]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - net/ipv4/tcp_input.c
[TCP]: Rename tcp_ack_packets_out -> tcp_rearm_rto
[mirror_ubuntu-zesty-kernel.git] / net / ipv4 / tcp_input.c
CommitLineData
1da177e4
LT
1/*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
5 *
6 * Implementation of the Transmission Control Protocol(TCP).
7 *
8 * Version: $Id: tcp_input.c,v 1.243 2002/02/01 22:01:04 davem Exp $
9 *
02c30a84 10 * Authors: Ross Biro
1da177e4
LT
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Mark Evans, <evansmp@uhura.aston.ac.uk>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche, <flla@stud.uni-sb.de>
15 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
16 * Linus Torvalds, <torvalds@cs.helsinki.fi>
17 * Alan Cox, <gw4pts@gw4pts.ampr.org>
18 * Matthew Dillon, <dillon@apollo.west.oic.com>
19 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
20 * Jorge Cwik, <jorge@laser.satlink.net>
21 */
22
23/*
24 * Changes:
25 * Pedro Roque : Fast Retransmit/Recovery.
26 * Two receive queues.
27 * Retransmit queue handled by TCP.
28 * Better retransmit timer handling.
29 * New congestion avoidance.
30 * Header prediction.
31 * Variable renaming.
32 *
33 * Eric : Fast Retransmit.
34 * Randy Scott : MSS option defines.
35 * Eric Schenk : Fixes to slow start algorithm.
36 * Eric Schenk : Yet another double ACK bug.
37 * Eric Schenk : Delayed ACK bug fixes.
38 * Eric Schenk : Floyd style fast retrans war avoidance.
39 * David S. Miller : Don't allow zero congestion window.
40 * Eric Schenk : Fix retransmitter so that it sends
41 * next packet on ack of previous packet.
42 * Andi Kleen : Moved open_request checking here
43 * and process RSTs for open_requests.
44 * Andi Kleen : Better prune_queue, and other fixes.
caa20d9a 45 * Andrey Savochkin: Fix RTT measurements in the presence of
1da177e4
LT
46 * timestamps.
47 * Andrey Savochkin: Check sequence numbers correctly when
48 * removing SACKs due to in sequence incoming
49 * data segments.
50 * Andi Kleen: Make sure we never ack data there is not
51 * enough room for. Also make this condition
52 * a fatal error if it might still happen.
e905a9ed 53 * Andi Kleen: Add tcp_measure_rcv_mss to make
1da177e4 54 * connections with MSS<min(MTU,ann. MSS)
e905a9ed 55 * work without delayed acks.
1da177e4
LT
56 * Andi Kleen: Process packets with PSH set in the
57 * fast path.
58 * J Hadi Salim: ECN support
59 * Andrei Gurtov,
60 * Pasi Sarolahti,
61 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
62 * engine. Lots of bugs are found.
63 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
1da177e4
LT
64 */
65
1da177e4
LT
66#include <linux/mm.h>
67#include <linux/module.h>
68#include <linux/sysctl.h>
69#include <net/tcp.h>
70#include <net/inet_common.h>
71#include <linux/ipsec.h>
72#include <asm/unaligned.h>
1a2449a8 73#include <net/netdma.h>
1da177e4 74
ab32ea5d
BH
75int sysctl_tcp_timestamps __read_mostly = 1;
76int sysctl_tcp_window_scaling __read_mostly = 1;
77int sysctl_tcp_sack __read_mostly = 1;
78int sysctl_tcp_fack __read_mostly = 1;
79int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80int sysctl_tcp_ecn __read_mostly;
81int sysctl_tcp_dsack __read_mostly = 1;
82int sysctl_tcp_app_win __read_mostly = 31;
83int sysctl_tcp_adv_win_scale __read_mostly = 2;
1da177e4 84
ab32ea5d
BH
85int sysctl_tcp_stdurg __read_mostly;
86int sysctl_tcp_rfc1337 __read_mostly;
87int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88int sysctl_tcp_frto __read_mostly;
3cfe3baa 89int sysctl_tcp_frto_response __read_mostly;
ab32ea5d 90int sysctl_tcp_nometrics_save __read_mostly;
1da177e4 91
ab32ea5d
BH
92int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93int sysctl_tcp_abc __read_mostly;
1da177e4 94
1da177e4
LT
95#define FLAG_DATA 0x01 /* Incoming frame contained data. */
96#define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97#define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98#define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99#define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100#define FLAG_DATA_SACKED 0x20 /* New SACK. */
101#define FLAG_ECE 0x40 /* ECE in this ACK */
102#define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103#define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
4dc2665e 104#define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
2e605294 105#define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
49ff4bb4 106#define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained DSACK info */
1da177e4
LT
107
108#define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
109#define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
110#define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
111#define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
2e605294 112#define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
1da177e4 113
4dc2665e
IJ
114#define IsSackFrto() (sysctl_tcp_frto == 0x2)
115
1da177e4 116#define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
bdf1ee5d 117#define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
1da177e4 118
e905a9ed 119/* Adapt the MSS value used to make delayed ack decision to the
1da177e4 120 * real world.
e905a9ed 121 */
40efc6fa
SH
122static void tcp_measure_rcv_mss(struct sock *sk,
123 const struct sk_buff *skb)
1da177e4 124{
463c84b9 125 struct inet_connection_sock *icsk = inet_csk(sk);
e905a9ed 126 const unsigned int lss = icsk->icsk_ack.last_seg_size;
463c84b9 127 unsigned int len;
1da177e4 128
e905a9ed 129 icsk->icsk_ack.last_seg_size = 0;
1da177e4
LT
130
131 /* skb->len may jitter because of SACKs, even if peer
132 * sends good full-sized frames.
133 */
ff9b5e0f 134 len = skb_shinfo(skb)->gso_size ?: skb->len;
463c84b9
ACM
135 if (len >= icsk->icsk_ack.rcv_mss) {
136 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
137 } else {
138 /* Otherwise, we make more careful check taking into account,
139 * that SACKs block is variable.
140 *
141 * "len" is invariant segment length, including TCP header.
142 */
9c70220b 143 len += skb->data - skb_transport_header(skb);
1da177e4
LT
144 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
145 /* If PSH is not set, packet should be
146 * full sized, provided peer TCP is not badly broken.
147 * This observation (if it is correct 8)) allows
148 * to handle super-low mtu links fairly.
149 */
150 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
aa8223c7 151 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
1da177e4
LT
152 /* Subtract also invariant (if peer is RFC compliant),
153 * tcp header plus fixed timestamp option length.
154 * Resulting "len" is MSS free of SACK jitter.
155 */
463c84b9
ACM
156 len -= tcp_sk(sk)->tcp_header_len;
157 icsk->icsk_ack.last_seg_size = len;
1da177e4 158 if (len == lss) {
463c84b9 159 icsk->icsk_ack.rcv_mss = len;
1da177e4
LT
160 return;
161 }
162 }
1ef9696c
AK
163 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
463c84b9 165 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
1da177e4
LT
166 }
167}
168
463c84b9 169static void tcp_incr_quickack(struct sock *sk)
1da177e4 170{
463c84b9
ACM
171 struct inet_connection_sock *icsk = inet_csk(sk);
172 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
1da177e4
LT
173
174 if (quickacks==0)
175 quickacks=2;
463c84b9
ACM
176 if (quickacks > icsk->icsk_ack.quick)
177 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
1da177e4
LT
178}
179
463c84b9 180void tcp_enter_quickack_mode(struct sock *sk)
1da177e4 181{
463c84b9
ACM
182 struct inet_connection_sock *icsk = inet_csk(sk);
183 tcp_incr_quickack(sk);
184 icsk->icsk_ack.pingpong = 0;
185 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4
LT
186}
187
188/* Send ACKs quickly, if "quick" count is not exhausted
189 * and the session is not interactive.
190 */
191
463c84b9 192static inline int tcp_in_quickack_mode(const struct sock *sk)
1da177e4 193{
463c84b9
ACM
194 const struct inet_connection_sock *icsk = inet_csk(sk);
195 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
1da177e4
LT
196}
197
bdf1ee5d
IJ
198static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199{
200 if (tp->ecn_flags&TCP_ECN_OK)
201 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
202}
203
204static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205{
206 if (tcp_hdr(skb)->cwr)
207 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
208}
209
210static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211{
212 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
213}
214
215static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216{
217 if (tp->ecn_flags&TCP_ECN_OK) {
218 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
219 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
220 /* Funny extension: if ECT is not set on a segment,
221 * it is surely retransmit. It is not in ECN RFC,
222 * but Linux follows this rule. */
223 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
224 tcp_enter_quickack_mode((struct sock *)tp);
225 }
226}
227
228static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229{
230 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || th->cwr))
231 tp->ecn_flags &= ~TCP_ECN_OK;
232}
233
234static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235{
236 if ((tp->ecn_flags&TCP_ECN_OK) && (!th->ece || !th->cwr))
237 tp->ecn_flags &= ~TCP_ECN_OK;
238}
239
240static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241{
242 if (th->ece && !th->syn && (tp->ecn_flags&TCP_ECN_OK))
243 return 1;
244 return 0;
245}
246
1da177e4
LT
247/* Buffer size and advertised window tuning.
248 *
249 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
250 */
251
252static void tcp_fixup_sndbuf(struct sock *sk)
253{
254 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
255 sizeof(struct sk_buff);
256
257 if (sk->sk_sndbuf < 3 * sndmem)
258 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
259}
260
261/* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 *
263 * All tcp_full_space() is split to two parts: "network" buffer, allocated
264 * forward and advertised in receiver window (tp->rcv_wnd) and
265 * "application buffer", required to isolate scheduling/application
266 * latencies from network.
267 * window_clamp is maximal advertised window. It can be less than
268 * tcp_full_space(), in this case tcp_full_space() - window_clamp
269 * is reserved for "application" buffer. The less window_clamp is
270 * the smoother our behaviour from viewpoint of network, but the lower
271 * throughput and the higher sensitivity of the connection to losses. 8)
272 *
273 * rcv_ssthresh is more strict window_clamp used at "slow start"
274 * phase to predict further behaviour of this connection.
275 * It is used for two goals:
276 * - to enforce header prediction at sender, even when application
277 * requires some significant "application buffer". It is check #1.
278 * - to prevent pruning of receive queue because of misprediction
279 * of receiver window. Check #2.
280 *
281 * The scheme does not work when sender sends good segments opening
caa20d9a 282 * window and then starts to feed us spaghetti. But it should work
1da177e4
LT
283 * in common situations. Otherwise, we have to rely on queue collapsing.
284 */
285
286/* Slow part of check#2. */
9e412ba7 287static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
1da177e4 288{
9e412ba7 289 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
290 /* Optimize this! */
291 int truesize = tcp_win_from_space(skb->truesize)/2;
326f36e9 292 int window = tcp_win_from_space(sysctl_tcp_rmem[2])/2;
1da177e4
LT
293
294 while (tp->rcv_ssthresh <= window) {
295 if (truesize <= skb->len)
463c84b9 296 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
1da177e4
LT
297
298 truesize >>= 1;
299 window >>= 1;
300 }
301 return 0;
302}
303
9e412ba7 304static void tcp_grow_window(struct sock *sk,
40efc6fa 305 struct sk_buff *skb)
1da177e4 306{
9e412ba7
IJ
307 struct tcp_sock *tp = tcp_sk(sk);
308
1da177e4
LT
309 /* Check #1 */
310 if (tp->rcv_ssthresh < tp->window_clamp &&
311 (int)tp->rcv_ssthresh < tcp_space(sk) &&
312 !tcp_memory_pressure) {
313 int incr;
314
315 /* Check #2. Increase window, if skb with such overhead
316 * will fit to rcvbuf in future.
317 */
318 if (tcp_win_from_space(skb->truesize) <= skb->len)
319 incr = 2*tp->advmss;
320 else
9e412ba7 321 incr = __tcp_grow_window(sk, skb);
1da177e4
LT
322
323 if (incr) {
324 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr, tp->window_clamp);
463c84b9 325 inet_csk(sk)->icsk_ack.quick |= 1;
1da177e4
LT
326 }
327 }
328}
329
330/* 3. Tuning rcvbuf, when connection enters established state. */
331
332static void tcp_fixup_rcvbuf(struct sock *sk)
333{
334 struct tcp_sock *tp = tcp_sk(sk);
335 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336
337 /* Try to select rcvbuf so that 4 mss-sized segments
caa20d9a 338 * will fit to window and corresponding skbs will fit to our rcvbuf.
1da177e4
LT
339 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 */
341 while (tcp_win_from_space(rcvmem) < tp->advmss)
342 rcvmem += 128;
343 if (sk->sk_rcvbuf < 4 * rcvmem)
344 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
345}
346
caa20d9a 347/* 4. Try to fixup all. It is made immediately after connection enters
1da177e4
LT
348 * established state.
349 */
350static void tcp_init_buffer_space(struct sock *sk)
351{
352 struct tcp_sock *tp = tcp_sk(sk);
353 int maxwin;
354
355 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
356 tcp_fixup_rcvbuf(sk);
357 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
358 tcp_fixup_sndbuf(sk);
359
360 tp->rcvq_space.space = tp->rcv_wnd;
361
362 maxwin = tcp_full_space(sk);
363
364 if (tp->window_clamp >= maxwin) {
365 tp->window_clamp = maxwin;
366
367 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
368 tp->window_clamp = max(maxwin -
369 (maxwin >> sysctl_tcp_app_win),
370 4 * tp->advmss);
371 }
372
373 /* Force reservation of one segment. */
374 if (sysctl_tcp_app_win &&
375 tp->window_clamp > 2 * tp->advmss &&
376 tp->window_clamp + tp->advmss > maxwin)
377 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378
379 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
380 tp->snd_cwnd_stamp = tcp_time_stamp;
381}
382
1da177e4 383/* 5. Recalculate window clamp after socket hit its memory bounds. */
9e412ba7 384static void tcp_clamp_window(struct sock *sk)
1da177e4 385{
9e412ba7 386 struct tcp_sock *tp = tcp_sk(sk);
6687e988 387 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 388
6687e988 389 icsk->icsk_ack.quick = 0;
1da177e4 390
326f36e9
JH
391 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
392 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
393 !tcp_memory_pressure &&
394 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
395 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
396 sysctl_tcp_rmem[2]);
1da177e4 397 }
326f36e9 398 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
1da177e4 399 tp->rcv_ssthresh = min(tp->window_clamp, 2U*tp->advmss);
1da177e4
LT
400}
401
40efc6fa
SH
402
403/* Initialize RCV_MSS value.
