 //pout("Device %s: using '-d marvell' for ATA disk with Marvell driver\n", get_dev_name());
2648 close();
2649 smart_device_auto_ptr newdev(
2650 new linux_marvell_device(smi(), get_dev_name(), get_req_type())
2651 );
2652 newdev->open(); // TODO: Can possibly pass open fd
2653 delete this;
2654 return newdev.release();
2655 }
2656 }
2657
2658 // SAT or USB ?
2659 {
2660 smart_device * newdev = smi()->autodetect_sat_device(this, req_buff, len);
2661 if (newdev)
2662 // NOTE: 'this' is now owned by '*newdev'
2663 return newdev;
2664 }
2665
2666 // Nothing special found
2667
2668 if (sat_only) {
2669 close();
2670 set_err(EIO, "Not a SAT device");
2671 }
2672 return this;
2673 }
2674
2675
2676 //////////////////////////////////////////////////////////////////////
2677 // USB bridge ID detection
2678
2679 // Read USB ID from /sys file
2680 static bool read_id(const std::string & path, unsigned short & id)
2681 {
2682 FILE * f = fopen(path.c_str(), "r");
2683 if (!f)
2684 return false;
2685 int n = -1;
2686 bool ok = (fscanf(f, "%hx%n", &id, &n) == 1 && n == 4);
2687 fclose(f);
2688 return ok;
2689 }
2690
2691 // Get USB bridge ID for "sdX"
2692 static bool get_usb_id(const char * name, unsigned short & vendor_id,
2693 unsigned short & product_id, unsigned short & version)
2694 {
2695 // Only "sdX" supported
2696 if (!(!strncmp(name, "sd", 2) && !strchr(name, '/')))
2697 return false;
2698
2699 // Start search at dir referenced by symlink "/sys/block/sdX/device"
2700 // -> "/sys/devices/.../usb*/.../host*/target*/..."
2701 std::string dir = strprintf("/sys/block/%s/device", name);
2702
2703 // Stop search at "/sys/devices"
2704 struct stat st;
2705 if (stat("/sys/devices", &st))
2706 return false;
2707 ino_t stop_ino = st.st_ino;
2708
2709 // Search in parent directories until "idVendor" is found,
2710 // fail if "/sys/devices" reached or too many iterations
2711 int cnt = 0;
2712 do {
2713 dir += "/..";
2714 if (!(++cnt < 10 && !stat(dir.c_str(), &st) && st.st_ino != stop_ino))
2715 return false;
2716 } while (access((dir + "/idVendor").c_str(), 0));
2717
2718 // Read IDs
2719 if (!( read_id(dir + "/idVendor", vendor_id)
2720 && read_id(dir + "/idProduct", product_id)
2721 && read_id(dir + "/bcdDevice", version) ))
2722 return false;
2723
2724 if (scsi_debugmode > 1)
2725 pout("USB ID = 0x%04x:0x%04x (0x%03x)\n", vendor_id, product_id, version);
2726 return true;
2727 }
2728
2729
2730 //////////////////////////////////////////////////////////////////////
2731 /// Linux interface
2732
2733 class linux_smart_interface
2734 : public /*implements*/ smart_interface
2735 {
2736 public:
2737 virtual std::string get_os_version_str();
2738
2739 virtual std::string get_app_examples(const char * appname);
2740
2741 virtual bool scan_smart_devices(smart_device_list & devlist, const char * type,
2742 const char * pattern = 0);
2743
2744 protected:
2745 virtual ata_device * get_ata_device(const char * name, const char * type);
2746
2747 virtual scsi_device * get_scsi_device(const char * name, const char * type);
2748
2749 virtual smart_device * autodetect_smart_device(const char * name);
2750
2751 virtual smart_device * get_custom_smart_device(const char * name, const char * type);
2752
2753 virtual std::string get_valid_custom_dev_types_str();
2754
2755 private:
2756 bool get_dev_list(smart_device_list & devlist, const char * pattern,
