]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
1211d50a 21#include <linux/mmdebug.h>
174cd4b1 22#include <linux/sched/signal.h>
0fe6e20b 23#include <linux/rmap.h>
c6247f72 24#include <linux/string_helpers.h>
fd6a03ed
NH
25#include <linux/swap.h>
26#include <linux/swapops.h>
8382d914 27#include <linux/jhash.h>
d6606683 28
63551ae0
DG
29#include <asm/page.h>
30#include <asm/pgtable.h>
24669e58 31#include <asm/tlb.h>
63551ae0 32
24669e58 33#include <linux/io.h>
63551ae0 34#include <linux/hugetlb.h>
9dd540e2 35#include <linux/hugetlb_cgroup.h>
9a305230 36#include <linux/node.h>
1a1aad8a 37#include <linux/userfaultfd_k.h>
7835e98b 38#include "internal.h"
1da177e4 39
753162cd 40int hugepages_treat_as_movable;
a5516438 41
c3f38a38 42int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
43unsigned int default_hstate_idx;
44struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
45/*
46 * Minimum page order among possible hugepage sizes, set to a proper value
47 * at boot time.
48 */
49static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 50
53ba51d2
JT
51__initdata LIST_HEAD(huge_boot_pages);
52
e5ff2159
AK
53/* for command line parsing */
54static struct hstate * __initdata parsed_hstate;
55static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 56static unsigned long __initdata default_hstate_size;
9fee021d 57static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 58
3935baa9 59/*
31caf665
NH
60 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
61 * free_huge_pages, and surplus_huge_pages.
3935baa9 62 */
c3f38a38 63DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 64
8382d914
DB
65/*
66 * Serializes faults on the same logical page. This is used to
67 * prevent spurious OOMs when the hugepage pool is fully utilized.
68 */
69static int num_fault_mutexes;
c672c7f2 70struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 71
7ca02d0a
MK
72/* Forward declaration */
73static int hugetlb_acct_memory(struct hstate *h, long delta);
74
90481622
DG
75static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
76{
77 bool free = (spool->count == 0) && (spool->used_hpages == 0);
78
79 spin_unlock(&spool->lock);
80
81 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
82 * remain, give up any reservations mased on minimum size and
83 * free the subpool */
84 if (free) {
85 if (spool->min_hpages != -1)
86 hugetlb_acct_memory(spool->hstate,
87 -spool->min_hpages);
90481622 88 kfree(spool);
7ca02d0a 89 }
90481622
DG
90}
91
7ca02d0a
MK
92struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
93 long min_hpages)
90481622
DG
94{
95 struct hugepage_subpool *spool;
96
c6a91820 97 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
98 if (!spool)
99 return NULL;
100
101 spin_lock_init(&spool->lock);
102 spool->count = 1;
7ca02d0a
MK
103 spool->max_hpages = max_hpages;
104 spool->hstate = h;
105 spool->min_hpages = min_hpages;
106
107 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
108 kfree(spool);
109 return NULL;
110 }
111 spool->rsv_hpages = min_hpages;
90481622
DG
112
113 return spool;
114}
115
116void hugepage_put_subpool(struct hugepage_subpool *spool)
117{
118 spin_lock(&spool->lock);
119 BUG_ON(!spool->count);
120 spool->count--;
121 unlock_or_release_subpool(spool);
122}
123
1c5ecae3
MK
124/*
125 * Subpool accounting for allocating and reserving pages.
126 * Return -ENOMEM if there are not enough resources to satisfy the
127 * the request. Otherwise, return the number of pages by which the
128 * global pools must be adjusted (upward). The returned value may
129 * only be different than the passed value (delta) in the case where
130 * a subpool minimum size must be manitained.
131 */
132static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
133 long delta)
134{
1c5ecae3 135 long ret = delta;
90481622
DG
136
137 if (!spool)
1c5ecae3 138 return ret;
90481622
DG
139
140 spin_lock(&spool->lock);
1c5ecae3
MK
141
142 if (spool->max_hpages != -1) { /* maximum size accounting */
143 if ((spool->used_hpages + delta) <= spool->max_hpages)
144 spool->used_hpages += delta;
145 else {
146 ret = -ENOMEM;
147 goto unlock_ret;
148 }
90481622 149 }
90481622 150
09a95e29
MK
151 /* minimum size accounting */
152 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
153 if (delta > spool->rsv_hpages) {
154 /*
155 * Asking for more reserves than those already taken on
156 * behalf of subpool. Return difference.
157 */
158 ret = delta - spool->rsv_hpages;
159 spool->rsv_hpages = 0;
160 } else {
161 ret = 0; /* reserves already accounted for */
162 spool->rsv_hpages -= delta;
163 }
164 }
165
166unlock_ret:
167 spin_unlock(&spool->lock);
90481622
DG
168 return ret;
169}
170
1c5ecae3
MK
171/*
172 * Subpool accounting for freeing and unreserving pages.
173 * Return the number of global page reservations that must be dropped.
174 * The return value may only be different than the passed value (delta)
175 * in the case where a subpool minimum size must be maintained.
176 */
177static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
178 long delta)
179{
1c5ecae3
MK
180 long ret = delta;
181
90481622 182 if (!spool)
1c5ecae3 183 return delta;
90481622
DG
184
185 spin_lock(&spool->lock);
1c5ecae3
MK
186
187 if (spool->max_hpages != -1) /* maximum size accounting */
188 spool->used_hpages -= delta;
189
09a95e29
MK
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
192 if (spool->rsv_hpages + delta <= spool->min_hpages)
193 ret = 0;
194 else
195 ret = spool->rsv_hpages + delta - spool->min_hpages;
196
197 spool->rsv_hpages += delta;
198 if (spool->rsv_hpages > spool->min_hpages)
199 spool->rsv_hpages = spool->min_hpages;
200 }
201
202 /*
203 * If hugetlbfs_put_super couldn't free spool due to an outstanding
204 * quota reference, free it now.
205 */
90481622 206 unlock_or_release_subpool(spool);
1c5ecae3
MK
207
208 return ret;
90481622
DG
209}
210
211static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
212{
213 return HUGETLBFS_SB(inode->i_sb)->spool;
214}
215
216static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
217{
496ad9aa 218 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
219}
220
96822904
AW
221/*
222 * Region tracking -- allows tracking of reservations and instantiated pages
223 * across the pages in a mapping.
84afd99b 224 *
1dd308a7
MK
225 * The region data structures are embedded into a resv_map and protected
226 * by a resv_map's lock. The set of regions within the resv_map represent
227 * reservations for huge pages, or huge pages that have already been
228 * instantiated within the map. The from and to elements are huge page
229 * indicies into the associated mapping. from indicates the starting index
230 * of the region. to represents the first index past the end of the region.
231 *
232 * For example, a file region structure with from == 0 and to == 4 represents
233 * four huge pages in a mapping. It is important to note that the to element
234 * represents the first element past the end of the region. This is used in
235 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
236 *
237 * Interval notation of the form [from, to) will be used to indicate that
238 * the endpoint from is inclusive and to is exclusive.
96822904
AW
239 */
240struct file_region {
241 struct list_head link;
242 long from;
243 long to;
244};
245
1dd308a7
MK
246/*
247 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
248 * map. In the normal case, existing regions will be expanded
249 * to accommodate the specified range. Sufficient regions should
250 * exist for expansion due to the previous call to region_chg
251 * with the same range. However, it is possible that region_del
252 * could have been called after region_chg and modifed the map
253 * in such a way that no region exists to be expanded. In this
254 * case, pull a region descriptor from the cache associated with
255 * the map and use that for the new range.
cf3ad20b
MK
256 *
257 * Return the number of new huge pages added to the map. This
258 * number is greater than or equal to zero.
1dd308a7 259 */
1406ec9b 260static long region_add(struct resv_map *resv, long f, long t)
96822904 261{
1406ec9b 262 struct list_head *head = &resv->regions;
96822904 263 struct file_region *rg, *nrg, *trg;
cf3ad20b 264 long add = 0;
96822904 265
7b24d861 266 spin_lock(&resv->lock);
96822904
AW
267 /* Locate the region we are either in or before. */
268 list_for_each_entry(rg, head, link)
269 if (f <= rg->to)
270 break;
271
5e911373
MK
272 /*
273 * If no region exists which can be expanded to include the
274 * specified range, the list must have been modified by an
275 * interleving call to region_del(). Pull a region descriptor
276 * from the cache and use it for this range.
277 */
278 if (&rg->link == head || t < rg->from) {
279 VM_BUG_ON(resv->region_cache_count <= 0);
280
281 resv->region_cache_count--;
282 nrg = list_first_entry(&resv->region_cache, struct file_region,
283 link);
284 list_del(&nrg->link);
285
286 nrg->from = f;
287 nrg->to = t;
288 list_add(&nrg->link, rg->link.prev);
289
290 add += t - f;
291 goto out_locked;
292 }
293
96822904
AW
294 /* Round our left edge to the current segment if it encloses us. */
295 if (f > rg->from)
296 f = rg->from;
297
298 /* Check for and consume any regions we now overlap with. */
299 nrg = rg;
300 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
301 if (&rg->link == head)
302 break;
303 if (rg->from > t)
304 break;
305
306 /* If this area reaches higher then extend our area to
307 * include it completely. If this is not the first area
308 * which we intend to reuse, free it. */
309 if (rg->to > t)
310 t = rg->to;
311 if (rg != nrg) {
cf3ad20b
MK
312 /* Decrement return value by the deleted range.
313 * Another range will span this area so that by
314 * end of routine add will be >= zero
315 */
316 add -= (rg->to - rg->from);
96822904
AW
317 list_del(&rg->link);
318 kfree(rg);
319 }
320 }
cf3ad20b
MK
321
322 add += (nrg->from - f); /* Added to beginning of region */
96822904 323 nrg->from = f;
cf3ad20b 324 add += t - nrg->to; /* Added to end of region */
96822904 325 nrg->to = t;
cf3ad20b 326
5e911373
MK
327out_locked:
328 resv->adds_in_progress--;
7b24d861 329 spin_unlock(&resv->lock);
cf3ad20b
MK
330 VM_BUG_ON(add < 0);
331 return add;
96822904
AW
332}
333
1dd308a7
MK
334/*
335 * Examine the existing reserve map and determine how many
336 * huge pages in the specified range [f, t) are NOT currently
337 * represented. This routine is called before a subsequent
338 * call to region_add that will actually modify the reserve
339 * map to add the specified range [f, t). region_chg does
340 * not change the number of huge pages represented by the
341 * map. However, if the existing regions in the map can not
342 * be expanded to represent the new range, a new file_region
343 * structure is added to the map as a placeholder. This is
344 * so that the subsequent region_add call will have all the
345 * regions it needs and will not fail.
346 *
5e911373
MK
347 * Upon entry, region_chg will also examine the cache of region descriptors
348 * associated with the map. If there are not enough descriptors cached, one
349 * will be allocated for the in progress add operation.
350 *
351 * Returns the number of huge pages that need to be added to the existing
352 * reservation map for the range [f, t). This number is greater or equal to
353 * zero. -ENOMEM is returned if a new file_region structure or cache entry
354 * is needed and can not be allocated.
1dd308a7 355 */
1406ec9b 356static long region_chg(struct resv_map *resv, long f, long t)
96822904 357{
1406ec9b 358 struct list_head *head = &resv->regions;
7b24d861 359 struct file_region *rg, *nrg = NULL;
96822904
AW
360 long chg = 0;
361
7b24d861
DB
362retry:
363 spin_lock(&resv->lock);
5e911373
MK
364retry_locked:
365 resv->adds_in_progress++;
366
367 /*
368 * Check for sufficient descriptors in the cache to accommodate
369 * the number of in progress add operations.
370 */
371 if (resv->adds_in_progress > resv->region_cache_count) {
372 struct file_region *trg;
373
374 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
375 /* Must drop lock to allocate a new descriptor. */
376 resv->adds_in_progress--;
377 spin_unlock(&resv->lock);
378
379 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
380 if (!trg) {
381 kfree(nrg);
5e911373 382 return -ENOMEM;
dbe409e4 383 }
5e911373
MK
384
385 spin_lock(&resv->lock);
386 list_add(&trg->link, &resv->region_cache);
387 resv->region_cache_count++;
388 goto retry_locked;
389 }
390
96822904
AW
391 /* Locate the region we are before or in. */
392 list_for_each_entry(rg, head, link)
393 if (f <= rg->to)
394 break;
395
396 /* If we are below the current region then a new region is required.
397 * Subtle, allocate a new region at the position but make it zero
398 * size such that we can guarantee to record the reservation. */
399 if (&rg->link == head || t < rg->from) {
7b24d861 400 if (!nrg) {
5e911373 401 resv->adds_in_progress--;
7b24d861
DB
402 spin_unlock(&resv->lock);
403 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
404 if (!nrg)
405 return -ENOMEM;
406
407 nrg->from = f;
408 nrg->to = f;
409 INIT_LIST_HEAD(&nrg->link);
410 goto retry;
411 }
96822904 412
7b24d861
DB
413 list_add(&nrg->link, rg->link.prev);
414 chg = t - f;
415 goto out_nrg;
96822904
AW
416 }
417
418 /* Round our left edge to the current segment if it encloses us. */
419 if (f > rg->from)
420 f = rg->from;
421 chg = t - f;
422
423 /* Check for and consume any regions we now overlap with. */
424 list_for_each_entry(rg, rg->link.prev, link) {
425 if (&rg->link == head)
426 break;
427 if (rg->from > t)
7b24d861 428 goto out;
96822904 429
25985edc 430 /* We overlap with this area, if it extends further than
96822904
AW
431 * us then we must extend ourselves. Account for its
432 * existing reservation. */
433 if (rg->to > t) {
434 chg += rg->to - t;
435 t = rg->to;
436 }
437 chg -= rg->to - rg->from;
438 }
7b24d861
DB
439
440out:
441 spin_unlock(&resv->lock);
442 /* We already know we raced and no longer need the new region */
443 kfree(nrg);
444 return chg;
445out_nrg:
446 spin_unlock(&resv->lock);
96822904
AW
447 return chg;
448}
449
5e911373
MK
450/*
451 * Abort the in progress add operation. The adds_in_progress field
452 * of the resv_map keeps track of the operations in progress between
453 * calls to region_chg and region_add. Operations are sometimes
454 * aborted after the call to region_chg. In such cases, region_abort
455 * is called to decrement the adds_in_progress counter.
456 *
457 * NOTE: The range arguments [f, t) are not needed or used in this
458 * routine. They are kept to make reading the calling code easier as
459 * arguments will match the associated region_chg call.
460 */
461static void region_abort(struct resv_map *resv, long f, long t)
462{
463 spin_lock(&resv->lock);
464 VM_BUG_ON(!resv->region_cache_count);
465 resv->adds_in_progress--;
466 spin_unlock(&resv->lock);
467}
468
1dd308a7 469/*
feba16e2
MK
470 * Delete the specified range [f, t) from the reserve map. If the
471 * t parameter is LONG_MAX, this indicates that ALL regions after f
472 * should be deleted. Locate the regions which intersect [f, t)
473 * and either trim, delete or split the existing regions.
474 *
475 * Returns the number of huge pages deleted from the reserve map.
476 * In the normal case, the return value is zero or more. In the
477 * case where a region must be split, a new region descriptor must
478 * be allocated. If the allocation fails, -ENOMEM will be returned.
479 * NOTE: If the parameter t == LONG_MAX, then we will never split
480 * a region and possibly return -ENOMEM. Callers specifying
481 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 482 */
feba16e2 483static long region_del(struct resv_map *resv, long f, long t)
96822904 484{
1406ec9b 485 struct list_head *head = &resv->regions;
96822904 486 struct file_region *rg, *trg;
feba16e2
MK
487 struct file_region *nrg = NULL;
488 long del = 0;
96822904 489
feba16e2 490retry:
7b24d861 491 spin_lock(&resv->lock);
feba16e2 492 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
493 /*
494 * Skip regions before the range to be deleted. file_region
495 * ranges are normally of the form [from, to). However, there
496 * may be a "placeholder" entry in the map which is of the form
497 * (from, to) with from == to. Check for placeholder entries
498 * at the beginning of the range to be deleted.
499 */
500 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 501 continue;
dbe409e4 502
feba16e2 503 if (rg->from >= t)
96822904 504 break;
96822904 505
feba16e2
MK
506 if (f > rg->from && t < rg->to) { /* Must split region */
507 /*
508 * Check for an entry in the cache before dropping
509 * lock and attempting allocation.
510 */
511 if (!nrg &&
512 resv->region_cache_count > resv->adds_in_progress) {
513 nrg = list_first_entry(&resv->region_cache,
514 struct file_region,
515 link);
516 list_del(&nrg->link);
517 resv->region_cache_count--;
518 }
96822904 519
feba16e2
MK
520 if (!nrg) {
521 spin_unlock(&resv->lock);
522 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
523 if (!nrg)
524 return -ENOMEM;
525 goto retry;
526 }
527
528 del += t - f;
529
530 /* New entry for end of split region */
531 nrg->from = t;
532 nrg->to = rg->to;
533 INIT_LIST_HEAD(&nrg->link);
534
535 /* Original entry is trimmed */
536 rg->to = f;
537
538 list_add(&nrg->link, &rg->link);
539 nrg = NULL;
96822904 540 break;
feba16e2
MK
541 }
542
543 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
544 del += rg->to - rg->from;
545 list_del(&rg->link);
546 kfree(rg);
547 continue;
548 }
549
550 if (f <= rg->from) { /* Trim beginning of region */
551 del += t - rg->from;
552 rg->from = t;
553 } else { /* Trim end of region */
554 del += rg->to - f;
555 rg->to = f;
556 }
96822904 557 }
7b24d861 558
7b24d861 559 spin_unlock(&resv->lock);
feba16e2
MK
560 kfree(nrg);
561 return del;
96822904
AW
562}
563
b5cec28d
MK
564/*
565 * A rare out of memory error was encountered which prevented removal of
566 * the reserve map region for a page. The huge page itself was free'ed
567 * and removed from the page cache. This routine will adjust the subpool
568 * usage count, and the global reserve count if needed. By incrementing
569 * these counts, the reserve map entry which could not be deleted will
570 * appear as a "reserved" entry instead of simply dangling with incorrect
571 * counts.
572 */
72e2936c 573void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
574{
575 struct hugepage_subpool *spool = subpool_inode(inode);
576 long rsv_adjust;
577
578 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 579 if (rsv_adjust) {
b5cec28d
MK
580 struct hstate *h = hstate_inode(inode);
581
582 hugetlb_acct_memory(h, 1);
583 }
584}
585
1dd308a7
MK
586/*
587 * Count and return the number of huge pages in the reserve map
588 * that intersect with the range [f, t).
589 */
1406ec9b 590static long region_count(struct resv_map *resv, long f, long t)
84afd99b 591{
1406ec9b 592 struct list_head *head = &resv->regions;
84afd99b
AW
593 struct file_region *rg;
594 long chg = 0;
595
7b24d861 596 spin_lock(&resv->lock);
84afd99b
AW
597 /* Locate each segment we overlap with, and count that overlap. */
598 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
599 long seg_from;
600 long seg_to;
84afd99b
AW
601
602 if (rg->to <= f)
603 continue;
604 if (rg->from >= t)
605 break;
606
607 seg_from = max(rg->from, f);
608 seg_to = min(rg->to, t);
609
610 chg += seg_to - seg_from;
611 }
7b24d861 612 spin_unlock(&resv->lock);
84afd99b
AW
613
614 return chg;
615}
616
e7c4b0bf
AW
617/*
618 * Convert the address within this vma to the page offset within
619 * the mapping, in pagecache page units; huge pages here.
