]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/swiotlb.c
Merge branch 'nvme-4.13' of git://git.infradead.org/nvme into for-linus
[mirror_ubuntu-artful-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
84be456f 32#include <linux/scatterlist.h>
1da177e4
LT
33
34#include <asm/io.h>
1da177e4
LT
35#include <asm/dma.h>
36
37#include <linux/init.h>
38#include <linux/bootmem.h>
a8522509 39#include <linux/iommu-helper.h>
1da177e4 40
ce5be5a1 41#define CREATE_TRACE_POINTS
2b2b614d
ZK
42#include <trace/events/swiotlb.h>
43
1da177e4
LT
44#define OFFSET(val,align) ((unsigned long) \
45 ( (val) & ( (align) - 1)))
46
0b9afede
AW
47#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
48
49/*
50 * Minimum IO TLB size to bother booting with. Systems with mainly
51 * 64bit capable cards will only lightly use the swiotlb. If we can't
52 * allocate a contiguous 1MB, we're probably in trouble anyway.
53 */
54#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
55
ae7871be 56enum swiotlb_force swiotlb_force;
1da177e4
LT
57
58/*
bfc5501f
KRW
59 * Used to do a quick range check in swiotlb_tbl_unmap_single and
60 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
61 * API.
62 */
ff7204a7 63static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
64
65/*
b595076a 66 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
67 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
68 */
69static unsigned long io_tlb_nslabs;
70
71/*
72 * When the IOMMU overflows we return a fallback buffer. This sets the size.
73 */
74static unsigned long io_tlb_overflow = 32*1024;
75
ee3f6ba8 76static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
77
78/*
79 * This is a free list describing the number of free entries available from
80 * each index
81 */
82static unsigned int *io_tlb_list;
83static unsigned int io_tlb_index;
84
7453c549
KRW
85/*
86 * Max segment that we can provide which (if pages are contingous) will
87 * not be bounced (unless SWIOTLB_FORCE is set).
88 */
89unsigned int max_segment;
90
1da177e4
LT
91/*
92 * We need to save away the original address corresponding to a mapped entry
93 * for the sync operations.
94 */
8e0629c1 95#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 96static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
97
98/*
99 * Protect the above data structures in the map and unmap calls
100 */
101static DEFINE_SPINLOCK(io_tlb_lock);
102
5740afdb
FT
103static int late_alloc;
104
1da177e4
LT
105static int __init
106setup_io_tlb_npages(char *str)
107{
108 if (isdigit(*str)) {
e8579e72 109 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
110 /* avoid tail segment of size < IO_TLB_SEGSIZE */
111 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
112 }
113 if (*str == ',')
114 ++str;
fff5d992 115 if (!strcmp(str, "force")) {
ae7871be 116 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
117 } else if (!strcmp(str, "noforce")) {
118 swiotlb_force = SWIOTLB_NO_FORCE;
119 io_tlb_nslabs = 1;
120 }
b18485e7 121
c729de8f 122 return 0;
1da177e4 123}
c729de8f 124early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
125/* make io_tlb_overflow tunable too? */
126
f21ffe9f 127unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
128{
129 return io_tlb_nslabs;
130}
f21ffe9f 131EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f 132
7453c549
KRW
133unsigned int swiotlb_max_segment(void)
134{
135 return max_segment;
136}
137EXPORT_SYMBOL_GPL(swiotlb_max_segment);
138
139void swiotlb_set_max_segment(unsigned int val)
140{
141 if (swiotlb_force == SWIOTLB_FORCE)
142 max_segment = 1;
143 else
144 max_segment = rounddown(val, PAGE_SIZE);
145}
146
c729de8f
YL
147/* default to 64MB */
148#define IO_TLB_DEFAULT_SIZE (64UL<<20)
149unsigned long swiotlb_size_or_default(void)
150{
151 unsigned long size;
152
153 size = io_tlb_nslabs << IO_TLB_SHIFT;
154
155 return size ? size : (IO_TLB_DEFAULT_SIZE);
156}
157
02ca646e 158/* Note that this doesn't work with highmem page */
70a7d3cc
JF
159static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
160 volatile void *address)
e08e1f7a 161{
862d196b 162 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
163}
164
ac2cbab2
YL
165static bool no_iotlb_memory;
166
ad32e8cb 167void swiotlb_print_info(void)
2e5b2b86 168{
ad32e8cb 169 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 170 unsigned char *vstart, *vend;
2e5b2b86 171
ac2cbab2
YL
172 if (no_iotlb_memory) {
173 pr_warn("software IO TLB: No low mem\n");
174 return;
175 }
176
ff7204a7 177 vstart = phys_to_virt(io_tlb_start);
c40dba06 178 vend = phys_to_virt(io_tlb_end);
2e5b2b86 179
3af684c7 180 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 181 (unsigned long long)io_tlb_start,
c40dba06 182 (unsigned long long)io_tlb_end,
ff7204a7 183 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
184}
185
ac2cbab2 186int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 187{
ee3f6ba8 188 void *v_overflow_buffer;
