]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory-failure.c
PCI: PM: Skip devices in D0 for suspend-to-idle
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
3f07c014 43#include <linux/sched/signal.h>
29930025 44#include <linux/sched/task.h>
01e00f88 45#include <linux/ksm.h>
6a46079c 46#include <linux/rmap.h>
b9e15baf 47#include <linux/export.h>
6a46079c
AK
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/backing-dev.h>
facb6011 51#include <linux/migrate.h>
facb6011 52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
a5f65109 59#include <linux/ratelimit.h>
6a46079c 60#include "internal.h"
97f0b134 61#include "ras/ras_event.h"
6a46079c
AK
62
63int sysctl_memory_failure_early_kill __read_mostly = 0;
64
65int sysctl_memory_failure_recovery __read_mostly = 1;
66
293c07e3 67atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 68
27df5068
AK
69#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
70
1bfe5feb 71u32 hwpoison_filter_enable = 0;
7c116f2b
WF
72u32 hwpoison_filter_dev_major = ~0U;
73u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
74u64 hwpoison_filter_flags_mask;
75u64 hwpoison_filter_flags_value;
1bfe5feb 76EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
78EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
79EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
80EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
81
82static int hwpoison_filter_dev(struct page *p)
83{
84 struct address_space *mapping;
85 dev_t dev;
86
87 if (hwpoison_filter_dev_major == ~0U &&
88 hwpoison_filter_dev_minor == ~0U)
89 return 0;
90
91 /*
1c80b990 92 * page_mapping() does not accept slab pages.
7c116f2b
WF
93 */
94 if (PageSlab(p))
95 return -EINVAL;
96
97 mapping = page_mapping(p);
98 if (mapping == NULL || mapping->host == NULL)
99 return -EINVAL;
100
101 dev = mapping->host->i_sb->s_dev;
102 if (hwpoison_filter_dev_major != ~0U &&
103 hwpoison_filter_dev_major != MAJOR(dev))
104 return -EINVAL;
105 if (hwpoison_filter_dev_minor != ~0U &&
106 hwpoison_filter_dev_minor != MINOR(dev))
107 return -EINVAL;
108
109 return 0;
110}
111
478c5ffc
WF
112static int hwpoison_filter_flags(struct page *p)
113{
114 if (!hwpoison_filter_flags_mask)
115 return 0;
116
117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
118 hwpoison_filter_flags_value)
119 return 0;
120 else
121 return -EINVAL;
122}
123
4fd466eb
AK
124/*
125 * This allows stress tests to limit test scope to a collection of tasks
126 * by putting them under some memcg. This prevents killing unrelated/important
127 * processes such as /sbin/init. Note that the target task may share clean
128 * pages with init (eg. libc text), which is harmless. If the target task
129 * share _dirty_ pages with another task B, the test scheme must make sure B
130 * is also included in the memcg. At last, due to race conditions this filter
131 * can only guarantee that the page either belongs to the memcg tasks, or is
132 * a freed page.
133 */
94a59fb3 134#ifdef CONFIG_MEMCG
4fd466eb
AK
135u64 hwpoison_filter_memcg;
136EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
137static int hwpoison_filter_task(struct page *p)
138{
4fd466eb
AK
139 if (!hwpoison_filter_memcg)
140 return 0;
141
94a59fb3 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
4fd466eb
AK
143 return -EINVAL;
144
145 return 0;
146}
147#else
148static int hwpoison_filter_task(struct page *p) { return 0; }
149#endif
150
7c116f2b
WF
151int hwpoison_filter(struct page *p)
152{
1bfe5feb
HL
153 if (!hwpoison_filter_enable)
154 return 0;
155
7c116f2b
WF
156 if (hwpoison_filter_dev(p))
157 return -EINVAL;
158
478c5ffc
WF
159 if (hwpoison_filter_flags(p))
160 return -EINVAL;
161
4fd466eb
AK
162 if (hwpoison_filter_task(p))
163 return -EINVAL;
164
7c116f2b
WF
165 return 0;
166}
27df5068
AK
167#else
168int hwpoison_filter(struct page *p)
169{
170 return 0;
171}
172#endif
173
7c116f2b
WF
174EXPORT_SYMBOL_GPL(hwpoison_filter);
175
6a46079c 176/*
7329bbeb
TL
177 * Send all the processes who have the page mapped a signal.
178 * ``action optional'' if they are not immediately affected by the error
179 * ``action required'' if error happened in current execution context
6a46079c 180 */
7329bbeb
TL
181static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
182 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
183{
184 struct siginfo si;
185 int ret;
186
495367c0
CY
187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
188 pfn, t->comm, t->pid);
6a46079c
AK
189 si.si_signo = SIGBUS;
190 si.si_errno = 0;
6a46079c
AK
191 si.si_addr = (void *)addr;
192#ifdef __ARCH_SI_TRAPNO
193 si.si_trapno = trapno;
194#endif
f9121153 195 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 196
a70ffcac 197 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 198 si.si_code = BUS_MCEERR_AR;
a70ffcac 199 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
200 } else {
201 /*
202 * Don't use force here, it's convenient if the signal
203 * can be temporarily blocked.
204 * This could cause a loop when the user sets SIGBUS
205 * to SIG_IGN, but hopefully no one will do that?
206 */
207 si.si_code = BUS_MCEERR_AO;
208 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
209 }
6a46079c 210 if (ret < 0)
495367c0 211 pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
1170532b 212 t->comm, t->pid, ret);
6a46079c
AK
213 return ret;
214}
215
588f9ce6
AK
216/*
217 * When a unknown page type is encountered drain as many buffers as possible
218 * in the hope to turn the page into a LRU or free page, which we can handle.
219 */
facb6011 220void shake_page(struct page *p, int access)
588f9ce6 221{
8bcb74de
NH
222 if (PageHuge(p))
223 return;
224
588f9ce6
AK
225 if (!PageSlab(p)) {
226 lru_add_drain_all();
227 if (PageLRU(p))
228 return;
c0554329 229 drain_all_pages(page_zone(p));
588f9ce6
AK
230 if (PageLRU(p) || is_free_buddy_page(p))
231 return;
232 }
facb6011 233
588f9ce6 234 /*
6b4f7799
JW
235 * Only call shrink_node_slabs here (which would also shrink
236 * other caches) if access is not potentially fatal.
588f9ce6 237 */
cb731d6c
VD
238 if (access)
239 drop_slab_node(page_to_nid(p));
588f9ce6
AK
240}
241EXPORT_SYMBOL_GPL(shake_page);
242
6a46079c
AK
243/*
244 * Kill all processes that have a poisoned page mapped and then isolate
245 * the page.
246 *
247 * General strategy:
248 * Find all processes having the page mapped and kill them.
249 * But we keep a page reference around so that the page is not
250 * actually freed yet.
251 * Then stash the page away
252 *
253 * There's no convenient way to get back to mapped processes
254 * from the VMAs. So do a brute-force search over all
255 * running processes.
256 *
257 * Remember that machine checks are not common (or rather
258 * if they are common you have other problems), so this shouldn't
259 * be a performance issue.
260 *
261 * Also there are some races possible while we get from the
262 * error detection to actually handle it.
