]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
switch simple cases of fget_light to fdget
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
b3d9b7a3 221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
b7ab39f6 232 BUG_ON(dentry->d_count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
b3d9b7a3 270 hlist_del_init(&dentry->d_alias);
1da177e4 271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
b3d9b7a3 294 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
f0023bc6
SW
340/*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345static void dentry_lru_prune(struct dentry *dentry)
346{
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355}
356
b48f03b3 357static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 358{
23044507 359 spin_lock(&dcache_lru_lock);
a4633357 360 if (list_empty(&dentry->d_lru)) {
b48f03b3 361 list_add_tail(&dentry->d_lru, list);
a4633357 362 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 363 dentry_stat.nr_unused++;
a4633357 364 } else {
b48f03b3 365 list_move_tail(&dentry->d_lru, list);
da3bbdd4 366 }
23044507 367 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
368}
369
d52b9086
MS
370/**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
ff5fdb61 373 * @parent: parent dentry
d52b9086 374 *
31f3e0b3 375 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
376 *
377 * If this is the root of the dentry tree, return NULL.
23044507 378 *
b5c84bf6
NP
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
d52b9086 381 */
2fd6b7f5 382static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 383 __releases(dentry->d_lock)
2fd6b7f5 384 __releases(parent->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
d52b9086 386{
d52b9086 387 list_del(&dentry->d_u.d_child);
c83ce989
TM
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
b161dfa6 392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
393 if (parent)
394 spin_unlock(&parent->d_lock);
d52b9086 395 dentry_iput(dentry);
b7ab39f6
NP
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
d52b9086 400 d_free(dentry);
871c0067 401 return parent;
d52b9086
MS
402}
403
c6627c60
DH
404/*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409static void __d_shrink(struct dentry *dentry)
410{
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423}
424
789680d1
NP
425/**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440void __d_drop(struct dentry *dentry)
441{
dea3667b 442 if (!d_unhashed(dentry)) {
c6627c60 443 __d_shrink(dentry);
dea3667b 444 dentry_rcuwalk_barrier(dentry);
789680d1
NP
445 }
446}
447EXPORT_SYMBOL(__d_drop);
448
449void d_drop(struct dentry *dentry)
450{
789680d1
NP
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
789680d1
NP
454}
455EXPORT_SYMBOL(d_drop);
456
44396f4b
JB
457/*
458 * d_clear_need_lookup - drop a dentry from cache and clear the need lookup flag
459 * @dentry: dentry to drop
460 *
461 * This is called when we do a lookup on a placeholder dentry that needed to be
462 * looked up. The dentry should have been hashed in order for it to be found by
463 * the lookup code, but now needs to be unhashed while we do the actual lookup
464 * and clear the DCACHE_NEED_LOOKUP flag.
465 */
466void d_clear_need_lookup(struct dentry *dentry)
467{
468 spin_lock(&dentry->d_lock);
469 __d_drop(dentry);
470 dentry->d_flags &= ~DCACHE_NEED_LOOKUP;
471 spin_unlock(&dentry->d_lock);
472}
473EXPORT_SYMBOL(d_clear_need_lookup);
474
77812a1e
NP
475/*
476 * Finish off a dentry we've decided to kill.
477 * dentry->d_lock must be held, returns with it unlocked.
478 * If ref is non-zero, then decrement the refcount too.
479 * Returns dentry requiring refcount drop, or NULL if we're done.
480 */
481static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
482 __releases(dentry->d_lock)
483{
873feea0 484 struct inode *inode;
77812a1e
NP
485 struct dentry *parent;
486
873feea0
NP
487 inode = dentry->d_inode;
488 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
489relock:
490 spin_unlock(&dentry->d_lock);
491 cpu_relax();
492 return dentry; /* try again with same dentry */
493 }
494 if (IS_ROOT(dentry))
495 parent = NULL;
496 else
497 parent = dentry->d_parent;
498 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
499 if (inode)
500 spin_unlock(&inode->i_lock);
77812a1e
NP
501 goto relock;
502 }
31e6b01f 503
77812a1e
NP
504 if (ref)
505 dentry->d_count--;
f0023bc6
SW
506 /*
507 * if dentry was on the d_lru list delete it from there.
508 * inform the fs via d_prune that this dentry is about to be
509 * unhashed and destroyed.
510 */
511 dentry_lru_prune(dentry);
77812a1e
NP
512 /* if it was on the hash then remove it */
513 __d_drop(dentry);
514 return d_kill(dentry, parent);
515}
516
1da177e4
LT
517/*
518 * This is dput
519 *
520 * This is complicated by the fact that we do not want to put
521 * dentries that are no longer on any hash chain on the unused
522 * list: we'd much rather just get rid of them immediately.
523 *
524 * However, that implies that we have to traverse the dentry
525 * tree upwards to the parents which might _also_ now be
526 * scheduled for deletion (it may have been only waiting for
527 * its last child to go away).
528 *
529 * This tail recursion is done by hand as we don't want to depend
530 * on the compiler to always get this right (gcc generally doesn't).
531 * Real recursion would eat up our stack space.
532 */
533
534/*
535 * dput - release a dentry
536 * @dentry: dentry to release
537 *
538 * Release a dentry. This will drop the usage count and if appropriate
539 * call the dentry unlink method as well as removing it from the queues and
540 * releasing its resources. If the parent dentries were scheduled for release
541 * they too may now get deleted.
1da177e4 542 */
1da177e4
LT
543void dput(struct dentry *dentry)
544{
545 if (!dentry)
546 return;
547
548repeat:
b7ab39f6 549 if (dentry->d_count == 1)
1da177e4 550 might_sleep();
1da177e4 551 spin_lock(&dentry->d_lock);
61f3dee4
NP
552 BUG_ON(!dentry->d_count);
553 if (dentry->d_count > 1) {
554 dentry->d_count--;
1da177e4 555 spin_unlock(&dentry->d_lock);
1da177e4
LT
556 return;
557 }
558
fb045adb 559 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 560 if (dentry->d_op->d_delete(dentry))
61f3dee4 561 goto kill_it;
1da177e4 562 }
265ac902 563
1da177e4
LT
564 /* Unreachable? Get rid of it */
565 if (d_unhashed(dentry))
566 goto kill_it;
265ac902 567
44396f4b
JB
568 /*
569 * If this dentry needs lookup, don't set the referenced flag so that it
570 * is more likely to be cleaned up by the dcache shrinker in case of
571 * memory pressure.
572 */
573 if (!d_need_lookup(dentry))
574 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 575 dentry_lru_add(dentry);
265ac902 576
61f3dee4
NP
577 dentry->d_count--;
578 spin_unlock(&dentry->d_lock);
1da177e4
LT
579 return;
580
d52b9086 581kill_it:
77812a1e 582 dentry = dentry_kill(dentry, 1);
d52b9086
MS
583 if (dentry)
584 goto repeat;
1da177e4 585}
ec4f8605 586EXPORT_SYMBOL(dput);
1da177e4
LT
587
588/**
589 * d_invalidate - invalidate a dentry
590 * @dentry: dentry to invalidate
591 *
592 * Try to invalidate the dentry if it turns out to be
593 * possible. If there are other dentries that can be
594 * reached through this one we can't delete it and we
595 * return -EBUSY. On success we return 0.
596 *
597 * no dcache lock.
598 */
599
600int d_invalidate(struct dentry * dentry)
601{
602 /*
603 * If it's already been dropped, return OK.
604 */
da502956 605 spin_lock(&dentry->d_lock);
1da177e4 606 if (d_unhashed(dentry)) {
da502956 607 spin_unlock(&dentry->d_lock);
1da177e4
LT
608 return 0;
609 }
610 /*
611 * Check whether to do a partial shrink_dcache
612 * to get rid of unused child entries.
613 */
614 if (!list_empty(&dentry->d_subdirs)) {
da502956 615 spin_unlock(&dentry->d_lock);
1da177e4 616 shrink_dcache_parent(dentry);
da502956 617 spin_lock(&dentry->d_lock);
1da177e4
LT
618 }
619
620 /*
621 * Somebody else still using it?
622 *
623 * If it's a directory, we can't drop it
624 * for fear of somebody re-populating it
625 * with children (even though dropping it
626 * would make it unreachable from the root,
627 * we might still populate it if it was a
628 * working directory or similar).
50e69630
AV
629 * We also need to leave mountpoints alone,
630 * directory or not.
1da177e4 631 */
50e69630
AV
632 if (dentry->d_count > 1 && dentry->d_inode) {
633 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 634 spin_unlock(&dentry->d_lock);
1da177e4
LT
635 return -EBUSY;
636 }
637 }
638
639 __d_drop(dentry);
640 spin_unlock(&dentry->d_lock);
1da177e4
LT
641 return 0;
642}
ec4f8605 643EXPORT_SYMBOL(d_invalidate);
1da177e4 644
b5c84bf6 645/* This must be called with d_lock held */
dc0474be 646static inline void __dget_dlock(struct dentry *dentry)
23044507 647{
b7ab39f6 648 dentry->d_count++;
23044507
NP
649}
650
dc0474be 651static inline void __dget(struct dentry *dentry)
1da177e4 652{
23044507 653 spin_lock(&dentry->d_lock);
dc0474be 654 __dget_dlock(dentry);
23044507 655 spin_unlock(&dentry->d_lock);
1da177e4
LT
656}
657
b7ab39f6
NP
658struct dentry *dget_parent(struct dentry *dentry)
659{
660 struct dentry *ret;
661
662repeat:
a734eb45
NP
663 /*
664 * Don't need rcu_dereference because we re-check it was correct under
665 * the lock.
666 */
667 rcu_read_lock();
b7ab39f6 668 ret = dentry->d_parent;
a734eb45
NP
669 spin_lock(&ret->d_lock);
670 if (unlikely(ret != dentry->d_parent)) {
671 spin_unlock(&ret->d_lock);
672 rcu_read_unlock();
b7ab39f6
NP
673 goto repeat;
674 }
a734eb45 675 rcu_read_unlock();
b7ab39f6
NP
676 BUG_ON(!ret->d_count);
677 ret->d_count++;
678 spin_unlock(&ret->d_lock);
b7ab39f6
NP
679 return ret;
680}
681EXPORT_SYMBOL(dget_parent);
682
1da177e4
LT
683/**
684 * d_find_alias - grab a hashed alias of inode
685 * @inode: inode in question
32ba9c3f
LT
686 * @want_discon: flag, used by d_splice_alias, to request
687 * that only a DISCONNECTED alias be returned.
1da177e4
LT
688 *
689 * If inode has a hashed alias, or is a directory and has any alias,
690 * acquire the reference to alias and return it. Otherwise return NULL.
691 * Notice that if inode is a directory there can be only one alias and
692 * it can be unhashed only if it has no children, or if it is the root
693 * of a filesystem.
694 *
21c0d8fd 695 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
696 * any other hashed alias over that one unless @want_discon is set,
697 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 698 */
32ba9c3f 699static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 700{
da502956 701 struct dentry *alias, *discon_alias;
b3d9b7a3 702 struct hlist_node *p;
1da177e4 703
da502956
NP
704again:
705 discon_alias = NULL;
b3d9b7a3 706 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
da502956 707 spin_lock(&alias->d_lock);
1da177e4 708 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 709 if (IS_ROOT(alias) &&
da502956 710 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 711 discon_alias = alias;
32ba9c3f 712 } else if (!want_discon) {
dc0474be 713 __dget_dlock(alias);
da502956
NP
714 spin_unlock(&alias->d_lock);
715 return alias;
716 }
717 }
718 spin_unlock(&alias->d_lock);
719 }
720 if (discon_alias) {
721 alias = discon_alias;
722 spin_lock(&alias->d_lock);
723 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
724 if (IS_ROOT(alias) &&
725 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 726 __dget_dlock(alias);
da502956 727 spin_unlock(&alias->d_lock);
1da177e4
LT
728 return alias;
729 }
730 }
da502956
NP
731 spin_unlock(&alias->d_lock);
732 goto again;
1da177e4 733 }
da502956 734 return NULL;
1da177e4
LT
735}
736
da502956 737struct dentry *d_find_alias(struct inode *inode)
1da177e4 738{
214fda1f
DH
739 struct dentry *de = NULL;
740
b3d9b7a3 741 if (!hlist_empty(&inode->i_dentry)) {
873feea0 742 spin_lock(&inode->i_lock);
32ba9c3f 743 de = __d_find_alias(inode, 0);
873feea0 744 spin_unlock(&inode->i_lock);
214fda1f 745 }
1da177e4
LT
746 return de;
747}
ec4f8605 748EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
749
750/*
751 * Try to kill dentries associated with this inode.