563aaf06 189 unsigned long i, bytes;
1da177e4 190
abbceff7 191 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 192
abbceff7 193 io_tlb_nslabs = nslabs;
ff7204a7
AD
194 io_tlb_start = __pa(tlb);
195 io_tlb_end = io_tlb_start + bytes;
1da177e4 196
ee3f6ba8
AD
197 /*
198 * Get the overflow emergency buffer
199 */
ad6492b8 200 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
201 PAGE_ALIGN(io_tlb_overflow),
202 PAGE_SIZE);
ee3f6ba8 203 if (!v_overflow_buffer)
ac2cbab2 204 return -ENOMEM;
ee3f6ba8
AD
205
206 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
207
1da177e4
LT
208 /*
209 * Allocate and initialize the free list array. This array is used
210 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
211 * between io_tlb_start and io_tlb_end.
212 */
457ff1de
SS
213 io_tlb_list = memblock_virt_alloc(
214 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
215 PAGE_SIZE);
457ff1de
SS
216 io_tlb_orig_addr = memblock_virt_alloc(
217 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
218 PAGE_SIZE);
8e0629c1
JB
219 for (i = 0; i < io_tlb_nslabs; i++) {
220 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
221 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
222 }
223 io_tlb_index = 0;
1da177e4 224
ad32e8cb
FT
225 if (verbose)
226 swiotlb_print_info();
ac2cbab2 227
7453c549 228 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
ac2cbab2 229 return 0;
1da177e4
LT
230}
231
abbceff7
FT
232/*
233 * Statically reserve bounce buffer space and initialize bounce buffer data
234 * structures for the software IO TLB used to implement the DMA API.
235 */
ac2cbab2
YL
236void __init
237swiotlb_init(int verbose)
abbceff7 238{
c729de8f 239 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 240 unsigned char *vstart;
abbceff7
FT
241 unsigned long bytes;
242
243 if (!io_tlb_nslabs) {
244 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
245 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
246 }
247
248 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
249
ac2cbab2 250 /* Get IO TLB memory from the low pages */
ad6492b8 251 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
252 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
253 return;
abbceff7 254
ac2cbab2 255 if (io_tlb_start)
457ff1de
SS
256 memblock_free_early(io_tlb_start,
257 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
ac2cbab2
YL
258 pr_warn("Cannot allocate SWIOTLB buffer");
259 no_iotlb_memory = true;
1da177e4
LT
260}
261
0b9afede
AW
262/*
263 * Systems with larger DMA zones (those that don't support ISA) can
264 * initialize the swiotlb later using the slab allocator if needed.
265 * This should be just like above, but with some error catching.
266 */
267int
563aaf06 268swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 269{
74838b75 270 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 271 unsigned char *vstart = NULL;
0b9afede 272 unsigned int order;
74838b75 273 int rc = 0;
0b9afede
AW
274
275 if (!io_tlb_nslabs) {
276 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
277 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
278 }
279
280 /*
281 * Get IO TLB memory from the low pages
282 */
563aaf06 283 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 284 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 285 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
286
287 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
288 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
289 order);
290 if (vstart)
0b9afede
AW
291 break;
292 order--;
293 }
294
ff7204a7 295 if (!vstart) {
74838b75
KRW
296 io_tlb_nslabs = req_nslabs;
297 return -ENOMEM;
298 }
563aaf06 299 if (order != get_order(bytes)) {
0b9afede
AW
300 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
301 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
302 io_tlb_nslabs = SLABS_PER_PAGE << order;
303 }
ff7204a7 304 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 305 if (rc)
ff7204a7 306 free_pages((unsigned long)vstart, order);
7453c549 307
74838b75
KRW
308 return rc;
309}
310
311int
312swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
313{
314 unsigned long i, bytes;
ee3f6ba8 315 unsigned char *v_overflow_buffer;
74838b75
KRW
316
317 bytes = nslabs << IO_TLB_SHIFT;
318
319 io_tlb_nslabs = nslabs;
ff7204a7
AD
320 io_tlb_start = virt_to_phys(tlb);
321 io_tlb_end = io_tlb_start + bytes;
74838b75 322
ff7204a7 323 memset(tlb, 0, bytes);
0b9afede 324
ee3f6ba8
AD
325 /*
326 * Get the overflow emergency buffer
327 */
328 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
329 get_order(io_tlb_overflow));
330 if (!v_overflow_buffer)
331 goto cleanup2;
332
333 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
334
0b9afede
AW
335 /*
336 * Allocate and initialize the free list array. This array is used
337 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
338 * between io_tlb_start and io_tlb_end.