620 */
a5516438
AK
621static pgoff_t vma_hugecache_offset(struct hstate *h,
622 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 623{
a5516438
AK
624 return ((address - vma->vm_start) >> huge_page_shift(h)) +
625 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
626}
627
0fe6e20b
NH
628pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
629 unsigned long address)
630{
631 return vma_hugecache_offset(hstate_vma(vma), vma, address);
632}
dee41079 633EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 634
08fba699
MG
635/*
636 * Return the size of the pages allocated when backing a VMA. In the majority
637 * cases this will be same size as used by the page table entries.
638 */
639unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
640{
641 struct hstate *hstate;
642
643 if (!is_vm_hugetlb_page(vma))
644 return PAGE_SIZE;
645
646 hstate = hstate_vma(vma);
647
2415cf12 648 return 1UL << huge_page_shift(hstate);
08fba699 649}
f340ca0f 650EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 651
3340289d
MG
652/*
653 * Return the page size being used by the MMU to back a VMA. In the majority
654 * of cases, the page size used by the kernel matches the MMU size. On
655 * architectures where it differs, an architecture-specific version of this
656 * function is required.
657 */
658#ifndef vma_mmu_pagesize
659unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
660{
661 return vma_kernel_pagesize(vma);
662}
663#endif
664
84afd99b
AW
665/*
666 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
667 * bits of the reservation map pointer, which are always clear due to
668 * alignment.
669 */
670#define HPAGE_RESV_OWNER (1UL << 0)
671#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 672#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 673
a1e78772
MG
674/*
675 * These helpers are used to track how many pages are reserved for
676 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
677 * is guaranteed to have their future faults succeed.
678 *
679 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
680 * the reserve counters are updated with the hugetlb_lock held. It is safe
681 * to reset the VMA at fork() time as it is not in use yet and there is no
682 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
683 *
684 * The private mapping reservation is represented in a subtly different
685 * manner to a shared mapping. A shared mapping has a region map associated
686 * with the underlying file, this region map represents the backing file
687 * pages which have ever had a reservation assigned which this persists even
688 * after the page is instantiated. A private mapping has a region map
689 * associated with the original mmap which is attached to all VMAs which
690 * reference it, this region map represents those offsets which have consumed
691 * reservation ie. where pages have been instantiated.
a1e78772 692 */
e7c4b0bf
AW
693static unsigned long get_vma_private_data(struct vm_area_struct *vma)
694{
695 return (unsigned long)vma->vm_private_data;
696}
697
698static void set_vma_private_data(struct vm_area_struct *vma,
699 unsigned long value)
700{
701 vma->vm_private_data = (void *)value;
702}
703
9119a41e 704struct resv_map *resv_map_alloc(void)
84afd99b
AW
705{
706 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
707 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
708
709 if (!resv_map || !rg) {
710 kfree(resv_map);
711 kfree(rg);
84afd99b 712 return NULL;
5e911373 713 }
84afd99b
AW
714
715 kref_init(&resv_map->refs);
7b24d861 716 spin_lock_init(&resv_map->lock);
84afd99b
AW
717 INIT_LIST_HEAD(&resv_map->regions);
718
5e911373
MK
719 resv_map->adds_in_progress = 0;
720
721 INIT_LIST_HEAD(&resv_map->region_cache);
722 list_add(&rg->link, &resv_map->region_cache);
723 resv_map->region_cache_count = 1;
724
84afd99b
AW
725 return resv_map;
726}
727
9119a41e 728void resv_map_release(struct kref *ref)
84afd99b
AW
729{
730 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
731 struct list_head *head = &resv_map->region_cache;
732 struct file_region *rg, *trg;
84afd99b
AW
733
734 /* Clear out any active regions before we release the map. */
feba16e2 735 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
736
737 /* ... and any entries left in the cache */
738 list_for_each_entry_safe(rg, trg, head, link) {
739 list_del(&rg->link);
740 kfree(rg);
741 }
742
743 VM_BUG_ON(resv_map->adds_in_progress);
744
84afd99b
AW
745 kfree(resv_map);
746}
747
4e35f483
JK
748static inline struct resv_map *inode_resv_map(struct inode *inode)
749{
750 return inode->i_mapping->private_data;
751}
752
84afd99b 753static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 754{
81d1b09c 755 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
756 if (vma->vm_flags & VM_MAYSHARE) {
757 struct address_space *mapping = vma->vm_file->f_mapping;
758 struct inode *inode = mapping->host;
759
760 return inode_resv_map(inode);
761
762 } else {
84afd99b
AW
763 return (struct resv_map *)(get_vma_private_data(vma) &
764 ~HPAGE_RESV_MASK);
4e35f483 765 }
a1e78772
MG
766}
767
84afd99b 768static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 769{
81d1b09c
SL
770 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
771 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 772
84afd99b
AW
773 set_vma_private_data(vma, (get_vma_private_data(vma) &
774 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
775}
776
777static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
778{
81d1b09c
SL
779 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
780 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
781
782 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
783}
784
785static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
786{
81d1b09c 787 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
788
789 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
790}
791
04f2cbe3 792/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
793void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
794{
81d1b09c 795 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 796 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
797 vma->vm_private_data = (void *)0;
798}
799
800/* Returns true if the VMA has associated reserve pages */
559ec2f8 801static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 802{
af0ed73e
JK
803 if (vma->vm_flags & VM_NORESERVE) {
804 /*
805 * This address is already reserved by other process(chg == 0),
806 * so, we should decrement reserved count. Without decrementing,
807 * reserve count remains after releasing inode, because this
808 * allocated page will go into page cache and is regarded as
809 * coming from reserved pool in releasing step. Currently, we
810 * don't have any other solution to deal with this situation
811 * properly, so add work-around here.
812 */
813 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 814 return true;
af0ed73e 815 else
559ec2f8 816 return false;
af0ed73e 817 }
a63884e9
JK
818
819 /* Shared mappings always use reserves */
1fb1b0e9
MK
820 if (vma->vm_flags & VM_MAYSHARE) {
821 /*
822 * We know VM_NORESERVE is not set. Therefore, there SHOULD
823 * be a region map for all pages. The only situation where
824 * there is no region map is if a hole was punched via
825 * fallocate. In this case, there really are no reverves to
826 * use. This situation is indicated if chg != 0.
827 */
828 if (chg)
829 return false;
830 else
831 return true;
832 }
a63884e9
JK
833
834 /*
835 * Only the process that called mmap() has reserves for
836 * private mappings.
837 */
67961f9d
MK
838 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
839 /*
840 * Like the shared case above, a hole punch or truncate
841 * could have been performed on the private mapping.
842 * Examine the value of chg to determine if reserves
843 * actually exist or were previously consumed.
844 * Very Subtle - The value of chg comes from a previous
845 * call to vma_needs_reserves(). The reserve map for
846 * private mappings has different (opposite) semantics
847 * than that of shared mappings. vma_needs_reserves()
848 * has already taken this difference in semantics into
849 * account. Therefore, the meaning of chg is the same
850 * as in the shared case above. Code could easily be
851 * combined, but keeping it separate draws attention to
852 * subtle differences.
853 */
854 if (chg)
855 return false;
856 else
857 return true;
858 }
a63884e9 859
559ec2f8 860 return false;
a1e78772
MG
861}
862
a5516438 863static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
864{
865 int nid = page_to_nid(page);
0edaecfa 866 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
867 h->free_huge_pages++;
868 h->free_huge_pages_node[nid]++;
1da177e4
LT
869}
870
94310cbc 871static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
872{
873 struct page *page;
874
c8721bbb 875 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 876 if (!PageHWPoison(page))
c8721bbb
NH
877 break;
878 /*
879 * if 'non-isolated free hugepage' not found on the list,
880 * the allocation fails.
881 */
882 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 883 return NULL;
0edaecfa 884 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 885 set_page_refcounted(page);
bf50bab2
NH
886 h->free_huge_pages--;
887 h->free_huge_pages_node[nid]--;
888 return page;
889}
890
3e59fcb0
MH
891static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
892 nodemask_t *nmask)
94310cbc 893{
3e59fcb0
MH
894 unsigned int cpuset_mems_cookie;
895 struct zonelist *zonelist;
896 struct zone *zone;
897 struct zoneref *z;
898 int node = -1;
94310cbc 899
3e59fcb0
MH
900 zonelist = node_zonelist(nid, gfp_mask);
901
902retry_cpuset:
903 cpuset_mems_cookie = read_mems_allowed_begin();
904 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
905 struct page *page;
906
907 if (!cpuset_zone_allowed(zone, gfp_mask))
908 continue;
909 /*
910 * no need to ask again on the same node. Pool is node rather than
911 * zone aware
912 */
913 if (zone_to_nid(zone) == node)
914 continue;
915 node = zone_to_nid(zone);
94310cbc 916
94310cbc
AK
917 page = dequeue_huge_page_node_exact(h, node);
918 if (page)
919 return page;
920 }
3e59fcb0
MH
921 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
922 goto retry_cpuset;
923
94310cbc
AK
924 return NULL;
925}
926
86cdb465
NH
927/* Movability of hugepages depends on migration support. */
928static inline gfp_t htlb_alloc_mask(struct hstate *h)
929{
100873d7 930 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
931 return GFP_HIGHUSER_MOVABLE;
932 else
933 return GFP_HIGHUSER;
934}
935
a5516438
AK
936static struct page *dequeue_huge_page_vma(struct hstate *h,
937 struct vm_area_struct *vma,
af0ed73e
JK
938 unsigned long address, int avoid_reserve,
939 long chg)
1da177e4 940{
3e59fcb0 941 struct page *page;
480eccf9 942 struct mempolicy *mpol;
04ec6264 943 gfp_t gfp_mask;
3e59fcb0 944 nodemask_t *nodemask;
04ec6264 945 int nid;
1da177e4 946
a1e78772
MG
947 /*
948 * A child process with MAP_PRIVATE mappings created by their parent
949 * have no page reserves. This check ensures that reservations are
950 * not "stolen". The child may still get SIGKILLed
951 */
af0ed73e 952 if (!vma_has_reserves(vma, chg) &&
a5516438 953 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 954 goto err;
a1e78772 955
04f2cbe3 956 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 957 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 958 goto err;
04f2cbe3 959
04ec6264
VB
960 gfp_mask = htlb_alloc_mask(h);
961 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
962 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
963 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
964 SetPagePrivate(page);
965 h->resv_huge_pages--;
1da177e4 966 }
cc9a6c87 967
52cd3b07 968 mpol_cond_put(mpol);
1da177e4 969 return page;
cc9a6c87
MG
970
971err:
cc9a6c87 972 return NULL;
1da177e4
LT
973}
974
1cac6f2c
LC
975/*
976 * common helper functions for hstate_next_node_to_{alloc|free}.
977 * We may have allocated or freed a huge page based on a different
978 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
979 * be outside of *nodes_allowed. Ensure that we use an allowed
980 * node for alloc or free.
981 */
982static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
983{
0edaf86c 984 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
985 VM_BUG_ON(nid >= MAX_NUMNODES);
986
987 return nid;
988}
989
990static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
991{
992 if (!node_isset(nid, *nodes_allowed))
993 nid = next_node_allowed(nid, nodes_allowed);
994 return nid;
995}
996
997/*
998 * returns the previously saved node ["this node"] from which to
999 * allocate a persistent huge page for the pool and advance the
1000 * next node from which to allocate, handling wrap at end of node
1001 * mask.
1002 */
1003static int hstate_next_node_to_alloc(struct hstate *h,
1004 nodemask_t *nodes_allowed)
1005{
1006 int nid;
1007
1008 VM_BUG_ON(!nodes_allowed);
1009
1010 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1011 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1012
1013 return nid;
1014}
1015
1016/*
1017 * helper for free_pool_huge_page() - return the previously saved
1018 * node ["this node"] from which to free a huge page. Advance the
1019 * next node id whether or not we find a free huge page to free so
1020 * that the next attempt to free addresses the next node.
1021 */
1022static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1023{
1024 int nid;
1025
1026 VM_BUG_ON(!nodes_allowed);
1027
1028 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1029 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1030
1031 return nid;
1032}
1033
1034#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1035 for (nr_nodes = nodes_weight(*mask); \
1036 nr_nodes > 0 && \
1037 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1038 nr_nodes--)
1039
1040#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1041 for (nr_nodes = nodes_weight(*mask); \
1042 nr_nodes > 0 && \
1043 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1044 nr_nodes--)
1045
e1073d1e 1046#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1047static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1048 unsigned int order)
944d9fec
LC
1049{
1050 int i;
1051 int nr_pages = 1 << order;
1052 struct page *p = page + 1;
1053
c8cc708a 1054 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1055 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1056 clear_compound_head(p);
944d9fec 1057 set_page_refcounted(p);
944d9fec
LC
1058 }
1059
1060 set_compound_order(page, 0);
1061 __ClearPageHead(page);
1062}
1063
d00181b9 1064static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1065{
1066 free_contig_range(page_to_pfn(page), 1 << order);
1067}
1068
1069static int __alloc_gigantic_page(unsigned long start_pfn,
79b63f12 1070 unsigned long nr_pages, gfp_t gfp_mask)
944d9fec
LC
1071{
1072 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625 1073 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
79b63f12 1074 gfp_mask);
944d9fec
LC
1075}
1076
f44b2dda
JK
1077static bool pfn_range_valid_gigantic(struct zone *z,
1078 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1079{
1080 unsigned long i, end_pfn = start_pfn + nr_pages;
1081 struct page *page;
1082
1083 for (i = start_pfn; i < end_pfn; i++) {
2d4fe84c
DH
1084 page = pfn_to_online_page(i);
1085 if (!page)
944d9fec
LC
1086 return false;
1087
f44b2dda
JK
1088 if (page_zone(page) != z)
1089 return false;
1090
944d9fec
LC
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102}
1103
1104static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106{
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109}
1110
79b63f12 1111static struct page *alloc_gigantic_page(int nid, struct hstate *h)
944d9fec 1112{
79b63f12 1113 unsigned int order = huge_page_order(h);
944d9fec
LC
1114 unsigned long nr_pages = 1 << order;
1115 unsigned long ret, pfn, flags;
79b63f12
MH
1116 struct zonelist *zonelist;
1117 struct zone *zone;
1118 struct zoneref *z;
1119 gfp_t gfp_mask;
944d9fec 1120
79b63f12
MH
1121 gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1122 zonelist = node_zonelist(nid, gfp_mask);
1123 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), NULL) {
1124 spin_lock_irqsave(&zone->lock, flags);
944d9fec 1125
79b63f12
MH
1126 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
1127 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
1128 if (pfn_range_valid_gigantic(zone, pfn, nr_pages)) {
944d9fec
LC
1129 /*
1130 * We release the zone lock here because
1131 * alloc_contig_range() will also lock the zone
1132 * at some point. If there's an allocation
1133 * spinning on this lock, it may win the race
1134 * and cause alloc_contig_range() to fail...
1135 */
79b63f12
MH
1136 spin_unlock_irqrestore(&zone->lock, flags);
1137 ret = __alloc_gigantic_page(pfn, nr_pages, gfp_mask);
944d9fec
LC
1138 if (!ret)
1139 return pfn_to_page(pfn);
79b63f12 1140 spin_lock_irqsave(&zone->lock, flags);
944d9fec
LC
1141 }
1142 pfn += nr_pages;
1143 }
1144
79b63f12 1145 spin_unlock_irqrestore(&zone->lock, flags);
944d9fec
LC
1146 }
1147
1148 return NULL;
1149}
1150
1151static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1152static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1153
1154static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1155{
1156 struct page *page;
1157
79b63f12 1158 page = alloc_gigantic_page(nid, h);
944d9fec
LC
1159 if (page) {
1160 prep_compound_gigantic_page(page, huge_page_order(h));
1161 prep_new_huge_page(h, page, nid);
1162 }
1163
1164 return page;
1165}
1166
1167static int alloc_fresh_gigantic_page(struct hstate *h,
1168 nodemask_t *nodes_allowed)
1169{
1170 struct page *page = NULL;
1171 int nr_nodes, node;
1172
1173 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1174 page = alloc_fresh_gigantic_page_node(h, node);
1175 if (page)
1176 return 1;
1177 }
1178
1179 return 0;
1180}
1181
e1073d1e 1182#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1183static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1184static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1185static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1186 unsigned int order) { }
944d9fec
LC
1187static inline int alloc_fresh_gigantic_page(struct hstate *h,
1188 nodemask_t *nodes_allowed) { return 0; }
1189#endif
1190
a5516438 1191static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1192{
1193 int i;
a5516438 1194
944d9fec
LC
1195 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1196 return;
18229df5 1197
a5516438
AK
1198 h->nr_huge_pages--;
1199 h->nr_huge_pages_node[page_to_nid(page)]--;
1200 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1201 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1202 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1203 1 << PG_active | 1 << PG_private |
1204 1 << PG_writeback);
6af2acb6 1205 }
309381fe 1206 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1207 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1208 set_page_refcounted(page);
944d9fec
LC
1209 if (hstate_is_gigantic(h)) {
1210 destroy_compound_gigantic_page(page, huge_page_order(h));
1211 free_gigantic_page(page, huge_page_order(h));
1212 } else {
944d9fec
LC
1213 __free_pages(page, huge_page_order(h));
1214 }
6af2acb6
AL
1215}
1216
e5ff2159
AK
1217struct hstate *size_to_hstate(unsigned long size)
1218{
1219 struct hstate *h;
1220
1221 for_each_hstate(h) {
1222 if (huge_page_size(h) == size)
1223 return h;
1224 }
1225 return NULL;
1226}
1227
bcc54222
NH
1228/*
1229 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1230 * to hstate->hugepage_activelist.)
1231 *
1232 * This function can be called for tail pages, but never returns true for them.
1233 */
1234bool page_huge_active(struct page *page)
1235{
1236 VM_BUG_ON_PAGE(!PageHuge(page), page);
1237 return PageHead(page) && PagePrivate(&page[1]);
1238}
1239
1240/* never called for tail page */
1241static void set_page_huge_active(struct page *page)
1242{
1243 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1244 SetPagePrivate(&page[1]);
1245}
1246
1247static void clear_page_huge_active(struct page *page)
1248{
1249 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1250 ClearPagePrivate(&page[1]);
1251}
1252
8f1d26d0 1253void free_huge_page(struct page *page)
27a85ef1 1254{
a5516438
AK
1255 /*
1256 * Can't pass hstate in here because it is called from the
1257 * compound page destructor.
1258 */
e5ff2159 1259 struct hstate *h = page_hstate(page);
7893d1d5 1260 int nid = page_to_nid(page);
90481622
DG
1261 struct hugepage_subpool *spool =
1262 (struct hugepage_subpool *)page_private(page);
07443a85 1263 bool restore_reserve;
27a85ef1 1264
e5df70ab 1265 set_page_private(page, 0);
23be7468 1266 page->mapping = NULL;
b4330afb
MK
1267 VM_BUG_ON_PAGE(page_count(page), page);
1268 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1269 restore_reserve = PagePrivate(page);
16c794b4 1270 ClearPagePrivate(page);
27a85ef1 1271
1c5ecae3 1272 /*
7489b9cc
MK
1273 * If PagePrivate() was set on page, page allocation consumed a
1274 * reservation. If the page was associated with a subpool, there
1275 * would have been a page reserved in the subpool before allocation
1276 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1277 * reservtion, do not call hugepage_subpool_put_pages() as this will
1278 * remove the reserved page from the subpool.
1c5ecae3 1279 */
7489b9cc
MK
1280 if (!restore_reserve) {
1281 /*
1282 * A return code of zero implies that the subpool will be
1283 * under its minimum size if the reservation is not restored
1284 * after page is free. Therefore, force restore_reserve
1285 * operation.