2757 bool scan_ata, bool scan_scsi, const char * req_type, bool autodetect);
2758
2759 smart_device * missing_option(const char * opt);
2760 };
2761
2762 std::string linux_smart_interface::get_os_version_str()
2763 {
2764 struct utsname u;
2765 if (!uname(&u))
2766 return strprintf("%s-linux-%s", u.machine, u.release);
2767 else
2768 return SMARTMONTOOLS_BUILD_HOST;
2769 }
2770
2771 std::string linux_smart_interface::get_app_examples(const char * appname)
2772 {
2773 if (!strcmp(appname, "smartctl"))
2774 return smartctl_examples;
2775 return "";
2776 }
2777
2778
2779 // we are going to take advantage of the fact that Linux's devfs will only
2780 // have device entries for devices that exist. So if we get the equivalent of
2781 // ls /dev/hd[a-t], we have all the ATA devices on the system
2782 bool linux_smart_interface::get_dev_list(smart_device_list & devlist,
2783 const char * pattern, bool scan_ata, bool scan_scsi,
2784 const char * req_type, bool autodetect)
2785 {
2786 // Use glob to look for any directory entries matching the pattern
2787 glob_t globbuf;
2788 memset(&globbuf, 0, sizeof(globbuf));
2789 int retglob = glob(pattern, GLOB_ERR, NULL, &globbuf);
2790 if (retglob) {
2791 // glob failed: free memory and return
2792 globfree(&globbuf);
2793
2794 if (retglob==GLOB_NOMATCH){
2795 pout("glob(3) found no matches for pattern %s\n", pattern);
2796 return true;
2797 }
2798
2799 if (retglob==GLOB_NOSPACE)
2800 set_err(ENOMEM, "glob(3) ran out of memory matching pattern %s", pattern);
2801 #ifdef GLOB_ABORTED // missing in old versions of glob.h
2802 else if (retglob==GLOB_ABORTED)
2803 set_err(EINVAL, "glob(3) aborted matching pattern %s", pattern);
2804 #endif
2805 else
2806 set_err(EINVAL, "Unexplained error in glob(3) of pattern %s", pattern);
2807
2808 return false;
2809 }
2810
2811 // did we find too many paths?
2812 const int max_pathc = 32;
2813 int n = (int)globbuf.gl_pathc;
2814 if (n > max_pathc) {
2815 pout("glob(3) found %d > MAX=%d devices matching pattern %s: ignoring %d paths\n",
2816 n, max_pathc, pattern, n - max_pathc);
2817 n = max_pathc;
2818 }
2819
2820 // now step through the list returned by glob. If not a link, copy
2821 // to list. If it is a link, evaluate it and see if the path ends
2822 // in "disc".
2823 for (int i = 0; i < n; i++){
2824 // see if path is a link
2825 char linkbuf[1024];
2826 int retlink = readlink(globbuf.gl_pathv[i], linkbuf, sizeof(linkbuf)-1);
2827
2828 char tmpname[1024]={0};
2829 const char * name = 0;
2830 bool is_scsi = scan_scsi;
2831 // if not a link (or a strange link), keep it
2832 if (retlink<=0 || retlink>1023)
2833 name = globbuf.gl_pathv[i];
2834 else {
2835 // or if it's a link that points to a disc, follow it
2836 linkbuf[retlink] = 0;
2837 const char *p;
2838 if ((p=strrchr(linkbuf, '/')) && !strcmp(p+1, "disc"))
2839 // This is the branch of the code that gets followed if we are
2840 // using devfs WITH traditional compatibility links. In this
2841 // case, we add the traditional device name to the list that
2842 // is returned.
2843 name = globbuf.gl_pathv[i];
2844 else {
2845 // This is the branch of the code that gets followed if we are
2846 // using devfs WITHOUT traditional compatibility links. In
2847 // this case, we check that the link to the directory is of
2848 // the correct type, and then append "disc" to it.