339 */
340 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
341 get_order(io_tlb_nslabs * sizeof(int)));
342 if (!io_tlb_list)
ee3f6ba8 343 goto cleanup3;
0b9afede 344
bc40ac66
BB
345 io_tlb_orig_addr = (phys_addr_t *)
346 __get_free_pages(GFP_KERNEL,
347 get_order(io_tlb_nslabs *
348 sizeof(phys_addr_t)));
0b9afede 349 if (!io_tlb_orig_addr)
ee3f6ba8 350 goto cleanup4;
0b9afede 351
8e0629c1
JB
352 for (i = 0; i < io_tlb_nslabs; i++) {
353 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
354 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
355 }
356 io_tlb_index = 0;
0b9afede 357
ad32e8cb 358 swiotlb_print_info();
0b9afede 359
5740afdb
FT
360 late_alloc = 1;
361
7453c549
KRW
362 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
363
0b9afede
AW
364 return 0;
365
366cleanup4:
25667d67
TL
367 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
368 sizeof(int)));
0b9afede 369 io_tlb_list = NULL;
ee3f6ba8
AD
370cleanup3:
371 free_pages((unsigned long)v_overflow_buffer,
372 get_order(io_tlb_overflow));
373 io_tlb_overflow_buffer = 0;
0b9afede 374cleanup2:
c40dba06 375 io_tlb_end = 0;
ff7204a7 376 io_tlb_start = 0;
74838b75 377 io_tlb_nslabs = 0;
7453c549 378 max_segment = 0;
0b9afede
AW
379 return -ENOMEM;
380}
381
5740afdb
FT
382void __init swiotlb_free(void)
383{
ee3f6ba8 384 if (!io_tlb_orig_addr)
5740afdb
FT
385 return;
386
387 if (late_alloc) {
ee3f6ba8 388 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
389 get_order(io_tlb_overflow));
390 free_pages((unsigned long)io_tlb_orig_addr,
391 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
392 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
393 sizeof(int)));
ff7204a7 394 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
395 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
396 } else {
457ff1de
SS
397 memblock_free_late(io_tlb_overflow_buffer,
398 PAGE_ALIGN(io_tlb_overflow));
399 memblock_free_late(__pa(io_tlb_orig_addr),
400 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
401 memblock_free_late(__pa(io_tlb_list),
402 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
403 memblock_free_late(io_tlb_start,
404 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 405 }
f21ffe9f 406 io_tlb_nslabs = 0;
7453c549 407 max_segment = 0;
5740afdb
FT
408}
409
9c5a3621 410int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 411{
ff7204a7 412 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
413}
414
fb05a379
BB
415/*
416 * Bounce: copy the swiotlb buffer back to the original dma location
417 */
af51a9f1
AD
418static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
419 size_t size, enum dma_data_direction dir)
fb05a379 420{
af51a9f1
AD
421 unsigned long pfn = PFN_DOWN(orig_addr);
422 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
423
424 if (PageHighMem(pfn_to_page(pfn))) {
425 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 426 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
427 char *buffer;
428 unsigned int sz = 0;
429 unsigned long flags;
430
431 while (size) {
67131ad0 432 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
433
434 local_irq_save(flags);
c3eede8e 435 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 436 if (dir == DMA_TO_DEVICE)
af51a9f1 437 memcpy(vaddr, buffer + offset, sz);
ef9b1893 438 else
af51a9f1 439 memcpy(buffer + offset, vaddr, sz);
c3eede8e 440 kunmap_atomic(buffer);
ef9b1893 441 local_irq_restore(flags);
fb05a379
BB
442
443 size -= sz;
444 pfn++;
af51a9f1 445 vaddr += sz;
fb05a379 446 offset = 0;
ef9b1893 447 }
af51a9f1
AD
448 } else if (dir == DMA_TO_DEVICE) {
449 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 450 } else {
af51a9f1 451 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 452 }
1b548f66
JF
453}
454
e05ed4d1
AD
455phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
456 dma_addr_t tbl_dma_addr,
457 phys_addr_t orig_addr, size_t size,
0443fa00
AD
458 enum dma_data_direction dir,
459 unsigned long attrs)
1da177e4
LT
460{
461 unsigned long flags;
e05ed4d1 462 phys_addr_t tlb_addr;
1da177e4
LT
463 unsigned int nslots, stride, index, wrap;
464 int i;
681cc5cd
FT
465 unsigned long mask;
466 unsigned long offset_slots;
467 unsigned long max_slots;
468
ac2cbab2
YL
469 if (no_iotlb_memory)
470 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
471
681cc5cd 472 mask = dma_get_seg_boundary(hwdev);
681cc5cd 473
eb605a57
FT
474 tbl_dma_addr &= mask;
475
476 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
477
478 /*
479 * Carefully handle integer overflow which can occur when mask == ~0UL.