1286 */
1287 if (hugepage_subpool_put_pages(spool, 1) == 0)
1288 restore_reserve = true;
1289 }
1c5ecae3 1290
27a85ef1 1291 spin_lock(&hugetlb_lock);
bcc54222 1292 clear_page_huge_active(page);
6d76dcf4
AK
1293 hugetlb_cgroup_uncharge_page(hstate_index(h),
1294 pages_per_huge_page(h), page);
07443a85
JK
1295 if (restore_reserve)
1296 h->resv_huge_pages++;
1297
944d9fec 1298 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1299 /* remove the page from active list */
1300 list_del(&page->lru);
a5516438
AK
1301 update_and_free_page(h, page);
1302 h->surplus_huge_pages--;
1303 h->surplus_huge_pages_node[nid]--;
7893d1d5 1304 } else {
5d3a551c 1305 arch_clear_hugepage_flags(page);
a5516438 1306 enqueue_huge_page(h, page);
7893d1d5 1307 }
27a85ef1
DG
1308 spin_unlock(&hugetlb_lock);
1309}
1310
a5516438 1311static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1312{
0edaecfa 1313 INIT_LIST_HEAD(&page->lru);
f1e61557 1314 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1315 spin_lock(&hugetlb_lock);
9dd540e2 1316 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1317 h->nr_huge_pages++;
1318 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1319 spin_unlock(&hugetlb_lock);
1320 put_page(page); /* free it into the hugepage allocator */
1321}
1322
d00181b9 1323static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1324{
1325 int i;
1326 int nr_pages = 1 << order;
1327 struct page *p = page + 1;
1328
1329 /* we rely on prep_new_huge_page to set the destructor */
1330 set_compound_order(page, order);
ef5a22be 1331 __ClearPageReserved(page);
de09d31d 1332 __SetPageHead(page);
20a0307c 1333 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1334 /*
1335 * For gigantic hugepages allocated through bootmem at
1336 * boot, it's safer to be consistent with the not-gigantic
1337 * hugepages and clear the PG_reserved bit from all tail pages
1338 * too. Otherwse drivers using get_user_pages() to access tail
1339 * pages may get the reference counting wrong if they see
1340 * PG_reserved set on a tail page (despite the head page not
1341 * having PG_reserved set). Enforcing this consistency between
1342 * head and tail pages allows drivers to optimize away a check
1343 * on the head page when they need know if put_page() is needed
1344 * after get_user_pages().
1345 */
1346 __ClearPageReserved(p);
58a84aa9 1347 set_page_count(p, 0);
1d798ca3 1348 set_compound_head(p, page);
20a0307c 1349 }
b4330afb 1350 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1351}
1352
7795912c
AM
1353/*
1354 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1355 * transparent huge pages. See the PageTransHuge() documentation for more
1356 * details.
1357 */
20a0307c
WF
1358int PageHuge(struct page *page)
1359{
20a0307c
WF
1360 if (!PageCompound(page))
1361 return 0;
1362
1363 page = compound_head(page);
f1e61557 1364 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1365}
43131e14
NH
1366EXPORT_SYMBOL_GPL(PageHuge);
1367
27c73ae7
AA
1368/*
1369 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1370 * normal or transparent huge pages.
1371 */
1372int PageHeadHuge(struct page *page_head)
1373{
27c73ae7
AA
1374 if (!PageHead(page_head))
1375 return 0;
1376
758f66a2 1377 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1378}
27c73ae7 1379
13d60f4b
ZY
1380pgoff_t __basepage_index(struct page *page)
1381{
1382 struct page *page_head = compound_head(page);
1383 pgoff_t index = page_index(page_head);
1384 unsigned long compound_idx;
1385
1386 if (!PageHuge(page_head))
1387 return page_index(page);
1388
1389 if (compound_order(page_head) >= MAX_ORDER)
1390 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1391 else
1392 compound_idx = page - page_head;
1393
1394 return (index << compound_order(page_head)) + compound_idx;
1395}
1396
a5516438 1397static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1398{
1da177e4 1399 struct page *page;
f96efd58 1400
96db800f 1401 page = __alloc_pages_node(nid,
86cdb465 1402 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
dcda9b04 1403 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
a5516438 1404 huge_page_order(h));
1da177e4 1405 if (page) {
a5516438 1406 prep_new_huge_page(h, page, nid);
1da177e4 1407 }
63b4613c
NA
1408
1409 return page;
1410}
1411
b2261026
JK
1412static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1413{
1414 struct page *page;
1415 int nr_nodes, node;
1416 int ret = 0;
1417
1418 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1419 page = alloc_fresh_huge_page_node(h, node);
1420 if (page) {
1421 ret = 1;
1422 break;
1423 }
1424 }
1425
1426 if (ret)
1427 count_vm_event(HTLB_BUDDY_PGALLOC);
1428 else
1429 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1430
1431 return ret;
1432}
1433
e8c5c824
LS
1434/*
1435 * Free huge page from pool from next node to free.
1436 * Attempt to keep persistent huge pages more or less
1437 * balanced over allowed nodes.
1438 * Called with hugetlb_lock locked.
1439 */
6ae11b27
LS
1440static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1441 bool acct_surplus)
e8c5c824 1442{
b2261026 1443 int nr_nodes, node;
e8c5c824
LS
1444 int ret = 0;
1445
b2261026 1446 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1447 /*
1448 * If we're returning unused surplus pages, only examine
1449 * nodes with surplus pages.
1450 */
b2261026
JK
1451 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1452 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1453 struct page *page =
b2261026 1454 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1455 struct page, lru);
1456 list_del(&page->lru);
1457 h->free_huge_pages--;
b2261026 1458 h->free_huge_pages_node[node]--;
685f3457
LS
1459 if (acct_surplus) {
1460 h->surplus_huge_pages--;
b2261026 1461 h->surplus_huge_pages_node[node]--;
685f3457 1462 }
e8c5c824
LS
1463 update_and_free_page(h, page);
1464 ret = 1;
9a76db09 1465 break;
e8c5c824 1466 }
b2261026 1467 }
e8c5c824
LS
1468
1469 return ret;
1470}
1471
c8721bbb
NH
1472/*
1473 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1474 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1475 * number of free hugepages would be reduced below the number of reserved
1476 * hugepages.
c8721bbb 1477 */
c3114a84 1478int dissolve_free_huge_page(struct page *page)
c8721bbb 1479{
082d5b6b
GS
1480 int rc = 0;
1481
c8721bbb
NH
1482 spin_lock(&hugetlb_lock);
1483 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1484 struct page *head = compound_head(page);
1485 struct hstate *h = page_hstate(head);
1486 int nid = page_to_nid(head);
082d5b6b
GS
1487 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1488 rc = -EBUSY;
1489 goto out;
1490 }
c3114a84
AK
1491 /*
1492 * Move PageHWPoison flag from head page to the raw error page,
1493 * which makes any subpages rather than the error page reusable.
1494 */
1495 if (PageHWPoison(head) && page != head) {
1496 SetPageHWPoison(page);
1497 ClearPageHWPoison(head);
1498 }
2247bb33 1499 list_del(&head->lru);
c8721bbb
NH
1500 h->free_huge_pages--;
1501 h->free_huge_pages_node[nid]--;
c1470b33 1502 h->max_huge_pages--;
2247bb33 1503 update_and_free_page(h, head);
c8721bbb 1504 }
082d5b6b 1505out:
c8721bbb 1506 spin_unlock(&hugetlb_lock);
082d5b6b 1507 return rc;
c8721bbb
NH
1508}
1509
1510/*
1511 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1512 * make specified memory blocks removable from the system.
2247bb33
GS
1513 * Note that this will dissolve a free gigantic hugepage completely, if any
1514 * part of it lies within the given range.
082d5b6b
GS
1515 * Also note that if dissolve_free_huge_page() returns with an error, all
1516 * free hugepages that were dissolved before that error are lost.
c8721bbb 1517 */
082d5b6b 1518int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1519{
c8721bbb 1520 unsigned long pfn;
eb03aa00 1521 struct page *page;
082d5b6b 1522 int rc = 0;
c8721bbb 1523
d0177639 1524 if (!hugepages_supported())
082d5b6b 1525 return rc;
d0177639 1526
eb03aa00
GS
1527 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1528 page = pfn_to_page(pfn);
1529 if (PageHuge(page) && !page_count(page)) {
1530 rc = dissolve_free_huge_page(page);
1531 if (rc)
1532 break;
1533 }
1534 }
082d5b6b
GS
1535
1536 return rc;
c8721bbb
NH
1537}
1538
099730d6 1539static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
aaf14e40 1540 gfp_t gfp_mask, int nid, nodemask_t *nmask)
099730d6
DH
1541{
1542 int order = huge_page_order(h);
099730d6 1543
dcda9b04 1544 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
aaf14e40
MH
1545 if (nid == NUMA_NO_NODE)
1546 nid = numa_mem_id();
1547 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
099730d6
DH
1548}
1549
aaf14e40
MH
1550static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1551 int nid, nodemask_t *nmask)
7893d1d5
AL
1552{
1553 struct page *page;
bf50bab2 1554 unsigned int r_nid;
7893d1d5 1555
bae7f4ae 1556 if (hstate_is_gigantic(h))
aa888a74
AK
1557 return NULL;
1558
d1c3fb1f
NA
1559 /*
1560 * Assume we will successfully allocate the surplus page to
1561 * prevent racing processes from causing the surplus to exceed
1562 * overcommit
1563 *
1564 * This however introduces a different race, where a process B
1565 * tries to grow the static hugepage pool while alloc_pages() is
1566 * called by process A. B will only examine the per-node
1567 * counters in determining if surplus huge pages can be
1568 * converted to normal huge pages in adjust_pool_surplus(). A
1569 * won't be able to increment the per-node counter, until the
1570 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1571 * no more huge pages can be converted from surplus to normal
1572 * state (and doesn't try to convert again). Thus, we have a
1573 * case where a surplus huge page exists, the pool is grown, and
1574 * the surplus huge page still exists after, even though it
1575 * should just have been converted to a normal huge page. This
1576 * does not leak memory, though, as the hugepage will be freed
1577 * once it is out of use. It also does not allow the counters to
1578 * go out of whack in adjust_pool_surplus() as we don't modify
1579 * the node values until we've gotten the hugepage and only the
1580 * per-node value is checked there.
1581 */
1582 spin_lock(&hugetlb_lock);
a5516438 1583 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1584 spin_unlock(&hugetlb_lock);
1585 return NULL;
1586 } else {
a5516438
AK
1587 h->nr_huge_pages++;
1588 h->surplus_huge_pages++;
d1c3fb1f
NA
1589 }
1590 spin_unlock(&hugetlb_lock);
1591
aaf14e40 1592 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1593
1594 spin_lock(&hugetlb_lock);
7893d1d5 1595 if (page) {
0edaecfa 1596 INIT_LIST_HEAD(&page->lru);
bf50bab2 1597 r_nid = page_to_nid(page);
f1e61557 1598 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1599 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1600 /*
1601 * We incremented the global counters already
1602 */
bf50bab2
NH
1603 h->nr_huge_pages_node[r_nid]++;
1604 h->surplus_huge_pages_node[r_nid]++;
3b116300 1605 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1606 } else {
a5516438
AK
1607 h->nr_huge_pages--;
1608 h->surplus_huge_pages--;
3b116300 1609 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1610 }
d1c3fb1f 1611 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1612
1613 return page;
1614}
1615
099730d6
DH
1616/*
1617 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1618 */
e0ec90ee 1619static
099730d6
DH
1620struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1621 struct vm_area_struct *vma, unsigned long addr)
1622{
aaf14e40
MH
1623 struct page *page;
1624 struct mempolicy *mpol;
1625 gfp_t gfp_mask = htlb_alloc_mask(h);
1626 int nid;
1627 nodemask_t *nodemask;
1628
1629 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1630 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1631 mpol_cond_put(mpol);
1632
1633 return page;
099730d6
DH
1634}
1635
bf50bab2
NH
1636/*
1637 * This allocation function is useful in the context where vma is irrelevant.
1638 * E.g. soft-offlining uses this function because it only cares physical
1639 * address of error page.
1640 */
1641struct page *alloc_huge_page_node(struct hstate *h, int nid)
1642{
aaf14e40 1643 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1644 struct page *page = NULL;
bf50bab2 1645
aaf14e40
MH
1646 if (nid != NUMA_NO_NODE)
1647 gfp_mask |= __GFP_THISNODE;
1648
bf50bab2 1649 spin_lock(&hugetlb_lock);
4ef91848 1650 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1651 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1652 spin_unlock(&hugetlb_lock);
1653
94ae8ba7 1654 if (!page)
aaf14e40 1655 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1656
1657 return page;
1658}
1659
3e59fcb0
MH
1660
1661struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1662 nodemask_t *nmask)
4db9b2ef 1663{
aaf14e40 1664 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1665
1666 spin_lock(&hugetlb_lock);
1667 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1668 struct page *page;
1669
1670 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1671 if (page) {
1672 spin_unlock(&hugetlb_lock);
1673 return page;
4db9b2ef
MH
1674 }
1675 }
1676 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1677
1678 /* No reservations, try to overcommit */
3e59fcb0
MH
1679
1680 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1681}
1682
e4e574b7 1683/*
25985edc 1684 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1685 * of size 'delta'.
1686 */
a5516438 1687static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1688{
1689 struct list_head surplus_list;
1690 struct page *page, *tmp;
1691 int ret, i;
1692 int needed, allocated;
28073b02 1693 bool alloc_ok = true;
e4e574b7 1694
a5516438 1695 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1696 if (needed <= 0) {
a5516438 1697 h->resv_huge_pages += delta;
e4e574b7 1698 return 0;
ac09b3a1 1699 }
e4e574b7
AL
1700
1701 allocated = 0;
1702 INIT_LIST_HEAD(&surplus_list);
1703
1704 ret = -ENOMEM;
1705retry:
1706 spin_unlock(&hugetlb_lock);
1707 for (i = 0; i < needed; i++) {
aaf14e40
MH
1708 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1709 NUMA_NO_NODE, NULL);
28073b02
HD
1710 if (!page) {
1711 alloc_ok = false;
1712 break;
1713 }
e4e574b7 1714 list_add(&page->lru, &surplus_list);
69ed779a 1715 cond_resched();
e4e574b7 1716 }
28073b02 1717 allocated += i;
e4e574b7
AL
1718
1719 /*
1720 * After retaking hugetlb_lock, we need to recalculate 'needed'
1721 * because either resv_huge_pages or free_huge_pages may have changed.
1722 */
1723 spin_lock(&hugetlb_lock);
a5516438
AK
1724 needed = (h->resv_huge_pages + delta) -
1725 (h->free_huge_pages + allocated);
28073b02
HD
1726 if (needed > 0) {
1727 if (alloc_ok)
1728 goto retry;
1729 /*
1730 * We were not able to allocate enough pages to
1731 * satisfy the entire reservation so we free what
1732 * we've allocated so far.
1733 */
1734 goto free;
1735 }
e4e574b7
AL
1736 /*
1737 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1738 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1739 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1740 * allocator. Commit the entire reservation here to prevent another
1741 * process from stealing the pages as they are added to the pool but
1742 * before they are reserved.
e4e574b7
AL
1743 */
1744 needed += allocated;
a5516438 1745 h->resv_huge_pages += delta;
e4e574b7 1746 ret = 0;
a9869b83 1747
19fc3f0a 1748 /* Free the needed pages to the hugetlb pool */
e4e574b7 1749 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1750 if ((--needed) < 0)
1751 break;
a9869b83
NH
1752 /*
1753 * This page is now managed by the hugetlb allocator and has
1754 * no users -- drop the buddy allocator's reference.
1755 */
1756 put_page_testzero(page);
309381fe 1757 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1758 enqueue_huge_page(h, page);
19fc3f0a 1759 }
28073b02 1760free:
b0365c8d 1761 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1762
1763 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1764 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1765 put_page(page);
a9869b83 1766 spin_lock(&hugetlb_lock);
e4e574b7
AL
1767
1768 return ret;
1769}
1770
1771/*
e5bbc8a6
MK
1772 * This routine has two main purposes:
1773 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1774 * in unused_resv_pages. This corresponds to the prior adjustments made
1775 * to the associated reservation map.
1776 * 2) Free any unused surplus pages that may have been allocated to satisfy
1777 * the reservation. As many as unused_resv_pages may be freed.
1778 *
1779 * Called with hugetlb_lock held. However, the lock could be dropped (and
1780 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1781 * we must make sure nobody else can claim pages we are in the process of
1782 * freeing. Do this by ensuring resv_huge_page always is greater than the
1783 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1784 */
a5516438
AK
1785static void return_unused_surplus_pages(struct hstate *h,
1786 unsigned long unused_resv_pages)
e4e574b7 1787{
e4e574b7
AL
1788 unsigned long nr_pages;
1789
aa888a74 1790 /* Cannot return gigantic pages currently */
bae7f4ae 1791 if (hstate_is_gigantic(h))
e5bbc8a6 1792 goto out;
aa888a74 1793
e5bbc8a6
MK
1794 /*
1795 * Part (or even all) of the reservation could have been backed
1796 * by pre-allocated pages. Only free surplus pages.
1797 */
a5516438 1798 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1799
685f3457
LS
1800 /*
1801 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1802 * evenly across all nodes with memory. Iterate across these nodes
1803 * until we can no longer free unreserved surplus pages. This occurs
1804 * when the nodes with surplus pages have no free pages.
1805 * free_pool_huge_page() will balance the the freed pages across the
1806 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1807 *
1808 * Note that we decrement resv_huge_pages as we free the pages. If
1809 * we drop the lock, resv_huge_pages will still be sufficiently large
1810 * to cover subsequent pages we may free.
685f3457
LS
1811 */
1812 while (nr_pages--) {
e5bbc8a6
MK
1813 h->resv_huge_pages--;
1814 unused_resv_pages--;
8cebfcd0 1815 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1816 goto out;
7848a4bf 1817 cond_resched_lock(&hugetlb_lock);
e4e574b7 1818 }
e5bbc8a6
MK
1819
1820out:
1821 /* Fully uncommit the reservation */
1822 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1823}
1824
5e911373 1825
c37f9fb1 1826/*
feba16e2 1827 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1828 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1829 *
1830 * vma_needs_reservation is called to determine if the huge page at addr
1831 * within the vma has an associated reservation. If a reservation is
1832 * needed, the value 1 is returned. The caller is then responsible for
1833 * managing the global reservation and subpool usage counts. After
1834 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1835 * to add the page to the reservation map. If the page allocation fails,
1836 * the reservation must be ended instead of committed. vma_end_reservation
1837 * is called in such cases.
cf3ad20b
MK
1838 *
1839 * In the normal case, vma_commit_reservation returns the same value
1840 * as the preceding vma_needs_reservation call. The only time this
1841 * is not the case is if a reserve map was changed between calls. It
1842 * is the responsibility of the caller to notice the difference and
1843 * take appropriate action.