752 * WARNING: you must own a reference to inode.
753 */
754void d_prune_aliases(struct inode *inode)
755{
0cdca3f9 756 struct dentry *dentry;
b3d9b7a3 757 struct hlist_node *p;
1da177e4 758restart:
873feea0 759 spin_lock(&inode->i_lock);
b3d9b7a3 760 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
1da177e4 761 spin_lock(&dentry->d_lock);
b7ab39f6 762 if (!dentry->d_count) {
dc0474be 763 __dget_dlock(dentry);
1da177e4
LT
764 __d_drop(dentry);
765 spin_unlock(&dentry->d_lock);
873feea0 766 spin_unlock(&inode->i_lock);
1da177e4
LT
767 dput(dentry);
768 goto restart;
769 }
770 spin_unlock(&dentry->d_lock);
771 }
873feea0 772 spin_unlock(&inode->i_lock);
1da177e4 773}
ec4f8605 774EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
775
776/*
77812a1e
NP
777 * Try to throw away a dentry - free the inode, dput the parent.
778 * Requires dentry->d_lock is held, and dentry->d_count == 0.
779 * Releases dentry->d_lock.
d702ccb3 780 *
77812a1e 781 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 782 */
77812a1e 783static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 784 __releases(dentry->d_lock)
1da177e4 785{
77812a1e 786 struct dentry *parent;
d52b9086 787
77812a1e 788 parent = dentry_kill(dentry, 0);
d52b9086 789 /*
77812a1e
NP
790 * If dentry_kill returns NULL, we have nothing more to do.
791 * if it returns the same dentry, trylocks failed. In either
792 * case, just loop again.
793 *
794 * Otherwise, we need to prune ancestors too. This is necessary
795 * to prevent quadratic behavior of shrink_dcache_parent(), but
796 * is also expected to be beneficial in reducing dentry cache
797 * fragmentation.
d52b9086 798 */
77812a1e
NP
799 if (!parent)
800 return;
801 if (parent == dentry)
802 return;
803
804 /* Prune ancestors. */
805 dentry = parent;
d52b9086 806 while (dentry) {
b7ab39f6 807 spin_lock(&dentry->d_lock);
89e60548
NP
808 if (dentry->d_count > 1) {
809 dentry->d_count--;
810 spin_unlock(&dentry->d_lock);
811 return;
812 }
77812a1e 813 dentry = dentry_kill(dentry, 1);
d52b9086 814 }
1da177e4
LT
815}
816
3049cfe2 817static void shrink_dentry_list(struct list_head *list)
1da177e4 818{
da3bbdd4 819 struct dentry *dentry;
da3bbdd4 820
ec33679d
NP
821 rcu_read_lock();
822 for (;;) {
ec33679d
NP
823 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
824 if (&dentry->d_lru == list)
825 break; /* empty */
826 spin_lock(&dentry->d_lock);
827 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
828 spin_unlock(&dentry->d_lock);
23044507
NP
829 continue;
830 }
831
1da177e4
LT
832 /*
833 * We found an inuse dentry which was not removed from
da3bbdd4
KM
834 * the LRU because of laziness during lookup. Do not free
835 * it - just keep it off the LRU list.
1da177e4 836 */
b7ab39f6 837 if (dentry->d_count) {
ec33679d 838 dentry_lru_del(dentry);
da3bbdd4 839 spin_unlock(&dentry->d_lock);
1da177e4
LT
840 continue;
841 }
ec33679d 842
ec33679d 843 rcu_read_unlock();
77812a1e
NP
844
845 try_prune_one_dentry(dentry);
846
ec33679d 847 rcu_read_lock();
da3bbdd4 848 }
ec33679d 849 rcu_read_unlock();
3049cfe2
CH
850}
851
852/**
b48f03b3
DC
853 * prune_dcache_sb - shrink the dcache
854 * @sb: superblock
855 * @count: number of entries to try to free
856 *
857 * Attempt to shrink the superblock dcache LRU by @count entries. This is
858 * done when we need more memory an called from the superblock shrinker
859 * function.
3049cfe2 860 *
b48f03b3
DC
861 * This function may fail to free any resources if all the dentries are in
862 * use.
3049cfe2 863 */
b48f03b3 864void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 865{
3049cfe2
CH
866 struct dentry *dentry;
867 LIST_HEAD(referenced);
868 LIST_HEAD(tmp);
3049cfe2 869
23044507
NP
870relock:
871 spin_lock(&dcache_lru_lock);
3049cfe2
CH
872 while (!list_empty(&sb->s_dentry_lru)) {
873 dentry = list_entry(sb->s_dentry_lru.prev,
874 struct dentry, d_lru);
875 BUG_ON(dentry->d_sb != sb);
876
23044507
NP
877 if (!spin_trylock(&dentry->d_lock)) {
878 spin_unlock(&dcache_lru_lock);
879 cpu_relax();
880 goto relock;
881 }
882
b48f03b3 883 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
884 dentry->d_flags &= ~DCACHE_REFERENCED;
885 list_move(&dentry->d_lru, &referenced);
3049cfe2 886 spin_unlock(&dentry->d_lock);
23044507
NP
887 } else {
888 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 889 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 890 spin_unlock(&dentry->d_lock);
b0d40c92 891 if (!--count)
23044507 892 break;
3049cfe2 893 }
ec33679d 894 cond_resched_lock(&dcache_lru_lock);
3049cfe2 895 }
da3bbdd4
KM
896 if (!list_empty(&referenced))
897 list_splice(&referenced, &sb->s_dentry_lru);
23044507 898 spin_unlock(&dcache_lru_lock);
ec33679d
NP
899
900 shrink_dentry_list(&tmp);
da3bbdd4
KM
901}
902
1da177e4
LT
903/**
904 * shrink_dcache_sb - shrink dcache for a superblock
905 * @sb: superblock
906 *
3049cfe2
CH
907 * Shrink the dcache for the specified super block. This is used to free
908 * the dcache before unmounting a file system.
1da177e4 909 */
3049cfe2 910void shrink_dcache_sb(struct super_block *sb)
1da177e4 911{
3049cfe2
CH
912 LIST_HEAD(tmp);
913
23044507 914 spin_lock(&dcache_lru_lock);
3049cfe2
CH
915 while (!list_empty(&sb->s_dentry_lru)) {
916 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 917 spin_unlock(&dcache_lru_lock);
3049cfe2 918 shrink_dentry_list(&tmp);
ec33679d 919 spin_lock(&dcache_lru_lock);
3049cfe2 920 }
23044507 921 spin_unlock(&dcache_lru_lock);
1da177e4 922}
ec4f8605 923EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 924
c636ebdb
DH
925/*
926 * destroy a single subtree of dentries for unmount
927 * - see the comments on shrink_dcache_for_umount() for a description of the
928 * locking
929 */
930static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
931{
932 struct dentry *parent;
933
934 BUG_ON(!IS_ROOT(dentry));
935
c636ebdb
DH
936 for (;;) {
937 /* descend to the first leaf in the current subtree */
43c1c9cd 938 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
939 dentry = list_entry(dentry->d_subdirs.next,
940 struct dentry, d_u.d_child);
c636ebdb
DH
941
942 /* consume the dentries from this leaf up through its parents
943 * until we find one with children or run out altogether */
944 do {
945 struct inode *inode;
946
f0023bc6
SW
947 /*
948 * remove the dentry from the lru, and inform
949 * the fs that this dentry is about to be
950 * unhashed and destroyed.
951 */
952 dentry_lru_prune(dentry);
43c1c9cd
DH
953 __d_shrink(dentry);
954
b7ab39f6 955 if (dentry->d_count != 0) {
c636ebdb
DH
956 printk(KERN_ERR
957 "BUG: Dentry %p{i=%lx,n=%s}"
958 " still in use (%d)"
959 " [unmount of %s %s]\n",
960 dentry,
961 dentry->d_inode ?
962 dentry->d_inode->i_ino : 0UL,
963 dentry->d_name.name,
b7ab39f6 964 dentry->d_count,
c636ebdb
DH
965 dentry->d_sb->s_type->name,
966 dentry->d_sb->s_id);
967 BUG();
968 }
969
2fd6b7f5 970 if (IS_ROOT(dentry)) {
c636ebdb 971 parent = NULL;
2fd6b7f5
NP
972 list_del(&dentry->d_u.d_child);
973 } else {
871c0067 974 parent = dentry->d_parent;
b7ab39f6 975 parent->d_count--;
2fd6b7f5 976 list_del(&dentry->d_u.d_child);
871c0067 977 }
c636ebdb 978
c636ebdb
DH
979 inode = dentry->d_inode;
980 if (inode) {
981 dentry->d_inode = NULL;
b3d9b7a3 982 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
983 if (dentry->d_op && dentry->d_op->d_iput)
984 dentry->d_op->d_iput(dentry, inode);
985 else
986 iput(inode);
987 }
988
989 d_free(dentry);
990
991 /* finished when we fall off the top of the tree,
992 * otherwise we ascend to the parent and move to the
993 * next sibling if there is one */
994 if (!parent)
312d3ca8 995 return;
c636ebdb 996 dentry = parent;
c636ebdb
DH
997 } while (list_empty(&dentry->d_subdirs));
998
999 dentry = list_entry(dentry->d_subdirs.next,
1000 struct dentry, d_u.d_child);
1001 }
1002}
1003
1004/*
1005 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 1006 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
1007 * - the superblock is detached from all mountings and open files, so the
1008 * dentry trees will not be rearranged by the VFS
1009 * - s_umount is write-locked, so the memory pressure shrinker will ignore
1010 * any dentries belonging to this superblock that it comes across
1011 * - the filesystem itself is no longer permitted to rearrange the dentries
1012 * in this superblock
1013 */
1014void shrink_dcache_for_umount(struct super_block *sb)
1015{
1016 struct dentry *dentry;
1017
1018 if (down_read_trylock(&sb->s_umount))
1019 BUG();
1020
1021 dentry = sb->s_root;
1022 sb->s_root = NULL;
b7ab39f6 1023 dentry->d_count--;
c636ebdb
DH
1024 shrink_dcache_for_umount_subtree(dentry);
1025
ceb5bdc2
NP
1026 while (!hlist_bl_empty(&sb->s_anon)) {
1027 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1028 shrink_dcache_for_umount_subtree(dentry);
1029 }
1030}
1031
c826cb7d
LT
1032/*
1033 * This tries to ascend one level of parenthood, but
1034 * we can race with renaming, so we need to re-check
1035 * the parenthood after dropping the lock and check
1036 * that the sequence number still matches.
1037 */
1038static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1039{
1040 struct dentry *new = old->d_parent;
1041
1042 rcu_read_lock();
1043 spin_unlock(&old->d_lock);
1044 spin_lock(&new->d_lock);
1045
1046 /*
1047 * might go back up the wrong parent if we have had a rename
1048 * or deletion
1049 */
1050 if (new != old->d_parent ||
b161dfa6 1051 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1052 (!locked && read_seqretry(&rename_lock, seq))) {
1053 spin_unlock(&new->d_lock);
1054 new = NULL;
1055 }
1056 rcu_read_unlock();
1057 return new;
1058}
1059
1060
1da177e4
LT
1061/*
1062 * Search for at least 1 mount point in the dentry's subdirs.