480 */
b15a3891
JB
481 max_slots = mask + 1
482 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
483 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
484
485 /*
602d9858
NY
486 * For mappings greater than or equal to a page, we limit the stride
487 * (and hence alignment) to a page size.
1da177e4
LT
488 */
489 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
602d9858 490 if (size >= PAGE_SIZE)
1da177e4
LT
491 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
492 else
493 stride = 1;
494
34814545 495 BUG_ON(!nslots);
1da177e4
LT
496
497 /*
498 * Find suitable number of IO TLB entries size that will fit this
499 * request and allocate a buffer from that IO TLB pool.
500 */
501 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
502 index = ALIGN(io_tlb_index, stride);
503 if (index >= io_tlb_nslabs)
504 index = 0;
505 wrap = index;
506
507 do {
a8522509
FT
508 while (iommu_is_span_boundary(index, nslots, offset_slots,
509 max_slots)) {
b15a3891
JB
510 index += stride;
511 if (index >= io_tlb_nslabs)
512 index = 0;
a7133a15
AM
513 if (index == wrap)
514 goto not_found;
515 }
516
517 /*
518 * If we find a slot that indicates we have 'nslots' number of
519 * contiguous buffers, we allocate the buffers from that slot
520 * and mark the entries as '0' indicating unavailable.
521 */
522 if (io_tlb_list[index] >= nslots) {
523 int count = 0;
524
525 for (i = index; i < (int) (index + nslots); i++)
526 io_tlb_list[i] = 0;
527 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
528 io_tlb_list[i] = ++count;
e05ed4d1 529 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 530
a7133a15
AM
531 /*
532 * Update the indices to avoid searching in the next
533 * round.
534 */
535 io_tlb_index = ((index + nslots) < io_tlb_nslabs
536 ? (index + nslots) : 0);
537
538 goto found;
539 }
540 index += stride;
541 if (index >= io_tlb_nslabs)
542 index = 0;
543 } while (index != wrap);
544
545not_found:
546 spin_unlock_irqrestore(&io_tlb_lock, flags);
0cb637bf
KRW
547 if (printk_ratelimit())
548 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 549 return SWIOTLB_MAP_ERROR;
a7133a15 550found:
1da177e4
LT
551 spin_unlock_irqrestore(&io_tlb_lock, flags);
552
553 /*
554 * Save away the mapping from the original address to the DMA address.
555 * This is needed when we sync the memory. Then we sync the buffer if
556 * needed.
557 */
bc40ac66 558 for (i = 0; i < nslots; i++)
e05ed4d1 559 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
560 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
561 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 562 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 563
e05ed4d1 564 return tlb_addr;
1da177e4 565}
d7ef1533 566EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 567
eb605a57
FT
568/*
569 * Allocates bounce buffer and returns its kernel virtual address.