263 */
264
265struct to_kill {
266 struct list_head nd;
267 struct task_struct *tsk;
268 unsigned long addr;
9033ae16 269 char addr_valid;
6a46079c
AK
270};
271
272/*
273 * Failure handling: if we can't find or can't kill a process there's
274 * not much we can do. We just print a message and ignore otherwise.
275 */
276
277/*
278 * Schedule a process for later kill.
279 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
280 * TBD would GFP_NOIO be enough?
281 */
282static void add_to_kill(struct task_struct *tsk, struct page *p,
283 struct vm_area_struct *vma,
284 struct list_head *to_kill,
285 struct to_kill **tkc)
286{
287 struct to_kill *tk;
288
289 if (*tkc) {
290 tk = *tkc;
291 *tkc = NULL;
292 } else {
293 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
294 if (!tk) {
495367c0 295 pr_err("Memory failure: Out of memory while machine check handling\n");
6a46079c
AK
296 return;
297 }
298 }
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
301
302 /*
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
307 */
308 if (tk->addr == -EFAULT) {
495367c0 309 pr_info("Memory failure: Unable to find user space address %lx in %s\n",
6a46079c
AK
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
312 }
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
316}
317
318/*
319 * Kill the processes that have been collected earlier.
320 *
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
325 */
6751ed65 326static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
666e5a40 327 bool fail, struct page *page, unsigned long pfn,
7329bbeb 328 int flags)
6a46079c
AK
329{
330 struct to_kill *tk, *next;
331
332 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 333 if (forcekill) {
6a46079c 334 /*
af901ca1 335 * In case something went wrong with munmapping
6a46079c
AK
336 * make sure the process doesn't catch the
337 * signal and then access the memory. Just kill it.
6a46079c
AK
338 */
339 if (fail || tk->addr_valid == 0) {
495367c0 340 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
1170532b 341 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
342 force_sig(SIGKILL, tk->tsk);
343 }
344
345 /*
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
350 */
7329bbeb
TL
351 else if (kill_proc(tk->tsk, tk->addr, trapno,
352 pfn, page, flags) < 0)
495367c0 353 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
1170532b 354 pfn, tk->tsk->comm, tk->tsk->pid);
6a46079c
AK
355 }
356 put_task_struct(tk->tsk);
357 kfree(tk);
358 }
359}
360
3ba08129
NH
361/*
362 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363 * on behalf of the thread group. Return task_struct of the (first found)
364 * dedicated thread if found, and return NULL otherwise.
365 *
366 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367 * have to call rcu_read_lock/unlock() in this function.
368 */
369static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 370{
3ba08129
NH
371 struct task_struct *t;
372
373 for_each_thread(tsk, t)
374 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 return t;
376 return NULL;
377}
378
379/*
380 * Determine whether a given process is "early kill" process which expects
381 * to be signaled when some page under the process is hwpoisoned.
382 * Return task_struct of the dedicated thread (main thread unless explicitly
383 * specified) if the process is "early kill," and otherwise returns NULL.
384 */
385static struct task_struct *task_early_kill(struct task_struct *tsk,
386 int force_early)
387{
388 struct task_struct *t;
6a46079c 389 if (!tsk->mm)
3ba08129 390 return NULL;
74614de1 391 if (force_early)
3ba08129
NH
392 return tsk;
393 t = find_early_kill_thread(tsk);
394 if (t)
395 return t;
396 if (sysctl_memory_failure_early_kill)
397 return tsk;
398 return NULL;
6a46079c
AK
399}
400
401/*
402 * Collect processes when the error hit an anonymous page.
403 */
404static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 405 struct to_kill **tkc, int force_early)
6a46079c
AK
406{
407 struct vm_area_struct *vma;
408 struct task_struct *tsk;
409 struct anon_vma *av;
bf181b9f 410 pgoff_t pgoff;
6a46079c 411
4fc3f1d6 412 av = page_lock_anon_vma_read(page);
6a46079c 413 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
414 return;
415
a0f7a756 416 pgoff = page_to_pgoff(page);
9b679320 417 read_lock(&tasklist_lock);
6a46079c 418 for_each_process (tsk) {
5beb4930 419 struct anon_vma_chain *vmac;
3ba08129 420 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 421
3ba08129 422 if (!t)
6a46079c 423 continue;
bf181b9f
ML
424 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 pgoff, pgoff) {
5beb4930 426 vma = vmac->vma;
6a46079c
AK
427 if (!page_mapped_in_vma(page, vma))
428 continue;
3ba08129
NH
429 if (vma->vm_mm == t->mm)
430 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
431 }
432 }
6a46079c 433 read_unlock(&tasklist_lock);
4fc3f1d6 434 page_unlock_anon_vma_read(av);
6a46079c
AK
435}
436
437/*
438 * Collect processes when the error hit a file mapped page.
439 */
440static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 441 struct to_kill **tkc, int force_early)
6a46079c
AK
442{
443 struct vm_area_struct *vma;
444 struct task_struct *tsk;
6a46079c
AK
445 struct address_space *mapping = page->mapping;
446
d28eb9c8 447 i_mmap_lock_read(mapping);
9b679320 448 read_lock(&tasklist_lock);
6a46079c 449 for_each_process(tsk) {
a0f7a756 450 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 451 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 452
3ba08129 453 if (!t)
6a46079c 454 continue;
6b2dbba8 455 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
456 pgoff) {
457 /*
458 * Send early kill signal to tasks where a vma covers
459 * the page but the corrupted page is not necessarily
460 * mapped it in its pte.
461 * Assume applications who requested early kill want
462 * to be informed of all such data corruptions.
463 */
3ba08129
NH
464 if (vma->vm_mm == t->mm)
465 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
466 }
467 }
6a46079c 468 read_unlock(&tasklist_lock);
d28eb9c8 469 i_mmap_unlock_read(mapping);
6a46079c
AK
470}
471
472/*
473 * Collect the processes who have the corrupted page mapped to kill.
474 * This is done in two steps for locking reasons.
475 * First preallocate one tokill structure outside the spin locks,
476 * so that we can kill at least one process reasonably reliable.
477 */
74614de1
TL
478static void collect_procs(struct page *page, struct list_head *tokill,
479 int force_early)
6a46079c
AK
480{
481 struct to_kill *tk;
482
483 if (!page->mapping)
484 return;
485
486 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 if (!tk)
488 return;
489 if (PageAnon(page))
74614de1 490 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 491 else
74614de1 492 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
493 kfree(tk);
494}
495
6a46079c 496static const char *action_name[] = {
cc637b17
XX
497 [MF_IGNORED] = "Ignored",
498 [MF_FAILED] = "Failed",
499 [MF_DELAYED] = "Delayed",
500 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
501};
502
503static const char * const action_page_types[] = {
cc637b17
XX
504 [MF_MSG_KERNEL] = "reserved kernel page",
505 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
506 [MF_MSG_SLAB] = "kernel slab page",
507 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
508 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
509 [MF_MSG_HUGE] = "huge page",
510 [MF_MSG_FREE_HUGE] = "free huge page",
8e88be0d 511 [MF_MSG_NON_PMD_HUGE] = "non-pmd-sized huge page",
cc637b17
XX
512 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
513 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
514 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
515 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
516 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
517 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
518 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
519 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
520 [MF_MSG_CLEAN_LRU] = "clean LRU page",
521 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
522 [MF_MSG_BUDDY] = "free buddy page",
523 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
524 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
525};
526
dc2a1cbf
WF
527/*
528 * XXX: It is possible that a page is isolated from LRU cache,
529 * and then kept in swap cache or failed to remove from page cache.