2849 bool match_ata = strstr(linkbuf, "ide");
2850 bool match_scsi = strstr(linkbuf, "scsi");
2851 if (((match_ata && scan_ata) || (match_scsi && scan_scsi)) && !(match_ata && match_scsi)) {
2852 is_scsi = match_scsi;
2853 snprintf(tmpname, sizeof(tmpname), "%s/disc", globbuf.gl_pathv[i]);
2854 name = tmpname;
2855 }
2856 }
2857 }
2858
2859 if (name) {
2860 // Found a name, add device to list.
2861 smart_device * dev;
2862 if (autodetect)
2863 dev = autodetect_smart_device(name);
2864 else if (is_scsi)
2865 dev = new linux_scsi_device(this, name, req_type, true /*scanning*/);
2866 else
2867 dev = new linux_ata_device(this, name, req_type);
2868 if (dev) // autodetect_smart_device() may return nullptr.
2869 devlist.push_back(dev);
2870 }
2871 }
2872
2873 // free memory
2874 globfree(&globbuf);
2875
2876 return true;
2877 }
2878
2879 bool linux_smart_interface::scan_smart_devices(smart_device_list & devlist,
2880 const char * type, const char * pattern /*= 0*/)
2881 {
2882 if (pattern) {
2883 set_err(EINVAL, "DEVICESCAN with pattern not implemented yet");
2884 return false;
2885 }
2886
2887 if (!type)
2888 type = "";
2889
2890 bool scan_ata = (!*type || !strcmp(type, "ata" ));
2891 // "sat" detection will be later handled in linux_scsi_device::autodetect_open()
2892 bool scan_scsi = (!*type || !strcmp(type, "scsi") || !strcmp(type, "sat"));
2893 if (!(scan_ata || scan_scsi))
2894 return true;
2895
2896 if (scan_ata)
2897 get_dev_list(devlist, "/dev/hd[a-t]", true, false, type, false);
2898 if (scan_scsi) {
2899 bool autodetect = !*type; // Try USB autodetection if no type specifed
2900 get_dev_list(devlist, "/dev/sd[a-z]", false, true, type, autodetect);
2901 // Support up to 104 devices
2902 get_dev_list(devlist, "/dev/sd[a-c][a-z]", false, true, type, autodetect);
2903 }
2904
2905 // if we found traditional links, we are done
2906 if (devlist.size() > 0)
2907 return true;
2908
2909 // else look for devfs entries without traditional links
2910 // TODO: Add udev support
2911 return get_dev_list(devlist, "/dev/discs/disc*", scan_ata, scan_scsi, type, false);
2912 }
2913
2914 ata_device * linux_smart_interface::get_ata_device(const char * name, const char * type)
2915 {
2916 return new linux_ata_device(this, name, type);
2917 }
2918
2919 scsi_device * linux_smart_interface::get_scsi_device(const char * name, const char * type)
2920 {
2921 return new linux_scsi_device(this, name, type);
2922 }
2923
2924 smart_device * linux_smart_interface::missing_option(const char * opt)
2925 {
2926 set_err(EINVAL, "requires option '%s'", opt);
2927 return 0;
2928 }
2929
2930 // Return true if STR starts with PREFIX.
2931 static inline bool str_starts_with(const char * str, const char * prefix)
2932 {
2933 return !strncmp(str, prefix, strlen(prefix));
2934 }
2935
2936 // Return kernel release as integer ("2.6.31" -> 206031)
2937 static unsigned get_kernel_release()
2938 {
2939 struct utsname u;
2940 if (uname(&u))
2941 return 0;
2942 unsigned x = 0, y = 0, z = 0;
2943 if (!(sscanf(u.release, "%u.%u.%u", &x, &y, &z) == 3
2944 && x < 100 && y < 100 && z < 1000 ))
2945 return 0;
2946 return x * 100000 + y * 1000 + z;
2947 }
2948
2949 // Guess device type (ata or scsi) based on device name (Linux
2950 // specific) SCSI device name in linux can be sd, sr, scd, st, nst,
2951 // osst, nosst and sg.