96b96a96
MK
1844 *
1845 * vma_add_reservation is used in error paths where a reservation must
1846 * be restored when a newly allocated huge page must be freed. It is
1847 * to be called after calling vma_needs_reservation to determine if a
1848 * reservation exists.
c37f9fb1 1849 */
5e911373
MK
1850enum vma_resv_mode {
1851 VMA_NEEDS_RESV,
1852 VMA_COMMIT_RESV,
feba16e2 1853 VMA_END_RESV,
96b96a96 1854 VMA_ADD_RESV,
5e911373 1855};
cf3ad20b
MK
1856static long __vma_reservation_common(struct hstate *h,
1857 struct vm_area_struct *vma, unsigned long addr,
5e911373 1858 enum vma_resv_mode mode)
c37f9fb1 1859{
4e35f483
JK
1860 struct resv_map *resv;
1861 pgoff_t idx;
cf3ad20b 1862 long ret;
c37f9fb1 1863
4e35f483
JK
1864 resv = vma_resv_map(vma);
1865 if (!resv)
84afd99b 1866 return 1;
c37f9fb1 1867
4e35f483 1868 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1869 switch (mode) {
1870 case VMA_NEEDS_RESV:
cf3ad20b 1871 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1872 break;
1873 case VMA_COMMIT_RESV:
1874 ret = region_add(resv, idx, idx + 1);
1875 break;
feba16e2 1876 case VMA_END_RESV:
5e911373
MK
1877 region_abort(resv, idx, idx + 1);
1878 ret = 0;
1879 break;
96b96a96
MK
1880 case VMA_ADD_RESV:
1881 if (vma->vm_flags & VM_MAYSHARE)
1882 ret = region_add(resv, idx, idx + 1);
1883 else {
1884 region_abort(resv, idx, idx + 1);
1885 ret = region_del(resv, idx, idx + 1);
1886 }
1887 break;
5e911373
MK
1888 default:
1889 BUG();
1890 }
84afd99b 1891
4e35f483 1892 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1893 return ret;
67961f9d
MK
1894 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1895 /*
1896 * In most cases, reserves always exist for private mappings.
1897 * However, a file associated with mapping could have been
1898 * hole punched or truncated after reserves were consumed.
1899 * As subsequent fault on such a range will not use reserves.
1900 * Subtle - The reserve map for private mappings has the
1901 * opposite meaning than that of shared mappings. If NO
1902 * entry is in the reserve map, it means a reservation exists.
1903 * If an entry exists in the reserve map, it means the
1904 * reservation has already been consumed. As a result, the
1905 * return value of this routine is the opposite of the
1906 * value returned from reserve map manipulation routines above.
1907 */
1908 if (ret)
1909 return 0;
1910 else
1911 return 1;
1912 }
4e35f483 1913 else
cf3ad20b 1914 return ret < 0 ? ret : 0;
c37f9fb1 1915}
cf3ad20b
MK
1916
1917static long vma_needs_reservation(struct hstate *h,
a5516438 1918 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1919{
5e911373 1920 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1921}
84afd99b 1922
cf3ad20b
MK
1923static long vma_commit_reservation(struct hstate *h,
1924 struct vm_area_struct *vma, unsigned long addr)
1925{
5e911373
MK
1926 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1927}
1928
feba16e2 1929static void vma_end_reservation(struct hstate *h,
5e911373
MK
1930 struct vm_area_struct *vma, unsigned long addr)
1931{
feba16e2 1932 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1933}
1934
96b96a96
MK
1935static long vma_add_reservation(struct hstate *h,
1936 struct vm_area_struct *vma, unsigned long addr)
1937{
1938 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1939}
1940
1941/*
1942 * This routine is called to restore a reservation on error paths. In the
1943 * specific error paths, a huge page was allocated (via alloc_huge_page)
1944 * and is about to be freed. If a reservation for the page existed,
1945 * alloc_huge_page would have consumed the reservation and set PagePrivate
1946 * in the newly allocated page. When the page is freed via free_huge_page,
1947 * the global reservation count will be incremented if PagePrivate is set.
1948 * However, free_huge_page can not adjust the reserve map. Adjust the
1949 * reserve map here to be consistent with global reserve count adjustments
1950 * to be made by free_huge_page.
1951 */
1952static void restore_reserve_on_error(struct hstate *h,
1953 struct vm_area_struct *vma, unsigned long address,
1954 struct page *page)
1955{
1956 if (unlikely(PagePrivate(page))) {
1957 long rc = vma_needs_reservation(h, vma, address);
1958
1959 if (unlikely(rc < 0)) {
1960 /*
1961 * Rare out of memory condition in reserve map
1962 * manipulation. Clear PagePrivate so that
1963 * global reserve count will not be incremented
1964 * by free_huge_page. This will make it appear
1965 * as though the reservation for this page was
1966 * consumed. This may prevent the task from
1967 * faulting in the page at a later time. This
1968 * is better than inconsistent global huge page
1969 * accounting of reserve counts.
1970 */
1971 ClearPagePrivate(page);
1972 } else if (rc) {
1973 rc = vma_add_reservation(h, vma, address);
1974 if (unlikely(rc < 0))
1975 /*
1976 * See above comment about rare out of
1977 * memory condition.
1978 */
1979 ClearPagePrivate(page);
1980 } else
1981 vma_end_reservation(h, vma, address);
1982 }
1983}
1984
70c3547e 1985struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1986 unsigned long addr, int avoid_reserve)
1da177e4 1987{
90481622 1988 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1989 struct hstate *h = hstate_vma(vma);
348ea204 1990 struct page *page;
d85f69b0
MK
1991 long map_chg, map_commit;
1992 long gbl_chg;
6d76dcf4
AK
1993 int ret, idx;
1994 struct hugetlb_cgroup *h_cg;
a1e78772 1995
6d76dcf4 1996 idx = hstate_index(h);
a1e78772 1997 /*
d85f69b0
MK
1998 * Examine the region/reserve map to determine if the process
1999 * has a reservation for the page to be allocated. A return
2000 * code of zero indicates a reservation exists (no change).
a1e78772 2001 */
d85f69b0
MK
2002 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2003 if (map_chg < 0)
76dcee75 2004 return ERR_PTR(-ENOMEM);
d85f69b0
MK
2005
2006 /*
2007 * Processes that did not create the mapping will have no
2008 * reserves as indicated by the region/reserve map. Check
2009 * that the allocation will not exceed the subpool limit.
2010 * Allocations for MAP_NORESERVE mappings also need to be
2011 * checked against any subpool limit.
2012 */
2013 if (map_chg || avoid_reserve) {
2014 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2015 if (gbl_chg < 0) {
feba16e2 2016 vma_end_reservation(h, vma, addr);
76dcee75 2017 return ERR_PTR(-ENOSPC);
5e911373 2018 }
1da177e4 2019
d85f69b0
MK
2020 /*
2021 * Even though there was no reservation in the region/reserve
2022 * map, there could be reservations associated with the
2023 * subpool that can be used. This would be indicated if the
2024 * return value of hugepage_subpool_get_pages() is zero.
2025 * However, if avoid_reserve is specified we still avoid even
2026 * the subpool reservations.
2027 */
2028 if (avoid_reserve)
2029 gbl_chg = 1;
2030 }
2031
6d76dcf4 2032 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2033 if (ret)
2034 goto out_subpool_put;
2035
1da177e4 2036 spin_lock(&hugetlb_lock);
d85f69b0
MK
2037 /*
2038 * glb_chg is passed to indicate whether or not a page must be taken
2039 * from the global free pool (global change). gbl_chg == 0 indicates
2040 * a reservation exists for the allocation.
2041 */
2042 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2043 if (!page) {
94ae8ba7 2044 spin_unlock(&hugetlb_lock);
099730d6 2045 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2046 if (!page)
2047 goto out_uncharge_cgroup;
a88c7695
NH
2048 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2049 SetPagePrivate(page);
2050 h->resv_huge_pages--;
2051 }
79dbb236
AK
2052 spin_lock(&hugetlb_lock);
2053 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2054 /* Fall through */
68842c9b 2055 }
81a6fcae
JK
2056 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2057 spin_unlock(&hugetlb_lock);
348ea204 2058
90481622 2059 set_page_private(page, (unsigned long)spool);
90d8b7e6 2060
d85f69b0
MK
2061 map_commit = vma_commit_reservation(h, vma, addr);
2062 if (unlikely(map_chg > map_commit)) {
33039678
MK
2063 /*
2064 * The page was added to the reservation map between
2065 * vma_needs_reservation and vma_commit_reservation.
2066 * This indicates a race with hugetlb_reserve_pages.
2067 * Adjust for the subpool count incremented above AND
2068 * in hugetlb_reserve_pages for the same page. Also,
2069 * the reservation count added in hugetlb_reserve_pages
2070 * no longer applies.
2071 */
2072 long rsv_adjust;
2073
2074 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2075 hugetlb_acct_memory(h, -rsv_adjust);
2076 }
90d8b7e6 2077 return page;
8f34af6f
JZ
2078
2079out_uncharge_cgroup:
2080 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2081out_subpool_put:
d85f69b0 2082 if (map_chg || avoid_reserve)
8f34af6f 2083 hugepage_subpool_put_pages(spool, 1);
feba16e2 2084 vma_end_reservation(h, vma, addr);
8f34af6f 2085 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2086}
2087
74060e4d
NH
2088/*
2089 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2090 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2091 * where no ERR_VALUE is expected to be returned.
2092 */
2093struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2094 unsigned long addr, int avoid_reserve)
2095{
2096 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2097 if (IS_ERR(page))
2098 page = NULL;
2099 return page;
2100}
2101
e24a1307
AK
2102int alloc_bootmem_huge_page(struct hstate *h)
2103 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2104int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2105{
2106 struct huge_bootmem_page *m;
b2261026 2107 int nr_nodes, node;
aa888a74 2108
b2261026 2109 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2110 void *addr;
2111
8b89a116
GS
2112 addr = memblock_virt_alloc_try_nid_nopanic(
2113 huge_page_size(h), huge_page_size(h),
2114 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2115 if (addr) {
2116 /*
2117 * Use the beginning of the huge page to store the
2118 * huge_bootmem_page struct (until gather_bootmem
2119 * puts them into the mem_map).
2120 */
2121 m = addr;
91f47662 2122 goto found;
aa888a74 2123 }
aa888a74
AK
2124 }
2125 return 0;
2126
2127found:
df994ead 2128 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2129 /* Put them into a private list first because mem_map is not up yet */
2130 list_add(&m->list, &huge_boot_pages);
2131 m->hstate = h;
2132 return 1;
2133}
2134
d00181b9
KS
2135static void __init prep_compound_huge_page(struct page *page,
2136 unsigned int order)
18229df5
AW
2137{
2138 if (unlikely(order > (MAX_ORDER - 1)))
2139 prep_compound_gigantic_page(page, order);
2140 else
2141 prep_compound_page(page, order);
2142}
2143
aa888a74
AK
2144/* Put bootmem huge pages into the standard lists after mem_map is up */
2145static void __init gather_bootmem_prealloc(void)
2146{
2147 struct huge_bootmem_page *m;
2148
2149 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2150 struct hstate *h = m->hstate;
ee8f248d
BB
2151 struct page *page;
2152
2153#ifdef CONFIG_HIGHMEM
2154 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2155 memblock_free_late(__pa(m),
2156 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2157#else
2158 page = virt_to_page(m);
2159#endif
aa888a74 2160 WARN_ON(page_count(page) != 1);
18229df5 2161 prep_compound_huge_page(page, h->order);
ef5a22be 2162 WARN_ON(PageReserved(page));
aa888a74 2163 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2164 /*
2165 * If we had gigantic hugepages allocated at boot time, we need
2166 * to restore the 'stolen' pages to totalram_pages in order to
2167 * fix confusing memory reports from free(1) and another
2168 * side-effects, like CommitLimit going negative.
2169 */
bae7f4ae 2170 if (hstate_is_gigantic(h))
3dcc0571 2171 adjust_managed_page_count(page, 1 << h->order);
bac593cd 2172 cond_resched();
aa888a74
AK
2173 }
2174}
2175
8faa8b07 2176static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2177{
2178 unsigned long i;
a5516438 2179
e5ff2159 2180 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2181 if (hstate_is_gigantic(h)) {
aa888a74
AK
2182 if (!alloc_bootmem_huge_page(h))
2183 break;
9b5e5d0f 2184 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2185 &node_states[N_MEMORY]))
1da177e4 2186 break;
69ed779a 2187 cond_resched();
1da177e4 2188 }
d715cf80
LH
2189 if (i < h->max_huge_pages) {
2190 char buf[32];
2191
c6247f72 2192 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2193 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2194 h->max_huge_pages, buf, i);
2195 h->max_huge_pages = i;
2196 }
e5ff2159
AK
2197}
2198
2199static void __init hugetlb_init_hstates(void)
2200{
2201 struct hstate *h;
2202
2203 for_each_hstate(h) {
641844f5
NH
2204 if (minimum_order > huge_page_order(h))
2205 minimum_order = huge_page_order(h);
2206
8faa8b07 2207 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2208 if (!hstate_is_gigantic(h))
8faa8b07 2209 hugetlb_hstate_alloc_pages(h);
e5ff2159 2210 }
641844f5 2211 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2212}
2213
2214static void __init report_hugepages(void)
2215{
2216 struct hstate *h;
2217
2218 for_each_hstate(h) {
4abd32db 2219 char buf[32];
c6247f72
MW
2220
2221 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2222 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2223 buf, h->free_huge_pages);
e5ff2159
AK
2224 }
2225}
2226
1da177e4 2227#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2228static void try_to_free_low(struct hstate *h, unsigned long count,
2229 nodemask_t *nodes_allowed)
1da177e4 2230{
4415cc8d
CL
2231 int i;
2232
bae7f4ae 2233 if (hstate_is_gigantic(h))
aa888a74
AK
2234 return;
2235
6ae11b27 2236 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2237 struct page *page, *next;
a5516438
AK
2238 struct list_head *freel = &h->hugepage_freelists[i];
2239 list_for_each_entry_safe(page, next, freel, lru) {
2240 if (count >= h->nr_huge_pages)
6b0c880d 2241 return;
1da177e4
LT
2242 if (PageHighMem(page))
2243 continue;
2244 list_del(&page->lru);
e5ff2159 2245 update_and_free_page(h, page);
a5516438
AK
2246 h->free_huge_pages--;
2247 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2248 }
2249 }
2250}
2251#else
6ae11b27
LS
2252static inline void try_to_free_low(struct hstate *h, unsigned long count,
2253 nodemask_t *nodes_allowed)
1da177e4
LT
2254{
2255}
2256#endif
2257
20a0307c
WF
2258/*
2259 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2260 * balanced by operating on them in a round-robin fashion.
2261 * Returns 1 if an adjustment was made.
2262 */
6ae11b27
LS
2263static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2264 int delta)
20a0307c 2265{
b2261026 2266 int nr_nodes, node;
20a0307c
WF
2267
2268 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2269
b2261026
JK
2270 if (delta < 0) {
2271 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2272 if (h->surplus_huge_pages_node[node])
2273 goto found;
e8c5c824 2274 }
b2261026
JK
2275 } else {
2276 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2277 if (h->surplus_huge_pages_node[node] <
2278 h->nr_huge_pages_node[node])
2279 goto found;
e8c5c824 2280 }
b2261026
JK
2281 }
2282 return 0;
20a0307c 2283
b2261026
JK
2284found:
2285 h->surplus_huge_pages += delta;
2286 h->surplus_huge_pages_node[node] += delta;
2287 return 1;
20a0307c
WF
2288}
2289
a5516438 2290#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2291static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2292 nodemask_t *nodes_allowed)
1da177e4 2293{
7893d1d5 2294 unsigned long min_count, ret;
1da177e4 2295
944d9fec 2296 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2297 return h->max_huge_pages;
2298
7893d1d5
AL
2299 /*
2300 * Increase the pool size
2301 * First take pages out of surplus state. Then make up the
2302 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2303 *
d15c7c09 2304 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2305 * to convert a surplus huge page to a normal huge page. That is
2306 * not critical, though, it just means the overall size of the
2307 * pool might be one hugepage larger than it needs to be, but
2308 * within all the constraints specified by the sysctls.
7893d1d5 2309 */
1da177e4 2310 spin_lock(&hugetlb_lock);
a5516438 2311 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2312 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2313 break;
2314 }
2315
a5516438 2316 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2317 /*
2318 * If this allocation races such that we no longer need the
2319 * page, free_huge_page will handle it by freeing the page
2320 * and reducing the surplus.
2321 */
2322 spin_unlock(&hugetlb_lock);
649920c6
JH
2323
2324 /* yield cpu to avoid soft lockup */
2325 cond_resched();
2326
944d9fec
LC
2327 if (hstate_is_gigantic(h))
2328 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2329 else
2330 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2331 spin_lock(&hugetlb_lock);
2332 if (!ret)
2333 goto out;
2334
536240f2
MG
2335 /* Bail for signals. Probably ctrl-c from user */
2336 if (signal_pending(current))
2337 goto out;
7893d1d5 2338 }
7893d1d5
AL
2339
2340 /*
2341 * Decrease the pool size
2342 * First return free pages to the buddy allocator (being careful
2343 * to keep enough around to satisfy reservations). Then place
2344 * pages into surplus state as needed so the pool will shrink
2345 * to the desired size as pages become free.
d1c3fb1f
NA
2346 *
2347 * By placing pages into the surplus state independent of the
2348 * overcommit value, we are allowing the surplus pool size to
2349 * exceed overcommit. There are few sane options here. Since
d15c7c09 2350 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2351 * though, we'll note that we're not allowed to exceed surplus
2352 * and won't grow the pool anywhere else. Not until one of the
2353 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2354 */
a5516438 2355 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2356 min_count = max(count, min_count);
6ae11b27 2357 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2358 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2359 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2360 break;
55f67141 2361 cond_resched_lock(&hugetlb_lock);
1da177e4 2362 }
a5516438 2363 while (count < persistent_huge_pages(h)) {
6ae11b27 2364 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2365 break;
2366 }
2367out:
a5516438 2368 ret = persistent_huge_pages(h);
1da177e4 2369 spin_unlock(&hugetlb_lock);
7893d1d5 2370 return ret;
1da177e4
LT
2371}
2372
a3437870
NA
2373#define HSTATE_ATTR_RO(_name) \
2374 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2375
2376#define HSTATE_ATTR(_name) \
2377 static struct kobj_attribute _name##_attr = \
2378 __ATTR(_name, 0644, _name##_show, _name##_store)
2379
2380static struct kobject *hugepages_kobj;
2381static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2382
9a305230
LS
2383static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2384
2385static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2386{
2387 int i;
9a305230 2388
a3437870 2389 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2390 if (hstate_kobjs[i] == kobj) {
2391 if (nidp)
2392 *nidp = NUMA_NO_NODE;
a3437870 2393 return &hstates[i];
9a305230
LS
2394 }
2395
2396 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2397}
2398
06808b08 2399static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2400 struct kobj_attribute *attr, char *buf)
2401{
9a305230
LS
2402 struct hstate *h;
2403 unsigned long nr_huge_pages;
2404 int nid;
2405
2406 h = kobj_to_hstate(kobj, &nid);
2407 if (nid == NUMA_NO_NODE)
2408 nr_huge_pages = h->nr_huge_pages;
2409 else
2410 nr_huge_pages = h->nr_huge_pages_node[nid];
2411
2412 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2413}
adbe8726 2414
238d3c13
DR
2415static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2416 struct hstate *h, int nid,
2417 unsigned long count, size_t len)
a3437870
NA
2418{
2419 int err;
bad44b5b 2420 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2421
944d9fec 2422 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2423 err = -EINVAL;
2424 goto out;
2425 }
2426
9a305230
LS
2427 if (nid == NUMA_NO_NODE) {
2428 /*
2429 * global hstate attribute
2430 */
2431 if (!(obey_mempolicy &&
2432 init_nodemask_of_mempolicy(nodes_allowed))) {
2433 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2434 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2435 }
2436 } else if (nodes_allowed) {
2437 /*
2438 * per node hstate attribute: adjust count to global,
2439 * but restrict alloc/free to the specified node.