530 * The page count will stop it from being freed by unpoison.
531 * Stress tests should be aware of this memory leak problem.
532 */
533static int delete_from_lru_cache(struct page *p)
534{
535 if (!isolate_lru_page(p)) {
536 /*
537 * Clear sensible page flags, so that the buddy system won't
538 * complain when the page is unpoison-and-freed.
539 */
540 ClearPageActive(p);
541 ClearPageUnevictable(p);
18365225
MH
542
543 /*
544 * Poisoned page might never drop its ref count to 0 so we have
545 * to uncharge it manually from its memcg.
546 */
547 mem_cgroup_uncharge(p);
548
dc2a1cbf
WF
549 /*
550 * drop the page count elevated by isolate_lru_page()
551 */
09cbfeaf 552 put_page(p);
dc2a1cbf
WF
553 return 0;
554 }
555 return -EIO;
556}
557
78bb9203
NH
558static int truncate_error_page(struct page *p, unsigned long pfn,
559 struct address_space *mapping)
560{
561 int ret = MF_FAILED;
562
563 if (mapping->a_ops->error_remove_page) {
564 int err = mapping->a_ops->error_remove_page(mapping, p);
565
566 if (err != 0) {
567 pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
568 pfn, err);
569 } else if (page_has_private(p) &&
570 !try_to_release_page(p, GFP_NOIO)) {
571 pr_info("Memory failure: %#lx: failed to release buffers\n",
572 pfn);
573 } else {
574 ret = MF_RECOVERED;
575 }
576 } else {
577 /*
578 * If the file system doesn't support it just invalidate
579 * This fails on dirty or anything with private pages
580 */
581 if (invalidate_inode_page(p))
582 ret = MF_RECOVERED;
583 else
584 pr_info("Memory failure: %#lx: Failed to invalidate\n",
585 pfn);
586 }
587
588 return ret;
589}
590
6a46079c
AK
591/*
592 * Error hit kernel page.
593 * Do nothing, try to be lucky and not touch this instead. For a few cases we
594 * could be more sophisticated.
595 */
596static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 597{
cc637b17 598 return MF_IGNORED;
6a46079c
AK
599}
600
601/*
602 * Page in unknown state. Do nothing.
603 */
604static int me_unknown(struct page *p, unsigned long pfn)
605{
495367c0 606 pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
cc637b17 607 return MF_FAILED;
6a46079c
AK
608}
609
6a46079c
AK
610/*
611 * Clean (or cleaned) page cache page.
612 */
613static int me_pagecache_clean(struct page *p, unsigned long pfn)
614{
6a46079c
AK
615 struct address_space *mapping;
616
dc2a1cbf
WF
617 delete_from_lru_cache(p);
618
6a46079c
AK
619 /*
620 * For anonymous pages we're done the only reference left
621 * should be the one m_f() holds.
622 */
623 if (PageAnon(p))
cc637b17 624 return MF_RECOVERED;
6a46079c
AK
625
626 /*
627 * Now truncate the page in the page cache. This is really
628 * more like a "temporary hole punch"
629 * Don't do this for block devices when someone else
630 * has a reference, because it could be file system metadata
631 * and that's not safe to truncate.
632 */
633 mapping = page_mapping(p);
634 if (!mapping) {
635 /*
636 * Page has been teared down in the meanwhile
637 */
cc637b17 638 return MF_FAILED;
6a46079c
AK
639 }
640
641 /*
642 * Truncation is a bit tricky. Enable it per file system for now.
643 *
644 * Open: to take i_mutex or not for this? Right now we don't.
645 */
78bb9203 646 return truncate_error_page(p, pfn, mapping);
6a46079c
AK
647}
648
649/*
549543df 650 * Dirty pagecache page
6a46079c
AK
651 * Issues: when the error hit a hole page the error is not properly
652 * propagated.
653 */
654static int me_pagecache_dirty(struct page *p, unsigned long pfn)
655{
656 struct address_space *mapping = page_mapping(p);
657
658 SetPageError(p);
659 /* TBD: print more information about the file. */
660 if (mapping) {
661 /*
662 * IO error will be reported by write(), fsync(), etc.
663 * who check the mapping.
664 * This way the application knows that something went
665 * wrong with its dirty file data.
666 *
667 * There's one open issue:
668 *
669 * The EIO will be only reported on the next IO
670 * operation and then cleared through the IO map.
671 * Normally Linux has two mechanisms to pass IO error
672 * first through the AS_EIO flag in the address space
673 * and then through the PageError flag in the page.
674 * Since we drop pages on memory failure handling the
675 * only mechanism open to use is through AS_AIO.
676 *
677 * This has the disadvantage that it gets cleared on
678 * the first operation that returns an error, while
679 * the PageError bit is more sticky and only cleared
680 * when the page is reread or dropped. If an
681 * application assumes it will always get error on
682 * fsync, but does other operations on the fd before
25985edc 683 * and the page is dropped between then the error
6a46079c
AK
684 * will not be properly reported.
685 *
686 * This can already happen even without hwpoisoned
687 * pages: first on metadata IO errors (which only
688 * report through AS_EIO) or when the page is dropped
689 * at the wrong time.
690 *
691 * So right now we assume that the application DTRT on
692 * the first EIO, but we're not worse than other parts
693 * of the kernel.
694 */
af21bfaf 695 mapping_set_error(mapping, -EIO);
6a46079c
AK
696 }
697
698 return me_pagecache_clean(p, pfn);
699}
700
701/*
702 * Clean and dirty swap cache.
703 *
704 * Dirty swap cache page is tricky to handle. The page could live both in page
705 * cache and swap cache(ie. page is freshly swapped in). So it could be
706 * referenced concurrently by 2 types of PTEs:
707 * normal PTEs and swap PTEs. We try to handle them consistently by calling
708 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
709 * and then
710 * - clear dirty bit to prevent IO
711 * - remove from LRU
712 * - but keep in the swap cache, so that when we return to it on
713 * a later page fault, we know the application is accessing
714 * corrupted data and shall be killed (we installed simple
715 * interception code in do_swap_page to catch it).
716 *
717 * Clean swap cache pages can be directly isolated. A later page fault will
718 * bring in the known good data from disk.
719 */
720static int me_swapcache_dirty(struct page *p, unsigned long pfn)
721{
6a46079c
AK
722 ClearPageDirty(p);
723 /* Trigger EIO in shmem: */
724 ClearPageUptodate(p);
725
dc2a1cbf 726 if (!delete_from_lru_cache(p))
cc637b17 727 return MF_DELAYED;
dc2a1cbf 728 else
cc637b17 729 return MF_FAILED;
6a46079c
AK
730}
731
732static int me_swapcache_clean(struct page *p, unsigned long pfn)
733{
6a46079c 734 delete_from_swap_cache(p);
e43c3afb 735
dc2a1cbf 736 if (!delete_from_lru_cache(p))
cc637b17 737 return MF_RECOVERED;
dc2a1cbf 738 else
cc637b17 739 return MF_FAILED;
6a46079c
AK
740}
741
742/*
743 * Huge pages. Needs work.