2952 smart_device * linux_smart_interface::autodetect_smart_device(const char * name)
2953 {
2954 const char * test_name = name;
2955
2956 // Dereference symlinks
2957 struct stat st;
2958 std::string pathbuf;
2959 if (!lstat(name, &st) && S_ISLNK(st.st_mode)) {
2960 char * p = realpath(name, (char *)0);
2961 if (p) {
2962 pathbuf = p;
2963 free(p);
2964 test_name = pathbuf.c_str();
2965 }
2966 }
2967
2968 // Remove the leading /dev/... if it's there
2969 static const char dev_prefix[] = "/dev/";
2970 if (str_starts_with(test_name, dev_prefix))
2971 test_name += strlen(dev_prefix);
2972
2973 // form /dev/h* or h*
2974 if (str_starts_with(test_name, "h"))
2975 return new linux_ata_device(this, name, "");
2976
2977 // form /dev/ide/* or ide/*
2978 if (str_starts_with(test_name, "ide/"))
2979 return new linux_ata_device(this, name, "");
2980
2981 // form /dev/s* or s*
2982 if (str_starts_with(test_name, "s")) {
2983
2984 // Try to detect possible USB->(S)ATA bridge
2985 unsigned short vendor_id = 0, product_id = 0, version = 0;
2986 if (get_usb_id(test_name, vendor_id, product_id, version)) {
2987 const char * usbtype = get_usb_dev_type_by_id(vendor_id, product_id, version);
2988 if (!usbtype)
2989 return 0;
2990
2991 // Kernels before 2.6.29 do not support the sense data length
2992 // required for SAT ATA PASS-THROUGH(16)
2993 if (!strcmp(usbtype, "sat") && get_kernel_release() < 206029)
2994 usbtype = "sat,12";
2995
2996 // Return SAT/USB device for this type
2997 // (Note: linux_scsi_device::autodetect_open() will not be called in this case)
2998 return get_sat_device(usbtype, new linux_scsi_device(this, name, ""));
2999 }
3000
3001 // No USB bridge found, assume regular SCSI device
3002 return new linux_scsi_device(this, name, "");
3003 }
3004
3005 // form /dev/scsi/* or scsi/*
3006 if (str_starts_with(test_name, "scsi/"))
3007 return new linux_scsi_device(this, name, "");
3008
3009 // form /dev/ns* or ns*
3010 if (str_starts_with(test_name, "ns"))
3011 return new linux_scsi_device(this, name, "");
3012
3013 // form /dev/os* or os*
3014 if (str_starts_with(test_name, "os"))
3015 return new linux_scsi_device(this, name, "");
3016
3017 // form /dev/nos* or nos*
3018 if (str_starts_with(test_name, "nos"))
3019 return new linux_scsi_device(this, name, "");
3020
3021 // form /dev/tw[ael]* or tw[ael]*
3022 if (str_starts_with(test_name, "tw") && strchr("ael", test_name[2]))
3023 return missing_option("-d 3ware,N");
3024
3025 // form /dev/cciss/* or cciss/*
3026 if (str_starts_with(test_name, "cciss/"))
3027 return missing_option("-d cciss,N");
3028
3029 // we failed to recognize any of the forms
3030 return 0;
3031 }
3032
3033 smart_device * linux_smart_interface::get_custom_smart_device(const char * name, const char * type)
3034 {
3035 // Marvell ?
3036 if (!strcmp(type, "marvell"))
3037 return new linux_marvell_device(this, name, type);
3038
3039 // 3Ware ?