404 * RCV_MSS is an our guess about MSS used by the peer.
405 * We haven't any direct information about the MSS.
406 * It's better to underestimate the RCV_MSS rather than overestimate.
407 * Overestimations make us ACKing less frequently than needed.
408 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
409 */
410void tcp_initialize_rcv_mss(struct sock *sk)
411{
412 struct tcp_sock *tp = tcp_sk(sk);
413 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
414
415 hint = min(hint, tp->rcv_wnd/2);
416 hint = min(hint, TCP_MIN_RCVMSS);
417 hint = max(hint, TCP_MIN_MSS);
418
419 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420}
421
1da177e4
LT
422/* Receiver "autotuning" code.
423 *
424 * The algorithm for RTT estimation w/o timestamps is based on
425 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
426 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
427 *
428 * More detail on this code can be found at
429 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
430 * though this reference is out of date. A new paper
431 * is pending.
432 */
433static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
434{
435 u32 new_sample = tp->rcv_rtt_est.rtt;
436 long m = sample;
437
438 if (m == 0)
439 m = 1;
440
441 if (new_sample != 0) {
442 /* If we sample in larger samples in the non-timestamp
443 * case, we could grossly overestimate the RTT especially
444 * with chatty applications or bulk transfer apps which
445 * are stalled on filesystem I/O.
446 *
447 * Also, since we are only going for a minimum in the
31f34269 448 * non-timestamp case, we do not smooth things out
caa20d9a 449 * else with timestamps disabled convergence takes too
1da177e4
LT
450 * long.
451 */
452 if (!win_dep) {
453 m -= (new_sample >> 3);
454 new_sample += m;
455 } else if (m < new_sample)
456 new_sample = m << 3;
457 } else {
caa20d9a 458 /* No previous measure. */
1da177e4
LT
459 new_sample = m << 3;
460 }
461
462 if (tp->rcv_rtt_est.rtt != new_sample)
463 tp->rcv_rtt_est.rtt = new_sample;
464}
465
466static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
467{
468 if (tp->rcv_rtt_est.time == 0)
469 goto new_measure;
470 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
471 return;
472 tcp_rcv_rtt_update(tp,
473 jiffies - tp->rcv_rtt_est.time,
474 1);
475
476new_measure:
477 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
478 tp->rcv_rtt_est.time = tcp_time_stamp;
479}
480
463c84b9 481static inline void tcp_rcv_rtt_measure_ts(struct sock *sk, const struct sk_buff *skb)
1da177e4 482{
463c84b9 483 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
484 if (tp->rx_opt.rcv_tsecr &&
485 (TCP_SKB_CB(skb)->end_seq -
463c84b9 486 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
1da177e4
LT
487 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488}
489
490/*
491 * This function should be called every time data is copied to user space.
492 * It calculates the appropriate TCP receive buffer space.
493 */
494void tcp_rcv_space_adjust(struct sock *sk)
495{
496 struct tcp_sock *tp = tcp_sk(sk);
497 int time;
498 int space;
e905a9ed 499
1da177e4
LT
500 if (tp->rcvq_space.time == 0)
501 goto new_measure;
e905a9ed 502
1da177e4
LT
503 time = tcp_time_stamp - tp->rcvq_space.time;
504 if (time < (tp->rcv_rtt_est.rtt >> 3) ||
505 tp->rcv_rtt_est.rtt == 0)
506 return;
e905a9ed 507
1da177e4
LT
508 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
509
510 space = max(tp->rcvq_space.space, space);
511
512 if (tp->rcvq_space.space != space) {
513 int rcvmem;
514
515 tp->rcvq_space.space = space;
516
6fcf9412
JH
517 if (sysctl_tcp_moderate_rcvbuf &&
518 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
1da177e4
LT
519 int new_clamp = space;
520
521 /* Receive space grows, normalize in order to
522 * take into account packet headers and sk_buff
523 * structure overhead.
524 */
525 space /= tp->advmss;
526 if (!space)
527 space = 1;
528 rcvmem = (tp->advmss + MAX_TCP_HEADER +
529 16 + sizeof(struct sk_buff));
530 while (tcp_win_from_space(rcvmem) < tp->advmss)
531 rcvmem += 128;
532 space *= rcvmem;
533 space = min(space, sysctl_tcp_rmem[2]);
534 if (space > sk->sk_rcvbuf) {
535 sk->sk_rcvbuf = space;
536
537 /* Make the window clamp follow along. */
538 tp->window_clamp = new_clamp;
539 }
540 }
541 }
e905a9ed 542
1da177e4
LT
543new_measure:
544 tp->rcvq_space.seq = tp->copied_seq;
545 tp->rcvq_space.time = tcp_time_stamp;
546}
547
548/* There is something which you must keep in mind when you analyze the
549 * behavior of the tp->ato delayed ack timeout interval. When a
550 * connection starts up, we want to ack as quickly as possible. The
551 * problem is that "good" TCP's do slow start at the beginning of data
552 * transmission. The means that until we send the first few ACK's the
553 * sender will sit on his end and only queue most of his data, because
554 * he can only send snd_cwnd unacked packets at any given time. For
555 * each ACK we send, he increments snd_cwnd and transmits more of his
556 * queue. -DaveM
557 */
9e412ba7 558static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
1da177e4 559{
9e412ba7 560 struct tcp_sock *tp = tcp_sk(sk);
463c84b9 561 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
562 u32 now;
563
463c84b9 564 inet_csk_schedule_ack(sk);
1da177e4 565
463c84b9 566 tcp_measure_rcv_mss(sk, skb);
1da177e4
LT
567
568 tcp_rcv_rtt_measure(tp);
e905a9ed 569
1da177e4
LT
570 now = tcp_time_stamp;
571
463c84b9 572 if (!icsk->icsk_ack.ato) {
1da177e4
LT
573 /* The _first_ data packet received, initialize
574 * delayed ACK engine.
575 */
463c84b9
ACM
576 tcp_incr_quickack(sk);
577 icsk->icsk_ack.ato = TCP_ATO_MIN;
1da177e4 578 } else {
463c84b9 579 int m = now - icsk->icsk_ack.lrcvtime;
1da177e4
LT
580
581 if (m <= TCP_ATO_MIN/2) {
582 /* The fastest case is the first. */
463c84b9
ACM
583 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
584 } else if (m < icsk->icsk_ack.ato) {
585 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
586 if (icsk->icsk_ack.ato > icsk->icsk_rto)
587 icsk->icsk_ack.ato = icsk->icsk_rto;
588 } else if (m > icsk->icsk_rto) {
caa20d9a 589 /* Too long gap. Apparently sender failed to
1da177e4
LT
590 * restart window, so that we send ACKs quickly.
591 */
463c84b9 592 tcp_incr_quickack(sk);
1da177e4
LT
593 sk_stream_mem_reclaim(sk);
594 }
595 }
463c84b9 596 icsk->icsk_ack.lrcvtime = now;
1da177e4
LT
597
598 TCP_ECN_check_ce(tp, skb);
599
600 if (skb->len >= 128)
9e412ba7 601 tcp_grow_window(sk, skb);
1da177e4
LT
602}
603
05bb1fad
DM
604static u32 tcp_rto_min(struct sock *sk)
605{
606 struct dst_entry *dst = __sk_dst_get(sk);
607 u32 rto_min = TCP_RTO_MIN;
608
5c127c58 609 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
05bb1fad
DM
610 rto_min = dst->metrics[RTAX_RTO_MIN-1];
611 return rto_min;
612}
613
1da177e4
LT
614/* Called to compute a smoothed rtt estimate. The data fed to this
615 * routine either comes from timestamps, or from segments that were
616 * known _not_ to have been retransmitted [see Karn/Partridge
617 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
618 * piece by Van Jacobson.
619 * NOTE: the next three routines used to be one big routine.
620 * To save cycles in the RFC 1323 implementation it was better to break
621 * it up into three procedures. -- erics
622 */
2d2abbab 623static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
1da177e4 624{
6687e988 625 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
626 long m = mrtt; /* RTT */
627
1da177e4
LT
628 /* The following amusing code comes from Jacobson's
629 * article in SIGCOMM '88. Note that rtt and mdev
630 * are scaled versions of rtt and mean deviation.
e905a9ed 631 * This is designed to be as fast as possible
1da177e4
LT
632 * m stands for "measurement".
633 *
634 * On a 1990 paper the rto value is changed to:
635 * RTO = rtt + 4 * mdev
636 *
637 * Funny. This algorithm seems to be very broken.
638 * These formulae increase RTO, when it should be decreased, increase
31f34269 639 * too slowly, when it should be increased quickly, decrease too quickly
1da177e4
LT
640 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
641 * does not matter how to _calculate_ it. Seems, it was trap
642 * that VJ failed to avoid. 8)
643 */
2de979bd 644 if (m == 0)
1da177e4
LT
645 m = 1;
646 if (tp->srtt != 0) {
647 m -= (tp->srtt >> 3); /* m is now error in rtt est */
648 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
649 if (m < 0) {
650 m = -m; /* m is now abs(error) */
651 m -= (tp->mdev >> 2); /* similar update on mdev */
652 /* This is similar to one of Eifel findings.
653 * Eifel blocks mdev updates when rtt decreases.
654 * This solution is a bit different: we use finer gain
655 * for mdev in this case (alpha*beta).
656 * Like Eifel it also prevents growth of rto,
657 * but also it limits too fast rto decreases,
658 * happening in pure Eifel.
659 */
660 if (m > 0)
661 m >>= 3;
662 } else {
663 m -= (tp->mdev >> 2); /* similar update on mdev */
664 }
665 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
666 if (tp->mdev > tp->mdev_max) {
667 tp->mdev_max = tp->mdev;
668 if (tp->mdev_max > tp->rttvar)
669 tp->rttvar = tp->mdev_max;
670 }
671 if (after(tp->snd_una, tp->rtt_seq)) {
672 if (tp->mdev_max < tp->rttvar)
673 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
674 tp->rtt_seq = tp->snd_nxt;
05bb1fad 675 tp->mdev_max = tcp_rto_min(sk);
1da177e4
LT
676 }
677 } else {
678 /* no previous measure. */
679 tp->srtt = m<<3; /* take the measured time to be rtt */
680 tp->mdev = m<<1; /* make sure rto = 3*rtt */
05bb1fad 681 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
1da177e4
LT
682 tp->rtt_seq = tp->snd_nxt;
683 }
1da177e4
LT
684}
685
686/* Calculate rto without backoff. This is the second half of Van Jacobson's
687 * routine referred to above.
688 */
463c84b9 689static inline void tcp_set_rto(struct sock *sk)
1da177e4 690{
463c84b9 691 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
692 /* Old crap is replaced with new one. 8)
693 *
694 * More seriously:
695 * 1. If rtt variance happened to be less 50msec, it is hallucination.
696 * It cannot be less due to utterly erratic ACK generation made
697 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
698 * to do with delayed acks, because at cwnd>2 true delack timeout
699 * is invisible. Actually, Linux-2.4 also generates erratic
caa20d9a 700 * ACKs in some circumstances.
1da177e4 701 */
463c84b9 702 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
1da177e4
LT
703
704 /* 2. Fixups made earlier cannot be right.
705 * If we do not estimate RTO correctly without them,
706 * all the algo is pure shit and should be replaced
caa20d9a 707 * with correct one. It is exactly, which we pretend to do.
1da177e4
LT
708 */
709}
710
711/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
712 * guarantees that rto is higher.
713 */
463c84b9 714static inline void tcp_bound_rto(struct sock *sk)
1da177e4 715{
463c84b9
ACM
716 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
717 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
1da177e4
LT
718}
719
720/* Save metrics learned by this TCP session.
721 This function is called only, when TCP finishes successfully
722 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
723 */
724void tcp_update_metrics(struct sock *sk)
725{
726 struct tcp_sock *tp = tcp_sk(sk);
727 struct dst_entry *dst = __sk_dst_get(sk);
728
729 if (sysctl_tcp_nometrics_save)
730 return;
731
732 dst_confirm(dst);
733
734 if (dst && (dst->flags&DST_HOST)) {
6687e988 735 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
736 int m;
737
6687e988 738 if (icsk->icsk_backoff || !tp->srtt) {
1da177e4
LT
739 /* This session failed to estimate rtt. Why?
740 * Probably, no packets returned in time.
741 * Reset our results.
742 */
743 if (!(dst_metric_locked(dst, RTAX_RTT)))
744 dst->metrics[RTAX_RTT-1] = 0;
745 return;
746 }
747
748 m = dst_metric(dst, RTAX_RTT) - tp->srtt;
749
750 /* If newly calculated rtt larger than stored one,
751 * store new one. Otherwise, use EWMA. Remember,
752 * rtt overestimation is always better than underestimation.
753 */
754 if (!(dst_metric_locked(dst, RTAX_RTT))) {
755 if (m <= 0)
756 dst->metrics[RTAX_RTT-1] = tp->srtt;
757 else
758 dst->metrics[RTAX_RTT-1] -= (m>>3);
759 }
760
761 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
762 if (m < 0)
763 m = -m;
764
765 /* Scale deviation to rttvar fixed point */
766 m >>= 1;
767 if (m < tp->mdev)
768 m = tp->mdev;
769
770 if (m >= dst_metric(dst, RTAX_RTTVAR))
771 dst->metrics[RTAX_RTTVAR-1] = m;
772 else
773 dst->metrics[RTAX_RTTVAR-1] -=
774 (dst->metrics[RTAX_RTTVAR-1] - m)>>2;
775 }
776
777 if (tp->snd_ssthresh >= 0xFFFF) {
778 /* Slow start still did not finish. */
779 if (dst_metric(dst, RTAX_SSTHRESH) &&
780 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
781 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
782 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
783 if (!dst_metric_locked(dst, RTAX_CWND) &&
784 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
785 dst->metrics[RTAX_CWND-1] = tp->snd_cwnd;
786 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
6687e988 787 icsk->icsk_ca_state == TCP_CA_Open) {
1da177e4
LT
788 /* Cong. avoidance phase, cwnd is reliable. */
789 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
790 dst->metrics[RTAX_SSTHRESH-1] =
791 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
792 if (!dst_metric_locked(dst, RTAX_CWND))
793 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_cwnd) >> 1;
794 } else {
795 /* Else slow start did not finish, cwnd is non-sense,
796 ssthresh may be also invalid.