744 * Issues:
93f70f90
NH
745 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
746 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
747 */
748static int me_huge_page(struct page *p, unsigned long pfn)
749{
6de2b1aa 750 int res = 0;
93f70f90 751 struct page *hpage = compound_head(p);
78bb9203 752 struct address_space *mapping;
2491ffee
NH
753
754 if (!PageHuge(hpage))
755 return MF_DELAYED;
756
78bb9203
NH
757 mapping = page_mapping(hpage);
758 if (mapping) {
759 res = truncate_error_page(hpage, pfn, mapping);
760 } else {
761 unlock_page(hpage);
762 /*
763 * migration entry prevents later access on error anonymous
764 * hugepage, so we can free and dissolve it into buddy to
765 * save healthy subpages.
766 */
767 if (PageAnon(hpage))
768 put_page(hpage);
769 dissolve_free_huge_page(p);
770 res = MF_RECOVERED;
771 lock_page(hpage);
93f70f90 772 }
78bb9203
NH
773
774 return res;
6a46079c
AK
775}
776
777/*
778 * Various page states we can handle.
779 *
780 * A page state is defined by its current page->flags bits.
781 * The table matches them in order and calls the right handler.
782 *
783 * This is quite tricky because we can access page at any time
25985edc 784 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
785 *
786 * This is not complete. More states could be added.
787 * For any missing state don't attempt recovery.
788 */
789
790#define dirty (1UL << PG_dirty)
6326fec1 791#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
6a46079c
AK
792#define unevict (1UL << PG_unevictable)
793#define mlock (1UL << PG_mlocked)
794#define writeback (1UL << PG_writeback)
795#define lru (1UL << PG_lru)
6a46079c 796#define head (1UL << PG_head)
6a46079c 797#define slab (1UL << PG_slab)
6a46079c
AK
798#define reserved (1UL << PG_reserved)
799
800static struct page_state {
801 unsigned long mask;
802 unsigned long res;
cc637b17 803 enum mf_action_page_type type;
6a46079c
AK
804 int (*action)(struct page *p, unsigned long pfn);
805} error_states[] = {
cc637b17 806 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
807 /*
808 * free pages are specially detected outside this table:
809 * PG_buddy pages only make a small fraction of all free pages.
810 */
6a46079c
AK
811
812 /*
813 * Could in theory check if slab page is free or if we can drop
814 * currently unused objects without touching them. But just
815 * treat it as standard kernel for now.
816 */
cc637b17 817 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c 818
cc637b17 819 { head, head, MF_MSG_HUGE, me_huge_page },
6a46079c 820
cc637b17
XX
821 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
822 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 823
cc637b17
XX
824 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
825 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 826
cc637b17
XX
827 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
828 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 829
cc637b17
XX
830 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
831 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
832
833 /*
834 * Catchall entry: must be at end.
835 */
cc637b17 836 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
837};
838
2326c467
AK
839#undef dirty
840#undef sc
841#undef unevict
842#undef mlock
843#undef writeback
844#undef lru
2326c467 845#undef head
2326c467
AK
846#undef slab
847#undef reserved
848
ff604cf6
NH
849/*
850 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
851 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
852 */
cc3e2af4
XX
853static void action_result(unsigned long pfn, enum mf_action_page_type type,
854 enum mf_result result)
6a46079c 855{
97f0b134
XX
856 trace_memory_failure_event(pfn, type, result);
857
495367c0 858 pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
64d37a2b 859 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
860}
861
862static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 863 unsigned long pfn)
6a46079c
AK
864{
865 int result;
7456b040 866 int count;
6a46079c
AK
867
868 result = ps->action(p, pfn);
7456b040 869
bd1ce5f9 870 count = page_count(p) - 1;
cc637b17 871 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286 872 count--;
78bb9203 873 if (count > 0) {
495367c0 874 pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
64d37a2b 875 pfn, action_page_types[ps->type], count);
cc637b17 876 result = MF_FAILED;
138ce286 877 }
64d37a2b 878 action_result(pfn, ps->type, result);
6a46079c
AK
879
880 /* Could do more checks here if page looks ok */
881 /*
882 * Could adjust zone counters here to correct for the missing page.
883 */
884
cc637b17 885 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
886}
887
ead07f6a
NH
888/**
889 * get_hwpoison_page() - Get refcount for memory error handling:
890 * @page: raw error page (hit by memory error)
891 *
892 * Return: return 0 if failed to grab the refcount, otherwise true (some
893 * non-zero value.)
894 */
895int get_hwpoison_page(struct page *page)
896{
897 struct page *head = compound_head(page);
898
4e41a30c 899 if (!PageHuge(head) && PageTransHuge(head)) {
98ed2b00
NH
900 /*
901 * Non anonymous thp exists only in allocation/free time. We
902 * can't handle such a case correctly, so let's give it up.
903 * This should be better than triggering BUG_ON when kernel
904 * tries to touch the "partially handled" page.
905 */
906 if (!PageAnon(head)) {
495367c0 907 pr_err("Memory failure: %#lx: non anonymous thp\n",
98ed2b00
NH
908 page_to_pfn(page));
909 return 0;
910 }
ead07f6a
NH
911 }
912
c2e7e00b
KK
913 if (get_page_unless_zero(head)) {
914 if (head == compound_head(page))
915 return 1;
916
495367c0
CY
917 pr_info("Memory failure: %#lx cannot catch tail\n",
918 page_to_pfn(page));
c2e7e00b
KK
919 put_page(head);
920 }
921
922 return 0;
ead07f6a
NH
923}
924EXPORT_SYMBOL_GPL(get_hwpoison_page);
925
6a46079c
AK
926/*
927 * Do all that is necessary to remove user space mappings. Unmap
928 * the pages and send SIGBUS to the processes if the data was dirty.
929 */
666e5a40 930static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 931 int trapno, int flags, struct page **hpagep)
6a46079c 932{
a128ca71 933 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
6a46079c
AK
934 struct address_space *mapping;
935 LIST_HEAD(tokill);
666e5a40 936 bool unmap_success;
6751ed65 937 int kill = 1, forcekill;
54b9dd14 938 struct page *hpage = *hpagep;
286c469a 939 bool mlocked = PageMlocked(hpage);
6a46079c 940
93a9eb39
NH
941 /*
942 * Here we are interested only in user-mapped pages, so skip any
943 * other types of pages.
944 */
945 if (PageReserved(p) || PageSlab(p))
666e5a40 946 return true;
93a9eb39 947 if (!(PageLRU(hpage) || PageHuge(p)))
666e5a40 948 return true;
6a46079c 949
6a46079c
AK
950 /*
951 * This check implies we don't kill processes if their pages
952 * are in the swap cache early. Those are always late kills.