570 */
571
023600f1
AC
572static phys_addr_t
573map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 574 enum dma_data_direction dir, unsigned long attrs)
eb605a57 575{
fff5d992
GU
576 dma_addr_t start_dma_addr;
577
578 if (swiotlb_force == SWIOTLB_NO_FORCE) {
579 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
580 &phys);
581 return SWIOTLB_MAP_ERROR;
582 }
eb605a57 583
fff5d992 584 start_dma_addr = phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
585 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
586 dir, attrs);
eb605a57
FT
587}
588
1da177e4
LT
589/*
590 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
591 */
61ca08c3 592void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
593 size_t size, enum dma_data_direction dir,
594 unsigned long attrs)
1da177e4
LT
595{
596 unsigned long flags;
597 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
598 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
599 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
600
601 /*
602 * First, sync the memory before unmapping the entry
603 */
8e0629c1 604 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 605 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 606 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 607 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
608
609 /*
610 * Return the buffer to the free list by setting the corresponding
af901ca1 611 * entries to indicate the number of contiguous entries available.
1da177e4
LT
612 * While returning the entries to the free list, we merge the entries
613 * with slots below and above the pool being returned.
614 */
615 spin_lock_irqsave(&io_tlb_lock, flags);
616 {
617 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
618 io_tlb_list[index + nslots] : 0);
619 /*
620 * Step 1: return the slots to the free list, merging the
621 * slots with superceeding slots
622 */
8e0629c1 623 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 624 io_tlb_list[i] = ++count;
8e0629c1
JB
625 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
626 }
1da177e4
LT
627 /*
628 * Step 2: merge the returned slots with the preceding slots,
629 * if available (non zero)
630 */
631 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
632 io_tlb_list[i] = ++count;
633 }
634 spin_unlock_irqrestore(&io_tlb_lock, flags);
635}
d7ef1533 636EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 637
fbfda893
AD
638void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
639 size_t size, enum dma_data_direction dir,
640 enum dma_sync_target target)
1da177e4 641{
fbfda893
AD
642 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
643 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 644
8e0629c1
JB
645 if (orig_addr == INVALID_PHYS_ADDR)
646 return;
fbfda893 647 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 648
de69e0f0
JL
649 switch (target) {
650 case SYNC_FOR_CPU:
651 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 652 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 653 size, DMA_FROM_DEVICE);
34814545
ES
654 else
655 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
656 break;
657 case SYNC_FOR_DEVICE:
658 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 659 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 660 size, DMA_TO_DEVICE);
34814545
ES
661 else
662 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
663 break;
664 default:
1da177e4 665 BUG();
de69e0f0 666 }
1da177e4 667}
d7ef1533 668EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
669
670void *
671swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 672 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 673{
563aaf06 674 dma_addr_t dev_addr;
1da177e4
LT
675 void *ret;
676 int order = get_order(size);
284901a9 677 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
678
679 if (hwdev && hwdev->coherent_dma_mask)
680 dma_mask = hwdev->coherent_dma_mask;
1da177e4 681
25667d67 682 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
683 if (ret) {
684 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
685 if (dev_addr + size - 1 > dma_mask) {
686 /*
687 * The allocated memory isn't reachable by the device.
688 */
689 free_pages((unsigned long) ret, order);
690 ret = NULL;
691 }
1da177e4
LT
692 }
693 if (!ret) {
694 /*
bfc5501f
KRW
695 * We are either out of memory or the device can't DMA to
696 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 697 * will grab memory from the lowest available address range.
1da177e4 698 */
0443fa00
AD
699 phys_addr_t paddr = map_single(hwdev, 0, size,
700 DMA_FROM_DEVICE, 0);
e05ed4d1 701 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 702 goto err_warn;
1da177e4 703
e05ed4d1
AD
704 ret = phys_to_virt(paddr);
705 dev_addr = phys_to_dma(hwdev, paddr);
1da177e4 706
61ca08c3
AD
707 /* Confirm address can be DMA'd by device */
708 if (dev_addr + size - 1 > dma_mask) {
709 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
710 (unsigned long long)dma_mask,
711 (unsigned long long)dev_addr);
a2b89b59 712
0443fa00
AD
713 /*
714 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
715 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
716 */
61ca08c3 717 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
718 size, DMA_TO_DEVICE,
719 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 720 goto err_warn;
61ca08c3 721 }
1da177e4 722 }
e05ed4d1 723
1da177e4 724 *dma_handle = dev_addr;
e05ed4d1
AD
725 memset(ret, 0, size);
726
1da177e4 727 return ret;
94cc81f9
JR
728
729err_warn:
730 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
731 dev_name(hwdev), size);
732 dump_stack();
733
734 return NULL;
1da177e4 735}
874d6a95 736EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
737
738void
739swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 740 dma_addr_t dev_addr)
1da177e4 741{
862d196b 742 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 743
aa24886e 744 WARN_ON(irqs_disabled());
02ca646e
FT
745 if (!is_swiotlb_buffer(paddr))
746 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 747 else
0443fa00
AD
748 /*
749 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
750 * DMA_ATTR_SKIP_CPU_SYNC is optional.