1063 * We descend to the next level whenever the d_subdirs
1064 * list is non-empty and continue searching.
1065 */
1066
1067/**
1068 * have_submounts - check for mounts over a dentry
1069 * @parent: dentry to check.
1070 *
1071 * Return true if the parent or its subdirectories contain
1072 * a mount point
1073 */
1da177e4
LT
1074int have_submounts(struct dentry *parent)
1075{
949854d0 1076 struct dentry *this_parent;
1da177e4 1077 struct list_head *next;
949854d0 1078 unsigned seq;
58db63d0 1079 int locked = 0;
949854d0 1080
949854d0 1081 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1082again:
1083 this_parent = parent;
1da177e4 1084
1da177e4
LT
1085 if (d_mountpoint(parent))
1086 goto positive;
2fd6b7f5 1087 spin_lock(&this_parent->d_lock);
1da177e4
LT
1088repeat:
1089 next = this_parent->d_subdirs.next;
1090resume:
1091 while (next != &this_parent->d_subdirs) {
1092 struct list_head *tmp = next;
5160ee6f 1093 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1094 next = tmp->next;
2fd6b7f5
NP
1095
1096 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1097 /* Have we found a mount point ? */
2fd6b7f5
NP
1098 if (d_mountpoint(dentry)) {
1099 spin_unlock(&dentry->d_lock);
1100 spin_unlock(&this_parent->d_lock);
1da177e4 1101 goto positive;
2fd6b7f5 1102 }
1da177e4 1103 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1104 spin_unlock(&this_parent->d_lock);
1105 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1106 this_parent = dentry;
2fd6b7f5 1107 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1108 goto repeat;
1109 }
2fd6b7f5 1110 spin_unlock(&dentry->d_lock);
1da177e4
LT
1111 }
1112 /*
1113 * All done at this level ... ascend and resume the search.
1114 */
1115 if (this_parent != parent) {
c826cb7d
LT
1116 struct dentry *child = this_parent;
1117 this_parent = try_to_ascend(this_parent, locked, seq);
1118 if (!this_parent)
949854d0 1119 goto rename_retry;
949854d0 1120 next = child->d_u.d_child.next;
1da177e4
LT
1121 goto resume;
1122 }
2fd6b7f5 1123 spin_unlock(&this_parent->d_lock);
58db63d0 1124 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1125 goto rename_retry;
58db63d0
NP
1126 if (locked)
1127 write_sequnlock(&rename_lock);
1da177e4
LT
1128 return 0; /* No mount points found in tree */
1129positive:
58db63d0 1130 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1131 goto rename_retry;
58db63d0
NP
1132 if (locked)
1133 write_sequnlock(&rename_lock);
1da177e4 1134 return 1;
58db63d0
NP
1135
1136rename_retry:
1137 locked = 1;
1138 write_seqlock(&rename_lock);
1139 goto again;
1da177e4 1140}
ec4f8605 1141EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1142
1143/*
1144 * Search the dentry child list for the specified parent,
1145 * and move any unused dentries to the end of the unused
1146 * list for prune_dcache(). We descend to the next level
1147 * whenever the d_subdirs list is non-empty and continue
1148 * searching.
1149 *
1150 * It returns zero iff there are no unused children,
1151 * otherwise it returns the number of children moved to
1152 * the end of the unused list. This may not be the total
1153 * number of unused children, because select_parent can
1154 * drop the lock and return early due to latency
1155 * constraints.
1156 */
b48f03b3 1157static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1158{
949854d0 1159 struct dentry *this_parent;
1da177e4 1160 struct list_head *next;
949854d0 1161 unsigned seq;
1da177e4 1162 int found = 0;
58db63d0 1163 int locked = 0;
1da177e4 1164
949854d0 1165 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1166again:
1167 this_parent = parent;
2fd6b7f5 1168 spin_lock(&this_parent->d_lock);
1da177e4
LT
1169repeat:
1170 next = this_parent->d_subdirs.next;
1171resume:
1172 while (next != &this_parent->d_subdirs) {
1173 struct list_head *tmp = next;
5160ee6f 1174 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1175 next = tmp->next;
1176
2fd6b7f5 1177 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1178
b48f03b3
DC
1179 /*
1180 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1181 *
1182 * Those which are presently on the shrink list, being processed
1183 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1184 * loop in shrink_dcache_parent() might not make any progress
1185 * and loop forever.
1da177e4 1186 */
eaf5f907
MS
1187 if (dentry->d_count) {
1188 dentry_lru_del(dentry);
1189 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1190 dentry_lru_move_list(dentry, dispose);
eaf5f907 1191 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1192 found++;
1193 }
1da177e4
LT
1194 /*
1195 * We can return to the caller if we have found some (this
1196 * ensures forward progress). We'll be coming back to find
1197 * the rest.
1198 */
2fd6b7f5
NP
1199 if (found && need_resched()) {
1200 spin_unlock(&dentry->d_lock);
1da177e4 1201 goto out;
2fd6b7f5 1202 }
1da177e4
LT
1203
1204 /*
1205 * Descend a level if the d_subdirs list is non-empty.
1206 */
1207 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1208 spin_unlock(&this_parent->d_lock);
1209 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1210 this_parent = dentry;
2fd6b7f5 1211 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1212 goto repeat;
1213 }
2fd6b7f5
NP
1214
1215 spin_unlock(&dentry->d_lock);
1da177e4
LT
1216 }
1217 /*
1218 * All done at this level ... ascend and resume the search.
1219 */
1220 if (this_parent != parent) {
c826cb7d
LT
1221 struct dentry *child = this_parent;
1222 this_parent = try_to_ascend(this_parent, locked, seq);
1223 if (!this_parent)
949854d0 1224 goto rename_retry;
949854d0 1225 next = child->d_u.d_child.next;
1da177e4
LT
1226 goto resume;
1227 }
1228out:
2fd6b7f5 1229 spin_unlock(&this_parent->d_lock);
58db63d0 1230 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1231 goto rename_retry;
58db63d0
NP
1232 if (locked)
1233 write_sequnlock(&rename_lock);
1da177e4 1234 return found;
58db63d0
NP
1235
1236rename_retry:
1237 if (found)
1238 return found;
1239 locked = 1;
1240 write_seqlock(&rename_lock);
1241 goto again;
1da177e4
LT
1242}
1243
1244/**
1245 * shrink_dcache_parent - prune dcache
1246 * @parent: parent of entries to prune
1247 *
1248 * Prune the dcache to remove unused children of the parent dentry.
1249 */
1da177e4
LT
1250void shrink_dcache_parent(struct dentry * parent)
1251{
b48f03b3 1252 LIST_HEAD(dispose);
1da177e4
LT
1253 int found;
1254
b48f03b3
DC
1255 while ((found = select_parent(parent, &dispose)) != 0)
1256 shrink_dentry_list(&dispose);
1da177e4 1257}
ec4f8605 1258EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1259
1da177e4 1260/**
a4464dbc
AV
1261 * __d_alloc - allocate a dcache entry
1262 * @sb: filesystem it will belong to
1da177e4
LT
1263 * @name: qstr of the name
1264 *
1265 * Allocates a dentry. It returns %NULL if there is insufficient memory
1266 * available. On a success the dentry is returned. The name passed in is
1267 * copied and the copy passed in may be reused after this call.
1268 */
1269
a4464dbc 1270struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1271{
1272 struct dentry *dentry;
1273 char *dname;
1274
e12ba74d 1275 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1276 if (!dentry)
1277 return NULL;
1278
6326c71f
LT
1279 /*
1280 * We guarantee that the inline name is always NUL-terminated.
1281 * This way the memcpy() done by the name switching in rename
1282 * will still always have a NUL at the end, even if we might
1283 * be overwriting an internal NUL character
1284 */
1285 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1286 if (name->len > DNAME_INLINE_LEN-1) {
1287 dname = kmalloc(name->len + 1, GFP_KERNEL);
1288 if (!dname) {
1289 kmem_cache_free(dentry_cache, dentry);
1290 return NULL;
1291 }
1292 } else {
1293 dname = dentry->d_iname;
1294 }
1da177e4
LT
1295
1296 dentry->d_name.len = name->len;
1297 dentry->d_name.hash = name->hash;
1298 memcpy(dname, name->name, name->len);
1299 dname[name->len] = 0;
1300
6326c71f
LT
1301 /* Make sure we always see the terminating NUL character */
1302 smp_wmb();
1303 dentry->d_name.name = dname;
1304
b7ab39f6 1305 dentry->d_count = 1;
dea3667b 1306 dentry->d_flags = 0;
1da177e4 1307 spin_lock_init(&dentry->d_lock);
31e6b01f 1308 seqcount_init(&dentry->d_seq);
1da177e4 1309 dentry->d_inode = NULL;
a4464dbc
AV
1310 dentry->d_parent = dentry;
1311 dentry->d_sb = sb;
1da177e4
LT
1312 dentry->d_op = NULL;
1313 dentry->d_fsdata = NULL;
ceb5bdc2 1314 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1315 INIT_LIST_HEAD(&dentry->d_lru);
1316 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1317 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1318 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1319 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1320
3e880fb5 1321 this_cpu_inc(nr_dentry);
312d3ca8 1322
1da177e4
LT
1323 return dentry;
1324}
a4464dbc
AV
1325
1326/**
1327 * d_alloc - allocate a dcache entry
1328 * @parent: parent of entry to allocate
1329 * @name: qstr of the name
1330 *
1331 * Allocates a dentry. It returns %NULL if there is insufficient memory
1332 * available. On a success the dentry is returned. The name passed in is
1333 * copied and the copy passed in may be reused after this call.
1334 */
1335struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1336{
1337 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1338 if (!dentry)
1339 return NULL;
1340
1341 spin_lock(&parent->d_lock);
1342 /*
1343 * don't need child lock because it is not subject
1344 * to concurrency here
1345 */
1346 __dget_dlock(parent);
1347 dentry->d_parent = parent;
1348 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1349 spin_unlock(&parent->d_lock);
1350
1351 return dentry;
1352}
ec4f8605 1353EXPORT_SYMBOL(d_alloc);
1da177e4 1354
4b936885
NP
1355struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1356{
a4464dbc
AV
1357 struct dentry *dentry = __d_alloc(sb, name);
1358 if (dentry)
4b936885 1359 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1360 return dentry;
1361}
1362EXPORT_SYMBOL(d_alloc_pseudo);
1363
1da177e4
LT
1364struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1365{
1366 struct qstr q;
1367
1368 q.name = name;
1369 q.len = strlen(name);
1370 q.hash = full_name_hash(q.name, q.len);
1371 return d_alloc(parent, &q);
1372}
ef26ca97 1373EXPORT_SYMBOL(d_alloc_name);
1da177e4 1374
fb045adb
NP
1375void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1376{
6f7f7caa
LT
1377 WARN_ON_ONCE(dentry->d_op);
1378 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1379 DCACHE_OP_COMPARE |
1380 DCACHE_OP_REVALIDATE |
1381 DCACHE_OP_DELETE ));
1382 dentry->d_op = op;
1383 if (!op)
1384 return;
1385 if (op->d_hash)
1386 dentry->d_flags |= DCACHE_OP_HASH;
1387 if (op->d_compare)
1388 dentry->d_flags |= DCACHE_OP_COMPARE;
1389 if (op->d_revalidate)
1390 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1391 if (op->d_delete)
1392 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1393 if (op->d_prune)
1394 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1395
1396}
1397EXPORT_SYMBOL(d_set_d_op);
1398
360da900
OH
1399static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1400{
b23fb0a6 1401 spin_lock(&dentry->d_lock);
9875cf80
DH
1402 if (inode) {
1403 if (unlikely(IS_AUTOMOUNT(inode)))
1404 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1405 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1406 }
360da900 1407 dentry->d_inode = inode;
31e6b01f 1408 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1409 spin_unlock(&dentry->d_lock);
360da900
OH
1410 fsnotify_d_instantiate(dentry, inode);
1411}
1412
1da177e4
LT
1413/**
1414 * d_instantiate - fill in inode information for a dentry
1415 * @entry: dentry to complete
1416 * @inode: inode to attach to this dentry
1417 *
1418 * Fill in inode information in the entry.