953 */
7af446a8 954 if (!page_mapped(hpage))
666e5a40 955 return true;
1668bfd5 956
52089b14 957 if (PageKsm(p)) {
495367c0 958 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
666e5a40 959 return false;
52089b14 960 }
6a46079c
AK
961
962 if (PageSwapCache(p)) {
495367c0
CY
963 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
964 pfn);
6a46079c
AK
965 ttu |= TTU_IGNORE_HWPOISON;
966 }
967
968 /*
969 * Propagate the dirty bit from PTEs to struct page first, because we
970 * need this to decide if we should kill or just drop the page.
db0480b3
WF
971 * XXX: the dirty test could be racy: set_page_dirty() may not always
972 * be called inside page lock (it's recommended but not enforced).
6a46079c 973 */
7af446a8 974 mapping = page_mapping(hpage);
6751ed65 975 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
976 mapping_cap_writeback_dirty(mapping)) {
977 if (page_mkclean(hpage)) {
978 SetPageDirty(hpage);
6a46079c
AK
979 } else {
980 kill = 0;
981 ttu |= TTU_IGNORE_HWPOISON;
495367c0 982 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
6a46079c
AK
983 pfn);
984 }
985 }
986
987 /*
988 * First collect all the processes that have the page
989 * mapped in dirty form. This has to be done before try_to_unmap,
990 * because ttu takes the rmap data structures down.
991 *
992 * Error handling: We ignore errors here because
993 * there's nothing that can be done.
994 */
995 if (kill)
415c64c1 996 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 997
666e5a40
MK
998 unmap_success = try_to_unmap(hpage, ttu);
999 if (!unmap_success)
495367c0 1000 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1170532b 1001 pfn, page_mapcount(hpage));
a6d30ddd 1002
286c469a
NH
1003 /*
1004 * try_to_unmap() might put mlocked page in lru cache, so call
1005 * shake_page() again to ensure that it's flushed.
1006 */
1007 if (mlocked)
1008 shake_page(hpage, 0);
1009
6a46079c
AK
1010 /*
1011 * Now that the dirty bit has been propagated to the
1012 * struct page and all unmaps done we can decide if
1013 * killing is needed or not. Only kill when the page
6751ed65
TL
1014 * was dirty or the process is not restartable,
1015 * otherwise the tokill list is merely
6a46079c
AK
1016 * freed. When there was a problem unmapping earlier
1017 * use a more force-full uncatchable kill to prevent
1018 * any accesses to the poisoned memory.
1019 */
415c64c1 1020 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
666e5a40 1021 kill_procs(&tokill, forcekill, trapno, !unmap_success, p, pfn, flags);
1668bfd5 1022
666e5a40 1023 return unmap_success;
6a46079c
AK
1024}
1025
0348d2eb
NH
1026static int identify_page_state(unsigned long pfn, struct page *p,
1027 unsigned long page_flags)
761ad8d7
NH
1028{
1029 struct page_state *ps;
0348d2eb
NH
1030
1031 /*
1032 * The first check uses the current page flags which may not have any
1033 * relevant information. The second check with the saved page flags is
1034 * carried out only if the first check can't determine the page status.
1035 */
1036 for (ps = error_states;; ps++)
1037 if ((p->flags & ps->mask) == ps->res)
1038 break;
1039
1040 page_flags |= (p->flags & (1UL << PG_dirty));
1041
1042 if (!ps->mask)
1043 for (ps = error_states;; ps++)
1044 if ((page_flags & ps->mask) == ps->res)
1045 break;
1046 return page_action(ps, p, pfn);
1047}
1048
1049static int memory_failure_hugetlb(unsigned long pfn, int trapno, int flags)
1050{
761ad8d7
NH
1051 struct page *p = pfn_to_page(pfn);
1052 struct page *head = compound_head(p);
1053 int res;
1054 unsigned long page_flags;
1055
1056 if (TestSetPageHWPoison(head)) {
1057 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1058 pfn);
1059 return 0;
1060 }
1061
1062 num_poisoned_pages_inc();
1063
1064 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1065 /*
1066 * Check "filter hit" and "race with other subpage."
1067 */
1068 lock_page(head);
1069 if (PageHWPoison(head)) {
1070 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1071 || (p != head && TestSetPageHWPoison(head))) {
1072 num_poisoned_pages_dec();
1073 unlock_page(head);
1074 return 0;
1075 }
1076 }
1077 unlock_page(head);
1078 dissolve_free_huge_page(p);
1079 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1080 return 0;
1081 }
1082
1083 lock_page(head);
1084 page_flags = head->flags;
1085
1086 if (!PageHWPoison(head)) {
1087 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1088 num_poisoned_pages_dec();
1089 unlock_page(head);
1090 put_hwpoison_page(head);
1091 return 0;
1092 }
1093
8e88be0d
NH
1094 /*
1095 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1096 * simply disable it. In order to make it work properly, we need
1097 * make sure that:
1098 * - conversion of a pud that maps an error hugetlb into hwpoison
1099 * entry properly works, and
1100 * - other mm code walking over page table is aware of pud-aligned
1101 * hwpoison entries.
1102 */
1103 if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1104 action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1105 res = -EBUSY;
1106 goto out;
1107 }
1108
761ad8d7
NH
1109 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &head)) {
1110 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1111 res = -EBUSY;
1112 goto out;
1113 }
1114
0348d2eb 1115 res = identify_page_state(pfn, p, page_flags);
761ad8d7
NH
1116out:
1117 unlock_page(head);
1118 return res;
1119}
1120
cd42f4a3
TL
1121/**
1122 * memory_failure - Handle memory failure of a page.
1123 * @pfn: Page Number of the corrupted page
1124 * @trapno: Trap number reported in the signal to user space.
1125 * @flags: fine tune action taken
1126 *
1127 * This function is called by the low level machine check code
1128 * of an architecture when it detects hardware memory corruption
1129 * of a page. It tries its best to recover, which includes
1130 * dropping pages, killing processes etc.
1131 *
1132 * The function is primarily of use for corruptions that
1133 * happen outside the current execution context (e.g. when
1134 * detected by a background scrubber)
1135 *
1136 * Must run in process context (e.g. a work queue) with interrupts
1137 * enabled and no spinlocks hold.
1138 */
1139int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c 1140{
6a46079c 1141 struct page *p;
7af446a8 1142 struct page *hpage;
415c64c1 1143 struct page *orig_head;
6a46079c 1144 int res;
524fca1e 1145 unsigned long page_flags;
6a46079c
AK
1146
1147 if (!sysctl_memory_failure_recovery)
1148 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1149
1150 if (!pfn_valid(pfn)) {
495367c0
CY
1151 pr_err("Memory failure: %#lx: memory outside kernel control\n",
1152 pfn);
a7560fc8 1153 return -ENXIO;
6a46079c
AK
1154 }
1155
1156 p = pfn_to_page(pfn);
761ad8d7
NH
1157 if (PageHuge(p))
1158 return memory_failure_hugetlb(pfn, trapno, flags);
6a46079c 1159 if (TestSetPageHWPoison(p)) {
495367c0
CY
1160 pr_err("Memory failure: %#lx: already hardware poisoned\n",
1161 pfn);
6a46079c
AK
1162 return 0;
1163 }
1164
761ad8d7 1165 orig_head = hpage = compound_head(p);
b37ff71c 1166 num_poisoned_pages_inc();
6a46079c
AK
1167
1168 /*
1169 * We need/can do nothing about count=0 pages.