2440 */
2441 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2442 init_nodemask_of_node(nodes_allowed, nid);
2443 } else
8cebfcd0 2444 nodes_allowed = &node_states[N_MEMORY];
9a305230 2445
06808b08 2446 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2447
8cebfcd0 2448 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2449 NODEMASK_FREE(nodes_allowed);
2450
2451 return len;
adbe8726
EM
2452out:
2453 NODEMASK_FREE(nodes_allowed);
2454 return err;
06808b08
LS
2455}
2456
238d3c13
DR
2457static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2458 struct kobject *kobj, const char *buf,
2459 size_t len)
2460{
2461 struct hstate *h;
2462 unsigned long count;
2463 int nid;
2464 int err;
2465
2466 err = kstrtoul(buf, 10, &count);
2467 if (err)
2468 return err;
2469
2470 h = kobj_to_hstate(kobj, &nid);
2471 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2472}
2473
06808b08
LS
2474static ssize_t nr_hugepages_show(struct kobject *kobj,
2475 struct kobj_attribute *attr, char *buf)
2476{
2477 return nr_hugepages_show_common(kobj, attr, buf);
2478}
2479
2480static ssize_t nr_hugepages_store(struct kobject *kobj,
2481 struct kobj_attribute *attr, const char *buf, size_t len)
2482{
238d3c13 2483 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2484}
2485HSTATE_ATTR(nr_hugepages);
2486
06808b08
LS
2487#ifdef CONFIG_NUMA
2488
2489/*
2490 * hstate attribute for optionally mempolicy-based constraint on persistent
2491 * huge page alloc/free.
2492 */
2493static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2494 struct kobj_attribute *attr, char *buf)
2495{
2496 return nr_hugepages_show_common(kobj, attr, buf);
2497}
2498
2499static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2500 struct kobj_attribute *attr, const char *buf, size_t len)
2501{
238d3c13 2502 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2503}
2504HSTATE_ATTR(nr_hugepages_mempolicy);
2505#endif
2506
2507
a3437870
NA
2508static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2509 struct kobj_attribute *attr, char *buf)
2510{
9a305230 2511 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2512 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2513}
adbe8726 2514
a3437870
NA
2515static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2516 struct kobj_attribute *attr, const char *buf, size_t count)
2517{
2518 int err;
2519 unsigned long input;
9a305230 2520 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2521
bae7f4ae 2522 if (hstate_is_gigantic(h))
adbe8726
EM
2523 return -EINVAL;
2524
3dbb95f7 2525 err = kstrtoul(buf, 10, &input);
a3437870 2526 if (err)
73ae31e5 2527 return err;
a3437870
NA
2528
2529 spin_lock(&hugetlb_lock);
2530 h->nr_overcommit_huge_pages = input;
2531 spin_unlock(&hugetlb_lock);
2532
2533 return count;
2534}
2535HSTATE_ATTR(nr_overcommit_hugepages);
2536
2537static ssize_t free_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539{
9a305230
LS
2540 struct hstate *h;
2541 unsigned long free_huge_pages;
2542 int nid;
2543
2544 h = kobj_to_hstate(kobj, &nid);
2545 if (nid == NUMA_NO_NODE)
2546 free_huge_pages = h->free_huge_pages;
2547 else
2548 free_huge_pages = h->free_huge_pages_node[nid];
2549
2550 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2551}
2552HSTATE_ATTR_RO(free_hugepages);
2553
2554static ssize_t resv_hugepages_show(struct kobject *kobj,
2555 struct kobj_attribute *attr, char *buf)
2556{
9a305230 2557 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2558 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2559}
2560HSTATE_ATTR_RO(resv_hugepages);
2561
2562static ssize_t surplus_hugepages_show(struct kobject *kobj,
2563 struct kobj_attribute *attr, char *buf)
2564{
9a305230
LS
2565 struct hstate *h;
2566 unsigned long surplus_huge_pages;
2567 int nid;
2568
2569 h = kobj_to_hstate(kobj, &nid);
2570 if (nid == NUMA_NO_NODE)
2571 surplus_huge_pages = h->surplus_huge_pages;
2572 else
2573 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2574
2575 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2576}
2577HSTATE_ATTR_RO(surplus_hugepages);
2578
2579static struct attribute *hstate_attrs[] = {
2580 &nr_hugepages_attr.attr,
2581 &nr_overcommit_hugepages_attr.attr,
2582 &free_hugepages_attr.attr,
2583 &resv_hugepages_attr.attr,
2584 &surplus_hugepages_attr.attr,
06808b08
LS
2585#ifdef CONFIG_NUMA
2586 &nr_hugepages_mempolicy_attr.attr,
2587#endif
a3437870
NA
2588 NULL,
2589};
2590
67e5ed96 2591static const struct attribute_group hstate_attr_group = {
a3437870
NA
2592 .attrs = hstate_attrs,
2593};
2594
094e9539
JM
2595static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2596 struct kobject **hstate_kobjs,
67e5ed96 2597 const struct attribute_group *hstate_attr_group)
a3437870
NA
2598{
2599 int retval;
972dc4de 2600 int hi = hstate_index(h);
a3437870 2601
9a305230
LS
2602 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2603 if (!hstate_kobjs[hi])
a3437870
NA
2604 return -ENOMEM;
2605
9a305230 2606 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2607 if (retval)
9a305230 2608 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2609
2610 return retval;
2611}
2612
2613static void __init hugetlb_sysfs_init(void)
2614{
2615 struct hstate *h;
2616 int err;
2617
2618 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2619 if (!hugepages_kobj)
2620 return;
2621
2622 for_each_hstate(h) {
9a305230
LS
2623 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2624 hstate_kobjs, &hstate_attr_group);
a3437870 2625 if (err)
ffb22af5 2626 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2627 }
2628}
2629
9a305230
LS
2630#ifdef CONFIG_NUMA
2631
2632/*
2633 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2634 * with node devices in node_devices[] using a parallel array. The array
2635 * index of a node device or _hstate == node id.
2636 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2637 * the base kernel, on the hugetlb module.
2638 */
2639struct node_hstate {
2640 struct kobject *hugepages_kobj;
2641 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2642};
b4e289a6 2643static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2644
2645/*
10fbcf4c 2646 * A subset of global hstate attributes for node devices
9a305230
LS
2647 */
2648static struct attribute *per_node_hstate_attrs[] = {
2649 &nr_hugepages_attr.attr,
2650 &free_hugepages_attr.attr,
2651 &surplus_hugepages_attr.attr,
2652 NULL,
2653};
2654
67e5ed96 2655static const struct attribute_group per_node_hstate_attr_group = {
9a305230
LS
2656 .attrs = per_node_hstate_attrs,
2657};
2658
2659/*
10fbcf4c 2660 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2661 * Returns node id via non-NULL nidp.
2662 */
2663static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2664{
2665 int nid;
2666
2667 for (nid = 0; nid < nr_node_ids; nid++) {
2668 struct node_hstate *nhs = &node_hstates[nid];
2669 int i;
2670 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2671 if (nhs->hstate_kobjs[i] == kobj) {
2672 if (nidp)
2673 *nidp = nid;
2674 return &hstates[i];
2675 }
2676 }
2677
2678 BUG();
2679 return NULL;
2680}
2681
2682/*
10fbcf4c 2683 * Unregister hstate attributes from a single node device.
9a305230
LS
2684 * No-op if no hstate attributes attached.
2685 */
3cd8b44f 2686static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2687{
2688 struct hstate *h;
10fbcf4c 2689 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2690
2691 if (!nhs->hugepages_kobj)
9b5e5d0f 2692 return; /* no hstate attributes */
9a305230 2693
972dc4de
AK
2694 for_each_hstate(h) {
2695 int idx = hstate_index(h);
2696 if (nhs->hstate_kobjs[idx]) {
2697 kobject_put(nhs->hstate_kobjs[idx]);
2698 nhs->hstate_kobjs[idx] = NULL;
9a305230 2699 }
972dc4de 2700 }
9a305230
LS
2701
2702 kobject_put(nhs->hugepages_kobj);
2703 nhs->hugepages_kobj = NULL;
2704}
2705
9a305230
LS
2706
2707/*
10fbcf4c 2708 * Register hstate attributes for a single node device.
9a305230
LS
2709 * No-op if attributes already registered.
2710 */
3cd8b44f 2711static void hugetlb_register_node(struct node *node)
9a305230
LS
2712{
2713 struct hstate *h;
10fbcf4c 2714 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2715 int err;
2716
2717 if (nhs->hugepages_kobj)
2718 return; /* already allocated */
2719
2720 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2721 &node->dev.kobj);
9a305230
LS
2722 if (!nhs->hugepages_kobj)
2723 return;
2724
2725 for_each_hstate(h) {
2726 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2727 nhs->hstate_kobjs,
2728 &per_node_hstate_attr_group);
2729 if (err) {
ffb22af5
AM
2730 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2731 h->name, node->dev.id);
9a305230
LS
2732 hugetlb_unregister_node(node);
2733 break;
2734 }
2735 }
2736}
2737
2738/*
9b5e5d0f 2739 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2740 * devices of nodes that have memory. All on-line nodes should have
2741 * registered their associated device by this time.
9a305230 2742 */
7d9ca000 2743static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2744{
2745 int nid;
2746
8cebfcd0 2747 for_each_node_state(nid, N_MEMORY) {
8732794b 2748 struct node *node = node_devices[nid];
10fbcf4c 2749 if (node->dev.id == nid)
9a305230
LS
2750 hugetlb_register_node(node);
2751 }
2752
2753 /*
10fbcf4c 2754 * Let the node device driver know we're here so it can
9a305230
LS
2755 * [un]register hstate attributes on node hotplug.
2756 */
2757 register_hugetlbfs_with_node(hugetlb_register_node,
2758 hugetlb_unregister_node);
2759}
2760#else /* !CONFIG_NUMA */
2761
2762static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2763{
2764 BUG();
2765 if (nidp)
2766 *nidp = -1;
2767 return NULL;
2768}
2769
9a305230
LS
2770static void hugetlb_register_all_nodes(void) { }
2771
2772#endif
2773
a3437870
NA
2774static int __init hugetlb_init(void)
2775{
8382d914
DB
2776 int i;
2777
457c1b27 2778 if (!hugepages_supported())
0ef89d25 2779 return 0;
a3437870 2780
e11bfbfc 2781 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2782 if (default_hstate_size != 0) {
2783 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2784 default_hstate_size, HPAGE_SIZE);
2785 }
2786
e11bfbfc
NP
2787 default_hstate_size = HPAGE_SIZE;
2788 if (!size_to_hstate(default_hstate_size))
2789 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2790 }
972dc4de 2791 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2792 if (default_hstate_max_huge_pages) {
2793 if (!default_hstate.max_huge_pages)
2794 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2795 }
a3437870
NA
2796
2797 hugetlb_init_hstates();
aa888a74 2798 gather_bootmem_prealloc();
a3437870
NA
2799 report_hugepages();
2800
2801 hugetlb_sysfs_init();
9a305230 2802 hugetlb_register_all_nodes();
7179e7bf 2803 hugetlb_cgroup_file_init();
9a305230 2804
8382d914
DB
2805#ifdef CONFIG_SMP
2806 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2807#else
2808 num_fault_mutexes = 1;
2809#endif
c672c7f2 2810 hugetlb_fault_mutex_table =
8382d914 2811 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2812 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2813
2814 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2815 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2816 return 0;
2817}
3e89e1c5 2818subsys_initcall(hugetlb_init);
a3437870
NA
2819
2820/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2821void __init hugetlb_bad_size(void)
2822{
2823 parsed_valid_hugepagesz = false;
2824}
2825
d00181b9 2826void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2827{
2828 struct hstate *h;
8faa8b07
AK
2829 unsigned long i;
2830
a3437870 2831 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2832 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2833 return;
2834 }
47d38344 2835 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2836 BUG_ON(order == 0);
47d38344 2837 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2838 h->order = order;
2839 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2840 h->nr_huge_pages = 0;
2841 h->free_huge_pages = 0;
2842 for (i = 0; i < MAX_NUMNODES; ++i)
2843 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2844 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2845 h->next_nid_to_alloc = first_memory_node;
2846 h->next_nid_to_free = first_memory_node;
a3437870
NA
2847 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2848 huge_page_size(h)/1024);
8faa8b07 2849
a3437870
NA
2850 parsed_hstate = h;
2851}
2852
e11bfbfc 2853static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2854{
2855 unsigned long *mhp;
8faa8b07 2856 static unsigned long *last_mhp;
a3437870 2857
9fee021d
VT
2858 if (!parsed_valid_hugepagesz) {
2859 pr_warn("hugepages = %s preceded by "
2860 "an unsupported hugepagesz, ignoring\n", s);
2861 parsed_valid_hugepagesz = true;
2862 return 1;
2863 }
a3437870 2864 /*
47d38344 2865 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2866 * so this hugepages= parameter goes to the "default hstate".
2867 */
9fee021d 2868 else if (!hugetlb_max_hstate)
a3437870
NA
2869 mhp = &default_hstate_max_huge_pages;
2870 else
2871 mhp = &parsed_hstate->max_huge_pages;
2872
8faa8b07 2873 if (mhp == last_mhp) {
598d8091 2874 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2875 return 1;
2876 }
2877
a3437870
NA
2878 if (sscanf(s, "%lu", mhp) <= 0)
2879 *mhp = 0;
2880
8faa8b07
AK
2881 /*
2882 * Global state is always initialized later in hugetlb_init.
2883 * But we need to allocate >= MAX_ORDER hstates here early to still
2884 * use the bootmem allocator.
2885 */
47d38344 2886 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2887 hugetlb_hstate_alloc_pages(parsed_hstate);
2888
2889 last_mhp = mhp;
2890
a3437870
NA
2891 return 1;
2892}
e11bfbfc
NP
2893__setup("hugepages=", hugetlb_nrpages_setup);
2894
2895static int __init hugetlb_default_setup(char *s)
2896{
2897 default_hstate_size = memparse(s, &s);
2898 return 1;
2899}
2900__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2901
8a213460
NA
2902static unsigned int cpuset_mems_nr(unsigned int *array)
2903{
2904 int node;
2905 unsigned int nr = 0;
2906
2907 for_each_node_mask(node, cpuset_current_mems_allowed)
2908 nr += array[node];
2909
2910 return nr;
2911}
2912
2913#ifdef CONFIG_SYSCTL
06808b08
LS
2914static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2915 struct ctl_table *table, int write,
2916 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2917{
e5ff2159 2918 struct hstate *h = &default_hstate;
238d3c13 2919 unsigned long tmp = h->max_huge_pages;
08d4a246 2920 int ret;
e5ff2159 2921
457c1b27 2922 if (!hugepages_supported())
86613628 2923 return -EOPNOTSUPP;
457c1b27 2924
e5ff2159
AK
2925 table->data = &tmp;
2926 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2927 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2928 if (ret)
2929 goto out;
e5ff2159 2930
238d3c13
DR
2931 if (write)
2932 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2933 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2934out:
2935 return ret;
1da177e4 2936}
396faf03 2937
06808b08
LS
2938int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2939 void __user *buffer, size_t *length, loff_t *ppos)
2940{
2941
2942 return hugetlb_sysctl_handler_common(false, table, write,
2943 buffer, length, ppos);
2944}
2945
2946#ifdef CONFIG_NUMA
2947int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2948 void __user *buffer, size_t *length, loff_t *ppos)
2949{
2950 return hugetlb_sysctl_handler_common(true, table, write,
2951 buffer, length, ppos);
2952}
2953#endif /* CONFIG_NUMA */
2954
a3d0c6aa 2955int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2956 void __user *buffer,
a3d0c6aa
NA
2957 size_t *length, loff_t *ppos)
2958{
a5516438 2959 struct hstate *h = &default_hstate;
e5ff2159 2960 unsigned long tmp;
08d4a246 2961 int ret;
e5ff2159 2962
457c1b27 2963 if (!hugepages_supported())
86613628 2964 return -EOPNOTSUPP;
457c1b27 2965
c033a93c 2966 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2967
bae7f4ae 2968 if (write && hstate_is_gigantic(h))
adbe8726
EM
2969 return -EINVAL;
2970
e5ff2159
AK
2971 table->data = &tmp;
2972 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2973 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2974 if (ret)
2975 goto out;
e5ff2159
AK
2976
2977 if (write) {
2978 spin_lock(&hugetlb_lock);
2979 h->nr_overcommit_huge_pages = tmp;
2980 spin_unlock(&hugetlb_lock);
2981 }
08d4a246
MH
2982out:
2983 return ret;
a3d0c6aa
NA
2984}
2985
1da177e4
LT
2986#endif /* CONFIG_SYSCTL */
2987
e1759c21 2988void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2989{
a5516438 2990 struct hstate *h = &default_hstate;
457c1b27
NA
2991 if (!hugepages_supported())
2992 return;
e1759c21 2993 seq_printf(m,
4f98a2fe
RR
2994 "HugePages_Total: %5lu\n"
2995 "HugePages_Free: %5lu\n"
2996 "HugePages_Rsvd: %5lu\n"
2997 "HugePages_Surp: %5lu\n"
2998 "Hugepagesize: %8lu kB\n",
a5516438
AK
2999 h->nr_huge_pages,
3000 h->free_huge_pages,
3001 h->resv_huge_pages,
3002 h->surplus_huge_pages,
3003 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
3004}
3005
3006int hugetlb_report_node_meminfo(int nid, char *buf)
3007{
a5516438 3008 struct hstate *h = &default_hstate;
457c1b27
NA
3009 if (!hugepages_supported())
3010 return 0;
1da177e4
LT
3011 return sprintf(buf,
3012 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
3013 "Node %d HugePages_Free: %5u\n"
3014 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
3015 nid, h->nr_huge_pages_node[nid],
3016 nid, h->free_huge_pages_node[nid],
3017 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3018}
3019
949f7ec5
DR
3020void hugetlb_show_meminfo(void)
3021{
3022 struct hstate *h;
3023 int nid;
3024
457c1b27
NA
3025 if (!hugepages_supported())
3026 return;
3027
949f7ec5
DR
3028 for_each_node_state(nid, N_MEMORY)
3029 for_each_hstate(h)
3030 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3031 nid,
3032 h->nr_huge_pages_node[nid],
3033 h->free_huge_pages_node[nid],
3034 h->surplus_huge_pages_node[nid],
3035 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3036}
3037
5d317b2b
NH
3038void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3039{
3040 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3041 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3042}
3043
1da177e4
LT
3044/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3045unsigned long hugetlb_total_pages(void)
3046{
d0028588
WL
3047 struct hstate *h;
3048 unsigned long nr_total_pages = 0;
3049
3050 for_each_hstate(h)
3051 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3052 return nr_total_pages;
1da177e4 3053}
1da177e4 3054
a5516438 3055static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3056{
3057 int ret = -ENOMEM;
3058
3059 spin_lock(&hugetlb_lock);
3060 /*
3061 * When cpuset is configured, it breaks the strict hugetlb page
3062 * reservation as the accounting is done on a global variable. Such
3063 * reservation is completely rubbish in the presence of cpuset because
3064 * the reservation is not checked against page availability for the
3065 * current cpuset. Application can still potentially OOM'ed by kernel
3066 * with lack of free htlb page in cpuset that the task is in.
3067 * Attempt to enforce strict accounting with cpuset is almost
3068 * impossible (or too ugly) because cpuset is too fluid that
3069 * task or memory node can be dynamically moved between cpusets.
3070 *
3071 * The change of semantics for shared hugetlb mapping with cpuset is
3072 * undesirable. However, in order to preserve some of the semantics,
3073 * we fall back to check against current free page availability as
3074 * a best attempt and hopefully to minimize the impact of changing
3075 * semantics that cpuset has.
3076 */
3077 if (delta > 0) {
a5516438 3078 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3079 goto out;
3080
a5516438
AK
3081 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3082 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3083 goto out;
3084 }
3085 }
3086
3087 ret = 0;
3088 if (delta < 0)
a5516438 3089 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3090
3091out:
3092 spin_unlock(&hugetlb_lock);
3093 return ret;
3094}
3095
84afd99b
AW
3096static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3097{
f522c3ac 3098 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3099
3100 /*
3101 * This new VMA should share its siblings reservation map if present.