1419 *
1420 * This turns negative dentries into productive full members
1421 * of society.
1422 *
1423 * NOTE! This assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1426 */
1427
1428void d_instantiate(struct dentry *entry, struct inode * inode)
1429{
b3d9b7a3 1430 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1431 if (inode)
1432 spin_lock(&inode->i_lock);
360da900 1433 __d_instantiate(entry, inode);
873feea0
NP
1434 if (inode)
1435 spin_unlock(&inode->i_lock);
1da177e4
LT
1436 security_d_instantiate(entry, inode);
1437}
ec4f8605 1438EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1439
1440/**
1441 * d_instantiate_unique - instantiate a non-aliased dentry
1442 * @entry: dentry to instantiate
1443 * @inode: inode to attach to this dentry
1444 *
1445 * Fill in inode information in the entry. On success, it returns NULL.
1446 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1447 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1448 *
1449 * Note that in order to avoid conflicts with rename() etc, the caller
1450 * had better be holding the parent directory semaphore.
e866cfa9
OD
1451 *
1452 * This also assumes that the inode count has been incremented
1453 * (or otherwise set) by the caller to indicate that it is now
1454 * in use by the dcache.
1da177e4 1455 */
770bfad8
DH
1456static struct dentry *__d_instantiate_unique(struct dentry *entry,
1457 struct inode *inode)
1da177e4
LT
1458{
1459 struct dentry *alias;
1460 int len = entry->d_name.len;
1461 const char *name = entry->d_name.name;
1462 unsigned int hash = entry->d_name.hash;
b3d9b7a3 1463 struct hlist_node *p;
1da177e4 1464
770bfad8 1465 if (!inode) {
360da900 1466 __d_instantiate(entry, NULL);
770bfad8
DH
1467 return NULL;
1468 }
1469
b3d9b7a3 1470 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
9abca360
NP
1471 /*
1472 * Don't need alias->d_lock here, because aliases with
1473 * d_parent == entry->d_parent are not subject to name or
1474 * parent changes, because the parent inode i_mutex is held.
1475 */
12f8ad4b 1476 if (alias->d_name.hash != hash)
1da177e4
LT
1477 continue;
1478 if (alias->d_parent != entry->d_parent)
1479 continue;
ee983e89
LT
1480 if (alias->d_name.len != len)
1481 continue;
12f8ad4b 1482 if (dentry_cmp(alias, name, len))
1da177e4 1483 continue;
dc0474be 1484 __dget(alias);
1da177e4
LT
1485 return alias;
1486 }
770bfad8 1487
360da900 1488 __d_instantiate(entry, inode);
1da177e4
LT
1489 return NULL;
1490}
770bfad8
DH
1491
1492struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1493{
1494 struct dentry *result;
1495
b3d9b7a3 1496 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1497
873feea0
NP
1498 if (inode)
1499 spin_lock(&inode->i_lock);
770bfad8 1500 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1501 if (inode)
1502 spin_unlock(&inode->i_lock);
770bfad8
DH
1503
1504 if (!result) {
1505 security_d_instantiate(entry, inode);
1506 return NULL;
1507 }
1508
1509 BUG_ON(!d_unhashed(result));
1510 iput(inode);
1511 return result;
1512}
1513
1da177e4
LT
1514EXPORT_SYMBOL(d_instantiate_unique);
1515
adc0e91a
AV
1516struct dentry *d_make_root(struct inode *root_inode)
1517{
1518 struct dentry *res = NULL;
1519
1520 if (root_inode) {
26fe5750 1521 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1522
1523 res = __d_alloc(root_inode->i_sb, &name);
1524 if (res)
1525 d_instantiate(res, root_inode);
1526 else
1527 iput(root_inode);
1528 }
1529 return res;
1530}
1531EXPORT_SYMBOL(d_make_root);
1532
d891eedb
BF
1533static struct dentry * __d_find_any_alias(struct inode *inode)
1534{
1535 struct dentry *alias;
1536
b3d9b7a3 1537 if (hlist_empty(&inode->i_dentry))
d891eedb 1538 return NULL;
b3d9b7a3 1539 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1540 __dget(alias);
1541 return alias;
1542}
1543
46f72b34
SW
1544/**
1545 * d_find_any_alias - find any alias for a given inode
1546 * @inode: inode to find an alias for
1547 *
1548 * If any aliases exist for the given inode, take and return a
1549 * reference for one of them. If no aliases exist, return %NULL.
1550 */
1551struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1552{
1553 struct dentry *de;
1554
1555 spin_lock(&inode->i_lock);
1556 de = __d_find_any_alias(inode);
1557 spin_unlock(&inode->i_lock);
1558 return de;
1559}
46f72b34 1560EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1561
4ea3ada2
CH
1562/**
1563 * d_obtain_alias - find or allocate a dentry for a given inode
1564 * @inode: inode to allocate the dentry for
1565 *
1566 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1567 * similar open by handle operations. The returned dentry may be anonymous,
1568 * or may have a full name (if the inode was already in the cache).
1569 *
1570 * When called on a directory inode, we must ensure that the inode only ever
1571 * has one dentry. If a dentry is found, that is returned instead of
1572 * allocating a new one.
1573 *
1574 * On successful return, the reference to the inode has been transferred
44003728
CH
1575 * to the dentry. In case of an error the reference on the inode is released.
1576 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1577 * be passed in and will be the error will be propagate to the return value,
1578 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1579 */
1580struct dentry *d_obtain_alias(struct inode *inode)
1581{
9308a612
CH
1582 static const struct qstr anonstring = { .name = "" };
1583 struct dentry *tmp;
1584 struct dentry *res;
4ea3ada2
CH
1585
1586 if (!inode)
44003728 1587 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1588 if (IS_ERR(inode))
1589 return ERR_CAST(inode);
1590
d891eedb 1591 res = d_find_any_alias(inode);
9308a612
CH
1592 if (res)
1593 goto out_iput;
1594
a4464dbc 1595 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1596 if (!tmp) {
1597 res = ERR_PTR(-ENOMEM);
1598 goto out_iput;
4ea3ada2 1599 }
b5c84bf6 1600
873feea0 1601 spin_lock(&inode->i_lock);
d891eedb 1602 res = __d_find_any_alias(inode);
9308a612 1603 if (res) {
873feea0 1604 spin_unlock(&inode->i_lock);
9308a612
CH
1605 dput(tmp);
1606 goto out_iput;
1607 }
1608
1609 /* attach a disconnected dentry */
1610 spin_lock(&tmp->d_lock);
9308a612
CH
1611 tmp->d_inode = inode;
1612 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1613 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1614 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1615 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1616 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1617 spin_unlock(&tmp->d_lock);
873feea0 1618 spin_unlock(&inode->i_lock);
24ff6663 1619 security_d_instantiate(tmp, inode);
9308a612 1620
9308a612
CH
1621 return tmp;
1622
1623 out_iput:
24ff6663
JB
1624 if (res && !IS_ERR(res))
1625 security_d_instantiate(res, inode);
9308a612
CH
1626 iput(inode);
1627 return res;
4ea3ada2 1628}
adc48720 1629EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1630
1631/**
1632 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1633 * @inode: the inode which may have a disconnected dentry
1634 * @dentry: a negative dentry which we want to point to the inode.
1635 *
1636 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1637 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1638 * and return it, else simply d_add the inode to the dentry and return NULL.
1639 *
1640 * This is needed in the lookup routine of any filesystem that is exportable
1641 * (via knfsd) so that we can build dcache paths to directories effectively.
1642 *
1643 * If a dentry was found and moved, then it is returned. Otherwise NULL
1644 * is returned. This matches the expected return value of ->lookup.
1645 *
1646 */
1647struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1648{
1649 struct dentry *new = NULL;
1650
a9049376
AV
1651 if (IS_ERR(inode))
1652 return ERR_CAST(inode);
1653
21c0d8fd 1654 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1655 spin_lock(&inode->i_lock);
32ba9c3f 1656 new = __d_find_alias(inode, 1);
1da177e4 1657 if (new) {
32ba9c3f 1658 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1659 spin_unlock(&inode->i_lock);
1da177e4 1660 security_d_instantiate(new, inode);
1da177e4
LT
1661 d_move(new, dentry);
1662 iput(inode);
1663 } else {
873feea0 1664 /* already taking inode->i_lock, so d_add() by hand */
360da900 1665 __d_instantiate(dentry, inode);
873feea0 1666 spin_unlock(&inode->i_lock);
1da177e4
LT
1667 security_d_instantiate(dentry, inode);
1668 d_rehash(dentry);
1669 }
1670 } else
1671 d_add(dentry, inode);
1672 return new;
1673}
ec4f8605 1674EXPORT_SYMBOL(d_splice_alias);
1da177e4 1675
9403540c
BN
1676/**
1677 * d_add_ci - lookup or allocate new dentry with case-exact name
1678 * @inode: the inode case-insensitive lookup has found
1679 * @dentry: the negative dentry that was passed to the parent's lookup func
1680 * @name: the case-exact name to be associated with the returned dentry
1681 *
1682 * This is to avoid filling the dcache with case-insensitive names to the
1683 * same inode, only the actual correct case is stored in the dcache for
1684 * case-insensitive filesystems.
1685 *
1686 * For a case-insensitive lookup match and if the the case-exact dentry
1687 * already exists in in the dcache, use it and return it.
1688 *
1689 * If no entry exists with the exact case name, allocate new dentry with
1690 * the exact case, and return the spliced entry.
1691 */
e45b590b 1692struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1693 struct qstr *name)
1694{
1695 int error;
1696 struct dentry *found;
1697 struct dentry *new;
1698
b6520c81
CH
1699 /*
1700 * First check if a dentry matching the name already exists,
1701 * if not go ahead and create it now.
1702 */
9403540c 1703 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1704 if (!found) {
1705 new = d_alloc(dentry->d_parent, name);
1706 if (!new) {
1707 error = -ENOMEM;
1708 goto err_out;
1709 }
b6520c81 1710
9403540c
BN
1711 found = d_splice_alias(inode, new);
1712 if (found) {
1713 dput(new);
1714 return found;
1715 }
1716 return new;
1717 }
b6520c81
CH
1718
1719 /*
1720 * If a matching dentry exists, and it's not negative use it.
1721 *
1722 * Decrement the reference count to balance the iget() done
1723 * earlier on.
1724 */
9403540c
BN
1725 if (found->d_inode) {
1726 if (unlikely(found->d_inode != inode)) {
1727 /* This can't happen because bad inodes are unhashed. */
1728 BUG_ON(!is_bad_inode(inode));
1729 BUG_ON(!is_bad_inode(found->d_inode));
1730 }
9403540c
BN
1731 iput(inode);
1732 return found;
1733 }
b6520c81 1734
9403540c 1735 /*
44396f4b
JB
1736 * We are going to instantiate this dentry, unhash it and clear the
1737 * lookup flag so we can do that.
9403540c 1738 */
44396f4b
JB
1739 if (unlikely(d_need_lookup(found)))
1740 d_clear_need_lookup(found);
b6520c81 1741
9403540c 1742 /*
9403540c 1743 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1744 * already has a dentry.
9403540c 1745 */
4513d899
AV
1746 new = d_splice_alias(inode, found);
1747 if (new) {
1748 dput(found);
1749 found = new;
9403540c 1750 }
4513d899 1751 return found;
9403540c
BN
1752
1753err_out:
1754 iput(inode);
1755 return ERR_PTR(error);
1756}
ec4f8605 1757EXPORT_SYMBOL(d_add_ci);
1da177e4 1758
12f8ad4b
LT
1759/*
1760 * Do the slow-case of the dentry name compare.