797 */
798 if (!dst_metric_locked(dst, RTAX_CWND))
799 dst->metrics[RTAX_CWND-1] = (dst->metrics[RTAX_CWND-1] + tp->snd_ssthresh) >> 1;
800 if (dst->metrics[RTAX_SSTHRESH-1] &&
801 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
802 tp->snd_ssthresh > dst->metrics[RTAX_SSTHRESH-1])
803 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
804 }
805
806 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
807 if (dst->metrics[RTAX_REORDERING-1] < tp->reordering &&
808 tp->reordering != sysctl_tcp_reordering)
809 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
810 }
811 }
812}
813
26722873
DM
814/* Numbers are taken from RFC3390.
815 *
816 * John Heffner states:
817 *
818 * The RFC specifies a window of no more than 4380 bytes
819 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
820 * is a bit misleading because they use a clamp at 4380 bytes
821 * rather than use a multiplier in the relevant range.
822 */
1da177e4
LT
823__u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
824{
825 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
826
827 if (!cwnd) {
c1b4a7e6 828 if (tp->mss_cache > 1460)
1da177e4
LT
829 cwnd = 2;
830 else
c1b4a7e6 831 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
1da177e4
LT
832 }
833 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
834}
835
40efc6fa 836/* Set slow start threshold and cwnd not falling to slow start */
3cfe3baa 837void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
40efc6fa
SH
838{
839 struct tcp_sock *tp = tcp_sk(sk);
3cfe3baa 840 const struct inet_connection_sock *icsk = inet_csk(sk);
40efc6fa
SH
841
842 tp->prior_ssthresh = 0;
843 tp->bytes_acked = 0;
e01f9d77 844 if (icsk->icsk_ca_state < TCP_CA_CWR) {
40efc6fa 845 tp->undo_marker = 0;
3cfe3baa
IJ
846 if (set_ssthresh)
847 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
40efc6fa
SH
848 tp->snd_cwnd = min(tp->snd_cwnd,
849 tcp_packets_in_flight(tp) + 1U);
850 tp->snd_cwnd_cnt = 0;
851 tp->high_seq = tp->snd_nxt;
852 tp->snd_cwnd_stamp = tcp_time_stamp;
853 TCP_ECN_queue_cwr(tp);
854
855 tcp_set_ca_state(sk, TCP_CA_CWR);
856 }
857}
858
e60402d0
IJ
859/*
860 * Packet counting of FACK is based on in-order assumptions, therefore TCP
861 * disables it when reordering is detected
862 */
863static void tcp_disable_fack(struct tcp_sock *tp)
864{
865 tp->rx_opt.sack_ok &= ~2;
866}
867
868/* Take a notice that peer is sending DSACKs */
869static void tcp_dsack_seen(struct tcp_sock *tp)
870{
871 tp->rx_opt.sack_ok |= 4;
872}
873
1da177e4
LT
874/* Initialize metrics on socket. */
875
876static void tcp_init_metrics(struct sock *sk)
877{
878 struct tcp_sock *tp = tcp_sk(sk);
879 struct dst_entry *dst = __sk_dst_get(sk);
880
881 if (dst == NULL)
882 goto reset;
883
884 dst_confirm(dst);
885
886 if (dst_metric_locked(dst, RTAX_CWND))
887 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
888 if (dst_metric(dst, RTAX_SSTHRESH)) {
889 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
890 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
891 tp->snd_ssthresh = tp->snd_cwnd_clamp;
892 }
893 if (dst_metric(dst, RTAX_REORDERING) &&
894 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
e60402d0 895 tcp_disable_fack(tp);
1da177e4
LT
896 tp->reordering = dst_metric(dst, RTAX_REORDERING);
897 }
898
899 if (dst_metric(dst, RTAX_RTT) == 0)
900 goto reset;
901
902 if (!tp->srtt && dst_metric(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
903 goto reset;
904
905 /* Initial rtt is determined from SYN,SYN-ACK.
906 * The segment is small and rtt may appear much
907 * less than real one. Use per-dst memory
908 * to make it more realistic.
909 *
910 * A bit of theory. RTT is time passed after "normal" sized packet
caa20d9a 911 * is sent until it is ACKed. In normal circumstances sending small
1da177e4
LT
912 * packets force peer to delay ACKs and calculation is correct too.
913 * The algorithm is adaptive and, provided we follow specs, it
914 * NEVER underestimate RTT. BUT! If peer tries to make some clever
915 * tricks sort of "quick acks" for time long enough to decrease RTT
916 * to low value, and then abruptly stops to do it and starts to delay
917 * ACKs, wait for troubles.
918 */
919 if (dst_metric(dst, RTAX_RTT) > tp->srtt) {
920 tp->srtt = dst_metric(dst, RTAX_RTT);
921 tp->rtt_seq = tp->snd_nxt;
922 }
923 if (dst_metric(dst, RTAX_RTTVAR) > tp->mdev) {
924 tp->mdev = dst_metric(dst, RTAX_RTTVAR);
925 tp->mdev_max = tp->rttvar = max(tp->mdev, TCP_RTO_MIN);
926 }
463c84b9
ACM
927 tcp_set_rto(sk);
928 tcp_bound_rto(sk);
929 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
1da177e4
LT
930 goto reset;
931 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
932 tp->snd_cwnd_stamp = tcp_time_stamp;
933 return;
934
935reset:
936 /* Play conservative. If timestamps are not
937 * supported, TCP will fail to recalculate correct
938 * rtt, if initial rto is too small. FORGET ALL AND RESET!
939 */
940 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
941 tp->srtt = 0;
942 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
463c84b9 943 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
1da177e4
LT
944 }
945}
946
6687e988
ACM
947static void tcp_update_reordering(struct sock *sk, const int metric,
948 const int ts)
1da177e4 949{
6687e988 950 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
951 if (metric > tp->reordering) {
952 tp->reordering = min(TCP_MAX_REORDERING, metric);
953
954 /* This exciting event is worth to be remembered. 8) */
955 if (ts)
956 NET_INC_STATS_BH(LINUX_MIB_TCPTSREORDER);
e60402d0 957 else if (tcp_is_reno(tp))
1da177e4 958 NET_INC_STATS_BH(LINUX_MIB_TCPRENOREORDER);
e60402d0 959 else if (tcp_is_fack(tp))
1da177e4
LT
960 NET_INC_STATS_BH(LINUX_MIB_TCPFACKREORDER);
961 else
962 NET_INC_STATS_BH(LINUX_MIB_TCPSACKREORDER);
963#if FASTRETRANS_DEBUG > 1
964 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
6687e988 965 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1da177e4
LT
966 tp->reordering,
967 tp->fackets_out,
968 tp->sacked_out,
969 tp->undo_marker ? tp->undo_retrans : 0);
970#endif
e60402d0 971 tcp_disable_fack(tp);
1da177e4
LT
972 }
973}
974
975/* This procedure tags the retransmission queue when SACKs arrive.
976 *
977 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
978 * Packets in queue with these bits set are counted in variables
979 * sacked_out, retrans_out and lost_out, correspondingly.
980 *
981 * Valid combinations are:
982 * Tag InFlight Description
983 * 0 1 - orig segment is in flight.
984 * S 0 - nothing flies, orig reached receiver.
985 * L 0 - nothing flies, orig lost by net.
986 * R 2 - both orig and retransmit are in flight.
987 * L|R 1 - orig is lost, retransmit is in flight.
988 * S|R 1 - orig reached receiver, retrans is still in flight.
989 * (L|S|R is logically valid, it could occur when L|R is sacked,
990 * but it is equivalent to plain S and code short-curcuits it to S.
991 * L|S is logically invalid, it would mean -1 packet in flight 8))
992 *
993 * These 6 states form finite state machine, controlled by the following events:
994 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
995 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
996 * 3. Loss detection event of one of three flavors:
997 * A. Scoreboard estimator decided the packet is lost.
998 * A'. Reno "three dupacks" marks head of queue lost.
999 * A''. Its FACK modfication, head until snd.fack is lost.
1000 * B. SACK arrives sacking data transmitted after never retransmitted
1001 * hole was sent out.
1002 * C. SACK arrives sacking SND.NXT at the moment, when the
1003 * segment was retransmitted.
1004 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1005 *
1006 * It is pleasant to note, that state diagram turns out to be commutative,
1007 * so that we are allowed not to be bothered by order of our actions,
1008 * when multiple events arrive simultaneously. (see the function below).
1009 *
1010 * Reordering detection.
1011 * --------------------
1012 * Reordering metric is maximal distance, which a packet can be displaced
1013 * in packet stream. With SACKs we can estimate it:
1014 *
1015 * 1. SACK fills old hole and the corresponding segment was not
1016 * ever retransmitted -> reordering. Alas, we cannot use it
1017 * when segment was retransmitted.
1018 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1019 * for retransmitted and already SACKed segment -> reordering..
1020 * Both of these heuristics are not used in Loss state, when we cannot
1021 * account for retransmits accurately.
1022 */
d06e021d
DM
1023static int tcp_check_dsack(struct tcp_sock *tp, struct sk_buff *ack_skb,
1024 struct tcp_sack_block_wire *sp, int num_sacks,
1025 u32 prior_snd_una)
1026{
1027 u32 start_seq_0 = ntohl(get_unaligned(&sp[0].start_seq));
1028 u32 end_seq_0 = ntohl(get_unaligned(&sp[0].end_seq));
1029 int dup_sack = 0;
1030
1031 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1032 dup_sack = 1;
e60402d0 1033 tcp_dsack_seen(tp);
d06e021d
DM
1034 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKRECV);
1035 } else if (num_sacks > 1) {
1036 u32 end_seq_1 = ntohl(get_unaligned(&sp[1].end_seq));
1037 u32 start_seq_1 = ntohl(get_unaligned(&sp[1].start_seq));
1038
1039 if (!after(end_seq_0, end_seq_1) &&
1040 !before(start_seq_0, start_seq_1)) {
1041 dup_sack = 1;
e60402d0 1042 tcp_dsack_seen(tp);
d06e021d
DM
1043 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFORECV);
1044 }
1045 }
1046
1047 /* D-SACK for already forgotten data... Do dumb counting. */
1048 if (dup_sack &&
1049 !after(end_seq_0, prior_snd_una) &&
1050 after(end_seq_0, tp->undo_marker))
1051 tp->undo_retrans--;
1052
1053 return dup_sack;
1054}
1055
1da177e4
LT
1056static int
1057tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb, u32 prior_snd_una)
1058{
6687e988 1059 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 1060 struct tcp_sock *tp = tcp_sk(sk);
9c70220b
ACM
1061 unsigned char *ptr = (skb_transport_header(ack_skb) +
1062 TCP_SKB_CB(ack_skb)->sacked);
269bd27e 1063 struct tcp_sack_block_wire *sp = (struct tcp_sack_block_wire *)(ptr+2);
fda03fbb 1064 struct sk_buff *cached_skb;
1da177e4
LT
1065 int num_sacks = (ptr[1] - TCPOLEN_SACK_BASE)>>3;
1066 int reord = tp->packets_out;
1067 int prior_fackets;
1068 u32 lost_retrans = 0;
1069 int flag = 0;
7769f406 1070 int found_dup_sack = 0;
fda03fbb 1071 int cached_fack_count;
1da177e4 1072 int i;
fda03fbb 1073 int first_sack_index;
1da177e4 1074
d738cd8f 1075 if (!tp->sacked_out) {
1da177e4 1076 tp->fackets_out = 0;
d738cd8f
IJ
1077 tp->highest_sack = tp->snd_una;
1078 }
1da177e4
LT
1079 prior_fackets = tp->fackets_out;
1080
d06e021d
DM
1081 found_dup_sack = tcp_check_dsack(tp, ack_skb, sp,
1082 num_sacks, prior_snd_una);
1083 if (found_dup_sack)
49ff4bb4 1084 flag |= FLAG_DSACKING_ACK;
6f74651a
BE
1085
1086 /* Eliminate too old ACKs, but take into
1087 * account more or less fresh ones, they can
1088 * contain valid SACK info.