3102 * The VMA will only ever have a valid reservation map pointer where
3103 * it is being copied for another still existing VMA. As that VMA
25985edc 3104 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3105 * after this open call completes. It is therefore safe to take a
3106 * new reference here without additional locking.
3107 */
4e35f483 3108 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3109 kref_get(&resv->refs);
84afd99b
AW
3110}
3111
a1e78772
MG
3112static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3113{
a5516438 3114 struct hstate *h = hstate_vma(vma);
f522c3ac 3115 struct resv_map *resv = vma_resv_map(vma);
90481622 3116 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3117 unsigned long reserve, start, end;
1c5ecae3 3118 long gbl_reserve;
84afd99b 3119
4e35f483
JK
3120 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3121 return;
84afd99b 3122
4e35f483
JK
3123 start = vma_hugecache_offset(h, vma, vma->vm_start);
3124 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3125
4e35f483 3126 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3127
4e35f483
JK
3128 kref_put(&resv->refs, resv_map_release);
3129
3130 if (reserve) {
1c5ecae3
MK
3131 /*
3132 * Decrement reserve counts. The global reserve count may be
3133 * adjusted if the subpool has a minimum size.
3134 */
3135 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3136 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3137 }
a1e78772
MG
3138}
3139
31383c68
DW
3140static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3141{
3142 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3143 return -EINVAL;
3144 return 0;
3145}
3146
1da177e4
LT
3147/*
3148 * We cannot handle pagefaults against hugetlb pages at all. They cause
3149 * handle_mm_fault() to try to instantiate regular-sized pages in the
3150 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3151 * this far.
3152 */
11bac800 3153static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3154{
3155 BUG();
d0217ac0 3156 return 0;
1da177e4
LT
3157}
3158
f0f37e2f 3159const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3160 .fault = hugetlb_vm_op_fault,
84afd99b 3161 .open = hugetlb_vm_op_open,
a1e78772 3162 .close = hugetlb_vm_op_close,
31383c68 3163 .split = hugetlb_vm_op_split,
1da177e4
LT
3164};
3165
1e8f889b
DG
3166static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3167 int writable)
63551ae0
DG
3168{
3169 pte_t entry;
3170
1e8f889b 3171 if (writable) {
106c992a
GS
3172 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3173 vma->vm_page_prot)));
63551ae0 3174 } else {
106c992a
GS
3175 entry = huge_pte_wrprotect(mk_huge_pte(page,
3176 vma->vm_page_prot));
63551ae0
DG
3177 }
3178 entry = pte_mkyoung(entry);
3179 entry = pte_mkhuge(entry);
d9ed9faa 3180 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3181
3182 return entry;
3183}
3184
1e8f889b
DG
3185static void set_huge_ptep_writable(struct vm_area_struct *vma,
3186 unsigned long address, pte_t *ptep)
3187{
3188 pte_t entry;
3189
106c992a 3190 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3191 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3192 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3193}
3194
d5ed7444 3195bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3196{
3197 swp_entry_t swp;
3198
3199 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3200 return false;
4a705fef
NH
3201 swp = pte_to_swp_entry(pte);
3202 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3203 return true;
4a705fef 3204 else
d5ed7444 3205 return false;
4a705fef
NH
3206}
3207
3208static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3209{
3210 swp_entry_t swp;
3211
3212 if (huge_pte_none(pte) || pte_present(pte))
3213 return 0;
3214 swp = pte_to_swp_entry(pte);
3215 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3216 return 1;
3217 else
3218 return 0;
3219}
1e8f889b 3220
63551ae0
DG
3221int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3222 struct vm_area_struct *vma)
3223{
f5d1b5bc 3224 pte_t *src_pte, *dst_pte, entry, dst_entry;
63551ae0 3225 struct page *ptepage;
1c59827d 3226 unsigned long addr;
1e8f889b 3227 int cow;
a5516438
AK
3228 struct hstate *h = hstate_vma(vma);
3229 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3230 unsigned long mmun_start; /* For mmu_notifiers */
3231 unsigned long mmun_end; /* For mmu_notifiers */
3232 int ret = 0;
1e8f889b
DG
3233
3234 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3235
e8569dd2
AS
3236 mmun_start = vma->vm_start;
3237 mmun_end = vma->vm_end;
3238 if (cow)
3239 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3240
a5516438 3241 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3242 spinlock_t *src_ptl, *dst_ptl;
7868a208 3243 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3244 if (!src_pte)
3245 continue;
a5516438 3246 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3247 if (!dst_pte) {
3248 ret = -ENOMEM;
3249 break;
3250 }
c5c99429 3251
f5d1b5bc
MK
3252 /*
3253 * If the pagetables are shared don't copy or take references.
3254 * dst_pte == src_pte is the common case of src/dest sharing.
3255 *
3256 * However, src could have 'unshared' and dst shares with
3257 * another vma. If dst_pte !none, this implies sharing.
3258 * Check here before taking page table lock, and once again
3259 * after taking the lock below.
3260 */
3261 dst_entry = huge_ptep_get(dst_pte);
3262 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
c5c99429
LW
3263 continue;
3264
cb900f41
KS
3265 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3266 src_ptl = huge_pte_lockptr(h, src, src_pte);
3267 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef 3268 entry = huge_ptep_get(src_pte);
f5d1b5bc
MK
3269 dst_entry = huge_ptep_get(dst_pte);
3270 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3271 /*
3272 * Skip if src entry none. Also, skip in the
3273 * unlikely case dst entry !none as this implies
3274 * sharing with another vma.
3275 */
4a705fef
NH
3276 ;
3277 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3278 is_hugetlb_entry_hwpoisoned(entry))) {
3279 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3280
3281 if (is_write_migration_entry(swp_entry) && cow) {
3282 /*
3283 * COW mappings require pages in both
3284 * parent and child to be set to read.
3285 */
3286 make_migration_entry_read(&swp_entry);
3287 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3288 set_huge_swap_pte_at(src, addr, src_pte,
3289 entry, sz);
4a705fef 3290 }
e5251fd4 3291 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3292 } else {
34ee645e 3293 if (cow) {
0f10851e
JG
3294 /*
3295 * No need to notify as we are downgrading page
3296 * table protection not changing it to point
3297 * to a new page.
3298 *
3299 * See Documentation/vm/mmu_notifier.txt
3300 */
7f2e9525 3301 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e 3302 }
0253d634 3303 entry = huge_ptep_get(src_pte);
1c59827d
HD
3304 ptepage = pte_page(entry);
3305 get_page(ptepage);
53f9263b 3306 page_dup_rmap(ptepage, true);
1c59827d 3307 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3308 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3309 }
cb900f41
KS
3310 spin_unlock(src_ptl);
3311 spin_unlock(dst_ptl);
63551ae0 3312 }
63551ae0 3313
e8569dd2
AS
3314 if (cow)
3315 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3316
3317 return ret;
63551ae0
DG
3318}
3319
24669e58
AK
3320void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3321 unsigned long start, unsigned long end,
3322 struct page *ref_page)
63551ae0
DG
3323{
3324 struct mm_struct *mm = vma->vm_mm;
3325 unsigned long address;
c7546f8f 3326 pte_t *ptep;
63551ae0 3327 pte_t pte;
cb900f41 3328 spinlock_t *ptl;
63551ae0 3329 struct page *page;
a5516438
AK
3330 struct hstate *h = hstate_vma(vma);
3331 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3332 const unsigned long mmun_start = start; /* For mmu_notifiers */
3333 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3334
63551ae0 3335 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3336 BUG_ON(start & ~huge_page_mask(h));
3337 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3338
07e32661
AK
3339 /*
3340 * This is a hugetlb vma, all the pte entries should point
3341 * to huge page.
3342 */
3343 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3344 tlb_start_vma(tlb, vma);
2ec74c3e 3345 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3346 address = start;
569f48b8 3347 for (; address < end; address += sz) {
7868a208 3348 ptep = huge_pte_offset(mm, address, sz);
4c887265 3349 if (!ptep)
c7546f8f
DG
3350 continue;
3351
cb900f41 3352 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3353 if (huge_pmd_unshare(mm, &address, ptep)) {
3354 spin_unlock(ptl);
3355 continue;
3356 }
39dde65c 3357
6629326b 3358 pte = huge_ptep_get(ptep);
31d49da5
AK
3359 if (huge_pte_none(pte)) {
3360 spin_unlock(ptl);
3361 continue;
3362 }
6629326b
HD
3363
3364 /*
9fbc1f63
NH
3365 * Migrating hugepage or HWPoisoned hugepage is already
3366 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3367 */
9fbc1f63 3368 if (unlikely(!pte_present(pte))) {
9386fac3 3369 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3370 spin_unlock(ptl);
3371 continue;
8c4894c6 3372 }
6629326b
HD
3373
3374 page = pte_page(pte);
04f2cbe3
MG
3375 /*
3376 * If a reference page is supplied, it is because a specific
3377 * page is being unmapped, not a range. Ensure the page we
3378 * are about to unmap is the actual page of interest.
3379 */
3380 if (ref_page) {
31d49da5
AK
3381 if (page != ref_page) {
3382 spin_unlock(ptl);
3383 continue;
3384 }
04f2cbe3
MG
3385 /*
3386 * Mark the VMA as having unmapped its page so that
3387 * future faults in this VMA will fail rather than
3388 * looking like data was lost
3389 */
3390 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3391 }
3392
c7546f8f 3393 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3394 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3395 if (huge_pte_dirty(pte))
6649a386 3396 set_page_dirty(page);
9e81130b 3397
5d317b2b 3398 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3399 page_remove_rmap(page, true);
31d49da5 3400
cb900f41 3401 spin_unlock(ptl);
e77b0852 3402 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3403 /*
3404 * Bail out after unmapping reference page if supplied
3405 */
3406 if (ref_page)
3407 break;
fe1668ae 3408 }
2ec74c3e 3409 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3410 tlb_end_vma(tlb, vma);
1da177e4 3411}
63551ae0 3412
d833352a
MG
3413void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3414 struct vm_area_struct *vma, unsigned long start,
3415 unsigned long end, struct page *ref_page)
3416{
3417 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3418
3419 /*
3420 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3421 * test will fail on a vma being torn down, and not grab a page table
3422 * on its way out. We're lucky that the flag has such an appropriate
3423 * name, and can in fact be safely cleared here. We could clear it
3424 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3425 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3426 * because in the context this is called, the VMA is about to be
c8c06efa 3427 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3428 */
3429 vma->vm_flags &= ~VM_MAYSHARE;
3430}
3431
502717f4 3432void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3433 unsigned long end, struct page *ref_page)
502717f4 3434{
24669e58
AK
3435 struct mm_struct *mm;
3436 struct mmu_gather tlb;
3437
3438 mm = vma->vm_mm;
3439
2b047252 3440 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3441 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3442 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3443}
3444
04f2cbe3
MG
3445/*
3446 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3447 * mappping it owns the reserve page for. The intention is to unmap the page
3448 * from other VMAs and let the children be SIGKILLed if they are faulting the
3449 * same region.
3450 */
2f4612af
DB
3451static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3452 struct page *page, unsigned long address)
04f2cbe3 3453{
7526674d 3454 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3455 struct vm_area_struct *iter_vma;
3456 struct address_space *mapping;
04f2cbe3
MG
3457 pgoff_t pgoff;
3458
3459 /*
3460 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3461 * from page cache lookup which is in HPAGE_SIZE units.
3462 */
7526674d 3463 address = address & huge_page_mask(h);
36e4f20a
MH
3464 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3465 vma->vm_pgoff;
93c76a3d 3466 mapping = vma->vm_file->f_mapping;
04f2cbe3 3467
4eb2b1dc
MG
3468 /*
3469 * Take the mapping lock for the duration of the table walk. As
3470 * this mapping should be shared between all the VMAs,
3471 * __unmap_hugepage_range() is called as the lock is already held
3472 */
83cde9e8 3473 i_mmap_lock_write(mapping);
6b2dbba8 3474 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3475 /* Do not unmap the current VMA */
3476 if (iter_vma == vma)
3477 continue;
3478
2f84a899
MG
3479 /*
3480 * Shared VMAs have their own reserves and do not affect
3481 * MAP_PRIVATE accounting but it is possible that a shared
3482 * VMA is using the same page so check and skip such VMAs.
3483 */
3484 if (iter_vma->vm_flags & VM_MAYSHARE)
3485 continue;
3486
04f2cbe3
MG
3487 /*
3488 * Unmap the page from other VMAs without their own reserves.
3489 * They get marked to be SIGKILLed if they fault in these
3490 * areas. This is because a future no-page fault on this VMA
3491 * could insert a zeroed page instead of the data existing
3492 * from the time of fork. This would look like data corruption
3493 */
3494 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3495 unmap_hugepage_range(iter_vma, address,
3496 address + huge_page_size(h), page);
04f2cbe3 3497 }
83cde9e8 3498 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3499}
3500
0fe6e20b
NH
3501/*
3502 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3503 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3504 * cannot race with other handlers or page migration.
3505 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3506 */
1e8f889b 3507static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3508 unsigned long address, pte_t *ptep,
3509 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3510{
3999f52e 3511 pte_t pte;
a5516438 3512 struct hstate *h = hstate_vma(vma);
1e8f889b 3513 struct page *old_page, *new_page;
ad4404a2 3514 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3515 unsigned long mmun_start; /* For mmu_notifiers */
3516 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3517
3999f52e 3518 pte = huge_ptep_get(ptep);
1e8f889b
DG
3519 old_page = pte_page(pte);
3520
04f2cbe3 3521retry_avoidcopy:
1e8f889b
DG
3522 /* If no-one else is actually using this page, avoid the copy
3523 * and just make the page writable */
37a2140d 3524 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3525 page_move_anon_rmap(old_page, vma);
1e8f889b 3526 set_huge_ptep_writable(vma, address, ptep);
83c54070 3527 return 0;
1e8f889b
DG
3528 }
3529
04f2cbe3
MG
3530 /*
3531 * If the process that created a MAP_PRIVATE mapping is about to
3532 * perform a COW due to a shared page count, attempt to satisfy
3533 * the allocation without using the existing reserves. The pagecache
3534 * page is used to determine if the reserve at this address was
3535 * consumed or not. If reserves were used, a partial faulted mapping
3536 * at the time of fork() could consume its reserves on COW instead
3537 * of the full address range.
3538 */
5944d011 3539 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3540 old_page != pagecache_page)
3541 outside_reserve = 1;
3542
09cbfeaf 3543 get_page(old_page);
b76c8cfb 3544
ad4404a2
DB
3545 /*
3546 * Drop page table lock as buddy allocator may be called. It will
3547 * be acquired again before returning to the caller, as expected.
3548 */
cb900f41 3549 spin_unlock(ptl);
04f2cbe3 3550 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3551
2fc39cec 3552 if (IS_ERR(new_page)) {
04f2cbe3
MG
3553 /*
3554 * If a process owning a MAP_PRIVATE mapping fails to COW,
3555 * it is due to references held by a child and an insufficient
3556 * huge page pool. To guarantee the original mappers
3557 * reliability, unmap the page from child processes. The child
3558 * may get SIGKILLed if it later faults.
3559 */
3560 if (outside_reserve) {
09cbfeaf 3561 put_page(old_page);
04f2cbe3 3562 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3563 unmap_ref_private(mm, vma, old_page, address);
3564 BUG_ON(huge_pte_none(pte));
3565 spin_lock(ptl);
7868a208
PA
3566 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3567 huge_page_size(h));
2f4612af
DB
3568 if (likely(ptep &&
3569 pte_same(huge_ptep_get(ptep), pte)))
3570 goto retry_avoidcopy;
3571 /*
3572 * race occurs while re-acquiring page table
3573 * lock, and our job is done.
3574 */
3575 return 0;
04f2cbe3
MG
3576 }
3577
ad4404a2
DB
3578 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3579 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3580 goto out_release_old;
1e8f889b
DG
3581 }
3582
0fe6e20b
NH
3583 /*
3584 * When the original hugepage is shared one, it does not have
3585 * anon_vma prepared.
3586 */
44e2aa93 3587 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3588 ret = VM_FAULT_OOM;
3589 goto out_release_all;
44e2aa93 3590 }
0fe6e20b 3591
47ad8475
AA
3592 copy_user_huge_page(new_page, old_page, address, vma,
3593 pages_per_huge_page(h));
0ed361de 3594 __SetPageUptodate(new_page);
1e8f889b 3595
2ec74c3e
SG
3596 mmun_start = address & huge_page_mask(h);
3597 mmun_end = mmun_start + huge_page_size(h);
3598 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3599
b76c8cfb 3600 /*
cb900f41 3601 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3602 * before the page tables are altered
3603 */
cb900f41 3604 spin_lock(ptl);
7868a208
PA
3605 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3606 huge_page_size(h));
a9af0c5d 3607 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3608 ClearPagePrivate(new_page);
3609
1e8f889b 3610 /* Break COW */
8fe627ec 3611 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3612 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3613 set_huge_pte_at(mm, address, ptep,
3614 make_huge_pte(vma, new_page, 1));
d281ee61 3615 page_remove_rmap(old_page, true);
cd67f0d2 3616 hugepage_add_new_anon_rmap(new_page, vma, address);
dfc12c73 3617 set_page_huge_active(new_page);
1e8f889b
DG
3618 /* Make the old page be freed below */
3619 new_page = old_page;
3620 }
cb900f41 3621 spin_unlock(ptl);
2ec74c3e 3622 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3623out_release_all:
96b96a96 3624 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3625 put_page(new_page);
ad4404a2 3626out_release_old:
09cbfeaf 3627 put_page(old_page);
8312034f 3628
ad4404a2
DB
3629 spin_lock(ptl); /* Caller expects lock to be held */
3630 return ret;
1e8f889b
DG
3631}
3632
04f2cbe3 3633/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3634static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3635 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3636{
3637 struct address_space *mapping;
e7c4b0bf 3638 pgoff_t idx;
04f2cbe3
MG
3639
3640 mapping = vma->vm_file->f_mapping;
a5516438 3641 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3642
3643 return find_lock_page(mapping, idx);
3644}
3645
3ae77f43
HD
3646/*
3647 * Return whether there is a pagecache page to back given address within VMA.
3648 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3649 */
3650static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3651 struct vm_area_struct *vma, unsigned long address)
3652{
3653 struct address_space *mapping;
3654 pgoff_t idx;
3655 struct page *page;
3656
3657 mapping = vma->vm_file->f_mapping;
3658 idx = vma_hugecache_offset(h, vma, address);
3659
3660 page = find_get_page(mapping, idx);
3661 if (page)
3662 put_page(page);
3663 return page != NULL;
3664}
3665
ab76ad54
MK
3666int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3667 pgoff_t idx)
3668{
3669 struct inode *inode = mapping->host;
3670 struct hstate *h = hstate_inode(inode);
3671 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3672
3673 if (err)
3674 return err;
3675 ClearPagePrivate(page);
3676
1aee1ea7
MK
3677 /*
3678 * set page dirty so that it will not be removed from cache/file
3679 * by non-hugetlbfs specific code paths.