1170 * 1) it's a free page, and therefore in safe hand:
1171 * prep_new_page() will be the gate keeper.
761ad8d7 1172 * 2) it's part of a non-compound high order page.
6a46079c
AK
1173 * Implies some kernel user: cannot stop them from
1174 * R/W the page; let's pray that the page has been
1175 * used and will be freed some time later.
1176 * In fact it's dangerous to directly bump up page count from 0,
1177 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1178 */
ead07f6a 1179 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1180 if (is_free_buddy_page(p)) {
cc637b17 1181 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b
WF
1182 return 0;
1183 } else {
cc637b17 1184 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1185 return -EBUSY;
1186 }
6a46079c
AK
1187 }
1188
761ad8d7 1189 if (PageTransHuge(hpage)) {
c3901e72
NH
1190 lock_page(p);
1191 if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1192 unlock_page(p);
1193 if (!PageAnon(p))
495367c0
CY
1194 pr_err("Memory failure: %#lx: non anonymous thp\n",
1195 pfn);
7f6bf39b 1196 else
495367c0
CY
1197 pr_err("Memory failure: %#lx: thp split failed\n",
1198 pfn);
ead07f6a 1199 if (TestClearPageHWPoison(p))
b37ff71c 1200 num_poisoned_pages_dec();
665d9da7 1201 put_hwpoison_page(p);
415c64c1
NH
1202 return -EBUSY;
1203 }
c3901e72 1204 unlock_page(p);
415c64c1
NH
1205 VM_BUG_ON_PAGE(!page_count(p), p);
1206 hpage = compound_head(p);
1207 }
1208
e43c3afb
WF
1209 /*
1210 * We ignore non-LRU pages for good reasons.
1211 * - PG_locked is only well defined for LRU pages and a few others
48c935ad 1212 * - to avoid races with __SetPageLocked()
e43c3afb
WF
1213 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1214 * The check (unnecessarily) ignores LRU pages being isolated and
1215 * walked by the page reclaim code, however that's not a big loss.
1216 */
8bcb74de
NH
1217 shake_page(p, 0);
1218 /* shake_page could have turned it free. */
1219 if (!PageLRU(p) && is_free_buddy_page(p)) {
1220 if (flags & MF_COUNT_INCREASED)
1221 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1222 else
1223 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1224 return 0;
e43c3afb 1225 }
e43c3afb 1226
761ad8d7 1227 lock_page(p);
847ce401 1228
f37d4298
AK
1229 /*
1230 * The page could have changed compound pages during the locking.
1231 * If this happens just bail out.
1232 */
415c64c1 1233 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1234 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1235 res = -EBUSY;
1236 goto out;
1237 }
1238
524fca1e
NH
1239 /*
1240 * We use page flags to determine what action should be taken, but
1241 * the flags can be modified by the error containment action. One
1242 * example is an mlocked page, where PG_mlocked is cleared by
1243 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1244 * correctly, we save a copy of the page flags at this time.
1245 */
7258ae5c
JM
1246 if (PageHuge(p))
1247 page_flags = hpage->flags;
1248 else
1249 page_flags = p->flags;
524fca1e 1250
847ce401
WF
1251 /*
1252 * unpoison always clear PG_hwpoison inside page lock
1253 */
1254 if (!PageHWPoison(p)) {
495367c0 1255 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
b37ff71c 1256 num_poisoned_pages_dec();
761ad8d7
NH
1257 unlock_page(p);
1258 put_hwpoison_page(p);
a09233f3 1259 return 0;
847ce401 1260 }
7c116f2b
WF
1261 if (hwpoison_filter(p)) {
1262 if (TestClearPageHWPoison(p))
b37ff71c 1263 num_poisoned_pages_dec();
761ad8d7
NH
1264 unlock_page(p);
1265 put_hwpoison_page(p);
7c116f2b
WF
1266 return 0;
1267 }
847ce401 1268
761ad8d7 1269 if (!PageTransTail(p) && !PageLRU(p))
0bc1f8b0
CY
1270 goto identify_page_state;
1271
6edd6cc6
NH
1272 /*
1273 * It's very difficult to mess with pages currently under IO
1274 * and in many cases impossible, so we just avoid it here.
1275 */
6a46079c
AK
1276 wait_on_page_writeback(p);
1277
1278 /*
1279 * Now take care of user space mappings.
e64a782f 1280 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1281 *
1282 * When the raw error page is thp tail page, hpage points to the raw
1283 * page after thp split.
6a46079c 1284 */
666e5a40 1285 if (!hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)) {
cc637b17 1286 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1287 res = -EBUSY;
1288 goto out;
1289 }
6a46079c
AK
1290
1291 /*
1292 * Torn down by someone else?
1293 */
dc2a1cbf 1294 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1295 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1296 res = -EBUSY;
6a46079c
AK
1297 goto out;
1298 }
1299
0bc1f8b0 1300identify_page_state:
0348d2eb 1301 res = identify_page_state(pfn, p, page_flags);
6a46079c 1302out:
761ad8d7 1303 unlock_page(p);
6a46079c
AK
1304 return res;
1305}
cd42f4a3 1306EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1307
ea8f5fb8
HY
1308#define MEMORY_FAILURE_FIFO_ORDER 4
1309#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1310
1311struct memory_failure_entry {
1312 unsigned long pfn;
1313 int trapno;
1314 int flags;
1315};
1316
1317struct memory_failure_cpu {
1318 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1319 MEMORY_FAILURE_FIFO_SIZE);
1320 spinlock_t lock;
1321 struct work_struct work;
1322};
1323
1324static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1325
1326/**
1327 * memory_failure_queue - Schedule handling memory failure of a page.
1328 * @pfn: Page Number of the corrupted page
1329 * @trapno: Trap number reported in the signal to user space.
1330 * @flags: Flags for memory failure handling
1331 *
1332 * This function is called by the low level hardware error handler
1333 * when it detects hardware memory corruption of a page. It schedules
1334 * the recovering of error page, including dropping pages, killing
1335 * processes etc.
1336 *
1337 * The function is primarily of use for corruptions that
1338 * happen outside the current execution context (e.g. when
1339 * detected by a background scrubber)
1340 *
1341 * Can run in IRQ context.
1342 */
1343void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1344{
1345 struct memory_failure_cpu *mf_cpu;
1346 unsigned long proc_flags;
1347 struct memory_failure_entry entry = {
1348 .pfn = pfn,
1349 .trapno = trapno,
1350 .flags = flags,
1351 };
1352
1353 mf_cpu = &get_cpu_var(memory_failure_cpu);
1354 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1355 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1356 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1357 else
8e33a52f 1358 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1359 pfn);
1360 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1361 put_cpu_var(memory_failure_cpu);
1362}
1363EXPORT_SYMBOL_GPL(memory_failure_queue);
1364
1365static void memory_failure_work_func(struct work_struct *work)
1366{
1367 struct memory_failure_cpu *mf_cpu;
1368 struct memory_failure_entry entry = { 0, };
1369 unsigned long proc_flags;
1370 int gotten;
1371
7c8e0181 1372 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1373 for (;;) {
1374 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1375 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1376 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1377 if (!gotten)
1378 break;
cf870c70
NR
1379 if (entry.flags & MF_SOFT_OFFLINE)
1380 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1381 else
1382 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1383 }
1384}
1385
1386static int __init memory_failure_init(void)
1387{
1388 struct memory_failure_cpu *mf_cpu;
1389 int cpu;
1390
1391 for_each_possible_cpu(cpu) {
1392 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1393 spin_lock_init(&mf_cpu->lock);
1394 INIT_KFIFO(mf_cpu->fifo);
1395 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1396 }
1397
1398 return 0;
1399}
1400core_initcall(memory_failure_init);
1401
a5f65109
NH
1402#define unpoison_pr_info(fmt, pfn, rs) \
1403({ \
1404 if (__ratelimit(rs)) \
1405 pr_info(fmt, pfn); \
1406})
1407
847ce401
WF
1408/**
1409 * unpoison_memory - Unpoison a previously poisoned page
1410 * @pfn: Page number of the to be unpoisoned page
1411 *
1412 * Software-unpoison a page that has been poisoned by
1413 * memory_failure() earlier.