1089 */
1090 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1091 return 0;
1092
6a438bbe
SH
1093 /* SACK fastpath:
1094 * if the only SACK change is the increase of the end_seq of
1095 * the first block then only apply that SACK block
1096 * and use retrans queue hinting otherwise slowpath */
1097 flag = 1;
6f74651a
BE
1098 for (i = 0; i < num_sacks; i++) {
1099 __be32 start_seq = sp[i].start_seq;
1100 __be32 end_seq = sp[i].end_seq;
6a438bbe 1101
6f74651a 1102 if (i == 0) {
6a438bbe
SH
1103 if (tp->recv_sack_cache[i].start_seq != start_seq)
1104 flag = 0;
1105 } else {
1106 if ((tp->recv_sack_cache[i].start_seq != start_seq) ||
1107 (tp->recv_sack_cache[i].end_seq != end_seq))
1108 flag = 0;
1109 }
1110 tp->recv_sack_cache[i].start_seq = start_seq;
1111 tp->recv_sack_cache[i].end_seq = end_seq;
6a438bbe 1112 }
8a3c3a97
BE
1113 /* Clear the rest of the cache sack blocks so they won't match mistakenly. */
1114 for (; i < ARRAY_SIZE(tp->recv_sack_cache); i++) {
1115 tp->recv_sack_cache[i].start_seq = 0;
1116 tp->recv_sack_cache[i].end_seq = 0;
1117 }
6a438bbe 1118
fda03fbb 1119 first_sack_index = 0;
6a438bbe
SH
1120 if (flag)
1121 num_sacks = 1;
1122 else {
1123 int j;
1124 tp->fastpath_skb_hint = NULL;
1125
1126 /* order SACK blocks to allow in order walk of the retrans queue */
1127 for (i = num_sacks-1; i > 0; i--) {
1128 for (j = 0; j < i; j++){
1129 if (after(ntohl(sp[j].start_seq),
1130 ntohl(sp[j+1].start_seq))){
db3ccdac
BE
1131 struct tcp_sack_block_wire tmp;
1132
1133 tmp = sp[j];
1134 sp[j] = sp[j+1];
1135 sp[j+1] = tmp;
fda03fbb
BE
1136
1137 /* Track where the first SACK block goes to */
1138 if (j == first_sack_index)
1139 first_sack_index = j+1;
6a438bbe
SH
1140 }
1141
1142 }
1143 }
1144 }
1145
1146 /* clear flag as used for different purpose in following code */
1147 flag = 0;
1148
fda03fbb
BE
1149 /* Use SACK fastpath hint if valid */
1150 cached_skb = tp->fastpath_skb_hint;
1151 cached_fack_count = tp->fastpath_cnt_hint;
1152 if (!cached_skb) {
fe067e8a 1153 cached_skb = tcp_write_queue_head(sk);
fda03fbb
BE
1154 cached_fack_count = 0;
1155 }
1156
6a438bbe
SH
1157 for (i=0; i<num_sacks; i++, sp++) {
1158 struct sk_buff *skb;
1159 __u32 start_seq = ntohl(sp->start_seq);
1160 __u32 end_seq = ntohl(sp->end_seq);
1161 int fack_count;
7769f406 1162 int dup_sack = (found_dup_sack && (i == first_sack_index));
6a438bbe 1163
fda03fbb
BE
1164 skb = cached_skb;
1165 fack_count = cached_fack_count;
1da177e4
LT
1166
1167 /* Event "B" in the comment above. */
1168 if (after(end_seq, tp->high_seq))
1169 flag |= FLAG_DATA_LOST;
1170
fe067e8a 1171 tcp_for_write_queue_from(skb, sk) {
6475be16
DM
1172 int in_sack, pcount;
1173 u8 sacked;
1da177e4 1174
fe067e8a
DM
1175 if (skb == tcp_send_head(sk))
1176 break;
1177
fda03fbb
BE
1178 cached_skb = skb;
1179 cached_fack_count = fack_count;
1180 if (i == first_sack_index) {
1181 tp->fastpath_skb_hint = skb;
1182 tp->fastpath_cnt_hint = fack_count;
1183 }
6a438bbe 1184
1da177e4
LT
1185 /* The retransmission queue is always in order, so
1186 * we can short-circuit the walk early.
1187 */
6475be16 1188 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1da177e4
LT
1189 break;
1190
3c05d92e
HX
1191 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1192 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1193
6475be16
DM
1194 pcount = tcp_skb_pcount(skb);
1195
3c05d92e
HX
1196 if (pcount > 1 && !in_sack &&
1197 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
6475be16
DM
1198 unsigned int pkt_len;
1199
3c05d92e
HX
1200 in_sack = !after(start_seq,
1201 TCP_SKB_CB(skb)->seq);
1202
1203 if (!in_sack)
6475be16
DM
1204 pkt_len = (start_seq -
1205 TCP_SKB_CB(skb)->seq);
1206 else
1207 pkt_len = (end_seq -
1208 TCP_SKB_CB(skb)->seq);
7967168c 1209 if (tcp_fragment(sk, skb, pkt_len, skb_shinfo(skb)->gso_size))
6475be16
DM
1210 break;
1211 pcount = tcp_skb_pcount(skb);
1212 }
1213
1214 fack_count += pcount;
1da177e4 1215
6475be16
DM
1216 sacked = TCP_SKB_CB(skb)->sacked;
1217
1da177e4
LT
1218 /* Account D-SACK for retransmitted packet. */
1219 if ((dup_sack && in_sack) &&
1220 (sacked & TCPCB_RETRANS) &&
1221 after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1222 tp->undo_retrans--;
1223
1224 /* The frame is ACKed. */
1225 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) {
1226 if (sacked&TCPCB_RETRANS) {
1227 if ((dup_sack && in_sack) &&
1228 (sacked&TCPCB_SACKED_ACKED))
1229 reord = min(fack_count, reord);
1230 } else {
1231 /* If it was in a hole, we detected reordering. */
1232 if (fack_count < prior_fackets &&
1233 !(sacked&TCPCB_SACKED_ACKED))
1234 reord = min(fack_count, reord);
1235 }
1236
1237 /* Nothing to do; acked frame is about to be dropped. */
1238 continue;
1239 }
1240
1241 if ((sacked&TCPCB_SACKED_RETRANS) &&
1242 after(end_seq, TCP_SKB_CB(skb)->ack_seq) &&
1243 (!lost_retrans || after(end_seq, lost_retrans)))
1244 lost_retrans = end_seq;
1245
1246 if (!in_sack)
1247 continue;
1248
1249 if (!(sacked&TCPCB_SACKED_ACKED)) {
1250 if (sacked & TCPCB_SACKED_RETRANS) {
1251 /* If the segment is not tagged as lost,
1252 * we do not clear RETRANS, believing
1253 * that retransmission is still in flight.
1254 */
1255 if (sacked & TCPCB_LOST) {
1256 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1257 tp->lost_out -= tcp_skb_pcount(skb);
1258 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1259
1260 /* clear lost hint */
1261 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1262 }
1263 } else {
1264 /* New sack for not retransmitted frame,
1265 * which was in hole. It is reordering.
1266 */
1267 if (!(sacked & TCPCB_RETRANS) &&
1268 fack_count < prior_fackets)
1269 reord = min(fack_count, reord);
1270
1271 if (sacked & TCPCB_LOST) {
1272 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
1273 tp->lost_out -= tcp_skb_pcount(skb);
6a438bbe
SH
1274
1275 /* clear lost hint */
1276 tp->retransmit_skb_hint = NULL;
1da177e4 1277 }
4dc2665e
IJ
1278 /* SACK enhanced F-RTO detection.
1279 * Set flag if and only if non-rexmitted
1280 * segments below frto_highmark are
1281 * SACKed (RFC4138; Appendix B).
1282 * Clearing correct due to in-order walk
1283 */
1284 if (after(end_seq, tp->frto_highmark)) {
1285 flag &= ~FLAG_ONLY_ORIG_SACKED;
1286 } else {
1287 if (!(sacked & TCPCB_RETRANS))
1288 flag |= FLAG_ONLY_ORIG_SACKED;
1289 }
1da177e4
LT
1290 }
1291
1292 TCP_SKB_CB(skb)->sacked |= TCPCB_SACKED_ACKED;
1293 flag |= FLAG_DATA_SACKED;
1294 tp->sacked_out += tcp_skb_pcount(skb);
1295
1296 if (fack_count > tp->fackets_out)
1297 tp->fackets_out = fack_count;
d738cd8f
IJ
1298
1299 if (after(TCP_SKB_CB(skb)->seq,
1300 tp->highest_sack))
1301 tp->highest_sack = TCP_SKB_CB(skb)->seq;
1da177e4
LT
1302 } else {
1303 if (dup_sack && (sacked&TCPCB_RETRANS))
1304 reord = min(fack_count, reord);
1305 }
1306
1307 /* D-SACK. We can detect redundant retransmission
1308 * in S|R and plain R frames and clear it.
1309 * undo_retrans is decreased above, L|R frames
1310 * are accounted above as well.
1311 */
1312 if (dup_sack &&
1313 (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS)) {
1314 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1315 tp->retrans_out -= tcp_skb_pcount(skb);
6a438bbe 1316 tp->retransmit_skb_hint = NULL;
1da177e4
LT
1317 }
1318 }
1319 }
1320
1321 /* Check for lost retransmit. This superb idea is
1322 * borrowed from "ratehalving". Event "C".
1323 * Later note: FACK people cheated me again 8),
1324 * we have to account for reordering! Ugly,
1325 * but should help.
1326 */
6687e988 1327 if (lost_retrans && icsk->icsk_ca_state == TCP_CA_Recovery) {
1da177e4
LT
1328 struct sk_buff *skb;
1329
fe067e8a
DM
1330 tcp_for_write_queue(skb, sk) {
1331 if (skb == tcp_send_head(sk))
1332 break;
1da177e4
LT
1333 if (after(TCP_SKB_CB(skb)->seq, lost_retrans))
1334 break;
1335 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1336 continue;
1337 if ((TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) &&
1338 after(lost_retrans, TCP_SKB_CB(skb)->ack_seq) &&
e60402d0 1339 (tcp_is_fack(tp) ||
1da177e4
LT
1340 !before(lost_retrans,
1341 TCP_SKB_CB(skb)->ack_seq + tp->reordering *
c1b4a7e6 1342 tp->mss_cache))) {
1da177e4
LT
1343 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1344 tp->retrans_out -= tcp_skb_pcount(skb);
1345
6a438bbe
SH
1346 /* clear lost hint */
1347 tp->retransmit_skb_hint = NULL;
1348
1da177e4
LT
1349 if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1350 tp->lost_out += tcp_skb_pcount(skb);
1351 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1352 flag |= FLAG_DATA_SACKED;
1353 NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
1354 }
1355 }
1356 }
1357 }
1358
86426c22
IJ
1359 tcp_verify_left_out(tp);
1360
288035f9 1361 if ((reord < tp->fackets_out) && icsk->icsk_ca_state != TCP_CA_Loss &&
c5e7af0d 1362 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
6687e988 1363 tcp_update_reordering(sk, ((tp->fackets_out + 1) - reord), 0);
1da177e4
LT
1364
1365#if FASTRETRANS_DEBUG > 0
1366 BUG_TRAP((int)tp->sacked_out >= 0);
1367 BUG_TRAP((int)tp->lost_out >= 0);
1368 BUG_TRAP((int)tp->retrans_out >= 0);
1369 BUG_TRAP((int)tcp_packets_in_flight(tp) >= 0);
1370#endif
1371 return flag;
1372}
1373
575ee714
IJ
1374/* F-RTO can only be used if TCP has never retransmitted anything other than
1375 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
30935cf4 1376 */
4ddf6676
IJ
1377static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1378{
1379 struct tcp_sock *tp = tcp_sk(sk);
1380 u32 holes;
1381
1382 holes = max(tp->lost_out, 1U);
1383 holes = min(holes, tp->packets_out);
1384
1385 if ((tp->sacked_out + holes) > tp->packets_out) {
1386 tp->sacked_out = tp->packets_out - holes;
1387 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1388 }
1389}
1390
1391/* Emulate SACKs for SACKless connection: account for a new dupack. */
1392
1393static void tcp_add_reno_sack(struct sock *sk)
1394{
1395 struct tcp_sock *tp = tcp_sk(sk);
1396 tp->sacked_out++;
1397 tcp_check_reno_reordering(sk, 0);
005903bc 1398 tcp_verify_left_out(tp);
4ddf6676
IJ
1399}
1400
1401/* Account for ACK, ACKing some data in Reno Recovery phase. */
1402
1403static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1404{
1405 struct tcp_sock *tp = tcp_sk(sk);
1406
1407 if (acked > 0) {
1408 /* One ACK acked hole. The rest eat duplicate ACKs. */
1409 if (acked-1 >= tp->sacked_out)
1410 tp->sacked_out = 0;
1411 else
1412 tp->sacked_out -= acked-1;
1413 }
1414 tcp_check_reno_reordering(sk, acked);
005903bc 1415 tcp_verify_left_out(tp);
4ddf6676
IJ
1416}
1417
1418static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1419{
1420 tp->sacked_out = 0;
4ddf6676
IJ
1421}
1422
46d0de4e 1423int tcp_use_frto(struct sock *sk)
bdaae17d
IJ
1424{
1425 const struct tcp_sock *tp = tcp_sk(sk);
46d0de4e
IJ
1426 struct sk_buff *skb;
1427
575ee714 1428 if (!sysctl_tcp_frto)
46d0de4e 1429 return 0;
bdaae17d 1430
4dc2665e
IJ
1431 if (IsSackFrto())
1432 return 1;
1433
46d0de4e
IJ
1434 /* Avoid expensive walking of rexmit queue if possible */
1435 if (tp->retrans_out > 1)
1436 return 0;
1437
fe067e8a
DM
1438 skb = tcp_write_queue_head(sk);
1439 skb = tcp_write_queue_next(sk, skb); /* Skips head */
1440 tcp_for_write_queue_from(skb, sk) {
1441 if (skb == tcp_send_head(sk))
1442 break;
46d0de4e
IJ
1443 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1444 return 0;
1445 /* Short-circuit when first non-SACKed skb has been checked */
1446 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED))
1447 break;
1448 }
1449 return 1;
bdaae17d
IJ
1450}
1451
30935cf4
IJ
1452/* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
1453 * recovery a bit and use heuristics in tcp_process_frto() to detect if
d1a54c6a
IJ
1454 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
1455 * keep retrans_out counting accurate (with SACK F-RTO, other than head
1456 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
1457 * bits are handled if the Loss state is really to be entered (in
1458 * tcp_enter_frto_loss).
7487c48c
IJ
1459 *
1460 * Do like tcp_enter_loss() would; when RTO expires the second time it
1461 * does:
1462 * "Reduce ssthresh if it has not yet been made inside this window."
1da177e4
LT
1463 */
1464void tcp_enter_frto(struct sock *sk)
1465{
6687e988 1466 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1467 struct tcp_sock *tp = tcp_sk(sk);
1468 struct sk_buff *skb;
1469
7487c48c 1470 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
e905a9ed 1471 tp->snd_una == tp->high_seq ||
7487c48c
IJ
1472 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
1473 !icsk->icsk_retransmits)) {
6687e988 1474 tp->prior_ssthresh = tcp_current_ssthresh(sk);
66e93e45
IJ
1475 /* Our state is too optimistic in ssthresh() call because cwnd
1476 * is not reduced until tcp_enter_frto_loss() when previous FRTO
1477 * recovery has not yet completed. Pattern would be this: RTO,
1478 * Cumulative ACK, RTO (2xRTO for the same segment does not end
1479 * up here twice).