1761 *
1762 * Unlike the dentry_cmp() function, we need to atomically
1763 * load the name, length and inode information, so that the
1764 * filesystem can rely on them, and can use the 'name' and
1765 * 'len' information without worrying about walking off the
1766 * end of memory etc.
1767 *
1768 * Thus the read_seqcount_retry() and the "duplicate" info
1769 * in arguments (the low-level filesystem should not look
1770 * at the dentry inode or name contents directly, since
1771 * rename can change them while we're in RCU mode).
1772 */
1773enum slow_d_compare {
1774 D_COMP_OK,
1775 D_COMP_NOMATCH,
1776 D_COMP_SEQRETRY,
1777};
1778
1779static noinline enum slow_d_compare slow_dentry_cmp(
1780 const struct dentry *parent,
1781 struct inode *inode,
1782 struct dentry *dentry,
1783 unsigned int seq,
1784 const struct qstr *name)
1785{
1786 int tlen = dentry->d_name.len;
1787 const char *tname = dentry->d_name.name;
1788 struct inode *i = dentry->d_inode;
1789
1790 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1791 cpu_relax();
1792 return D_COMP_SEQRETRY;
1793 }
1794 if (parent->d_op->d_compare(parent, inode,
1795 dentry, i,
1796 tlen, tname, name))
1797 return D_COMP_NOMATCH;
1798 return D_COMP_OK;
1799}
1800
31e6b01f
NP
1801/**
1802 * __d_lookup_rcu - search for a dentry (racy, store-free)
1803 * @parent: parent dentry
1804 * @name: qstr of name we wish to find
1f1e6e52 1805 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1806 * @inode: returns dentry->d_inode when the inode was found valid.
1807 * Returns: dentry, or NULL
1808 *
1809 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1810 * resolution (store-free path walking) design described in
1811 * Documentation/filesystems/path-lookup.txt.
1812 *
1813 * This is not to be used outside core vfs.
1814 *
1815 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1816 * held, and rcu_read_lock held. The returned dentry must not be stored into
1817 * without taking d_lock and checking d_seq sequence count against @seq
1818 * returned here.
1819 *
1820 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1821 * function.
1822 *
1823 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1824 * the returned dentry, so long as its parent's seqlock is checked after the
1825 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1826 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1827 *
1828 * NOTE! The caller *has* to check the resulting dentry against the sequence
1829 * number we've returned before using any of the resulting dentry state!
31e6b01f 1830 */
8966be90
LT
1831struct dentry *__d_lookup_rcu(const struct dentry *parent,
1832 const struct qstr *name,
12f8ad4b 1833 unsigned *seqp, struct inode *inode)
31e6b01f 1834{
26fe5750 1835 u64 hashlen = name->hash_len;
31e6b01f 1836 const unsigned char *str = name->name;
26fe5750 1837 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1838 struct hlist_bl_node *node;
31e6b01f
NP
1839 struct dentry *dentry;
1840
1841 /*
1842 * Note: There is significant duplication with __d_lookup_rcu which is
1843 * required to prevent single threaded performance regressions
1844 * especially on architectures where smp_rmb (in seqcounts) are costly.
1845 * Keep the two functions in sync.
1846 */
1847
1848 /*
1849 * The hash list is protected using RCU.
1850 *
1851 * Carefully use d_seq when comparing a candidate dentry, to avoid
1852 * races with d_move().
1853 *
1854 * It is possible that concurrent renames can mess up our list
1855 * walk here and result in missing our dentry, resulting in the
1856 * false-negative result. d_lookup() protects against concurrent
1857 * renames using rename_lock seqlock.
1858 *
b0a4bb83 1859 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1860 */
b07ad996 1861 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1862 unsigned seq;
31e6b01f 1863
31e6b01f 1864seqretry:
12f8ad4b
LT
1865 /*
1866 * The dentry sequence count protects us from concurrent
1867 * renames, and thus protects inode, parent and name fields.
1868 *
1869 * The caller must perform a seqcount check in order
1870 * to do anything useful with the returned dentry,
1871 * including using the 'd_inode' pointer.
1872 *
1873 * NOTE! We do a "raw" seqcount_begin here. That means that
1874 * we don't wait for the sequence count to stabilize if it
1875 * is in the middle of a sequence change. If we do the slow
1876 * dentry compare, we will do seqretries until it is stable,
1877 * and if we end up with a successful lookup, we actually
1878 * want to exit RCU lookup anyway.
1879 */
1880 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1881 if (dentry->d_parent != parent)
1882 continue;
2e321806
LT
1883 if (d_unhashed(dentry))
1884 continue;
12f8ad4b
LT
1885 *seqp = seq;
1886
830c0f0e 1887 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1888 if (dentry->d_name.hash != hashlen_hash(hashlen))
1889 continue;
12f8ad4b
LT
1890 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1891 case D_COMP_OK:
1892 return dentry;
1893 case D_COMP_NOMATCH:
31e6b01f 1894 continue;
12f8ad4b
LT
1895 default:
1896 goto seqretry;
1897 }
31e6b01f 1898 }
12f8ad4b 1899
26fe5750 1900 if (dentry->d_name.hash_len != hashlen)
ee983e89 1901 continue;
26fe5750 1902 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1903 return dentry;
31e6b01f
NP
1904 }
1905 return NULL;
1906}
1907
1da177e4
LT
1908/**
1909 * d_lookup - search for a dentry
1910 * @parent: parent dentry
1911 * @name: qstr of name we wish to find
b04f784e 1912 * Returns: dentry, or NULL
1da177e4 1913 *
b04f784e
NP
1914 * d_lookup searches the children of the parent dentry for the name in
1915 * question. If the dentry is found its reference count is incremented and the
1916 * dentry is returned. The caller must use dput to free the entry when it has
1917 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1918 */
31e6b01f 1919struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1920{
31e6b01f 1921 struct dentry *dentry;
949854d0 1922 unsigned seq;
1da177e4
LT
1923
1924 do {
1925 seq = read_seqbegin(&rename_lock);
1926 dentry = __d_lookup(parent, name);
1927 if (dentry)
1928 break;
1929 } while (read_seqretry(&rename_lock, seq));
1930 return dentry;
1931}
ec4f8605 1932EXPORT_SYMBOL(d_lookup);
1da177e4 1933
31e6b01f 1934/**
b04f784e
NP
1935 * __d_lookup - search for a dentry (racy)
1936 * @parent: parent dentry
1937 * @name: qstr of name we wish to find
1938 * Returns: dentry, or NULL
1939 *
1940 * __d_lookup is like d_lookup, however it may (rarely) return a
1941 * false-negative result due to unrelated rename activity.
1942 *
1943 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1944 * however it must be used carefully, eg. with a following d_lookup in
1945 * the case of failure.
1946 *
1947 * __d_lookup callers must be commented.
1948 */
31e6b01f 1949struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1950{
1951 unsigned int len = name->len;
1952 unsigned int hash = name->hash;
1953 const unsigned char *str = name->name;
b07ad996 1954 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1955 struct hlist_bl_node *node;
31e6b01f 1956 struct dentry *found = NULL;
665a7583 1957 struct dentry *dentry;
1da177e4 1958
31e6b01f
NP
1959 /*
1960 * Note: There is significant duplication with __d_lookup_rcu which is
1961 * required to prevent single threaded performance regressions
1962 * especially on architectures where smp_rmb (in seqcounts) are costly.
1963 * Keep the two functions in sync.
1964 */
1965
b04f784e
NP
1966 /*
1967 * The hash list is protected using RCU.
1968 *
1969 * Take d_lock when comparing a candidate dentry, to avoid races
1970 * with d_move().
1971 *
1972 * It is possible that concurrent renames can mess up our list
1973 * walk here and result in missing our dentry, resulting in the
1974 * false-negative result. d_lookup() protects against concurrent
1975 * renames using rename_lock seqlock.
1976 *
b0a4bb83 1977 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1978 */
1da177e4
LT
1979 rcu_read_lock();
1980
b07ad996 1981 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1982
1da177e4
LT
1983 if (dentry->d_name.hash != hash)
1984 continue;
1da177e4
LT
1985
1986 spin_lock(&dentry->d_lock);
1da177e4
LT
1987 if (dentry->d_parent != parent)
1988 goto next;
d0185c08
LT
1989 if (d_unhashed(dentry))
1990 goto next;
1991
1da177e4
LT
1992 /*
1993 * It is safe to compare names since d_move() cannot
1994 * change the qstr (protected by d_lock).
1995 */
fb045adb 1996 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1997 int tlen = dentry->d_name.len;
1998 const char *tname = dentry->d_name.name;
621e155a
NP
1999 if (parent->d_op->d_compare(parent, parent->d_inode,
2000 dentry, dentry->d_inode,
31e6b01f 2001 tlen, tname, name))
1da177e4
LT
2002 goto next;
2003 } else {
ee983e89
LT
2004 if (dentry->d_name.len != len)
2005 goto next;
12f8ad4b 2006 if (dentry_cmp(dentry, str, len))
1da177e4
LT
2007 goto next;
2008 }
2009
b7ab39f6 2010 dentry->d_count++;
d0185c08 2011 found = dentry;
1da177e4
LT
2012 spin_unlock(&dentry->d_lock);
2013 break;
2014next:
2015 spin_unlock(&dentry->d_lock);
2016 }
2017 rcu_read_unlock();
2018
2019 return found;
2020}
2021
3e7e241f
EB
2022/**
2023 * d_hash_and_lookup - hash the qstr then search for a dentry
2024 * @dir: Directory to search in
2025 * @name: qstr of name we wish to find
2026 *
2027 * On hash failure or on lookup failure NULL is returned.
2028 */
2029struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2030{
2031 struct dentry *dentry = NULL;
2032
2033 /*
2034 * Check for a fs-specific hash function. Note that we must
2035 * calculate the standard hash first, as the d_op->d_hash()
2036 * routine may choose to leave the hash value unchanged.
2037 */
2038 name->hash = full_name_hash(name->name, name->len);
fb045adb 2039 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2040 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2041 goto out;
2042 }
2043 dentry = d_lookup(dir, name);
2044out:
2045 return dentry;
2046}
2047
1da177e4 2048/**
786a5e15 2049 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2050 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2051 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2052 *
2053 * An insecure source has sent us a dentry, here we verify it and dget() it.
2054 * This is used by ncpfs in its readdir implementation.
2055 * Zero is returned in the dentry is invalid.
786a5e15
NP
2056 *
2057 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2058 */
d3a23e16 2059int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2060{
786a5e15 2061 struct dentry *child;
d3a23e16 2062
2fd6b7f5 2063 spin_lock(&dparent->d_lock);
786a5e15
NP
2064 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2065 if (dentry == child) {
2fd6b7f5 2066 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2067 __dget_dlock(dentry);
2fd6b7f5
NP
2068 spin_unlock(&dentry->d_lock);
2069 spin_unlock(&dparent->d_lock);
1da177e4
LT
2070 return 1;
2071 }
2072 }
2fd6b7f5 2073 spin_unlock(&dparent->d_lock);
786a5e15 2074
1da177e4
LT
2075 return 0;
2076}
ec4f8605 2077EXPORT_SYMBOL(d_validate);
1da177e4
LT
2078
2079/*
2080 * When a file is deleted, we have two options:
2081 * - turn this dentry into a negative dentry
2082 * - unhash this dentry and free it.
2083 *
2084 * Usually, we want to just turn this into
2085 * a negative dentry, but if anybody else is
2086 * currently using the dentry or the inode
2087 * we can't do that and we fall back on removing
2088 * it from the hash queues and waiting for
2089 * it to be deleted later when it has no users
2090 */
2091
2092/**
2093 * d_delete - delete a dentry
2094 * @dentry: The dentry to delete
2095 *
2096 * Turn the dentry into a negative dentry if possible, otherwise
2097 * remove it from the hash queues so it can be deleted later
2098 */
2099
2100void d_delete(struct dentry * dentry)
2101{
873feea0 2102 struct inode *inode;
7a91bf7f 2103 int isdir = 0;
1da177e4
LT
2104 /*
2105 * Are we the only user?