1414 *
1415 * This is only done on the software-level, so it only works
1416 * for linux injected failures, not real hardware failures
1417 *
1418 * Returns 0 for success, otherwise -errno.
1419 */
1420int unpoison_memory(unsigned long pfn)
1421{
1422 struct page *page;
1423 struct page *p;
1424 int freeit = 0;
a5f65109
NH
1425 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1426 DEFAULT_RATELIMIT_BURST);
847ce401
WF
1427
1428 if (!pfn_valid(pfn))
1429 return -ENXIO;
1430
1431 p = pfn_to_page(pfn);
1432 page = compound_head(p);
1433
1434 if (!PageHWPoison(p)) {
495367c0 1435 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
a5f65109 1436 pfn, &unpoison_rs);
847ce401
WF
1437 return 0;
1438 }
1439
230ac719 1440 if (page_count(page) > 1) {
495367c0 1441 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
a5f65109 1442 pfn, &unpoison_rs);
230ac719
NH
1443 return 0;
1444 }
1445
1446 if (page_mapped(page)) {
495367c0 1447 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
a5f65109 1448 pfn, &unpoison_rs);
230ac719
NH
1449 return 0;
1450 }
1451
1452 if (page_mapping(page)) {
495367c0 1453 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
a5f65109 1454 pfn, &unpoison_rs);
230ac719
NH
1455 return 0;
1456 }
1457
0cea3fdc
WL
1458 /*
1459 * unpoison_memory() can encounter thp only when the thp is being
1460 * worked by memory_failure() and the page lock is not held yet.
1461 * In such case, we yield to memory_failure() and make unpoison fail.
1462 */
e76d30e2 1463 if (!PageHuge(page) && PageTransHuge(page)) {
495367c0 1464 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
a5f65109 1465 pfn, &unpoison_rs);
ead07f6a 1466 return 0;
0cea3fdc
WL
1467 }
1468
ead07f6a 1469 if (!get_hwpoison_page(p)) {
847ce401 1470 if (TestClearPageHWPoison(p))
8e30456b 1471 num_poisoned_pages_dec();
495367c0 1472 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
a5f65109 1473 pfn, &unpoison_rs);
847ce401
WF
1474 return 0;
1475 }
1476
7eaceacc 1477 lock_page(page);
847ce401
WF
1478 /*
1479 * This test is racy because PG_hwpoison is set outside of page lock.
1480 * That's acceptable because that won't trigger kernel panic. Instead,
1481 * the PG_hwpoison page will be caught and isolated on the entrance to
1482 * the free buddy page pool.
1483 */
c9fbdd5f 1484 if (TestClearPageHWPoison(page)) {
495367c0 1485 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
a5f65109 1486 pfn, &unpoison_rs);
b37ff71c 1487 num_poisoned_pages_dec();
847ce401
WF
1488 freeit = 1;
1489 }
1490 unlock_page(page);
1491
665d9da7 1492 put_hwpoison_page(page);
3ba5eebc 1493 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
665d9da7 1494 put_hwpoison_page(page);
847ce401
WF
1495
1496 return 0;
1497}
1498EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1499
1500static struct page *new_page(struct page *p, unsigned long private, int **x)
1501{
12686d15 1502 int nid = page_to_nid(p);
94310cbc 1503
ef77ba5c 1504 return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
facb6011
AK
1505}
1506
1507/*
1508 * Safely get reference count of an arbitrary page.
1509 * Returns 0 for a free page, -EIO for a zero refcount page
1510 * that is not free, and 1 for any other page type.
1511 * For 1 the page is returned with increased page count, otherwise not.
1512 */
af8fae7c 1513static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1514{
1515 int ret;
1516
1517 if (flags & MF_COUNT_INCREASED)
1518 return 1;
1519
d950b958
NH
1520 /*
1521 * When the target page is a free hugepage, just remove it
1522 * from free hugepage list.
1523 */
ead07f6a 1524 if (!get_hwpoison_page(p)) {
d950b958 1525 if (PageHuge(p)) {
71dd0b8a 1526 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1527 ret = 0;
d950b958 1528 } else if (is_free_buddy_page(p)) {
71dd0b8a 1529 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1530 ret = 0;
1531 } else {
71dd0b8a
BP
1532 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1533 __func__, pfn, p->flags);
facb6011
AK
1534 ret = -EIO;
1535 }
1536 } else {
1537 /* Not a free page */
1538 ret = 1;
1539 }
facb6011
AK
1540 return ret;
1541}
1542
af8fae7c
NH
1543static int get_any_page(struct page *page, unsigned long pfn, int flags)
1544{
1545 int ret = __get_any_page(page, pfn, flags);
1546
85fbe5d1
YX
1547 if (ret == 1 && !PageHuge(page) &&
1548 !PageLRU(page) && !__PageMovable(page)) {
af8fae7c
NH
1549 /*
1550 * Try to free it.
1551 */
665d9da7 1552 put_hwpoison_page(page);
af8fae7c
NH
1553 shake_page(page, 1);
1554
1555 /*
1556 * Did it turn free?
1557 */
1558 ret = __get_any_page(page, pfn, 0);
d96b339f 1559 if (ret == 1 && !PageLRU(page)) {
4f32be67 1560 /* Drop page reference which is from __get_any_page() */
665d9da7 1561 put_hwpoison_page(page);
82a2481e
AK
1562 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1563 pfn, page->flags, &page->flags);
af8fae7c
NH
1564 return -EIO;
1565 }
1566 }
1567 return ret;
1568}
1569
d950b958
NH
1570static int soft_offline_huge_page(struct page *page, int flags)
1571{
1572 int ret;
1573 unsigned long pfn = page_to_pfn(page);
1574 struct page *hpage = compound_head(page);
b8ec1cee 1575 LIST_HEAD(pagelist);
d950b958 1576
af8fae7c
NH
1577 /*
1578 * This double-check of PageHWPoison is to avoid the race with
1579 * memory_failure(). See also comment in __soft_offline_page().
1580 */
1581 lock_page(hpage);
0ebff32c 1582 if (PageHWPoison(hpage)) {
af8fae7c 1583 unlock_page(hpage);
665d9da7 1584 put_hwpoison_page(hpage);
0ebff32c 1585 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1586 return -EBUSY;
0ebff32c 1587 }
af8fae7c 1588 unlock_page(hpage);
d950b958 1589
bcc54222 1590 ret = isolate_huge_page(hpage, &pagelist);
03613808
WL
1591 /*
1592 * get_any_page() and isolate_huge_page() takes a refcount each,
1593 * so need to drop one here.