1480 * RFC4138 should be more specific on what to do, even though
1481 * RTO is quite unlikely to occur after the first Cumulative ACK
1482 * due to back-off and complexity of triggering events ...
1483 */
1484 if (tp->frto_counter) {
1485 u32 stored_cwnd;
1486 stored_cwnd = tp->snd_cwnd;
1487 tp->snd_cwnd = 2;
1488 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1489 tp->snd_cwnd = stored_cwnd;
1490 } else {
1491 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1492 }
1493 /* ... in theory, cong.control module could do "any tricks" in
1494 * ssthresh(), which means that ca_state, lost bits and lost_out
1495 * counter would have to be faked before the call occurs. We
1496 * consider that too expensive, unlikely and hacky, so modules
1497 * using these in ssthresh() must deal these incompatibility
1498 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
1499 */
6687e988 1500 tcp_ca_event(sk, CA_EVENT_FRTO);
1da177e4
LT
1501 }
1502
1da177e4
LT
1503 tp->undo_marker = tp->snd_una;
1504 tp->undo_retrans = 0;
1505
fe067e8a 1506 skb = tcp_write_queue_head(sk);
d1a54c6a 1507 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
522e7548 1508 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
d1a54c6a 1509 tp->retrans_out -= tcp_skb_pcount(skb);
1da177e4 1510 }
005903bc 1511 tcp_verify_left_out(tp);
1da177e4 1512
4dc2665e
IJ
1513 /* Earlier loss recovery underway (see RFC4138; Appendix B).
1514 * The last condition is necessary at least in tp->frto_counter case.
1515 */
1516 if (IsSackFrto() && (tp->frto_counter ||
1517 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
1518 after(tp->high_seq, tp->snd_una)) {
1519 tp->frto_highmark = tp->high_seq;
1520 } else {
1521 tp->frto_highmark = tp->snd_nxt;
1522 }
7b0eb22b
IJ
1523 tcp_set_ca_state(sk, TCP_CA_Disorder);
1524 tp->high_seq = tp->snd_nxt;
7487c48c 1525 tp->frto_counter = 1;
1da177e4
LT
1526}
1527
1528/* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
1529 * which indicates that we should follow the traditional RTO recovery,
1530 * i.e. mark everything lost and do go-back-N retransmission.
1531 */
d1a54c6a 1532static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
1da177e4
LT
1533{
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *skb;
1da177e4 1536
1da177e4 1537 tp->lost_out = 0;
d1a54c6a 1538 tp->retrans_out = 0;
e60402d0 1539 if (tcp_is_reno(tp))
9bff40fd 1540 tcp_reset_reno_sack(tp);
1da177e4 1541
fe067e8a
DM
1542 tcp_for_write_queue(skb, sk) {
1543 if (skb == tcp_send_head(sk))
1544 break;
d1a54c6a
IJ
1545 /*
1546 * Count the retransmission made on RTO correctly (only when
1547 * waiting for the first ACK and did not get it)...
1548 */
1549 if ((tp->frto_counter == 1) && !(flag&FLAG_DATA_ACKED)) {
0a9f2a46
IJ
1550 /* For some reason this R-bit might get cleared? */
1551 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
1552 tp->retrans_out += tcp_skb_pcount(skb);
d1a54c6a
IJ
1553 /* ...enter this if branch just for the first segment */
1554 flag |= FLAG_DATA_ACKED;
1555 } else {
1556 TCP_SKB_CB(skb)->sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1557 }
1da177e4 1558
9bff40fd
IJ
1559 /* Don't lost mark skbs that were fwd transmitted after RTO */
1560 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) &&
1561 !after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark)) {
1562 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1563 tp->lost_out += tcp_skb_pcount(skb);
1da177e4
LT
1564 }
1565 }
005903bc 1566 tcp_verify_left_out(tp);
1da177e4 1567
95c4922b 1568 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
1da177e4
LT
1569 tp->snd_cwnd_cnt = 0;
1570 tp->snd_cwnd_stamp = tcp_time_stamp;
1571 tp->undo_marker = 0;
1572 tp->frto_counter = 0;
1573
1574 tp->reordering = min_t(unsigned int, tp->reordering,
1575 sysctl_tcp_reordering);
6687e988 1576 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1577 tp->high_seq = tp->frto_highmark;
1578 TCP_ECN_queue_cwr(tp);
6a438bbe
SH
1579
1580 clear_all_retrans_hints(tp);
1da177e4
LT
1581}
1582
1583void tcp_clear_retrans(struct tcp_sock *tp)
1584{
1da177e4
LT
1585 tp->retrans_out = 0;
1586
1587 tp->fackets_out = 0;
1588 tp->sacked_out = 0;
1589 tp->lost_out = 0;
1590
1591 tp->undo_marker = 0;
1592 tp->undo_retrans = 0;
1593}
1594
1595/* Enter Loss state. If "how" is not zero, forget all SACK information
1596 * and reset tags completely, otherwise preserve SACKs. If receiver
1597 * dropped its ofo queue, we will know this due to reneging detection.
1598 */
1599void tcp_enter_loss(struct sock *sk, int how)
1600{
6687e988 1601 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1602 struct tcp_sock *tp = tcp_sk(sk);
1603 struct sk_buff *skb;
1604 int cnt = 0;
1605
1606 /* Reduce ssthresh if it has not yet been made inside this window. */
6687e988
ACM
1607 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
1608 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
1609 tp->prior_ssthresh = tcp_current_ssthresh(sk);
1610 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1611 tcp_ca_event(sk, CA_EVENT_LOSS);
1da177e4
LT
1612 }
1613 tp->snd_cwnd = 1;
1614 tp->snd_cwnd_cnt = 0;
1615 tp->snd_cwnd_stamp = tcp_time_stamp;
1616
9772efb9 1617 tp->bytes_acked = 0;
1da177e4
LT
1618 tcp_clear_retrans(tp);
1619
1620 /* Push undo marker, if it was plain RTO and nothing
1621 * was retransmitted. */
1622 if (!how)
1623 tp->undo_marker = tp->snd_una;
1624
fe067e8a
DM
1625 tcp_for_write_queue(skb, sk) {
1626 if (skb == tcp_send_head(sk))
1627 break;
1da177e4
LT
1628 cnt += tcp_skb_pcount(skb);
1629 if (TCP_SKB_CB(skb)->sacked&TCPCB_RETRANS)
1630 tp->undo_marker = 0;
1631 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
1632 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
1633 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
1634 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1635 tp->lost_out += tcp_skb_pcount(skb);
1636 } else {
1637 tp->sacked_out += tcp_skb_pcount(skb);
1638 tp->fackets_out = cnt;
1639 }
1640 }
005903bc 1641 tcp_verify_left_out(tp);
1da177e4
LT
1642
1643 tp->reordering = min_t(unsigned int, tp->reordering,
1644 sysctl_tcp_reordering);
6687e988 1645 tcp_set_ca_state(sk, TCP_CA_Loss);
1da177e4
LT
1646 tp->high_seq = tp->snd_nxt;
1647 TCP_ECN_queue_cwr(tp);
580e572a
IJ
1648 /* Abort FRTO algorithm if one is in progress */
1649 tp->frto_counter = 0;
6a438bbe
SH
1650
1651 clear_all_retrans_hints(tp);
1da177e4
LT
1652}
1653
463c84b9 1654static int tcp_check_sack_reneging(struct sock *sk)
1da177e4
LT
1655{
1656 struct sk_buff *skb;
1657
1658 /* If ACK arrived pointing to a remembered SACK,
1659 * it means that our remembered SACKs do not reflect
1660 * real state of receiver i.e.
1661 * receiver _host_ is heavily congested (or buggy).
1662 * Do processing similar to RTO timeout.
1663 */
fe067e8a 1664 if ((skb = tcp_write_queue_head(sk)) != NULL &&
1da177e4 1665 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
6687e988 1666 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
1667 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRENEGING);
1668
1669 tcp_enter_loss(sk, 1);
6687e988 1670 icsk->icsk_retransmits++;
fe067e8a 1671 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
463c84b9 1672 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
6687e988 1673 icsk->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
1674 return 1;
1675 }
1676 return 0;
1677}
1678
1679static inline int tcp_fackets_out(struct tcp_sock *tp)
1680{
e60402d0 1681 return tcp_is_reno(tp) ? tp->sacked_out+1 : tp->fackets_out;
1da177e4
LT
1682}
1683
463c84b9 1684static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
1da177e4 1685{
463c84b9 1686 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
1da177e4
LT
1687}
1688
9e412ba7 1689static inline int tcp_head_timedout(struct sock *sk)
1da177e4 1690{
9e412ba7
IJ
1691 struct tcp_sock *tp = tcp_sk(sk);
1692
1da177e4 1693 return tp->packets_out &&
fe067e8a 1694 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
1da177e4
LT
1695}
1696
1697/* Linux NewReno/SACK/FACK/ECN state machine.
1698 * --------------------------------------
1699 *
1700 * "Open" Normal state, no dubious events, fast path.
1701 * "Disorder" In all the respects it is "Open",
1702 * but requires a bit more attention. It is entered when
1703 * we see some SACKs or dupacks. It is split of "Open"
1704 * mainly to move some processing from fast path to slow one.
1705 * "CWR" CWND was reduced due to some Congestion Notification event.
1706 * It can be ECN, ICMP source quench, local device congestion.
1707 * "Recovery" CWND was reduced, we are fast-retransmitting.
1708 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
1709 *
1710 * tcp_fastretrans_alert() is entered:
1711 * - each incoming ACK, if state is not "Open"
1712 * - when arrived ACK is unusual, namely:
1713 * * SACK
1714 * * Duplicate ACK.
1715 * * ECN ECE.
1716 *
1717 * Counting packets in flight is pretty simple.
1718 *
1719 * in_flight = packets_out - left_out + retrans_out
1720 *
1721 * packets_out is SND.NXT-SND.UNA counted in packets.
1722 *
1723 * retrans_out is number of retransmitted segments.
1724 *
1725 * left_out is number of segments left network, but not ACKed yet.
1726 *
1727 * left_out = sacked_out + lost_out
1728 *
1729 * sacked_out: Packets, which arrived to receiver out of order
1730 * and hence not ACKed. With SACKs this number is simply
1731 * amount of SACKed data. Even without SACKs
1732 * it is easy to give pretty reliable estimate of this number,
1733 * counting duplicate ACKs.
1734 *
1735 * lost_out: Packets lost by network. TCP has no explicit
1736 * "loss notification" feedback from network (for now).
1737 * It means that this number can be only _guessed_.
1738 * Actually, it is the heuristics to predict lossage that
1739 * distinguishes different algorithms.
1740 *
1741 * F.e. after RTO, when all the queue is considered as lost,
1742 * lost_out = packets_out and in_flight = retrans_out.
1743 *
1744 * Essentially, we have now two algorithms counting
1745 * lost packets.
1746 *
1747 * FACK: It is the simplest heuristics. As soon as we decided
1748 * that something is lost, we decide that _all_ not SACKed
1749 * packets until the most forward SACK are lost. I.e.
1750 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
1751 * It is absolutely correct estimate, if network does not reorder
1752 * packets. And it loses any connection to reality when reordering
1753 * takes place. We use FACK by default until reordering
1754 * is suspected on the path to this destination.
1755 *
1756 * NewReno: when Recovery is entered, we assume that one segment
1757 * is lost (classic Reno). While we are in Recovery and
1758 * a partial ACK arrives, we assume that one more packet
1759 * is lost (NewReno). This heuristics are the same in NewReno
1760 * and SACK.
1761 *
1762 * Imagine, that's all! Forget about all this shamanism about CWND inflation
1763 * deflation etc. CWND is real congestion window, never inflated, changes
1764 * only according to classic VJ rules.
1765 *
1766 * Really tricky (and requiring careful tuning) part of algorithm
1767 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
1768 * The first determines the moment _when_ we should reduce CWND and,
1769 * hence, slow down forward transmission. In fact, it determines the moment
1770 * when we decide that hole is caused by loss, rather than by a reorder.
1771 *
1772 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
1773 * holes, caused by lost packets.
1774 *
1775 * And the most logically complicated part of algorithm is undo
1776 * heuristics. We detect false retransmits due to both too early
1777 * fast retransmit (reordering) and underestimated RTO, analyzing
1778 * timestamps and D-SACKs. When we detect that some segments were
1779 * retransmitted by mistake and CWND reduction was wrong, we undo
1780 * window reduction and abort recovery phase. This logic is hidden
1781 * inside several functions named tcp_try_undo_<something>.
1782 */
1783
1784/* This function decides, when we should leave Disordered state
1785 * and enter Recovery phase, reducing congestion window.
1786 *
1787 * Main question: may we further continue forward transmission
1788 * with the same cwnd?
1789 */
9e412ba7 1790static int tcp_time_to_recover(struct sock *sk)
1da177e4 1791{
9e412ba7 1792 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
1793 __u32 packets_out;
1794
52c63f1e
IJ
1795 /* Do not perform any recovery during FRTO algorithm */
1796 if (tp->frto_counter)
1797 return 0;
1798
1da177e4
LT
1799 /* Trick#1: The loss is proven. */
1800 if (tp->lost_out)
1801 return 1;
1802
1803 /* Not-A-Trick#2 : Classic rule... */
1804 if (tcp_fackets_out(tp) > tp->reordering)
1805 return 1;
1806
1807 /* Trick#3 : when we use RFC2988 timer restart, fast
1808 * retransmit can be triggered by timeout of queue head.
1809 */
9e412ba7 1810 if (tcp_head_timedout(sk))
1da177e4
LT
1811 return 1;
1812
1813 /* Trick#4: It is still not OK... But will it be useful to delay
1814 * recovery more?
1815 */
1816 packets_out = tp->packets_out;
1817 if (packets_out <= tp->reordering &&
1818 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
9e412ba7 1819 !tcp_may_send_now(sk)) {
1da177e4
LT
1820 /* We have nothing to send. This connection is limited
1821 * either by receiver window or by application.
1822 */
1823 return 1;
1824 }
1825
1826 return 0;
1827}
1828
d8f4f223
IJ
1829/* RFC: This is from the original, I doubt that this is necessary at all:
1830 * clear xmit_retrans hint if seq of this skb is beyond hint. How could we
1831 * retransmitted past LOST markings in the first place? I'm not fully sure
1832 * about undo and end of connection cases, which can cause R without L?