3680 */
3681 set_page_dirty(page);
3682
ab76ad54
MK
3683 spin_lock(&inode->i_lock);
3684 inode->i_blocks += blocks_per_huge_page(h);
3685 spin_unlock(&inode->i_lock);
3686 return 0;
3687}
3688
a1ed3dda 3689static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3690 struct address_space *mapping, pgoff_t idx,
3691 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3692{
a5516438 3693 struct hstate *h = hstate_vma(vma);
ac9b9c66 3694 int ret = VM_FAULT_SIGBUS;
409eb8c2 3695 int anon_rmap = 0;
4c887265 3696 unsigned long size;
4c887265 3697 struct page *page;
1e8f889b 3698 pte_t new_pte;
cb900f41 3699 spinlock_t *ptl;
dfc12c73 3700 bool new_page = false;
4c887265 3701
04f2cbe3
MG
3702 /*
3703 * Currently, we are forced to kill the process in the event the
3704 * original mapper has unmapped pages from the child due to a failed
25985edc 3705 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3706 */
3707 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3708 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3709 current->pid);
04f2cbe3
MG
3710 return ret;
3711 }
3712
4c887265
AL
3713 /*
3714 * Use page lock to guard against racing truncation
3715 * before we get page_table_lock.
3716 */
6bda666a
CL
3717retry:
3718 page = find_lock_page(mapping, idx);
3719 if (!page) {
a5516438 3720 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3721 if (idx >= size)
3722 goto out;
1a1aad8a
MK
3723
3724 /*
3725 * Check for page in userfault range
3726 */
3727 if (userfaultfd_missing(vma)) {
3728 u32 hash;
3729 struct vm_fault vmf = {
3730 .vma = vma,
3731 .address = address,
3732 .flags = flags,
3733 /*
3734 * Hard to debug if it ends up being
3735 * used by a callee that assumes
3736 * something about the other
3737 * uninitialized fields... same as in
3738 * memory.c
3739 */
3740 };
3741
3742 /*
3743 * hugetlb_fault_mutex must be dropped before
3744 * handling userfault. Reacquire after handling
3745 * fault to make calling code simpler.
3746 */
0e8e2dc8 3747 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
1a1aad8a
MK
3748 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3749 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3750 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3751 goto out;
3752 }
3753
04f2cbe3 3754 page = alloc_huge_page(vma, address, 0);
2fc39cec 3755 if (IS_ERR(page)) {
76dcee75
AK
3756 ret = PTR_ERR(page);
3757 if (ret == -ENOMEM)
3758 ret = VM_FAULT_OOM;
3759 else
3760 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3761 goto out;
3762 }
47ad8475 3763 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3764 __SetPageUptodate(page);
dfc12c73 3765 new_page = true;
ac9b9c66 3766
f83a275d 3767 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3768 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3769 if (err) {
3770 put_page(page);
6bda666a
CL
3771 if (err == -EEXIST)
3772 goto retry;
3773 goto out;
3774 }
23be7468 3775 } else {
6bda666a 3776 lock_page(page);
0fe6e20b
NH
3777 if (unlikely(anon_vma_prepare(vma))) {
3778 ret = VM_FAULT_OOM;
3779 goto backout_unlocked;
3780 }
409eb8c2 3781 anon_rmap = 1;
23be7468 3782 }
0fe6e20b 3783 } else {
998b4382
NH
3784 /*
3785 * If memory error occurs between mmap() and fault, some process
3786 * don't have hwpoisoned swap entry for errored virtual address.
3787 * So we need to block hugepage fault by PG_hwpoison bit check.
3788 */
3789 if (unlikely(PageHWPoison(page))) {
32f84528 3790 ret = VM_FAULT_HWPOISON |
972dc4de 3791 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3792 goto backout_unlocked;
3793 }
6bda666a 3794 }
1e8f889b 3795
57303d80
AW
3796 /*
3797 * If we are going to COW a private mapping later, we examine the
3798 * pending reservations for this page now. This will ensure that
3799 * any allocations necessary to record that reservation occur outside
3800 * the spinlock.
3801 */
5e911373 3802 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3803 if (vma_needs_reservation(h, vma, address) < 0) {
3804 ret = VM_FAULT_OOM;
3805 goto backout_unlocked;
3806 }
5e911373 3807 /* Just decrements count, does not deallocate */
feba16e2 3808 vma_end_reservation(h, vma, address);
5e911373 3809 }
57303d80 3810
8bea8052 3811 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3812 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3813 if (idx >= size)
3814 goto backout;
3815
83c54070 3816 ret = 0;
7f2e9525 3817 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3818 goto backout;
3819
07443a85
JK
3820 if (anon_rmap) {
3821 ClearPagePrivate(page);
409eb8c2 3822 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3823 } else
53f9263b 3824 page_dup_rmap(page, true);
1e8f889b
DG
3825 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3826 && (vma->vm_flags & VM_SHARED)));
3827 set_huge_pte_at(mm, address, ptep, new_pte);
3828
5d317b2b 3829 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3830 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3831 /* Optimization, do the COW without a second fault */
3999f52e 3832 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3833 }
3834
cb900f41 3835 spin_unlock(ptl);
dfc12c73
MK
3836
3837 /*
3838 * Only make newly allocated pages active. Existing pages found
3839 * in the pagecache could be !page_huge_active() if they have been
3840 * isolated for migration.
3841 */
3842 if (new_page)
3843 set_page_huge_active(page);
3844
4c887265
AL
3845 unlock_page(page);
3846out:
ac9b9c66 3847 return ret;
4c887265
AL
3848
3849backout:
cb900f41 3850 spin_unlock(ptl);
2b26736c 3851backout_unlocked:
4c887265 3852 unlock_page(page);
96b96a96 3853 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3854 put_page(page);
3855 goto out;
ac9b9c66
HD
3856}
3857
8382d914 3858#ifdef CONFIG_SMP
0e8e2dc8 3859u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3860 pgoff_t idx, unsigned long address)
3861{
3862 unsigned long key[2];
3863 u32 hash;
3864
0e8e2dc8
MK
3865 key[0] = (unsigned long) mapping;
3866 key[1] = idx;
8382d914
DB
3867
3868 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3869
3870 return hash & (num_fault_mutexes - 1);
3871}
3872#else
3873/*
3874 * For uniprocesor systems we always use a single mutex, so just
3875 * return 0 and avoid the hashing overhead.
3876 */
0e8e2dc8 3877u32 hugetlb_fault_mutex_hash(struct hstate *h, struct address_space *mapping,
8382d914
DB
3878 pgoff_t idx, unsigned long address)
3879{
3880 return 0;
3881}
3882#endif
3883
86e5216f 3884int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3885 unsigned long address, unsigned int flags)
86e5216f 3886{
8382d914 3887 pte_t *ptep, entry;
cb900f41 3888 spinlock_t *ptl;
1e8f889b 3889 int ret;
8382d914
DB
3890 u32 hash;
3891 pgoff_t idx;
0fe6e20b 3892 struct page *page = NULL;
57303d80 3893 struct page *pagecache_page = NULL;
a5516438 3894 struct hstate *h = hstate_vma(vma);
8382d914 3895 struct address_space *mapping;
0f792cf9 3896 int need_wait_lock = 0;
86e5216f 3897
1e16a539
KH
3898 address &= huge_page_mask(h);
3899
7868a208 3900 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3901 if (ptep) {
3902 entry = huge_ptep_get(ptep);
290408d4 3903 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3904 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3905 return 0;
3906 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3907 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3908 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3909 } else {
3910 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3911 if (!ptep)
3912 return VM_FAULT_OOM;
fd6a03ed
NH
3913 }
3914
8382d914
DB
3915 mapping = vma->vm_file->f_mapping;
3916 idx = vma_hugecache_offset(h, vma, address);
3917
3935baa9
DG
3918 /*
3919 * Serialize hugepage allocation and instantiation, so that we don't
3920 * get spurious allocation failures if two CPUs race to instantiate
3921 * the same page in the page cache.
3922 */
0e8e2dc8 3923 hash = hugetlb_fault_mutex_hash(h, mapping, idx, address);
c672c7f2 3924 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3925
7f2e9525
GS
3926 entry = huge_ptep_get(ptep);
3927 if (huge_pte_none(entry)) {
8382d914 3928 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3929 goto out_mutex;
3935baa9 3930 }
86e5216f 3931
83c54070 3932 ret = 0;
1e8f889b 3933
0f792cf9
NH
3934 /*
3935 * entry could be a migration/hwpoison entry at this point, so this
3936 * check prevents the kernel from going below assuming that we have
3937 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3938 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3939 * handle it.
3940 */
3941 if (!pte_present(entry))
3942 goto out_mutex;
3943
57303d80
AW
3944 /*
3945 * If we are going to COW the mapping later, we examine the pending
3946 * reservations for this page now. This will ensure that any
3947 * allocations necessary to record that reservation occur outside the
3948 * spinlock. For private mappings, we also lookup the pagecache
3949 * page now as it is used to determine if a reservation has been
3950 * consumed.
3951 */
106c992a 3952 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3953 if (vma_needs_reservation(h, vma, address) < 0) {
3954 ret = VM_FAULT_OOM;
b4d1d99f 3955 goto out_mutex;
2b26736c 3956 }
5e911373 3957 /* Just decrements count, does not deallocate */
feba16e2 3958 vma_end_reservation(h, vma, address);
57303d80 3959
f83a275d 3960 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3961 pagecache_page = hugetlbfs_pagecache_page(h,
3962 vma, address);
3963 }
3964
0f792cf9
NH
3965 ptl = huge_pte_lock(h, mm, ptep);
3966
3967 /* Check for a racing update before calling hugetlb_cow */
3968 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3969 goto out_ptl;
3970
56c9cfb1
NH
3971 /*
3972 * hugetlb_cow() requires page locks of pte_page(entry) and
3973 * pagecache_page, so here we need take the former one
3974 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3975 */
3976 page = pte_page(entry);
3977 if (page != pagecache_page)
0f792cf9
NH
3978 if (!trylock_page(page)) {
3979 need_wait_lock = 1;
3980 goto out_ptl;
3981 }
b4d1d99f 3982
0f792cf9 3983 get_page(page);
b4d1d99f 3984
788c7df4 3985 if (flags & FAULT_FLAG_WRITE) {
106c992a 3986 if (!huge_pte_write(entry)) {
3999f52e
AK
3987 ret = hugetlb_cow(mm, vma, address, ptep,
3988 pagecache_page, ptl);
0f792cf9 3989 goto out_put_page;
b4d1d99f 3990 }
106c992a 3991 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3992 }
3993 entry = pte_mkyoung(entry);
788c7df4
HD
3994 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3995 flags & FAULT_FLAG_WRITE))
4b3073e1 3996 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3997out_put_page:
3998 if (page != pagecache_page)
3999 unlock_page(page);
4000 put_page(page);
cb900f41
KS
4001out_ptl:
4002 spin_unlock(ptl);
57303d80
AW
4003
4004 if (pagecache_page) {
4005 unlock_page(pagecache_page);
4006 put_page(pagecache_page);
4007 }
b4d1d99f 4008out_mutex:
c672c7f2 4009 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
4010 /*
4011 * Generally it's safe to hold refcount during waiting page lock. But
4012 * here we just wait to defer the next page fault to avoid busy loop and
4013 * the page is not used after unlocked before returning from the current
4014 * page fault. So we are safe from accessing freed page, even if we wait
4015 * here without taking refcount.
4016 */
4017 if (need_wait_lock)
4018 wait_on_page_locked(page);
1e8f889b 4019 return ret;
86e5216f
AL
4020}
4021
8fb5debc
MK
4022/*
4023 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4024 * modifications for huge pages.
4025 */
4026int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4027 pte_t *dst_pte,
4028 struct vm_area_struct *dst_vma,
4029 unsigned long dst_addr,
4030 unsigned long src_addr,
4031 struct page **pagep)
4032{
1e392147
AA
4033 struct address_space *mapping;
4034 pgoff_t idx;
4035 unsigned long size;
1c9e8def 4036 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
4037 struct hstate *h = hstate_vma(dst_vma);
4038 pte_t _dst_pte;
4039 spinlock_t *ptl;
4040 int ret;
4041 struct page *page;
4042
4043 if (!*pagep) {
4044 ret = -ENOMEM;
4045 page = alloc_huge_page(dst_vma, dst_addr, 0);
4046 if (IS_ERR(page))
4047 goto out;
4048
4049 ret = copy_huge_page_from_user(page,
4050 (const void __user *) src_addr,
810a56b9 4051 pages_per_huge_page(h), false);
8fb5debc
MK
4052
4053 /* fallback to copy_from_user outside mmap_sem */
4054 if (unlikely(ret)) {
c9ddac33 4055 ret = -ENOENT;
8fb5debc
MK
4056 *pagep = page;
4057 /* don't free the page */
4058 goto out;
4059 }
4060 } else {
4061 page = *pagep;
4062 *pagep = NULL;
4063 }
4064
4065 /*
4066 * The memory barrier inside __SetPageUptodate makes sure that
4067 * preceding stores to the page contents become visible before
4068 * the set_pte_at() write.
4069 */
4070 __SetPageUptodate(page);
8fb5debc 4071
1e392147
AA
4072 mapping = dst_vma->vm_file->f_mapping;
4073 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4074
1c9e8def
MK
4075 /*
4076 * If shared, add to page cache
4077 */
4078 if (vm_shared) {
1e392147
AA
4079 size = i_size_read(mapping->host) >> huge_page_shift(h);
4080 ret = -EFAULT;
4081 if (idx >= size)
4082 goto out_release_nounlock;
1c9e8def 4083
1e392147
AA
4084 /*
4085 * Serialization between remove_inode_hugepages() and
4086 * huge_add_to_page_cache() below happens through the
4087 * hugetlb_fault_mutex_table that here must be hold by
4088 * the caller.
4089 */
1c9e8def
MK
4090 ret = huge_add_to_page_cache(page, mapping, idx);
4091 if (ret)
4092 goto out_release_nounlock;
4093 }
4094
8fb5debc
MK
4095 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4096 spin_lock(ptl);
4097
1e392147
AA
4098 /*
4099 * Recheck the i_size after holding PT lock to make sure not
4100 * to leave any page mapped (as page_mapped()) beyond the end
4101 * of the i_size (remove_inode_hugepages() is strict about
4102 * enforcing that). If we bail out here, we'll also leave a
4103 * page in the radix tree in the vm_shared case beyond the end
4104 * of the i_size, but remove_inode_hugepages() will take care
4105 * of it as soon as we drop the hugetlb_fault_mutex_table.
4106 */
4107 size = i_size_read(mapping->host) >> huge_page_shift(h);
4108 ret = -EFAULT;
4109 if (idx >= size)
4110 goto out_release_unlock;
4111
8fb5debc
MK
4112 ret = -EEXIST;
4113 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4114 goto out_release_unlock;
4115
1c9e8def
MK
4116 if (vm_shared) {
4117 page_dup_rmap(page, true);
4118 } else {
4119 ClearPagePrivate(page);
4120 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4121 }
8fb5debc
MK
4122
4123 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4124 if (dst_vma->vm_flags & VM_WRITE)
4125 _dst_pte = huge_pte_mkdirty(_dst_pte);
4126 _dst_pte = pte_mkyoung(_dst_pte);
4127
4128 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4129
4130 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4131 dst_vma->vm_flags & VM_WRITE);
4132 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4133
4134 /* No need to invalidate - it was non-present before */
4135 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4136
4137 spin_unlock(ptl);
dfc12c73 4138 set_page_huge_active(page);
1c9e8def
MK
4139 if (vm_shared)
4140 unlock_page(page);
8fb5debc
MK
4141 ret = 0;
4142out:
4143 return ret;
4144out_release_unlock:
4145 spin_unlock(ptl);
1c9e8def
MK
4146 if (vm_shared)
4147 unlock_page(page);
5af10dfd 4148out_release_nounlock:
8fb5debc
MK
4149 put_page(page);
4150 goto out;
4151}
4152
28a35716
ML
4153long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4154 struct page **pages, struct vm_area_struct **vmas,
4155 unsigned long *position, unsigned long *nr_pages,
87ffc118 4156 long i, unsigned int flags, int *nonblocking)
63551ae0 4157{
d5d4b0aa
KC
4158 unsigned long pfn_offset;
4159 unsigned long vaddr = *position;
28a35716 4160 unsigned long remainder = *nr_pages;
a5516438 4161 struct hstate *h = hstate_vma(vma);
2be7cfed 4162 int err = -EFAULT;
63551ae0 4163
63551ae0 4164 while (vaddr < vma->vm_end && remainder) {
4c887265 4165 pte_t *pte;
cb900f41 4166 spinlock_t *ptl = NULL;
2a15efc9 4167 int absent;
4c887265 4168 struct page *page;
63551ae0 4169
02057967
DR
4170 /*
4171 * If we have a pending SIGKILL, don't keep faulting pages and
4172 * potentially allocating memory.
4173 */
4174 if (unlikely(fatal_signal_pending(current))) {
4175 remainder = 0;
4176 break;
4177 }
4178
4c887265
AL
4179 /*
4180 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4181 * each hugepage. We have to make sure we get the
4c887265 4182 * first, for the page indexing below to work.
cb900f41
KS
4183 *
4184 * Note that page table lock is not held when pte is null.
4c887265 4185 */
7868a208
PA
4186 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4187 huge_page_size(h));
cb900f41
KS
4188 if (pte)
4189 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4190 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4191
4192 /*
4193 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4194 * an error where there's an empty slot with no huge pagecache
4195 * to back it. This way, we avoid allocating a hugepage, and
4196 * the sparse dumpfile avoids allocating disk blocks, but its
4197 * huge holes still show up with zeroes where they need to be.
2a15efc9 4198 */
3ae77f43
HD
4199 if (absent && (flags & FOLL_DUMP) &&
4200 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4201 if (pte)
4202 spin_unlock(ptl);
2a15efc9
HD
4203 remainder = 0;
4204 break;
4205 }
63551ae0 4206
9cc3a5bd
NH
4207 /*
4208 * We need call hugetlb_fault for both hugepages under migration
4209 * (in which case hugetlb_fault waits for the migration,) and
4210 * hwpoisoned hugepages (in which case we need to prevent the
4211 * caller from accessing to them.) In order to do this, we use
4212 * here is_swap_pte instead of is_hugetlb_entry_migration and
4213 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4214 * both cases, and because we can't follow correct pages
4215 * directly from any kind of swap entries.
4216 */
4217 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4218 ((flags & FOLL_WRITE) &&
4219 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4220 int ret;
87ffc118 4221 unsigned int fault_flags = 0;
63551ae0 4222
cb900f41
KS
4223 if (pte)
4224 spin_unlock(ptl);
87ffc118
AA
4225 if (flags & FOLL_WRITE)
4226 fault_flags |= FAULT_FLAG_WRITE;
4227 if (nonblocking)
4228 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4229 if (flags & FOLL_NOWAIT)
4230 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4231 FAULT_FLAG_RETRY_NOWAIT;
4232 if (flags & FOLL_TRIED) {
4233 VM_WARN_ON_ONCE(fault_flags &
4234 FAULT_FLAG_ALLOW_RETRY);
4235 fault_flags |= FAULT_FLAG_TRIED;
4236 }
4237 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4238 if (ret & VM_FAULT_ERROR) {
2be7cfed 4239 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4240 remainder = 0;
4241 break;
4242 }
4243 if (ret & VM_FAULT_RETRY) {
4d331cbe
AA
4244 if (nonblocking &&
4245 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
87ffc118
AA
4246 *nonblocking = 0;
4247 *nr_pages = 0;
4248 /*
4249 * VM_FAULT_RETRY must not return an
4250 * error, it will return zero
4251 * instead.
4252 *
4253 * No need to update "position" as the
4254 * caller will not check it after
4255 * *nr_pages is set to 0.
4256 */
4257 return i;
4258 }
4259 continue;
4c887265
AL
4260 }
4261
a5516438 4262 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4263 page = pte_page(huge_ptep_get(pte));
a991ca8f
LT
4264
4265 /*
4266 * Instead of doing 'try_get_page()' below in the same_page
4267 * loop, just check the count once here.