2106 */
357f8e65 2107again:
1da177e4 2108 spin_lock(&dentry->d_lock);
873feea0
NP
2109 inode = dentry->d_inode;
2110 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2111 if (dentry->d_count == 1) {
873feea0 2112 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2113 spin_unlock(&dentry->d_lock);
2114 cpu_relax();
2115 goto again;
2116 }
13e3c5e5 2117 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2118 dentry_unlink_inode(dentry);
7a91bf7f 2119 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2120 return;
2121 }
2122
2123 if (!d_unhashed(dentry))
2124 __d_drop(dentry);
2125
2126 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2127
2128 fsnotify_nameremove(dentry, isdir);
1da177e4 2129}
ec4f8605 2130EXPORT_SYMBOL(d_delete);
1da177e4 2131
b07ad996 2132static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2133{
ceb5bdc2 2134 BUG_ON(!d_unhashed(entry));
1879fd6a 2135 hlist_bl_lock(b);
dea3667b 2136 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2137 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2138 hlist_bl_unlock(b);
1da177e4
LT
2139}
2140
770bfad8
DH
2141static void _d_rehash(struct dentry * entry)
2142{
2143 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2144}
2145
1da177e4
LT
2146/**
2147 * d_rehash - add an entry back to the hash
2148 * @entry: dentry to add to the hash
2149 *
2150 * Adds a dentry to the hash according to its name.
2151 */
2152
2153void d_rehash(struct dentry * entry)
2154{
1da177e4 2155 spin_lock(&entry->d_lock);
770bfad8 2156 _d_rehash(entry);
1da177e4 2157 spin_unlock(&entry->d_lock);
1da177e4 2158}
ec4f8605 2159EXPORT_SYMBOL(d_rehash);
1da177e4 2160
fb2d5b86
NP
2161/**
2162 * dentry_update_name_case - update case insensitive dentry with a new name
2163 * @dentry: dentry to be updated
2164 * @name: new name
2165 *
2166 * Update a case insensitive dentry with new case of name.
2167 *
2168 * dentry must have been returned by d_lookup with name @name. Old and new
2169 * name lengths must match (ie. no d_compare which allows mismatched name
2170 * lengths).
2171 *
2172 * Parent inode i_mutex must be held over d_lookup and into this call (to
2173 * keep renames and concurrent inserts, and readdir(2) away).
2174 */
2175void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2176{
7ebfa57f 2177 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2178 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2179
fb2d5b86 2180 spin_lock(&dentry->d_lock);
31e6b01f 2181 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2182 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2183 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2184 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2185}
2186EXPORT_SYMBOL(dentry_update_name_case);
2187
1da177e4
LT
2188static void switch_names(struct dentry *dentry, struct dentry *target)
2189{
2190 if (dname_external(target)) {
2191 if (dname_external(dentry)) {
2192 /*
2193 * Both external: swap the pointers
2194 */
9a8d5bb4 2195 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2196 } else {
2197 /*
2198 * dentry:internal, target:external. Steal target's
2199 * storage and make target internal.
2200 */
321bcf92
BF
2201 memcpy(target->d_iname, dentry->d_name.name,
2202 dentry->d_name.len + 1);
1da177e4
LT
2203 dentry->d_name.name = target->d_name.name;
2204 target->d_name.name = target->d_iname;
2205 }
2206 } else {
2207 if (dname_external(dentry)) {
2208 /*
2209 * dentry:external, target:internal. Give dentry's
2210 * storage to target and make dentry internal
2211 */
2212 memcpy(dentry->d_iname, target->d_name.name,
2213 target->d_name.len + 1);
2214 target->d_name.name = dentry->d_name.name;
2215 dentry->d_name.name = dentry->d_iname;
2216 } else {
2217 /*
2218 * Both are internal. Just copy target to dentry
2219 */
2220 memcpy(dentry->d_iname, target->d_name.name,
2221 target->d_name.len + 1);
dc711ca3
AV
2222 dentry->d_name.len = target->d_name.len;
2223 return;
1da177e4
LT
2224 }
2225 }
9a8d5bb4 2226 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2227}
2228
2fd6b7f5
NP
2229static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2230{
2231 /*
2232 * XXXX: do we really need to take target->d_lock?
2233 */
2234 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2235 spin_lock(&target->d_parent->d_lock);
2236 else {
2237 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2238 spin_lock(&dentry->d_parent->d_lock);
2239 spin_lock_nested(&target->d_parent->d_lock,
2240 DENTRY_D_LOCK_NESTED);
2241 } else {
2242 spin_lock(&target->d_parent->d_lock);
2243 spin_lock_nested(&dentry->d_parent->d_lock,
2244 DENTRY_D_LOCK_NESTED);
2245 }
2246 }
2247 if (target < dentry) {
2248 spin_lock_nested(&target->d_lock, 2);
2249 spin_lock_nested(&dentry->d_lock, 3);
2250 } else {
2251 spin_lock_nested(&dentry->d_lock, 2);
2252 spin_lock_nested(&target->d_lock, 3);
2253 }
2254}
2255
2256static void dentry_unlock_parents_for_move(struct dentry *dentry,
2257 struct dentry *target)
2258{
2259 if (target->d_parent != dentry->d_parent)
2260 spin_unlock(&dentry->d_parent->d_lock);
2261 if (target->d_parent != target)
2262 spin_unlock(&target->d_parent->d_lock);
2263}
2264
1da177e4 2265/*
2fd6b7f5
NP
2266 * When switching names, the actual string doesn't strictly have to
2267 * be preserved in the target - because we're dropping the target
2268 * anyway. As such, we can just do a simple memcpy() to copy over
2269 * the new name before we switch.
2270 *
2271 * Note that we have to be a lot more careful about getting the hash
2272 * switched - we have to switch the hash value properly even if it
2273 * then no longer matches the actual (corrupted) string of the target.
2274 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2275 */
9eaef27b 2276/*
18367501 2277 * __d_move - move a dentry
1da177e4
LT
2278 * @dentry: entry to move
2279 * @target: new dentry
2280 *
2281 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2282 * dcache entries should not be moved in this way. Caller must hold
2283 * rename_lock, the i_mutex of the source and target directories,
2284 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2285 */
18367501 2286static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2287{
1da177e4
LT
2288 if (!dentry->d_inode)
2289 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2290
2fd6b7f5
NP
2291 BUG_ON(d_ancestor(dentry, target));
2292 BUG_ON(d_ancestor(target, dentry));
2293
2fd6b7f5 2294 dentry_lock_for_move(dentry, target);
1da177e4 2295
31e6b01f
NP
2296 write_seqcount_begin(&dentry->d_seq);
2297 write_seqcount_begin(&target->d_seq);
2298
ceb5bdc2
NP
2299 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2300
2301 /*
2302 * Move the dentry to the target hash queue. Don't bother checking
2303 * for the same hash queue because of how unlikely it is.
2304 */
2305 __d_drop(dentry);
789680d1 2306 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2307
2308 /* Unhash the target: dput() will then get rid of it */
2309 __d_drop(target);
2310
5160ee6f
ED
2311 list_del(&dentry->d_u.d_child);
2312 list_del(&target->d_u.d_child);
1da177e4
LT
2313
2314 /* Switch the names.. */
2315 switch_names(dentry, target);
9a8d5bb4 2316 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2317
2318 /* ... and switch the parents */
2319 if (IS_ROOT(dentry)) {
2320 dentry->d_parent = target->d_parent;
2321 target->d_parent = target;
5160ee6f 2322 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2323 } else {
9a8d5bb4 2324 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2325
2326 /* And add them back to the (new) parent lists */
5160ee6f 2327 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2328 }
2329
5160ee6f 2330 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2331
31e6b01f
NP
2332 write_seqcount_end(&target->d_seq);
2333 write_seqcount_end(&dentry->d_seq);
2334
2fd6b7f5 2335 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2336 spin_unlock(&target->d_lock);
c32ccd87 2337 fsnotify_d_move(dentry);
1da177e4 2338 spin_unlock(&dentry->d_lock);
18367501
AV
2339}
2340
2341/*
2342 * d_move - move a dentry
2343 * @dentry: entry to move
2344 * @target: new dentry
2345 *
2346 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2347 * dcache entries should not be moved in this way. See the locking
2348 * requirements for __d_move.
18367501
AV
2349 */
2350void d_move(struct dentry *dentry, struct dentry *target)
2351{
2352 write_seqlock(&rename_lock);
2353 __d_move(dentry, target);
1da177e4 2354 write_sequnlock(&rename_lock);
9eaef27b 2355}
ec4f8605 2356EXPORT_SYMBOL(d_move);
1da177e4 2357
e2761a11
OH
2358/**
2359 * d_ancestor - search for an ancestor
2360 * @p1: ancestor dentry
2361 * @p2: child dentry
2362 *
2363 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2364 * an ancestor of p2, else NULL.
9eaef27b 2365 */
e2761a11 2366struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2367{
2368 struct dentry *p;
2369
871c0067 2370 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2371 if (p->d_parent == p1)
e2761a11 2372 return p;
9eaef27b 2373 }
e2761a11 2374 return NULL;
9eaef27b
TM
2375}
2376
2377/*
2378 * This helper attempts to cope with remotely renamed directories
2379 *
2380 * It assumes that the caller is already holding
18367501 2381 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2382 *
2383 * Note: If ever the locking in lock_rename() changes, then please
2384 * remember to update this too...
9eaef27b 2385 */
873feea0
NP
2386static struct dentry *__d_unalias(struct inode *inode,
2387 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2388{
2389 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2390 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2391
2392 /* If alias and dentry share a parent, then no extra locks required */
2393 if (alias->d_parent == dentry->d_parent)
2394 goto out_unalias;
2395
9eaef27b 2396 /* See lock_rename() */
9eaef27b
TM
2397 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2398 goto out_err;
2399 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2400 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2401 goto out_err;
2402 m2 = &alias->d_parent->d_inode->i_mutex;
2403out_unalias:
ee3efa91
AV
2404 if (likely(!d_mountpoint(alias))) {
2405 __d_move(alias, dentry);
2406 ret = alias;
2407 }
9eaef27b 2408out_err:
873feea0 2409 spin_unlock(&inode->i_lock);
9eaef27b
TM
2410 if (m2)
2411 mutex_unlock(m2);
2412 if (m1)
2413 mutex_unlock(m1);
2414 return ret;
2415}
2416
770bfad8
DH
2417/*
2418 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2419 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2420 * returns with anon->d_lock held!
770bfad8
DH
2421 */
2422static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2423{
2424 struct dentry *dparent, *aparent;
2425
2fd6b7f5 2426 dentry_lock_for_move(anon, dentry);
770bfad8 2427
31e6b01f
NP
2428 write_seqcount_begin(&dentry->d_seq);
2429 write_seqcount_begin(&anon->d_seq);
2430
770bfad8
DH
2431 dparent = dentry->d_parent;
2432 aparent = anon->d_parent;
2433
2fd6b7f5
NP
2434 switch_names(dentry, anon);
2435 swap(dentry->d_name.hash, anon->d_name.hash);
2436
770bfad8
DH
2437 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2438 list_del(&dentry->d_u.d_child);
2439 if (!IS_ROOT(dentry))
2440 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2441 else
2442 INIT_LIST_HEAD(&dentry->d_u.d_child);
2443
2444 anon->d_parent = (dparent == dentry) ? anon : dparent;
2445 list_del(&anon->d_u.d_child);
2446 if (!IS_ROOT(anon))
2447 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2448 else
2449 INIT_LIST_HEAD(&anon->d_u.d_child);
2450
31e6b01f
NP
2451 write_seqcount_end(&dentry->d_seq);
2452 write_seqcount_end(&anon->d_seq);
2453
2fd6b7f5
NP
2454 dentry_unlock_parents_for_move(anon, dentry);
2455 spin_unlock(&dentry->d_lock);
2456
2457 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2458 anon->d_flags &= ~DCACHE_DISCONNECTED;
2459}
2460
2461/**
2462 * d_materialise_unique - introduce an inode into the tree
2463 * @dentry: candidate dentry
2464 * @inode: inode to bind to the dentry, to which aliases may be attached
2465 *
2466 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2467 * root directory alias in its place if there is one. Caller must hold the
2468 * i_mutex of the parent directory.