1833 */
1834static void tcp_verify_retransmit_hint(struct tcp_sock *tp,
1835 struct sk_buff *skb)
1836{
1837 if ((tp->retransmit_skb_hint != NULL) &&
1838 before(TCP_SKB_CB(skb)->seq,
1839 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
19b2b486 1840 tp->retransmit_skb_hint = NULL;
d8f4f223
IJ
1841}
1842
1da177e4 1843/* Mark head of queue up as lost. */
9e412ba7 1844static void tcp_mark_head_lost(struct sock *sk,
1da177e4
LT
1845 int packets, u32 high_seq)
1846{
9e412ba7 1847 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1848 struct sk_buff *skb;
6a438bbe 1849 int cnt;
1da177e4 1850
6a438bbe
SH
1851 BUG_TRAP(packets <= tp->packets_out);
1852 if (tp->lost_skb_hint) {
1853 skb = tp->lost_skb_hint;
1854 cnt = tp->lost_cnt_hint;
1855 } else {
fe067e8a 1856 skb = tcp_write_queue_head(sk);
6a438bbe
SH
1857 cnt = 0;
1858 }
1da177e4 1859
fe067e8a
DM
1860 tcp_for_write_queue_from(skb, sk) {
1861 if (skb == tcp_send_head(sk))
1862 break;
6a438bbe
SH
1863 /* TODO: do this better */
1864 /* this is not the most efficient way to do this... */
1865 tp->lost_skb_hint = skb;
1866 tp->lost_cnt_hint = cnt;
1867 cnt += tcp_skb_pcount(skb);
1868 if (cnt > packets || after(TCP_SKB_CB(skb)->end_seq, high_seq))
1da177e4
LT
1869 break;
1870 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1871 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1872 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1873 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1874 }
1875 }
005903bc 1876 tcp_verify_left_out(tp);
1da177e4
LT
1877}
1878
1879/* Account newly detected lost packet(s) */
1880
9e412ba7 1881static void tcp_update_scoreboard(struct sock *sk)
1da177e4 1882{
9e412ba7
IJ
1883 struct tcp_sock *tp = tcp_sk(sk);
1884
e60402d0 1885 if (tcp_is_fack(tp)) {
1da177e4
LT
1886 int lost = tp->fackets_out - tp->reordering;
1887 if (lost <= 0)
1888 lost = 1;
9e412ba7 1889 tcp_mark_head_lost(sk, lost, tp->high_seq);
1da177e4 1890 } else {
9e412ba7 1891 tcp_mark_head_lost(sk, 1, tp->high_seq);
1da177e4
LT
1892 }
1893
1894 /* New heuristics: it is possible only after we switched
1895 * to restart timer each time when something is ACKed.
1896 * Hence, we can detect timed out packets during fast
1897 * retransmit without falling to slow start.
1898 */
e60402d0 1899 if (!tcp_is_reno(tp) && tcp_head_timedout(sk)) {
1da177e4
LT
1900 struct sk_buff *skb;
1901
6a438bbe 1902 skb = tp->scoreboard_skb_hint ? tp->scoreboard_skb_hint
fe067e8a 1903 : tcp_write_queue_head(sk);
6a438bbe 1904
fe067e8a
DM
1905 tcp_for_write_queue_from(skb, sk) {
1906 if (skb == tcp_send_head(sk))
1907 break;
6a438bbe
SH
1908 if (!tcp_skb_timedout(sk, skb))
1909 break;
1910
1911 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_TAGBITS)) {
1da177e4
LT
1912 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1913 tp->lost_out += tcp_skb_pcount(skb);
d8f4f223 1914 tcp_verify_retransmit_hint(tp, skb);
1da177e4
LT
1915 }
1916 }
6a438bbe
SH
1917
1918 tp->scoreboard_skb_hint = skb;
1919
005903bc 1920 tcp_verify_left_out(tp);
1da177e4
LT
1921 }
1922}
1923
1924/* CWND moderation, preventing bursts due to too big ACKs
1925 * in dubious situations.
1926 */
1927static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
1928{
1929 tp->snd_cwnd = min(tp->snd_cwnd,
1930 tcp_packets_in_flight(tp)+tcp_max_burst(tp));
1931 tp->snd_cwnd_stamp = tcp_time_stamp;
1932}
1933
72dc5b92
SH
1934/* Lower bound on congestion window is slow start threshold
1935 * unless congestion avoidance choice decides to overide it.
1936 */
1937static inline u32 tcp_cwnd_min(const struct sock *sk)
1938{
1939 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1940
1941 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
1942}
1943
1da177e4 1944/* Decrease cwnd each second ack. */
1e757f99 1945static void tcp_cwnd_down(struct sock *sk, int flag)
1da177e4 1946{
6687e988 1947 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1948 int decr = tp->snd_cwnd_cnt + 1;
1da177e4 1949
49ff4bb4 1950 if ((flag&(FLAG_ANY_PROGRESS|FLAG_DSACKING_ACK)) ||
e60402d0 1951 (tcp_is_reno(tp) && !(flag&FLAG_NOT_DUP))) {
1e757f99
IJ
1952 tp->snd_cwnd_cnt = decr&1;
1953 decr >>= 1;
1da177e4 1954
1e757f99
IJ
1955 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
1956 tp->snd_cwnd -= decr;
1da177e4 1957
1e757f99
IJ
1958 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp)+1);
1959 tp->snd_cwnd_stamp = tcp_time_stamp;
1960 }
1da177e4
LT
1961}
1962
1963/* Nothing was retransmitted or returned timestamp is less
1964 * than timestamp of the first retransmission.
1965 */
1966static inline int tcp_packet_delayed(struct tcp_sock *tp)
1967{
1968 return !tp->retrans_stamp ||
1969 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
1970 (__s32)(tp->rx_opt.rcv_tsecr - tp->retrans_stamp) < 0);
1971}
1972
1973/* Undo procedures. */
1974
1975#if FASTRETRANS_DEBUG > 1
9e412ba7 1976static void DBGUNDO(struct sock *sk, const char *msg)
1da177e4 1977{
9e412ba7 1978 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 1979 struct inet_sock *inet = inet_sk(sk);
9e412ba7 1980
1da177e4
LT
1981 printk(KERN_DEBUG "Undo %s %u.%u.%u.%u/%u c%u l%u ss%u/%u p%u\n",
1982 msg,
1983 NIPQUAD(inet->daddr), ntohs(inet->dport),
83ae4088 1984 tp->snd_cwnd, tcp_left_out(tp),
1da177e4
LT
1985 tp->snd_ssthresh, tp->prior_ssthresh,
1986 tp->packets_out);
1987}
1988#else
1989#define DBGUNDO(x...) do { } while (0)
1990#endif
1991
6687e988 1992static void tcp_undo_cwr(struct sock *sk, const int undo)
1da177e4 1993{
6687e988
ACM
1994 struct tcp_sock *tp = tcp_sk(sk);
1995
1da177e4 1996 if (tp->prior_ssthresh) {
6687e988
ACM
1997 const struct inet_connection_sock *icsk = inet_csk(sk);
1998
1999 if (icsk->icsk_ca_ops->undo_cwnd)
2000 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
1da177e4
LT
2001 else
2002 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh<<1);
2003
2004 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2005 tp->snd_ssthresh = tp->prior_ssthresh;
2006 TCP_ECN_withdraw_cwr(tp);
2007 }
2008 } else {
2009 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2010 }
2011 tcp_moderate_cwnd(tp);
2012 tp->snd_cwnd_stamp = tcp_time_stamp;
6a438bbe
SH
2013
2014 /* There is something screwy going on with the retrans hints after
2015 an undo */
2016 clear_all_retrans_hints(tp);
1da177e4
LT
2017}
2018
2019static inline int tcp_may_undo(struct tcp_sock *tp)
2020{
2021 return tp->undo_marker &&
2022 (!tp->undo_retrans || tcp_packet_delayed(tp));
2023}
2024
2025/* People celebrate: "We love our President!" */
9e412ba7 2026static int tcp_try_undo_recovery(struct sock *sk)
1da177e4 2027{
9e412ba7
IJ
2028 struct tcp_sock *tp = tcp_sk(sk);
2029
1da177e4
LT
2030 if (tcp_may_undo(tp)) {
2031 /* Happy end! We did not retransmit anything
2032 * or our original transmission succeeded.
2033 */
9e412ba7 2034 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
6687e988
ACM
2035 tcp_undo_cwr(sk, 1);
2036 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
1da177e4
LT
2037 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
2038 else
2039 NET_INC_STATS_BH(LINUX_MIB_TCPFULLUNDO);
2040 tp->undo_marker = 0;
2041 }
e60402d0 2042 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
1da177e4
LT
2043 /* Hold old state until something *above* high_seq
2044 * is ACKed. For Reno it is MUST to prevent false
2045 * fast retransmits (RFC2582). SACK TCP is safe. */
2046 tcp_moderate_cwnd(tp);
2047 return 1;
2048 }
6687e988 2049 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2050 return 0;
2051}
2052
2053/* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
9e412ba7 2054static void tcp_try_undo_dsack(struct sock *sk)
1da177e4 2055{
9e412ba7
IJ
2056 struct tcp_sock *tp = tcp_sk(sk);
2057
1da177e4 2058 if (tp->undo_marker && !tp->undo_retrans) {
9e412ba7 2059 DBGUNDO(sk, "D-SACK");
6687e988 2060 tcp_undo_cwr(sk, 1);
1da177e4
LT
2061 tp->undo_marker = 0;
2062 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);
2063 }
2064}
2065
2066/* Undo during fast recovery after partial ACK. */
2067
9e412ba7 2068static int tcp_try_undo_partial(struct sock *sk, int acked)
1da177e4 2069{
9e412ba7 2070 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2071 /* Partial ACK arrived. Force Hoe's retransmit. */
e60402d0 2072 int failed = tcp_is_reno(tp) || tp->fackets_out>tp->reordering;
1da177e4
LT
2073
2074 if (tcp_may_undo(tp)) {
2075 /* Plain luck! Hole if filled with delayed
2076 * packet, rather than with a retransmit.
2077 */
2078 if (tp->retrans_out == 0)
2079 tp->retrans_stamp = 0;
2080
6687e988 2081 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
1da177e4 2082
9e412ba7 2083 DBGUNDO(sk, "Hoe");
6687e988 2084 tcp_undo_cwr(sk, 0);
1da177e4
LT
2085 NET_INC_STATS_BH(LINUX_MIB_TCPPARTIALUNDO);
2086
2087 /* So... Do not make Hoe's retransmit yet.
2088 * If the first packet was delayed, the rest
2089 * ones are most probably delayed as well.
2090 */
2091 failed = 0;
2092 }
2093 return failed;
2094}
2095
2096/* Undo during loss recovery after partial ACK. */
9e412ba7 2097static int tcp_try_undo_loss(struct sock *sk)
1da177e4 2098{
9e412ba7
IJ
2099 struct tcp_sock *tp = tcp_sk(sk);
2100
1da177e4
LT
2101 if (tcp_may_undo(tp)) {
2102 struct sk_buff *skb;
fe067e8a
DM
2103 tcp_for_write_queue(skb, sk) {
2104 if (skb == tcp_send_head(sk))
2105 break;
1da177e4
LT
2106 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2107 }
6a438bbe
SH
2108
2109 clear_all_retrans_hints(tp);
2110
9e412ba7 2111 DBGUNDO(sk, "partial loss");
1da177e4 2112 tp->lost_out = 0;
6687e988 2113 tcp_undo_cwr(sk, 1);
1da177e4 2114 NET_INC_STATS_BH(LINUX_MIB_TCPLOSSUNDO);
463c84b9 2115 inet_csk(sk)->icsk_retransmits = 0;
1da177e4 2116 tp->undo_marker = 0;
e60402d0 2117 if (tcp_is_sack(tp))
6687e988 2118 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2119 return 1;
2120 }
2121 return 0;
2122}
2123
6687e988 2124static inline void tcp_complete_cwr(struct sock *sk)
1da177e4 2125{
6687e988 2126 struct tcp_sock *tp = tcp_sk(sk);
317a76f9 2127 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
1da177e4 2128 tp->snd_cwnd_stamp = tcp_time_stamp;
6687e988 2129 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
1da177e4
LT
2130}
2131
9e412ba7 2132static void tcp_try_to_open(struct sock *sk, int flag)
1da177e4 2133{
9e412ba7
IJ
2134 struct tcp_sock *tp = tcp_sk(sk);
2135
86426c22
IJ
2136 tcp_verify_left_out(tp);
2137
1da177e4
LT
2138 if (tp->retrans_out == 0)
2139 tp->retrans_stamp = 0;
2140
2141 if (flag&FLAG_ECE)
3cfe3baa 2142 tcp_enter_cwr(sk, 1);
1da177e4 2143
6687e988 2144 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
1da177e4
LT
2145 int state = TCP_CA_Open;
2146
d02596e3 2147 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
1da177e4
LT
2148 state = TCP_CA_Disorder;
2149
6687e988
ACM
2150 if (inet_csk(sk)->icsk_ca_state != state) {
2151 tcp_set_ca_state(sk, state);
1da177e4
LT
2152 tp->high_seq = tp->snd_nxt;
2153 }
2154 tcp_moderate_cwnd(tp);
2155 } else {
1e757f99 2156 tcp_cwnd_down(sk, flag);
1da177e4
LT
2157 }
2158}
2159
5d424d5a
JH
2160static void tcp_mtup_probe_failed(struct sock *sk)
2161{
2162 struct inet_connection_sock *icsk = inet_csk(sk);
2163
2164 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2165 icsk->icsk_mtup.probe_size = 0;
2166}
2167
2168static void tcp_mtup_probe_success(struct sock *sk, struct sk_buff *skb)
2169{
2170 struct tcp_sock *tp = tcp_sk(sk);
2171 struct inet_connection_sock *icsk = inet_csk(sk);
2172
2173 /* FIXME: breaks with very large cwnd */
2174 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2175 tp->snd_cwnd = tp->snd_cwnd *
2176 tcp_mss_to_mtu(sk, tp->mss_cache) /
2177 icsk->icsk_mtup.probe_size;
2178 tp->snd_cwnd_cnt = 0;
2179 tp->snd_cwnd_stamp = tcp_time_stamp;
2180 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2181
2182 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2183 icsk->icsk_mtup.probe_size = 0;
2184 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2185}
2186
2187
1da177e4
LT
2188/* Process an event, which can update packets-in-flight not trivially.