751 */
752 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
753 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 754}
874d6a95 755EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
756
757static void
22d48269
KRW
758swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
759 int do_panic)
1da177e4 760{
fff5d992
GU
761 if (swiotlb_force == SWIOTLB_NO_FORCE)
762 return;
763
1da177e4
LT
764 /*
765 * Ran out of IOMMU space for this operation. This is very bad.
766 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 767 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
768 * When the mapping is small enough return a static buffer to limit
769 * the damage, or panic when the transfer is too big.
770 */
0d2e1898
GU
771 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
772 size);
1da177e4 773
c7084b35
CD
774 if (size <= io_tlb_overflow || !do_panic)
775 return;
776
777 if (dir == DMA_BIDIRECTIONAL)
778 panic("DMA: Random memory could be DMA accessed\n");
779 if (dir == DMA_FROM_DEVICE)
780 panic("DMA: Random memory could be DMA written\n");
781 if (dir == DMA_TO_DEVICE)
782 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
783}
784
785/*
786 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 787 * physical address to use is returned.
1da177e4
LT
788 *
789 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 790 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 791 */
f98eee8e
FT
792dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
793 unsigned long offset, size_t size,
794 enum dma_data_direction dir,
00085f1e 795 unsigned long attrs)
1da177e4 796{
e05ed4d1 797 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 798 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 799
34814545 800 BUG_ON(dir == DMA_NONE);
1da177e4 801 /*
ceb5ac32 802 * If the address happens to be in the device's DMA window,
1da177e4
LT
803 * we can safely return the device addr and not worry about bounce
804 * buffering it.
805 */
ae7871be 806 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
807 return dev_addr;
808
2b2b614d
ZK
809 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
810
e05ed4d1 811 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 812 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 813 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 814 swiotlb_full(dev, size, dir, 1);
ee3f6ba8 815 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
816 }
817
e05ed4d1 818 dev_addr = phys_to_dma(dev, map);
1da177e4 819
e05ed4d1 820 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
821 if (dma_capable(dev, dev_addr, size))
822 return dev_addr;
823
d29fa0cb
AD
824 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
825 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 826
0443fa00 827 return phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 828}
f98eee8e 829EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 830
1da177e4
LT
831/*
832 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 833 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
834 * other usages are undefined.
835 *
836 * After this call, reads by the cpu to the buffer are guaranteed to see
837 * whatever the device wrote there.
838 */
7fcebbd2 839static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
840 size_t size, enum dma_data_direction dir,
841 unsigned long attrs)
1da177e4 842{
862d196b 843 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 844
34814545 845 BUG_ON(dir == DMA_NONE);
7fcebbd2 846
02ca646e 847 if (is_swiotlb_buffer(paddr)) {
0443fa00 848 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
849 return;
850 }
851
852 if (dir != DMA_FROM_DEVICE)
853 return;
854
02ca646e
FT
855 /*
856 * phys_to_virt doesn't work with hihgmem page but we could
857 * call dma_mark_clean() with hihgmem page here. However, we
858 * are fine since dma_mark_clean() is null on POWERPC. We can
859 * make dma_mark_clean() take a physical address if necessary.
860 */
861 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
862}
863
864void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
865 size_t size, enum dma_data_direction dir,
00085f1e 866 unsigned long attrs)
7fcebbd2 867{
0443fa00 868 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 869}
f98eee8e 870EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 871
1da177e4
LT
872/*
873 * Make physical memory consistent for a single streaming mode DMA translation
874 * after a transfer.