770bfad8
DH
2469 */
2470struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2471{
9eaef27b 2472 struct dentry *actual;
770bfad8
DH
2473
2474 BUG_ON(!d_unhashed(dentry));
2475
770bfad8
DH
2476 if (!inode) {
2477 actual = dentry;
360da900 2478 __d_instantiate(dentry, NULL);
357f8e65
NP
2479 d_rehash(actual);
2480 goto out_nolock;
770bfad8
DH
2481 }
2482
873feea0 2483 spin_lock(&inode->i_lock);
357f8e65 2484
9eaef27b
TM
2485 if (S_ISDIR(inode->i_mode)) {
2486 struct dentry *alias;
2487
2488 /* Does an aliased dentry already exist? */
32ba9c3f 2489 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2490 if (alias) {
2491 actual = alias;
18367501
AV
2492 write_seqlock(&rename_lock);
2493
2494 if (d_ancestor(alias, dentry)) {
2495 /* Check for loops */
2496 actual = ERR_PTR(-ELOOP);
b18dafc8 2497 spin_unlock(&inode->i_lock);
18367501
AV
2498 } else if (IS_ROOT(alias)) {
2499 /* Is this an anonymous mountpoint that we
2500 * could splice into our tree? */
9eaef27b 2501 __d_materialise_dentry(dentry, alias);
18367501 2502 write_sequnlock(&rename_lock);
9eaef27b
TM
2503 __d_drop(alias);
2504 goto found;
18367501
AV
2505 } else {
2506 /* Nope, but we must(!) avoid directory
b18dafc8 2507 * aliasing. This drops inode->i_lock */
18367501 2508 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2509 }
18367501 2510 write_sequnlock(&rename_lock);
dd179946
DH
2511 if (IS_ERR(actual)) {
2512 if (PTR_ERR(actual) == -ELOOP)
2513 pr_warn_ratelimited(
2514 "VFS: Lookup of '%s' in %s %s"
2515 " would have caused loop\n",
2516 dentry->d_name.name,
2517 inode->i_sb->s_type->name,
2518 inode->i_sb->s_id);
9eaef27b 2519 dput(alias);
dd179946 2520 }
9eaef27b
TM
2521 goto out_nolock;
2522 }
770bfad8
DH
2523 }
2524
2525 /* Add a unique reference */
2526 actual = __d_instantiate_unique(dentry, inode);
2527 if (!actual)
2528 actual = dentry;
357f8e65
NP
2529 else
2530 BUG_ON(!d_unhashed(actual));
770bfad8 2531
770bfad8
DH
2532 spin_lock(&actual->d_lock);
2533found:
2534 _d_rehash(actual);
2535 spin_unlock(&actual->d_lock);
873feea0 2536 spin_unlock(&inode->i_lock);
9eaef27b 2537out_nolock:
770bfad8
DH
2538 if (actual == dentry) {
2539 security_d_instantiate(dentry, inode);
2540 return NULL;
2541 }
2542
2543 iput(inode);
2544 return actual;
770bfad8 2545}
ec4f8605 2546EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2547
cdd16d02 2548static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2549{
2550 *buflen -= namelen;
2551 if (*buflen < 0)
2552 return -ENAMETOOLONG;
2553 *buffer -= namelen;
2554 memcpy(*buffer, str, namelen);
2555 return 0;
2556}
2557
cdd16d02
MS
2558static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2559{
2560 return prepend(buffer, buflen, name->name, name->len);
2561}
2562
1da177e4 2563/**
208898c1 2564 * prepend_path - Prepend path string to a buffer
9d1bc601 2565 * @path: the dentry/vfsmount to report
02125a82 2566 * @root: root vfsmnt/dentry
f2eb6575
MS
2567 * @buffer: pointer to the end of the buffer
2568 * @buflen: pointer to buffer length
552ce544 2569 *
949854d0 2570 * Caller holds the rename_lock.
1da177e4 2571 */
02125a82
AV
2572static int prepend_path(const struct path *path,
2573 const struct path *root,
f2eb6575 2574 char **buffer, int *buflen)
1da177e4 2575{
9d1bc601
MS
2576 struct dentry *dentry = path->dentry;
2577 struct vfsmount *vfsmnt = path->mnt;
0714a533 2578 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2579 bool slash = false;
2580 int error = 0;
6092d048 2581
962830df 2582 br_read_lock(&vfsmount_lock);
f2eb6575 2583 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2584 struct dentry * parent;
2585
1da177e4 2586 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2587 /* Global root? */
676da58d 2588 if (!mnt_has_parent(mnt))
1da177e4 2589 goto global_root;
a73324da 2590 dentry = mnt->mnt_mountpoint;
0714a533
AV
2591 mnt = mnt->mnt_parent;
2592 vfsmnt = &mnt->mnt;
1da177e4
LT
2593 continue;
2594 }
2595 parent = dentry->d_parent;
2596 prefetch(parent);
9abca360 2597 spin_lock(&dentry->d_lock);
f2eb6575 2598 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2599 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2600 if (!error)
2601 error = prepend(buffer, buflen, "/", 1);
2602 if (error)
2603 break;
2604
2605 slash = true;
1da177e4
LT
2606 dentry = parent;
2607 }
2608
f2eb6575
MS
2609 if (!error && !slash)
2610 error = prepend(buffer, buflen, "/", 1);
2611
02125a82 2612out:
962830df 2613 br_read_unlock(&vfsmount_lock);
f2eb6575 2614 return error;
1da177e4
LT
2615
2616global_root:
98dc568b
MS
2617 /*
2618 * Filesystems needing to implement special "root names"
2619 * should do so with ->d_dname()
2620 */
2621 if (IS_ROOT(dentry) &&
2622 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2623 WARN(1, "Root dentry has weird name <%.*s>\n",
2624 (int) dentry->d_name.len, dentry->d_name.name);
2625 }
02125a82
AV
2626 if (!slash)
2627 error = prepend(buffer, buflen, "/", 1);
2628 if (!error)
f7a99c5b 2629 error = is_mounted(vfsmnt) ? 1 : 2;
be285c71 2630 goto out;
f2eb6575 2631}
be285c71 2632
f2eb6575
MS
2633/**
2634 * __d_path - return the path of a dentry
2635 * @path: the dentry/vfsmount to report
02125a82 2636 * @root: root vfsmnt/dentry
cd956a1c 2637 * @buf: buffer to return value in
f2eb6575
MS
2638 * @buflen: buffer length
2639 *
ffd1f4ed 2640 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2641 *
2642 * Returns a pointer into the buffer or an error code if the
2643 * path was too long.
2644 *
be148247 2645 * "buflen" should be positive.
f2eb6575 2646 *
02125a82 2647 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2648 */
02125a82
AV
2649char *__d_path(const struct path *path,
2650 const struct path *root,
f2eb6575
MS
2651 char *buf, int buflen)
2652{
2653 char *res = buf + buflen;
2654 int error;
2655
2656 prepend(&res, &buflen, "\0", 1);
949854d0 2657 write_seqlock(&rename_lock);
f2eb6575 2658 error = prepend_path(path, root, &res, &buflen);
949854d0 2659 write_sequnlock(&rename_lock);
be148247 2660
02125a82
AV
2661 if (error < 0)
2662 return ERR_PTR(error);
2663 if (error > 0)
2664 return NULL;
2665 return res;
2666}
2667
2668char *d_absolute_path(const struct path *path,
2669 char *buf, int buflen)
2670{
2671 struct path root = {};
2672 char *res = buf + buflen;
2673 int error;
2674
2675 prepend(&res, &buflen, "\0", 1);
2676 write_seqlock(&rename_lock);
2677 error = prepend_path(path, &root, &res, &buflen);
2678 write_sequnlock(&rename_lock);
2679
2680 if (error > 1)
2681 error = -EINVAL;
2682 if (error < 0)
f2eb6575 2683 return ERR_PTR(error);
f2eb6575 2684 return res;
1da177e4
LT
2685}
2686
ffd1f4ed
MS
2687/*
2688 * same as __d_path but appends "(deleted)" for unlinked files.
2689 */
02125a82
AV
2690static int path_with_deleted(const struct path *path,
2691 const struct path *root,
2692 char **buf, int *buflen)
ffd1f4ed
MS
2693{
2694 prepend(buf, buflen, "\0", 1);
2695 if (d_unlinked(path->dentry)) {
2696 int error = prepend(buf, buflen, " (deleted)", 10);
2697 if (error)
2698 return error;
2699 }
2700
2701 return prepend_path(path, root, buf, buflen);
2702}
2703
8df9d1a4
MS
2704static int prepend_unreachable(char **buffer, int *buflen)
2705{
2706 return prepend(buffer, buflen, "(unreachable)", 13);
2707}
2708
a03a8a70
JB
2709/**
2710 * d_path - return the path of a dentry
cf28b486 2711 * @path: path to report
a03a8a70
JB
2712 * @buf: buffer to return value in
2713 * @buflen: buffer length
2714 *
2715 * Convert a dentry into an ASCII path name. If the entry has been deleted
2716 * the string " (deleted)" is appended. Note that this is ambiguous.
2717 *
52afeefb
AV
2718 * Returns a pointer into the buffer or an error code if the path was
2719 * too long. Note: Callers should use the returned pointer, not the passed
2720 * in buffer, to use the name! The implementation often starts at an offset
2721 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2722 *
31f3e0b3 2723 * "buflen" should be positive.
a03a8a70 2724 */
20d4fdc1 2725char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2726{
ffd1f4ed 2727 char *res = buf + buflen;
6ac08c39 2728 struct path root;
ffd1f4ed 2729 int error;
1da177e4 2730
c23fbb6b
ED
2731 /*
2732 * We have various synthetic filesystems that never get mounted. On
2733 * these filesystems dentries are never used for lookup purposes, and
2734 * thus don't need to be hashed. They also don't need a name until a
2735 * user wants to identify the object in /proc/pid/fd/. The little hack
2736 * below allows us to generate a name for these objects on demand:
2737 */
cf28b486
JB
2738 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2739 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2740
f7ad3c6b 2741 get_fs_root(current->fs, &root);
949854d0 2742 write_seqlock(&rename_lock);
02125a82
AV
2743 error = path_with_deleted(path, &root, &res, &buflen);
2744 if (error < 0)
ffd1f4ed 2745 res = ERR_PTR(error);
949854d0 2746 write_sequnlock(&rename_lock);
6ac08c39 2747 path_put(&root);
1da177e4
LT
2748 return res;
2749}
ec4f8605 2750EXPORT_SYMBOL(d_path);
1da177e4 2751
8df9d1a4
MS
2752/**
2753 * d_path_with_unreachable - return the path of a dentry
2754 * @path: path to report
2755 * @buf: buffer to return value in
2756 * @buflen: buffer length
2757 *
2758 * The difference from d_path() is that this prepends "(unreachable)"
2759 * to paths which are unreachable from the current process' root.
2760 */
2761char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2762{
2763 char *res = buf + buflen;
2764 struct path root;
8df9d1a4
MS
2765 int error;
2766
2767 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2768 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2769
2770 get_fs_root(current->fs, &root);
949854d0 2771 write_seqlock(&rename_lock);
02125a82
AV
2772 error = path_with_deleted(path, &root, &res, &buflen);
2773 if (error > 0)
8df9d1a4 2774 error = prepend_unreachable(&res, &buflen);
949854d0 2775 write_sequnlock(&rename_lock);
8df9d1a4
MS
2776 path_put(&root);
2777 if (error)
2778 res = ERR_PTR(error);
2779
2780 return res;
2781}
2782
c23fbb6b
ED
2783/*
2784 * Helper function for dentry_operations.d_dname() members
2785 */
2786char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2787 const char *fmt, ...)