4268 */
4269 if (unlikely(page_count(page) <= 0)) {
4270 if (pages) {
4271 spin_unlock(ptl);
4272 remainder = 0;
4273 err = -ENOMEM;
4274 break;
4275 }
4276 }
d5d4b0aa 4277same_page:
d6692183 4278 if (pages) {
2a15efc9 4279 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4280 get_page(pages[i]);
d6692183 4281 }
63551ae0
DG
4282
4283 if (vmas)
4284 vmas[i] = vma;
4285
4286 vaddr += PAGE_SIZE;
d5d4b0aa 4287 ++pfn_offset;
63551ae0
DG
4288 --remainder;
4289 ++i;
d5d4b0aa 4290 if (vaddr < vma->vm_end && remainder &&
a5516438 4291 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4292 /*
4293 * We use pfn_offset to avoid touching the pageframes
4294 * of this compound page.
4295 */
4296 goto same_page;
4297 }
cb900f41 4298 spin_unlock(ptl);
63551ae0 4299 }
28a35716 4300 *nr_pages = remainder;
87ffc118
AA
4301 /*
4302 * setting position is actually required only if remainder is
4303 * not zero but it's faster not to add a "if (remainder)"
4304 * branch.
4305 */
63551ae0
DG
4306 *position = vaddr;
4307
2be7cfed 4308 return i ? i : err;
63551ae0 4309}
8f860591 4310
5491ae7b
AK
4311#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4312/*
4313 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4314 * implement this.
4315 */
4316#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4317#endif
4318
7da4d641 4319unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4320 unsigned long address, unsigned long end, pgprot_t newprot)
4321{
4322 struct mm_struct *mm = vma->vm_mm;
4323 unsigned long start = address;
4324 pte_t *ptep;
4325 pte_t pte;
a5516438 4326 struct hstate *h = hstate_vma(vma);
7da4d641 4327 unsigned long pages = 0;
8f860591
ZY
4328
4329 BUG_ON(address >= end);
4330 flush_cache_range(vma, address, end);
4331
a5338093 4332 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4333 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4334 for (; address < end; address += huge_page_size(h)) {
cb900f41 4335 spinlock_t *ptl;
7868a208 4336 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4337 if (!ptep)
4338 continue;
cb900f41 4339 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4340 if (huge_pmd_unshare(mm, &address, ptep)) {
4341 pages++;
cb900f41 4342 spin_unlock(ptl);
39dde65c 4343 continue;
7da4d641 4344 }
a8bda28d
NH
4345 pte = huge_ptep_get(ptep);
4346 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4347 spin_unlock(ptl);
4348 continue;
4349 }
4350 if (unlikely(is_hugetlb_entry_migration(pte))) {
4351 swp_entry_t entry = pte_to_swp_entry(pte);
4352
4353 if (is_write_migration_entry(entry)) {
4354 pte_t newpte;
4355
4356 make_migration_entry_read(&entry);
4357 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4358 set_huge_swap_pte_at(mm, address, ptep,
4359 newpte, huge_page_size(h));
a8bda28d
NH
4360 pages++;
4361 }
4362 spin_unlock(ptl);
4363 continue;
4364 }
4365 if (!huge_pte_none(pte)) {
8f860591 4366 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4367 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4368 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4369 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4370 pages++;
8f860591 4371 }
cb900f41 4372 spin_unlock(ptl);
8f860591 4373 }
d833352a 4374 /*
c8c06efa 4375 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4376 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4377 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4378 * and that page table be reused and filled with junk.
4379 */
5491ae7b 4380 flush_hugetlb_tlb_range(vma, start, end);
0f10851e
JG
4381 /*
4382 * No need to call mmu_notifier_invalidate_range() we are downgrading
4383 * page table protection not changing it to point to a new page.
4384 *
4385 * See Documentation/vm/mmu_notifier.txt
4386 */
83cde9e8 4387 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4388 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4389
4390 return pages << h->order;
8f860591
ZY
4391}
4392
a1e78772
MG
4393int hugetlb_reserve_pages(struct inode *inode,
4394 long from, long to,
5a6fe125 4395 struct vm_area_struct *vma,
ca16d140 4396 vm_flags_t vm_flags)
e4e574b7 4397{
17c9d12e 4398 long ret, chg;
a5516438 4399 struct hstate *h = hstate_inode(inode);
90481622 4400 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4401 struct resv_map *resv_map;
1c5ecae3 4402 long gbl_reserve;
e4e574b7 4403
1211d50a
MK
4404 /* This should never happen */
4405 if (from > to) {
4406 VM_WARN(1, "%s called with a negative range\n", __func__);
4407 return -EINVAL;
4408 }
4409
17c9d12e
MG
4410 /*
4411 * Only apply hugepage reservation if asked. At fault time, an
4412 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4413 * without using reserves
17c9d12e 4414 */
ca16d140 4415 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4416 return 0;
4417
a1e78772
MG
4418 /*
4419 * Shared mappings base their reservation on the number of pages that
4420 * are already allocated on behalf of the file. Private mappings need
4421 * to reserve the full area even if read-only as mprotect() may be
4422 * called to make the mapping read-write. Assume !vma is a shm mapping
4423 */
9119a41e 4424 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4425 resv_map = inode_resv_map(inode);
9119a41e 4426
1406ec9b 4427 chg = region_chg(resv_map, from, to);
9119a41e
JK
4428
4429 } else {
4430 resv_map = resv_map_alloc();
17c9d12e
MG
4431 if (!resv_map)
4432 return -ENOMEM;
4433
a1e78772 4434 chg = to - from;
84afd99b 4435
17c9d12e
MG
4436 set_vma_resv_map(vma, resv_map);
4437 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4438 }
4439
c50ac050
DH
4440 if (chg < 0) {
4441 ret = chg;
4442 goto out_err;
4443 }
8a630112 4444
1c5ecae3
MK
4445 /*
4446 * There must be enough pages in the subpool for the mapping. If
4447 * the subpool has a minimum size, there may be some global
4448 * reservations already in place (gbl_reserve).
4449 */
4450 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4451 if (gbl_reserve < 0) {
c50ac050
DH
4452 ret = -ENOSPC;
4453 goto out_err;
4454 }
5a6fe125
MG
4455
4456 /*
17c9d12e 4457 * Check enough hugepages are available for the reservation.
90481622 4458 * Hand the pages back to the subpool if there are not
5a6fe125 4459 */
1c5ecae3 4460 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4461 if (ret < 0) {
1c5ecae3
MK
4462 /* put back original number of pages, chg */
4463 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4464 goto out_err;
68842c9b 4465 }
17c9d12e
MG
4466
4467 /*
4468 * Account for the reservations made. Shared mappings record regions
4469 * that have reservations as they are shared by multiple VMAs.
4470 * When the last VMA disappears, the region map says how much
4471 * the reservation was and the page cache tells how much of
4472 * the reservation was consumed. Private mappings are per-VMA and
4473 * only the consumed reservations are tracked. When the VMA
4474 * disappears, the original reservation is the VMA size and the
4475 * consumed reservations are stored in the map. Hence, nothing
4476 * else has to be done for private mappings here
4477 */
33039678
MK
4478 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4479 long add = region_add(resv_map, from, to);
4480
4481 if (unlikely(chg > add)) {
4482 /*
4483 * pages in this range were added to the reserve
4484 * map between region_chg and region_add. This
4485 * indicates a race with alloc_huge_page. Adjust
4486 * the subpool and reserve counts modified above
4487 * based on the difference.
4488 */
4489 long rsv_adjust;
4490
4491 rsv_adjust = hugepage_subpool_put_pages(spool,
4492 chg - add);
4493 hugetlb_acct_memory(h, -rsv_adjust);
4494 }
4495 }
a43a8c39 4496 return 0;
c50ac050 4497out_err:
5e911373 4498 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4499 /* Don't call region_abort if region_chg failed */
4500 if (chg >= 0)
4501 region_abort(resv_map, from, to);
f031dd27
JK
4502 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4503 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4504 return ret;
a43a8c39
KC
4505}
4506
b5cec28d
MK
4507long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4508 long freed)
a43a8c39 4509{
a5516438 4510 struct hstate *h = hstate_inode(inode);
4e35f483 4511 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4512 long chg = 0;
90481622 4513 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4514 long gbl_reserve;
45c682a6 4515
b5cec28d
MK
4516 if (resv_map) {
4517 chg = region_del(resv_map, start, end);
4518 /*
4519 * region_del() can fail in the rare case where a region
4520 * must be split and another region descriptor can not be
4521 * allocated. If end == LONG_MAX, it will not fail.
4522 */
4523 if (chg < 0)
4524 return chg;
4525 }
4526
45c682a6 4527 spin_lock(&inode->i_lock);
e4c6f8be 4528 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4529 spin_unlock(&inode->i_lock);
4530
1c5ecae3
MK
4531 /*
4532 * If the subpool has a minimum size, the number of global
4533 * reservations to be released may be adjusted.
4534 */
4535 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4536 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4537
4538 return 0;
a43a8c39 4539}
93f70f90 4540
3212b535
SC
4541#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4542static unsigned long page_table_shareable(struct vm_area_struct *svma,
4543 struct vm_area_struct *vma,
4544 unsigned long addr, pgoff_t idx)
4545{
4546 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4547 svma->vm_start;
4548 unsigned long sbase = saddr & PUD_MASK;
4549 unsigned long s_end = sbase + PUD_SIZE;
4550
4551 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4552 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4553 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4554
4555 /*
4556 * match the virtual addresses, permission and the alignment of the
4557 * page table page.
4558 */
4559 if (pmd_index(addr) != pmd_index(saddr) ||
4560 vm_flags != svm_flags ||
4561 sbase < svma->vm_start || svma->vm_end < s_end)
4562 return 0;
4563
4564 return saddr;
4565}
4566
31aafb45 4567static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4568{
4569 unsigned long base = addr & PUD_MASK;
4570 unsigned long end = base + PUD_SIZE;
4571
4572 /*
4573 * check on proper vm_flags and page table alignment
4574 */
162aed49 4575 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
31aafb45
NK
4576 return true;
4577 return false;
3212b535
SC
4578}
4579
162aed49
MK
4580/*
4581 * Determine if start,end range within vma could be mapped by shared pmd.
4582 * If yes, adjust start and end to cover range associated with possible
4583 * shared pmd mappings.
4584 */
4585void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4586 unsigned long *start, unsigned long *end)
4587{
4588 unsigned long check_addr = *start;
4589
4590 if (!(vma->vm_flags & VM_MAYSHARE))
4591 return;
4592
4593 for (check_addr = *start; check_addr < *end; check_addr += PUD_SIZE) {
4594 unsigned long a_start = check_addr & PUD_MASK;
4595 unsigned long a_end = a_start + PUD_SIZE;
4596
4597 /*
4598 * If sharing is possible, adjust start/end if necessary.
4599 */
4600 if (range_in_vma(vma, a_start, a_end)) {
4601 if (a_start < *start)
4602 *start = a_start;
4603 if (a_end > *end)
4604 *end = a_end;
4605 }
4606 }
4607}
4608
3212b535
SC
4609/*
4610 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4611 * and returns the corresponding pte. While this is not necessary for the
4612 * !shared pmd case because we can allocate the pmd later as well, it makes the
4613 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4614 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4615 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4616 * bad pmd for sharing.
4617 */
4618pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4619{
4620 struct vm_area_struct *vma = find_vma(mm, addr);
4621 struct address_space *mapping = vma->vm_file->f_mapping;
4622 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4623 vma->vm_pgoff;
4624 struct vm_area_struct *svma;
4625 unsigned long saddr;
4626 pte_t *spte = NULL;
4627 pte_t *pte;
cb900f41 4628 spinlock_t *ptl;
3212b535
SC
4629
4630 if (!vma_shareable(vma, addr))
4631 return (pte_t *)pmd_alloc(mm, pud, addr);
4632
83cde9e8 4633 i_mmap_lock_write(mapping);
3212b535
SC
4634 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4635 if (svma == vma)
4636 continue;
4637
4638 saddr = page_table_shareable(svma, vma, addr, idx);
4639 if (saddr) {
7868a208
PA
4640 spte = huge_pte_offset(svma->vm_mm, saddr,
4641 vma_mmu_pagesize(svma));
3212b535
SC
4642 if (spte) {
4643 get_page(virt_to_page(spte));
4644 break;
4645 }
4646 }
4647 }
4648
4649 if (!spte)
4650 goto out;
4651
8bea8052 4652 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4653 if (pud_none(*pud)) {
3212b535
SC
4654 pud_populate(mm, pud,
4655 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4656 mm_inc_nr_pmds(mm);
dc6c9a35 4657 } else {
3212b535 4658 put_page(virt_to_page(spte));
dc6c9a35 4659 }
cb900f41 4660 spin_unlock(ptl);
3212b535
SC
4661out:
4662 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4663 i_mmap_unlock_write(mapping);
3212b535
SC
4664 return pte;
4665}
4666
4667/*
4668 * unmap huge page backed by shared pte.
4669 *
4670 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4671 * indicated by page_count > 1, unmap is achieved by clearing pud and
4672 * decrementing the ref count. If count == 1, the pte page is not shared.
4673 *
cb900f41 4674 * called with page table lock held.
3212b535
SC
4675 *
4676 * returns: 1 successfully unmapped a shared pte page
4677 * 0 the underlying pte page is not shared, or it is the last user
4678 */
4679int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4680{
4681 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4682 p4d_t *p4d = p4d_offset(pgd, *addr);
4683 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4684
4685 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4686 if (page_count(virt_to_page(ptep)) == 1)
4687 return 0;
4688
4689 pud_clear(pud);
4690 put_page(virt_to_page(ptep));
dc6c9a35 4691 mm_dec_nr_pmds(mm);
3212b535
SC
4692 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4693 return 1;
4694}
9e5fc74c
SC
4695#define want_pmd_share() (1)
4696#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4697pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4698{
4699 return NULL;
4700}
e81f2d22
ZZ
4701
4702int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4703{
4704 return 0;
4705}
162aed49
MK
4706
4707void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
4708 unsigned long *start, unsigned long *end)
4709{
4710}
9e5fc74c 4711#define want_pmd_share() (0)
3212b535
SC
4712#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4713
9e5fc74c
SC
4714#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4715pte_t *huge_pte_alloc(struct mm_struct *mm,
4716 unsigned long addr, unsigned long sz)
4717{
4718 pgd_t *pgd;
c2febafc 4719 p4d_t *p4d;
9e5fc74c
SC
4720 pud_t *pud;
4721 pte_t *pte = NULL;
4722
4723 pgd = pgd_offset(mm, addr);
f4f0a3d8
KS
4724 p4d = p4d_alloc(mm, pgd, addr);
4725 if (!p4d)
4726 return NULL;
c2febafc 4727 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4728 if (pud) {
4729 if (sz == PUD_SIZE) {
4730 pte = (pte_t *)pud;
4731 } else {
4732 BUG_ON(sz != PMD_SIZE);
4733 if (want_pmd_share() && pud_none(*pud))
4734 pte = huge_pmd_share(mm, addr, pud);
4735 else
4736 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4737 }
4738 }
4e666314 4739 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4740
4741 return pte;
4742}
4743
9b19df29
PA
4744/*
4745 * huge_pte_offset() - Walk the page table to resolve the hugepage
4746 * entry at address @addr
4747 *
4748 * Return: Pointer to page table or swap entry (PUD or PMD) for
4749 * address @addr, or NULL if a p*d_none() entry is encountered and the
4750 * size @sz doesn't match the hugepage size at this level of the page
4751 * table.
4752 */
7868a208
PA
4753pte_t *huge_pte_offset(struct mm_struct *mm,
4754 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4755{
4756 pgd_t *pgd;
c2febafc 4757 p4d_t *p4d;
9e5fc74c 4758 pud_t *pud;
c2febafc 4759 pmd_t *pmd;
9e5fc74c
SC
4760
4761 pgd = pgd_offset(mm, addr);
c2febafc
KS
4762 if (!pgd_present(*pgd))
4763 return NULL;
4764 p4d = p4d_offset(pgd, addr);
4765 if (!p4d_present(*p4d))
4766 return NULL;
9b19df29 4767
c2febafc 4768 pud = pud_offset(p4d, addr);
9b19df29 4769 if (sz != PUD_SIZE && pud_none(*pud))
c2febafc 4770 return NULL;
9b19df29
PA
4771 /* hugepage or swap? */
4772 if (pud_huge(*pud) || !pud_present(*pud))
c2febafc 4773 return (pte_t *)pud;
9b19df29 4774
c2febafc 4775 pmd = pmd_offset(pud, addr);
9b19df29
PA
4776 if (sz != PMD_SIZE && pmd_none(*pmd))
4777 return NULL;
4778 /* hugepage or swap? */
4779 if (pmd_huge(*pmd) || !pmd_present(*pmd))
4780 return (pte_t *)pmd;
4781
4782 return NULL;
9e5fc74c
SC
4783}
4784
61f77eda
NH
4785#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4786
4787/*
4788 * These functions are overwritable if your architecture needs its own
4789 * behavior.
4790 */
4791struct page * __weak
4792follow_huge_addr(struct mm_struct *mm, unsigned long address,
4793 int write)
4794{
4795 return ERR_PTR(-EINVAL);
4796}
4797
4dc71451
AK
4798struct page * __weak
4799follow_huge_pd(struct vm_area_struct *vma,
4800 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4801{
4802 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4803 return NULL;
4804}
4805
61f77eda 4806struct page * __weak
9e5fc74c 4807follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4808 pmd_t *pmd, int flags)
9e5fc74c 4809{
e66f17ff
NH
4810 struct page *page = NULL;
4811 spinlock_t *ptl;
c9d398fa 4812 pte_t pte;
e66f17ff
NH
4813retry:
4814 ptl = pmd_lockptr(mm, pmd);
4815 spin_lock(ptl);
4816 /*
4817 * make sure that the address range covered by this pmd is not
4818 * unmapped from other threads.
4819 */
4820 if (!pmd_huge(*pmd))
4821 goto out;
c9d398fa
NH
4822 pte = huge_ptep_get((pte_t *)pmd);
4823 if (pte_present(pte)) {
97534127 4824 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4825 if (flags & FOLL_GET)
4826 get_page(page);
4827 } else {
c9d398fa 4828 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4829 spin_unlock(ptl);
4830 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4831 goto retry;
4832 }
4833 /*
4834 * hwpoisoned entry is treated as no_page_table in
4835 * follow_page_mask().
4836 */
4837 }
4838out:
4839 spin_unlock(ptl);
9e5fc74c
SC
4840 return page;
4841}
4842
61f77eda 4843struct page * __weak
9e5fc74c 4844follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4845 pud_t *pud, int flags)
9e5fc74c 4846{
e66f17ff
NH
4847 if (flags & FOLL_GET)
4848 return NULL;
9e5fc74c 4849
e66f17ff 4850 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4851}
4852
faaa5b62
AK
4853struct page * __weak
4854follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4855{
4856 if (flags & FOLL_GET)
4857 return NULL;
4858
4859 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4860}
4861
31caf665
NH
4862bool isolate_huge_page(struct page *page, struct list_head *list)
4863{
bcc54222
NH
4864 bool ret = true;
4865
309381fe 4866 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4867 spin_lock(&hugetlb_lock);
bcc54222
NH
4868 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4869 ret = false;
4870 goto unlock;
4871 }
4872 clear_page_huge_active(page);
31caf665 4873 list_move_tail(&page->lru, list);
bcc54222 4874unlock:
31caf665 4875 spin_unlock(&hugetlb_lock);
bcc54222 4876 return ret;
31caf665
NH
4877}
4878
4879void putback_active_hugepage(struct page *page)
4880{
309381fe 4881 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4882 spin_lock(&hugetlb_lock);
bcc54222 4883 set_page_huge_active(page);
31caf665
NH
4884 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4885 spin_unlock(&hugetlb_lock);
4886 put_page(page);
4887}