875 *
ceb5ac32 876 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
877 * using the cpu, yet do not wish to teardown the dma mapping, you must
878 * call this function before doing so. At the next point you give the dma
1da177e4
LT
879 * address back to the card, you must first perform a
880 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
881 */
be6b0267 882static void
8270f3f1 883swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
884 size_t size, enum dma_data_direction dir,
885 enum dma_sync_target target)
1da177e4 886{
862d196b 887 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 888
34814545 889 BUG_ON(dir == DMA_NONE);
380d6878 890
02ca646e 891 if (is_swiotlb_buffer(paddr)) {
fbfda893 892 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
893 return;
894 }
895
896 if (dir != DMA_FROM_DEVICE)
897 return;
898
02ca646e 899 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
900}
901
8270f3f1
JL
902void
903swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 904 size_t size, enum dma_data_direction dir)
8270f3f1 905{
de69e0f0 906 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 907}
874d6a95 908EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 909
1da177e4
LT
910void
911swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 912 size_t size, enum dma_data_direction dir)
1da177e4 913{
de69e0f0 914 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 915}
874d6a95 916EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
917
918/*
919 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 920 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
921 * interface. Here the scatter gather list elements are each tagged with the
922 * appropriate dma address and length. They are obtained via
923 * sg_dma_{address,length}(SG).
924 *
925 * NOTE: An implementation may be able to use a smaller number of
926 * DMA address/length pairs than there are SG table elements.
927 * (for example via virtual mapping capabilities)
928 * The routine returns the number of addr/length pairs actually
929 * used, at most nents.
930 *
ceb5ac32 931 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
932 * same here.
933 */
934int
309df0c5 935swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 936 enum dma_data_direction dir, unsigned long attrs)
1da177e4 937{
dbfd49fe 938 struct scatterlist *sg;
1da177e4
LT
939 int i;
940
34814545 941 BUG_ON(dir == DMA_NONE);
1da177e4 942
dbfd49fe 943 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 944 phys_addr_t paddr = sg_phys(sg);
862d196b 945 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 946
ae7871be 947 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 948 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 949 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 950 sg->length, dir, attrs);
e05ed4d1 951 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
952 /* Don't panic here, we expect map_sg users
953 to do proper error handling. */
954 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 955 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
956 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
957 attrs);
4d86ec7a 958 sg_dma_len(sgl) = 0;
1da177e4
LT
959 return 0;
960 }
e05ed4d1 961 sg->dma_address = phys_to_dma(hwdev, map);
1da177e4
LT
962 } else
963 sg->dma_address = dev_addr;
4d86ec7a 964 sg_dma_len(sg) = sg->length;
1da177e4
LT
965 }
966 return nelems;
967}
309df0c5
AK
968EXPORT_SYMBOL(swiotlb_map_sg_attrs);
969
1da177e4
LT
970/*
971 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 972 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
973 */
974void
309df0c5 975swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
976 int nelems, enum dma_data_direction dir,
977 unsigned long attrs)
1da177e4 978{
dbfd49fe 979 struct scatterlist *sg;
1da177e4
LT
980 int i;
981
34814545 982 BUG_ON(dir == DMA_NONE);
1da177e4 983
7fcebbd2 984 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
985 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
986 attrs);
1da177e4 987}
309df0c5
AK
988EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
989
1da177e4
LT
990/*
991 * Make physical memory consistent for a set of streaming mode DMA translations
992 * after a transfer.
993 *
994 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
995 * and usage.
996 */
be6b0267 997static void
dbfd49fe 998swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
999 int nelems, enum dma_data_direction dir,
1000 enum dma_sync_target target)
1da177e4 1001{
dbfd49fe 1002 struct scatterlist *sg;
1da177e4
LT
1003 int i;
1004
380d6878
BB
1005 for_each_sg(sgl, sg, nelems, i)
1006 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 1007 sg_dma_len(sg), dir, target);
1da177e4
LT
1008}
1009
8270f3f1
JL
1010void
1011swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1012 int nelems, enum dma_data_direction dir)
8270f3f1 1013{
de69e0f0 1014 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 1015}
874d6a95 1016EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 1017
1da177e4
LT
1018void
1019swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1020 int nelems, enum dma_data_direction dir)
1da177e4 1021{
de69e0f0 1022 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 1023}
874d6a95 1024EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
1025
1026int
8d8bb39b 1027swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1028{
ee3f6ba8 1029 return (dma_addr == phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1030}
874d6a95 1031EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1032
1033/*
17e5ad6c 1034 * Return whether the given device DMA address mask can be supported
1da177e4 1035 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1036 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1037 * this function.
1038 */
1039int
563aaf06 1040swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1041{
c40dba06 1042 return phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1043}
1da177e4 1044EXPORT_SYMBOL(swiotlb_dma_supported);