1594 */
665d9da7 1595 put_hwpoison_page(hpage);
03613808 1596 if (!ret) {
bcc54222
NH
1597 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1598 return -EBUSY;
1599 }
1600
68711a74 1601 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1602 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1603 if (ret) {
b6b18aa8 1604 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
82a2481e 1605 pfn, ret, page->flags, &page->flags);
30809f55
PA
1606 if (!list_empty(&pagelist))
1607 putback_movable_pages(&pagelist);
b8ec1cee
NH
1608 if (ret > 0)
1609 ret = -EIO;
af8fae7c 1610 } else {
b37ff71c 1611 if (PageHuge(page))
c3114a84 1612 dissolve_free_huge_page(page);
d950b958 1613 }
d950b958
NH
1614 return ret;
1615}
1616
af8fae7c
NH
1617static int __soft_offline_page(struct page *page, int flags)
1618{
1619 int ret;
1620 unsigned long pfn = page_to_pfn(page);
facb6011 1621
facb6011 1622 /*
af8fae7c
NH
1623 * Check PageHWPoison again inside page lock because PageHWPoison
1624 * is set by memory_failure() outside page lock. Note that
1625 * memory_failure() also double-checks PageHWPoison inside page lock,
1626 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1627 */
0ebff32c
XQ
1628 lock_page(page);
1629 wait_on_page_writeback(page);
af8fae7c
NH
1630 if (PageHWPoison(page)) {
1631 unlock_page(page);
665d9da7 1632 put_hwpoison_page(page);
af8fae7c
NH
1633 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1634 return -EBUSY;
1635 }
facb6011
AK
1636 /*
1637 * Try to invalidate first. This should work for
1638 * non dirty unmapped page cache pages.
1639 */
1640 ret = invalidate_inode_page(page);
1641 unlock_page(page);
facb6011 1642 /*
facb6011
AK
1643 * RED-PEN would be better to keep it isolated here, but we
1644 * would need to fix isolation locking first.
1645 */
facb6011 1646 if (ret == 1) {
665d9da7 1647 put_hwpoison_page(page);
fb46e735 1648 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c 1649 SetPageHWPoison(page);
8e30456b 1650 num_poisoned_pages_inc();
af8fae7c 1651 return 0;
facb6011
AK
1652 }
1653
1654 /*
1655 * Simple invalidation didn't work.
1656 * Try to migrate to a new page instead. migrate.c
1657 * handles a large number of cases for us.
1658 */
85fbe5d1
YX
1659 if (PageLRU(page))
1660 ret = isolate_lru_page(page);
1661 else
1662 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
bd486285
KK
1663 /*
1664 * Drop page reference which is came from get_any_page()
1665 * successful isolate_lru_page() already took another one.
1666 */
665d9da7 1667 put_hwpoison_page(page);
facb6011
AK
1668 if (!ret) {
1669 LIST_HEAD(pagelist);
85fbe5d1
YX
1670 /*
1671 * After isolated lru page, the PageLRU will be cleared,
1672 * so use !__PageMovable instead for LRU page's mapping
1673 * cannot have PAGE_MAPPING_MOVABLE.
1674 */
1675 if (!__PageMovable(page))
1676 inc_node_page_state(page, NR_ISOLATED_ANON +
1677 page_is_file_cache(page));
facb6011 1678 list_add(&page->lru, &pagelist);
68711a74 1679 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1680 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1681 if (ret) {
85fbe5d1
YX
1682 if (!list_empty(&pagelist))
1683 putback_movable_pages(&pagelist);
59c82b70 1684
82a2481e
AK
1685 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1686 pfn, ret, page->flags, &page->flags);
facb6011
AK
1687 if (ret > 0)
1688 ret = -EIO;
1689 }
1690 } else {
82a2481e
AK
1691 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1692 pfn, ret, page_count(page), page->flags, &page->flags);
facb6011 1693 }
facb6011
AK
1694 return ret;
1695}
86e05773 1696
acc14dc4
NH
1697static int soft_offline_in_use_page(struct page *page, int flags)
1698{
1699 int ret;
1700 struct page *hpage = compound_head(page);
1701
1702 if (!PageHuge(page) && PageTransHuge(hpage)) {
1703 lock_page(hpage);
98fd1ef4
NH
1704 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1705 unlock_page(hpage);
1706 if (!PageAnon(hpage))
1707 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1708 else
1709 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1710 put_hwpoison_page(hpage);
acc14dc4
NH
1711 return -EBUSY;
1712 }
98fd1ef4 1713 unlock_page(hpage);
acc14dc4
NH
1714 get_hwpoison_page(page);
1715 put_hwpoison_page(hpage);
1716 }
1717
1718 if (PageHuge(page))
1719 ret = soft_offline_huge_page(page, flags);
1720 else
1721 ret = __soft_offline_page(page, flags);
1722
1723 return ret;
1724}
1725
1726static void soft_offline_free_page(struct page *page)
1727{
b37ff71c 1728 struct page *head = compound_head(page);
acc14dc4 1729
b37ff71c
NH
1730 if (!TestSetPageHWPoison(head)) {
1731 num_poisoned_pages_inc();
1732 if (PageHuge(head))
d4a3a60b 1733 dissolve_free_huge_page(page);
acc14dc4
NH
1734 }
1735}
1736
86e05773
WL
1737/**
1738 * soft_offline_page - Soft offline a page.
1739 * @page: page to offline
1740 * @flags: flags. Same as memory_failure().
1741 *
1742 * Returns 0 on success, otherwise negated errno.
1743 *
1744 * Soft offline a page, by migration or invalidation,
1745 * without killing anything. This is for the case when
1746 * a page is not corrupted yet (so it's still valid to access),
1747 * but has had a number of corrected errors and is better taken
1748 * out.
1749 *
1750 * The actual policy on when to do that is maintained by
1751 * user space.
1752 *
1753 * This should never impact any application or cause data loss,
1754 * however it might take some time.
1755 *
1756 * This is not a 100% solution for all memory, but tries to be
1757 * ``good enough'' for the majority of memory.
1758 */
1759int soft_offline_page(struct page *page, int flags)
1760{
1761 int ret;
1762 unsigned long pfn = page_to_pfn(page);
86e05773
WL
1763
1764 if (PageHWPoison(page)) {
1765 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1e0e635b 1766 if (flags & MF_COUNT_INCREASED)
665d9da7 1767 put_hwpoison_page(page);
86e05773
WL
1768 return -EBUSY;
1769 }
86e05773 1770
bfc8c901 1771 get_online_mems();
86e05773 1772 ret = get_any_page(page, pfn, flags);
bfc8c901 1773 put_online_mems();
4e41a30c 1774
acc14dc4
NH
1775 if (ret > 0)
1776 ret = soft_offline_in_use_page(page, flags);
1777 else if (ret == 0)
1778 soft_offline_free_page(page);
4e41a30c 1779
86e05773
WL
1780 return ret;
1781}