2189 * Main goal of this function is to calculate new estimate for left_out,
2190 * taking into account both packets sitting in receiver's buffer and
2191 * packets lost by network.
2192 *
2193 * Besides that it does CWND reduction, when packet loss is detected
2194 * and changes state of machine.
2195 *
2196 * It does _not_ decide what to send, it is made in function
2197 * tcp_xmit_retransmit_queue().
2198 */
2199static void
1b6d427b 2200tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
1da177e4 2201{
6687e988 2202 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4 2203 struct tcp_sock *tp = tcp_sk(sk);
2e605294
IJ
2204 int is_dupack = !(flag&(FLAG_SND_UNA_ADVANCED|FLAG_NOT_DUP));
2205 int do_lost = is_dupack || ((flag&FLAG_DATA_SACKED) &&
2206 (tp->fackets_out > tp->reordering));
1da177e4
LT
2207
2208 /* Some technical things:
2209 * 1. Reno does not count dupacks (sacked_out) automatically. */
2210 if (!tp->packets_out)
2211 tp->sacked_out = 0;
e905a9ed 2212 /* 2. SACK counts snd_fack in packets inaccurately. */
1da177e4
LT
2213 if (tp->sacked_out == 0)
2214 tp->fackets_out = 0;
2215
e905a9ed 2216 /* Now state machine starts.
1da177e4
LT
2217 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2218 if (flag&FLAG_ECE)
2219 tp->prior_ssthresh = 0;
2220
2221 /* B. In all the states check for reneging SACKs. */
463c84b9 2222 if (tp->sacked_out && tcp_check_sack_reneging(sk))
1da177e4
LT
2223 return;
2224
2225 /* C. Process data loss notification, provided it is valid. */
2226 if ((flag&FLAG_DATA_LOST) &&
2227 before(tp->snd_una, tp->high_seq) &&
6687e988 2228 icsk->icsk_ca_state != TCP_CA_Open &&
1da177e4 2229 tp->fackets_out > tp->reordering) {
9e412ba7 2230 tcp_mark_head_lost(sk, tp->fackets_out-tp->reordering, tp->high_seq);
1da177e4
LT
2231 NET_INC_STATS_BH(LINUX_MIB_TCPLOSS);
2232 }
2233
005903bc
IJ
2234 /* D. Check consistency of the current state. */
2235 tcp_verify_left_out(tp);
1da177e4
LT
2236
2237 /* E. Check state exit conditions. State can be terminated
2238 * when high_seq is ACKed. */
6687e988 2239 if (icsk->icsk_ca_state == TCP_CA_Open) {
7b0eb22b 2240 BUG_TRAP(tp->retrans_out == 0);
1da177e4
LT
2241 tp->retrans_stamp = 0;
2242 } else if (!before(tp->snd_una, tp->high_seq)) {
6687e988 2243 switch (icsk->icsk_ca_state) {
1da177e4 2244 case TCP_CA_Loss:
6687e988 2245 icsk->icsk_retransmits = 0;
9e412ba7 2246 if (tcp_try_undo_recovery(sk))
1da177e4
LT
2247 return;
2248 break;
2249
2250 case TCP_CA_CWR:
2251 /* CWR is to be held something *above* high_seq
2252 * is ACKed for CWR bit to reach receiver. */
2253 if (tp->snd_una != tp->high_seq) {
6687e988
ACM
2254 tcp_complete_cwr(sk);
2255 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2256 }
2257 break;
2258
2259 case TCP_CA_Disorder:
9e412ba7 2260 tcp_try_undo_dsack(sk);
1da177e4
LT
2261 if (!tp->undo_marker ||
2262 /* For SACK case do not Open to allow to undo
2263 * catching for all duplicate ACKs. */
e60402d0 2264 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
1da177e4 2265 tp->undo_marker = 0;
6687e988 2266 tcp_set_ca_state(sk, TCP_CA_Open);
1da177e4
LT
2267 }
2268 break;
2269
2270 case TCP_CA_Recovery:
e60402d0 2271 if (tcp_is_reno(tp))
1da177e4 2272 tcp_reset_reno_sack(tp);
9e412ba7 2273 if (tcp_try_undo_recovery(sk))
1da177e4 2274 return;
6687e988 2275 tcp_complete_cwr(sk);
1da177e4
LT
2276 break;
2277 }
2278 }
2279
2280 /* F. Process state. */
6687e988 2281 switch (icsk->icsk_ca_state) {
1da177e4 2282 case TCP_CA_Recovery:
2e605294 2283 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
e60402d0 2284 if (tcp_is_reno(tp) && is_dupack)
6687e988 2285 tcp_add_reno_sack(sk);
1b6d427b
IJ
2286 } else
2287 do_lost = tcp_try_undo_partial(sk, pkts_acked);
1da177e4
LT
2288 break;
2289 case TCP_CA_Loss:
2290 if (flag&FLAG_DATA_ACKED)
6687e988 2291 icsk->icsk_retransmits = 0;
9e412ba7 2292 if (!tcp_try_undo_loss(sk)) {
1da177e4
LT
2293 tcp_moderate_cwnd(tp);
2294 tcp_xmit_retransmit_queue(sk);
2295 return;
2296 }
6687e988 2297 if (icsk->icsk_ca_state != TCP_CA_Open)
1da177e4
LT
2298 return;
2299 /* Loss is undone; fall through to processing in Open state. */
2300 default:
e60402d0 2301 if (tcp_is_reno(tp)) {
2e605294 2302 if (flag & FLAG_SND_UNA_ADVANCED)
1da177e4
LT
2303 tcp_reset_reno_sack(tp);
2304 if (is_dupack)
6687e988 2305 tcp_add_reno_sack(sk);
1da177e4
LT
2306 }
2307
6687e988 2308 if (icsk->icsk_ca_state == TCP_CA_Disorder)
9e412ba7 2309 tcp_try_undo_dsack(sk);
1da177e4 2310
9e412ba7
IJ
2311 if (!tcp_time_to_recover(sk)) {
2312 tcp_try_to_open(sk, flag);
1da177e4
LT
2313 return;
2314 }
2315
5d424d5a
JH
2316 /* MTU probe failure: don't reduce cwnd */
2317 if (icsk->icsk_ca_state < TCP_CA_CWR &&
2318 icsk->icsk_mtup.probe_size &&
0e7b1368 2319 tp->snd_una == tp->mtu_probe.probe_seq_start) {
5d424d5a
JH
2320 tcp_mtup_probe_failed(sk);
2321 /* Restores the reduction we did in tcp_mtup_probe() */
2322 tp->snd_cwnd++;
2323 tcp_simple_retransmit(sk);
2324 return;
2325 }
2326
1da177e4
LT
2327 /* Otherwise enter Recovery state */
2328
e60402d0 2329 if (tcp_is_reno(tp))
1da177e4
LT
2330 NET_INC_STATS_BH(LINUX_MIB_TCPRENORECOVERY);
2331 else
2332 NET_INC_STATS_BH(LINUX_MIB_TCPSACKRECOVERY);
2333
2334 tp->high_seq = tp->snd_nxt;
2335 tp->prior_ssthresh = 0;
2336 tp->undo_marker = tp->snd_una;
2337 tp->undo_retrans = tp->retrans_out;
2338
6687e988 2339 if (icsk->icsk_ca_state < TCP_CA_CWR) {
1da177e4 2340 if (!(flag&FLAG_ECE))
6687e988
ACM
2341 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2342 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
1da177e4
LT
2343 TCP_ECN_queue_cwr(tp);
2344 }
2345
9772efb9 2346 tp->bytes_acked = 0;
1da177e4 2347 tp->snd_cwnd_cnt = 0;
6687e988 2348 tcp_set_ca_state(sk, TCP_CA_Recovery);
1da177e4
LT
2349 }
2350
2e605294 2351 if (do_lost || tcp_head_timedout(sk))
9e412ba7 2352 tcp_update_scoreboard(sk);
1e757f99 2353 tcp_cwnd_down(sk, flag);
1da177e4
LT
2354 tcp_xmit_retransmit_queue(sk);
2355}
2356
2357/* Read draft-ietf-tcplw-high-performance before mucking
caa20d9a 2358 * with this code. (Supersedes RFC1323)
1da177e4 2359 */
2d2abbab 2360static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
1da177e4 2361{
1da177e4
LT
2362 /* RTTM Rule: A TSecr value received in a segment is used to
2363 * update the averaged RTT measurement only if the segment
2364 * acknowledges some new data, i.e., only if it advances the
2365 * left edge of the send window.
2366 *
2367 * See draft-ietf-tcplw-high-performance-00, section 3.3.
2368 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
2369 *
2370 * Changed: reset backoff as soon as we see the first valid sample.
caa20d9a 2371 * If we do not, we get strongly overestimated rto. With timestamps
1da177e4
LT
2372 * samples are accepted even from very old segments: f.e., when rtt=1
2373 * increases to 8, we retransmit 5 times and after 8 seconds delayed
2374 * answer arrives rto becomes 120 seconds! If at least one of segments
2375 * in window is lost... Voila. --ANK (010210)
2376 */
463c84b9
ACM
2377 struct tcp_sock *tp = tcp_sk(sk);
2378 const __u32 seq_rtt = tcp_time_stamp - tp->rx_opt.rcv_tsecr;
2d2abbab 2379 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2380 tcp_set_rto(sk);
2381 inet_csk(sk)->icsk_backoff = 0;
2382 tcp_bound_rto(sk);
1da177e4
LT
2383}
2384
2d2abbab 2385static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
1da177e4
LT
2386{
2387 /* We don't have a timestamp. Can only use
2388 * packets that are not retransmitted to determine
2389 * rtt estimates. Also, we must not reset the
2390 * backoff for rto until we get a non-retransmitted
2391 * packet. This allows us to deal with a situation
2392 * where the network delay has increased suddenly.
2393 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
2394 */
2395
2396 if (flag & FLAG_RETRANS_DATA_ACKED)
2397 return;
2398
2d2abbab 2399 tcp_rtt_estimator(sk, seq_rtt);
463c84b9
ACM
2400 tcp_set_rto(sk);
2401 inet_csk(sk)->icsk_backoff = 0;
2402 tcp_bound_rto(sk);
1da177e4
LT
2403}
2404
463c84b9 2405static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
2d2abbab 2406 const s32 seq_rtt)
1da177e4 2407{
463c84b9 2408 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
2409 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
2410 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
2d2abbab 2411 tcp_ack_saw_tstamp(sk, flag);
1da177e4 2412 else if (seq_rtt >= 0)
2d2abbab 2413 tcp_ack_no_tstamp(sk, seq_rtt, flag);
1da177e4
LT
2414}
2415
16751347 2416static void tcp_cong_avoid(struct sock *sk, u32 ack,
40efc6fa 2417 u32 in_flight, int good)
1da177e4 2418{
6687e988 2419 const struct inet_connection_sock *icsk = inet_csk(sk);
16751347 2420 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight, good);
6687e988 2421 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
1da177e4
LT
2422}
2423
1da177e4
LT
2424/* Restart timer after forward progress on connection.
2425 * RFC2988 recommends to restart timer to now+rto.
2426 */
6728e7dc 2427static void tcp_rearm_rto(struct sock *sk)
1da177e4 2428{
9e412ba7
IJ
2429 struct tcp_sock *tp = tcp_sk(sk);
2430
1da177e4 2431 if (!tp->packets_out) {
463c84b9 2432 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
1da177e4 2433 } else {
3f421baa 2434 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
1da177e4
LT
2435 }
2436}
2437
1da177e4
LT
2438static int tcp_tso_acked(struct sock *sk, struct sk_buff *skb,
2439 __u32 now, __s32 *seq_rtt)
2440{
2441 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2442 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2443 __u32 seq = tp->snd_una;
2444 __u32 packets_acked;
2445 int acked = 0;
2446
2447 /* If we get here, the whole TSO packet has not been
2448 * acked.
2449 */
2450 BUG_ON(!after(scb->end_seq, seq));
2451
2452 packets_acked = tcp_skb_pcount(skb);
2453 if (tcp_trim_head(sk, skb, seq - scb->seq))
2454 return 0;
2455 packets_acked -= tcp_skb_pcount(skb);
2456
2457 if (packets_acked) {
2458 __u8 sacked = scb->sacked;
2459
2460 acked |= FLAG_DATA_ACKED;
2461 if (sacked) {
2462 if (sacked & TCPCB_RETRANS) {
2463 if (sacked & TCPCB_SACKED_RETRANS)
2464 tp->retrans_out -= packets_acked;
2465 acked |= FLAG_RETRANS_DATA_ACKED;
2466 *seq_rtt = -1;
2467 } else if (*seq_rtt < 0)
2468 *seq_rtt = now - scb->when;
2469 if (sacked & TCPCB_SACKED_ACKED)
2470 tp->sacked_out -= packets_acked;
2471 if (sacked & TCPCB_LOST)
2472 tp->lost_out -= packets_acked;
2473 if (sacked & TCPCB_URG) {
2474 if (tp->urg_mode &&
2475 !before(seq, tp->snd_up))
2476 tp->urg_mode = 0;
2477 }
2478 } else if (*seq_rtt < 0)
2479 *seq_rtt = now - scb->when;
2480
2481 if (tp->fackets_out) {
2482 __u32 dval = min(tp->fackets_out, packets_acked);
2483 tp->fackets_out -= dval;
2484 }
48611c47
IJ
2485 /* hint's skb might be NULL but we don't need to care */
2486 tp->fastpath_cnt_hint -= min_t(u32, packets_acked,
2487 tp->fastpath_cnt_hint);
1da177e4
LT
2488 tp->packets_out -= packets_acked;
2489
2490 BUG_ON(tcp_skb_pcount(skb) == 0);
2491 BUG_ON(!before(scb->seq, scb->end_seq));
2492 }
2493
2494 return acked;
2495}
2496
1da177e4 2497/* Remove acknowledged frames from the retransmission queue. */
2d2abbab 2498static int tcp_clean_rtx_queue(struct sock *sk, __s32 *seq_rtt_p)
1da177e4
LT
2499{
2500 struct tcp_sock *tp = tcp_sk(sk);
2d2abbab 2501 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2502 struct sk_buff *skb;
2503 __u32 now = tcp_time_stamp;
2504 int acked = 0;
6418204f 2505 int prior_packets = tp->packets_out;
1da177e4 2506 __s32 seq_rtt = -1;
b9ce204f 2507 ktime_t last_ackt = net_invalid_timestamp();
1da177e4 2508
fe067e8a
DM
2509 while ((skb = tcp_write_queue_head(sk)) &&
2510 skb != tcp_send_head(sk)) {
e905a9ed 2511 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
1da177e4
LT
2512 __u8 sacked = scb->sacked;
2513
2514 /* If our packet is before the ack sequence we can
2515 * discard it as it's confirmed to have arrived at
2516 * the other end.