3040 int disknum = -1, n1 = -1, n2 = -1;
3041 if (sscanf(type, "3ware,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3042 if (n2 != (int)strlen(type)) {
3043 set_err(EINVAL, "Option -d 3ware,N requires N to be a non-negative integer");
3044 return 0;
3045 }
3046 if (!(0 <= disknum && disknum <= 127)) {
3047 set_err(EINVAL, "Option -d 3ware,N (N=%d) must have 0 <= N <= 127", disknum);
3048 return 0;
3049 }
3050
3051 if (!strncmp(name, "/dev/twl", 8))
3052 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_9700_CHAR, disknum);
3053 else if (!strncmp(name, "/dev/twa", 8))
3054 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_9000_CHAR, disknum);
3055 else if (!strncmp(name, "/dev/twe", 8))
3056 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K_CHAR, disknum);
3057 else
3058 return new linux_escalade_device(this, name, linux_escalade_device::AMCC_3WARE_678K, disknum);
3059 }
3060
3061 // Areca?
3062 disknum = n1 = n2 = -1;
3063 if (sscanf(type, "areca,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3064 if (n2 != (int)strlen(type)) {
3065 set_err(EINVAL, "Option -d areca,N requires N to be a non-negative integer");
3066 return 0;
3067 }
3068 if (!(1 <= disknum && disknum <= 24)) {
3069 set_err(EINVAL, "Option -d areca,N (N=%d) must have 1 <= N <= 24", disknum);
3070 return 0;
3071 }
3072 return new linux_areca_device(this, name, disknum);
3073 }
3074
3075 // Highpoint ?
3076 int controller = -1, channel = -1; disknum = 1;
3077 n1 = n2 = -1; int n3 = -1;
3078 if (sscanf(type, "hpt,%n%d/%d%n/%d%n", &n1, &controller, &channel, &n2, &disknum, &n3) >= 2 || n1 == 4) {
3079 int len = strlen(type);
3080 if (!(n2 == len || n3 == len)) {
3081 set_err(EINVAL, "Option '-d hpt,L/M/N' supports 2-3 items");
3082 return 0;
3083 }
3084 if (!(1 <= controller && controller <= 8)) {
3085 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid controller id L supplied");
3086 return 0;
3087 }
3088 if (!(1 <= channel && channel <= 16)) {
3089 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid channel number M supplied");
3090 return 0;
3091 }
3092 if (!(1 <= disknum && disknum <= 15)) {
3093 set_err(EINVAL, "Option '-d hpt,L/M/N' invalid pmport number N supplied");
3094 return 0;
3095 }
3096 return new linux_highpoint_device(this, name, controller, channel, disknum);
3097 }
3098
3099 #ifdef HAVE_LINUX_CCISS_IOCTL_H
3100 // CCISS ?
3101 disknum = n1 = n2 = -1;
3102 if (sscanf(type, "cciss,%n%d%n", &n1, &disknum, &n2) == 1 || n1 == 6) {
3103 if (n2 != (int)strlen(type)) {
3104 set_err(EINVAL, "Option -d cciss,N requires N to be a non-negative integer");
3105 return 0;
3106 }
3107 if (!(0 <= disknum && disknum <= 127)) {
3108 set_err(EINVAL, "Option -d cciss,N (N=%d) must have 0 <= N <= 127", disknum);
3109 return 0;
3110 }
3111 return new linux_cciss_device(this, name, disknum);
3112 }
3113 #endif // HAVE_LINUX_CCISS_IOCTL_H
3114
3115 // MegaRAID ?
3116 if (sscanf(type, "megaraid,%d", &disknum) == 1) {
3117 return new linux_megaraid_device(this, name, 0, disknum);
3118 }
3119 return 0;
3120 }
3121
3122 std::string linux_smart_interface::get_valid_custom_dev_types_str()
3123 {
3124 return "marvell, areca,N, 3ware,N, hpt,L/M/N, megaraid,N"
3125 #ifdef HAVE_LINUX_CCISS_IOCTL_H
3126 ", cciss,N"
3127 #endif
3128 ;
3129 }
3130
3131 } // namespace
3132
3133
3134 /////////////////////////////////////////////////////////////////////////////
3135 /// Initialize platform interface and register with smi()
3136
3137 void smart_interface::init()
3138 {
3139 static os_linux::linux_smart_interface the_interface;
3140 smart_interface::set(&the_interface);
3141 }