2788{
2789 va_list args;
2790 char temp[64];
2791 int sz;
2792
2793 va_start(args, fmt);
2794 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2795 va_end(args);
2796
2797 if (sz > sizeof(temp) || sz > buflen)
2798 return ERR_PTR(-ENAMETOOLONG);
2799
2800 buffer += buflen - sz;
2801 return memcpy(buffer, temp, sz);
2802}
2803
6092d048
RP
2804/*
2805 * Write full pathname from the root of the filesystem into the buffer.
2806 */
ec2447c2 2807static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2808{
2809 char *end = buf + buflen;
2810 char *retval;
2811
6092d048 2812 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2813 if (buflen < 1)
2814 goto Elong;
2815 /* Get '/' right */
2816 retval = end-1;
2817 *retval = '/';
2818
cdd16d02
MS
2819 while (!IS_ROOT(dentry)) {
2820 struct dentry *parent = dentry->d_parent;
9abca360 2821 int error;
6092d048 2822
6092d048 2823 prefetch(parent);
9abca360
NP
2824 spin_lock(&dentry->d_lock);
2825 error = prepend_name(&end, &buflen, &dentry->d_name);
2826 spin_unlock(&dentry->d_lock);
2827 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2828 goto Elong;
2829
2830 retval = end;
2831 dentry = parent;
2832 }
c103135c
AV
2833 return retval;
2834Elong:
2835 return ERR_PTR(-ENAMETOOLONG);
2836}
ec2447c2
NP
2837
2838char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2839{
2840 char *retval;
2841
949854d0 2842 write_seqlock(&rename_lock);
ec2447c2 2843 retval = __dentry_path(dentry, buf, buflen);
949854d0 2844 write_sequnlock(&rename_lock);
ec2447c2
NP
2845
2846 return retval;
2847}
2848EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2849
2850char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2851{
2852 char *p = NULL;
2853 char *retval;
2854
949854d0 2855 write_seqlock(&rename_lock);
c103135c
AV
2856 if (d_unlinked(dentry)) {
2857 p = buf + buflen;
2858 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2859 goto Elong;
2860 buflen++;
2861 }
2862 retval = __dentry_path(dentry, buf, buflen);
949854d0 2863 write_sequnlock(&rename_lock);
c103135c
AV
2864 if (!IS_ERR(retval) && p)
2865 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2866 return retval;
2867Elong:
6092d048
RP
2868 return ERR_PTR(-ENAMETOOLONG);
2869}
2870
1da177e4
LT
2871/*
2872 * NOTE! The user-level library version returns a
2873 * character pointer. The kernel system call just
2874 * returns the length of the buffer filled (which
2875 * includes the ending '\0' character), or a negative
2876 * error value. So libc would do something like
2877 *
2878 * char *getcwd(char * buf, size_t size)
2879 * {
2880 * int retval;
2881 *
2882 * retval = sys_getcwd(buf, size);
2883 * if (retval >= 0)
2884 * return buf;
2885 * errno = -retval;
2886 * return NULL;
2887 * }
2888 */
3cdad428 2889SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2890{
552ce544 2891 int error;
6ac08c39 2892 struct path pwd, root;
552ce544 2893 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2894
2895 if (!page)
2896 return -ENOMEM;
2897
f7ad3c6b 2898 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2899
552ce544 2900 error = -ENOENT;
949854d0 2901 write_seqlock(&rename_lock);
f3da392e 2902 if (!d_unlinked(pwd.dentry)) {
552ce544 2903 unsigned long len;
8df9d1a4
MS
2904 char *cwd = page + PAGE_SIZE;
2905 int buflen = PAGE_SIZE;
1da177e4 2906
8df9d1a4 2907 prepend(&cwd, &buflen, "\0", 1);
02125a82 2908 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2909 write_sequnlock(&rename_lock);
552ce544 2910
02125a82 2911 if (error < 0)
552ce544
LT
2912 goto out;
2913
8df9d1a4 2914 /* Unreachable from current root */
02125a82 2915 if (error > 0) {
8df9d1a4
MS
2916 error = prepend_unreachable(&cwd, &buflen);
2917 if (error)
2918 goto out;
2919 }
2920
552ce544
LT
2921 error = -ERANGE;
2922 len = PAGE_SIZE + page - cwd;
2923 if (len <= size) {
2924 error = len;
2925 if (copy_to_user(buf, cwd, len))
2926 error = -EFAULT;
2927 }
949854d0
NP
2928 } else {
2929 write_sequnlock(&rename_lock);
949854d0 2930 }
1da177e4
LT
2931
2932out:
6ac08c39
JB
2933 path_put(&pwd);
2934 path_put(&root);
1da177e4
LT
2935 free_page((unsigned long) page);
2936 return error;
2937}
2938
2939/*
2940 * Test whether new_dentry is a subdirectory of old_dentry.
2941 *
2942 * Trivially implemented using the dcache structure
2943 */
2944
2945/**
2946 * is_subdir - is new dentry a subdirectory of old_dentry
2947 * @new_dentry: new dentry
2948 * @old_dentry: old dentry
2949 *
2950 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2951 * Returns 0 otherwise.
2952 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2953 */
2954
e2761a11 2955int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2956{
2957 int result;
949854d0 2958 unsigned seq;
1da177e4 2959
e2761a11
OH
2960 if (new_dentry == old_dentry)
2961 return 1;
2962
e2761a11 2963 do {
1da177e4 2964 /* for restarting inner loop in case of seq retry */
1da177e4 2965 seq = read_seqbegin(&rename_lock);
949854d0
NP
2966 /*
2967 * Need rcu_readlock to protect against the d_parent trashing
2968 * due to d_move
2969 */
2970 rcu_read_lock();
e2761a11 2971 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2972 result = 1;
e2761a11
OH
2973 else
2974 result = 0;
949854d0 2975 rcu_read_unlock();
1da177e4 2976 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2977
2978 return result;
2979}
2980
2981void d_genocide(struct dentry *root)
2982{
949854d0 2983 struct dentry *this_parent;
1da177e4 2984 struct list_head *next;
949854d0 2985 unsigned seq;
58db63d0 2986 int locked = 0;
1da177e4 2987
949854d0 2988 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2989again:
2990 this_parent = root;
2fd6b7f5 2991 spin_lock(&this_parent->d_lock);
1da177e4
LT
2992repeat:
2993 next = this_parent->d_subdirs.next;
2994resume:
2995 while (next != &this_parent->d_subdirs) {
2996 struct list_head *tmp = next;
5160ee6f 2997 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2998 next = tmp->next;
949854d0 2999
da502956
NP
3000 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
3001 if (d_unhashed(dentry) || !dentry->d_inode) {
3002 spin_unlock(&dentry->d_lock);
1da177e4 3003 continue;
da502956 3004 }
1da177e4 3005 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
3006 spin_unlock(&this_parent->d_lock);
3007 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 3008 this_parent = dentry;
2fd6b7f5 3009 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
3010 goto repeat;
3011 }
949854d0
NP
3012 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
3013 dentry->d_flags |= DCACHE_GENOCIDE;
3014 dentry->d_count--;
3015 }
b7ab39f6 3016 spin_unlock(&dentry->d_lock);
1da177e4
LT
3017 }
3018 if (this_parent != root) {
c826cb7d 3019 struct dentry *child = this_parent;
949854d0
NP
3020 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
3021 this_parent->d_flags |= DCACHE_GENOCIDE;
3022 this_parent->d_count--;
3023 }
c826cb7d
LT
3024 this_parent = try_to_ascend(this_parent, locked, seq);
3025 if (!this_parent)
949854d0 3026 goto rename_retry;
949854d0 3027 next = child->d_u.d_child.next;
1da177e4
LT
3028 goto resume;
3029 }
2fd6b7f5 3030 spin_unlock(&this_parent->d_lock);
58db63d0 3031 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 3032 goto rename_retry;
58db63d0
NP
3033 if (locked)
3034 write_sequnlock(&rename_lock);
3035 return;
3036
3037rename_retry:
3038 locked = 1;
3039 write_seqlock(&rename_lock);
3040 goto again;
1da177e4
LT
3041}
3042
3043/**
3044 * find_inode_number - check for dentry with name
3045 * @dir: directory to check
3046 * @name: Name to find.
3047 *
3048 * Check whether a dentry already exists for the given name,
3049 * and return the inode number if it has an inode. Otherwise
3050 * 0 is returned.
3051 *
3052 * This routine is used to post-process directory listings for
3053 * filesystems using synthetic inode numbers, and is necessary
3054 * to keep getcwd() working.
3055 */
3056
3057ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3058{
3059 struct dentry * dentry;
3060 ino_t ino = 0;
3061
3e7e241f
EB
3062 dentry = d_hash_and_lookup(dir, name);
3063 if (dentry) {
1da177e4
LT
3064 if (dentry->d_inode)
3065 ino = dentry->d_inode->i_ino;
3066 dput(dentry);
3067 }
1da177e4
LT
3068 return ino;
3069}
ec4f8605 3070EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3071
3072static __initdata unsigned long dhash_entries;
3073static int __init set_dhash_entries(char *str)
3074{
3075 if (!str)
3076 return 0;
3077 dhash_entries = simple_strtoul(str, &str, 0);
3078 return 1;
3079}
3080__setup("dhash_entries=", set_dhash_entries);
3081
3082static void __init dcache_init_early(void)
3083{
074b8517 3084 unsigned int loop;
1da177e4
LT
3085
3086 /* If hashes are distributed across NUMA nodes, defer
3087 * hash allocation until vmalloc space is available.
3088 */
3089 if (hashdist)
3090 return;
3091
3092 dentry_hashtable =
3093 alloc_large_system_hash("Dentry cache",
b07ad996 3094 sizeof(struct hlist_bl_head),
1da177e4
LT
3095 dhash_entries,
3096 13,
3097 HASH_EARLY,
3098 &d_hash_shift,
3099 &d_hash_mask,
31fe62b9 3100 0,
1da177e4
LT
3101 0);
3102
074b8517 3103 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3104 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3105}
3106
74bf17cf 3107static void __init dcache_init(void)
1da177e4 3108{
074b8517 3109 unsigned int loop;
1da177e4
LT
3110
3111 /*
3112 * A constructor could be added for stable state like the lists,
3113 * but it is probably not worth it because of the cache nature
3114 * of the dcache.
3115 */
0a31bd5f
CL
3116 dentry_cache = KMEM_CACHE(dentry,
3117 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3118
3119 /* Hash may have been set up in dcache_init_early */
3120 if (!hashdist)
3121 return;
3122
3123 dentry_hashtable =
3124 alloc_large_system_hash("Dentry cache",
b07ad996 3125 sizeof(struct hlist_bl_head),
1da177e4
LT
3126 dhash_entries,
3127 13,
3128 0,
3129 &d_hash_shift,
3130 &d_hash_mask,
31fe62b9 3131 0,
1da177e4
LT
3132 0);
3133
074b8517 3134 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3135 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3136}
3137
3138/* SLAB cache for __getname() consumers */
e18b890b 3139struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3140EXPORT_SYMBOL(names_cachep);
1da177e4 3141
1da177e4
LT
3142EXPORT_SYMBOL(d_genocide);
3143
1da177e4
LT
3144void __init vfs_caches_init_early(void)
3145{
3146 dcache_init_early();
3147 inode_init_early();
3148}
3149
3150void __init vfs_caches_init(unsigned long mempages)
3151{
3152 unsigned long reserve;
3153
3154 /* Base hash sizes on available memory, with a reserve equal to
3155 150% of current kernel size */
3156
3157 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3158 mempages -= reserve;
3159
3160 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3161 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3162
74bf17cf
DC
3163 dcache_init();
3164 inode_init();
1da177e4 3165 files_init(mempages);
74bf17cf 3166 mnt_init();
1da177e4
LT
3167 bdev_cache_init();
3168 chrdev_init();
3169}