2517 */
2518 if (after(scb->end_seq, tp->snd_una)) {
cb83199a
DM
2519 if (tcp_skb_pcount(skb) > 1 &&
2520 after(tp->snd_una, scb->seq))
1da177e4
LT
2521 acked |= tcp_tso_acked(sk, skb,
2522 now, &seq_rtt);
2523 break;
2524 }
2525
2526 /* Initial outgoing SYN's get put onto the write_queue
2527 * just like anything else we transmit. It is not
2528 * true data, and if we misinform our callers that
2529 * this ACK acks real data, we will erroneously exit
2530 * connection startup slow start one packet too
2531 * quickly. This is severely frowned upon behavior.
2532 */
2533 if (!(scb->flags & TCPCB_FLAG_SYN)) {
2534 acked |= FLAG_DATA_ACKED;
2535 } else {
2536 acked |= FLAG_SYN_ACKED;
2537 tp->retrans_stamp = 0;
2538 }
2539
5d424d5a
JH
2540 /* MTU probing checks */
2541 if (icsk->icsk_mtup.probe_size) {
0e7b1368 2542 if (!after(tp->mtu_probe.probe_seq_end, TCP_SKB_CB(skb)->end_seq)) {
5d424d5a
JH
2543 tcp_mtup_probe_success(sk, skb);
2544 }
2545 }
2546
1da177e4
LT
2547 if (sacked) {
2548 if (sacked & TCPCB_RETRANS) {
2de979bd 2549 if (sacked & TCPCB_SACKED_RETRANS)
1da177e4
LT
2550 tp->retrans_out -= tcp_skb_pcount(skb);
2551 acked |= FLAG_RETRANS_DATA_ACKED;
2552 seq_rtt = -1;
2d2abbab 2553 } else if (seq_rtt < 0) {
1da177e4 2554 seq_rtt = now - scb->when;
164891aa 2555 last_ackt = skb->tstamp;
a61bbcf2 2556 }
1da177e4
LT
2557 if (sacked & TCPCB_SACKED_ACKED)
2558 tp->sacked_out -= tcp_skb_pcount(skb);
2559 if (sacked & TCPCB_LOST)
2560 tp->lost_out -= tcp_skb_pcount(skb);
2561 if (sacked & TCPCB_URG) {
2562 if (tp->urg_mode &&
2563 !before(scb->end_seq, tp->snd_up))
2564 tp->urg_mode = 0;
2565 }
2d2abbab 2566 } else if (seq_rtt < 0) {
1da177e4 2567 seq_rtt = now - scb->when;
164891aa 2568 last_ackt = skb->tstamp;
2d2abbab 2569 }
1da177e4 2570 tcp_dec_pcount_approx(&tp->fackets_out, skb);
e9144bd8 2571 tp->packets_out -= tcp_skb_pcount(skb);
fe067e8a 2572 tcp_unlink_write_queue(skb, sk);
1da177e4 2573 sk_stream_free_skb(sk, skb);
6a438bbe 2574 clear_all_retrans_hints(tp);
1da177e4
LT
2575 }
2576
2577 if (acked&FLAG_ACKED) {
6418204f 2578 u32 pkts_acked = prior_packets - tp->packets_out;
164891aa
SH
2579 const struct tcp_congestion_ops *ca_ops
2580 = inet_csk(sk)->icsk_ca_ops;
2581
2d2abbab 2582 tcp_ack_update_rtt(sk, acked, seq_rtt);
6728e7dc 2583 tcp_rearm_rto(sk);
317a76f9 2584
e60402d0 2585 if (tcp_is_reno(tp))
1b6d427b
IJ
2586 tcp_remove_reno_sacks(sk, pkts_acked);
2587
30cfd0ba
SH
2588 if (ca_ops->pkts_acked) {
2589 s32 rtt_us = -1;
2590
2591 /* Is the ACK triggering packet unambiguous? */
2592 if (!(acked & FLAG_RETRANS_DATA_ACKED)) {
2593 /* High resolution needed and available? */
2594 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
2595 !ktime_equal(last_ackt,
2596 net_invalid_timestamp()))
2597 rtt_us = ktime_us_delta(ktime_get_real(),
2598 last_ackt);
2599 else if (seq_rtt > 0)
2600 rtt_us = jiffies_to_usecs(seq_rtt);
2601 }
b9ce204f 2602
30cfd0ba
SH
2603 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
2604 }
1da177e4
LT
2605 }
2606
2607#if FASTRETRANS_DEBUG > 0
2608 BUG_TRAP((int)tp->sacked_out >= 0);
2609 BUG_TRAP((int)tp->lost_out >= 0);
2610 BUG_TRAP((int)tp->retrans_out >= 0);
e60402d0 2611 if (!tp->packets_out && tcp_is_sack(tp)) {
6687e988 2612 const struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2613 if (tp->lost_out) {
2614 printk(KERN_DEBUG "Leak l=%u %d\n",
6687e988 2615 tp->lost_out, icsk->icsk_ca_state);
1da177e4
LT
2616 tp->lost_out = 0;
2617 }
2618 if (tp->sacked_out) {
2619 printk(KERN_DEBUG "Leak s=%u %d\n",
6687e988 2620 tp->sacked_out, icsk->icsk_ca_state);
1da177e4
LT
2621 tp->sacked_out = 0;
2622 }
2623 if (tp->retrans_out) {
2624 printk(KERN_DEBUG "Leak r=%u %d\n",
6687e988 2625 tp->retrans_out, icsk->icsk_ca_state);
1da177e4
LT
2626 tp->retrans_out = 0;
2627 }
2628 }
2629#endif
2630 *seq_rtt_p = seq_rtt;
2631 return acked;
2632}
2633
2634static void tcp_ack_probe(struct sock *sk)
2635{
463c84b9
ACM
2636 const struct tcp_sock *tp = tcp_sk(sk);
2637 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2638
2639 /* Was it a usable window open? */
2640
fe067e8a 2641 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
1da177e4 2642 tp->snd_una + tp->snd_wnd)) {
463c84b9
ACM
2643 icsk->icsk_backoff = 0;
2644 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
1da177e4
LT
2645 /* Socket must be waked up by subsequent tcp_data_snd_check().
2646 * This function is not for random using!
2647 */
2648 } else {
463c84b9 2649 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3f421baa
ACM
2650 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
2651 TCP_RTO_MAX);
1da177e4
LT
2652 }
2653}
2654
6687e988 2655static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
1da177e4
LT
2656{
2657 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
6687e988 2658 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
1da177e4
LT
2659}
2660
6687e988 2661static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
1da177e4 2662{
6687e988 2663 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2664 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
6687e988 2665 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
1da177e4
LT
2666}
2667
2668/* Check that window update is acceptable.
2669 * The function assumes that snd_una<=ack<=snd_next.
2670 */
463c84b9
ACM
2671static inline int tcp_may_update_window(const struct tcp_sock *tp, const u32 ack,
2672 const u32 ack_seq, const u32 nwin)
1da177e4
LT
2673{
2674 return (after(ack, tp->snd_una) ||
2675 after(ack_seq, tp->snd_wl1) ||
2676 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
2677}
2678
2679/* Update our send window.
2680 *
2681 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
2682 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
2683 */
9e412ba7
IJ
2684static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
2685 u32 ack_seq)
1da177e4 2686{
9e412ba7 2687 struct tcp_sock *tp = tcp_sk(sk);
1da177e4 2688 int flag = 0;
aa8223c7 2689 u32 nwin = ntohs(tcp_hdr(skb)->window);
1da177e4 2690
aa8223c7 2691 if (likely(!tcp_hdr(skb)->syn))
1da177e4
LT
2692 nwin <<= tp->rx_opt.snd_wscale;
2693
2694 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
2695 flag |= FLAG_WIN_UPDATE;
2696 tcp_update_wl(tp, ack, ack_seq);
2697
2698 if (tp->snd_wnd != nwin) {
2699 tp->snd_wnd = nwin;
2700
2701 /* Note, it is the only place, where
2702 * fast path is recovered for sending TCP.
2703 */
2ad41065 2704 tp->pred_flags = 0;
9e412ba7 2705 tcp_fast_path_check(sk);
1da177e4
LT
2706
2707 if (nwin > tp->max_window) {
2708 tp->max_window = nwin;
d83d8461 2709 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
1da177e4
LT
2710 }
2711 }
2712 }
2713
2714 tp->snd_una = ack;
2715
2716 return flag;
2717}
2718
9ead9a1d
IJ
2719/* A very conservative spurious RTO response algorithm: reduce cwnd and
2720 * continue in congestion avoidance.
2721 */
2722static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
2723{
2724 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
aa8b6a7a 2725 tp->snd_cwnd_cnt = 0;
46323655 2726 TCP_ECN_queue_cwr(tp);
9ead9a1d
IJ
2727 tcp_moderate_cwnd(tp);
2728}
2729
3cfe3baa
IJ
2730/* A conservative spurious RTO response algorithm: reduce cwnd using
2731 * rate halving and continue in congestion avoidance.
2732 */
2733static void tcp_ratehalving_spur_to_response(struct sock *sk)
2734{
3cfe3baa 2735 tcp_enter_cwr(sk, 0);
3cfe3baa
IJ
2736}
2737
e317f6f6 2738static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3cfe3baa 2739{
e317f6f6
IJ
2740 if (flag&FLAG_ECE)
2741 tcp_ratehalving_spur_to_response(sk);
2742 else
2743 tcp_undo_cwr(sk, 1);
3cfe3baa
IJ
2744}
2745
30935cf4
IJ
2746/* F-RTO spurious RTO detection algorithm (RFC4138)
2747 *
6408d206
IJ
2748 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
2749 * comments). State (ACK number) is kept in frto_counter. When ACK advances
2750 * window (but not to or beyond highest sequence sent before RTO):
30935cf4
IJ
2751 * On First ACK, send two new segments out.
2752 * On Second ACK, RTO was likely spurious. Do spurious response (response
2753 * algorithm is not part of the F-RTO detection algorithm
2754 * given in RFC4138 but can be selected separately).
2755 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
d551e454
IJ
2756 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
2757 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
2758 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
30935cf4
IJ
2759 *
2760 * Rationale: if the RTO was spurious, new ACKs should arrive from the
2761 * original window even after we transmit two new data segments.
2762 *
4dc2665e
IJ
2763 * SACK version:
2764 * on first step, wait until first cumulative ACK arrives, then move to
2765 * the second step. In second step, the next ACK decides.
2766 *
30935cf4
IJ
2767 * F-RTO is implemented (mainly) in four functions:
2768 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
2769 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
2770 * called when tcp_use_frto() showed green light
2771 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
2772 * - tcp_enter_frto_loss() is called if there is not enough evidence
2773 * to prove that the RTO is indeed spurious. It transfers the control
2774 * from F-RTO to the conventional RTO recovery
2775 */
2e605294 2776static int tcp_process_frto(struct sock *sk, int flag)
1da177e4
LT
2777{
2778 struct tcp_sock *tp = tcp_sk(sk);
e905a9ed 2779
005903bc 2780 tcp_verify_left_out(tp);
e905a9ed 2781
7487c48c
IJ
2782 /* Duplicate the behavior from Loss state (fastretrans_alert) */
2783 if (flag&FLAG_DATA_ACKED)
2784 inet_csk(sk)->icsk_retransmits = 0;
2785
95c4922b 2786 if (!before(tp->snd_una, tp->frto_highmark)) {
d551e454 2787 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
7c9a4a5b 2788 return 1;
95c4922b
IJ
2789 }
2790
e60402d0 2791 if (!IsSackFrto() || tcp_is_reno(tp)) {
4dc2665e
IJ
2792 /* RFC4138 shortcoming in step 2; should also have case c):
2793 * ACK isn't duplicate nor advances window, e.g., opposite dir
2794 * data, winupdate
2795 */
2e605294 2796 if (!(flag&FLAG_ANY_PROGRESS) && (flag&FLAG_NOT_DUP))
4dc2665e
IJ
2797 return 1;
2798
2799 if (!(flag&FLAG_DATA_ACKED)) {
2800 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
2801 flag);
2802 return 1;
2803 }
2804 } else {
2805 if (!(flag&FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
2806 /* Prevent sending of new data. */
2807 tp->snd_cwnd = min(tp->snd_cwnd,
2808 tcp_packets_in_flight(tp));
2809 return 1;
2810 }
6408d206 2811
d551e454 2812 if ((tp->frto_counter >= 2) &&
4dc2665e
IJ
2813 (!(flag&FLAG_FORWARD_PROGRESS) ||
2814 ((flag&FLAG_DATA_SACKED) && !(flag&FLAG_ONLY_ORIG_SACKED)))) {
2815 /* RFC4138 shortcoming (see comment above) */
2816 if (!(flag&FLAG_FORWARD_PROGRESS) && (flag&FLAG_NOT_DUP))
2817 return 1;
2818
2819 tcp_enter_frto_loss(sk, 3, flag);
2820 return 1;
2821 }
1da177e4
LT
2822 }
2823
2824 if (tp->frto_counter == 1) {
575ee714
IJ
2825 /* Sending of the next skb must be allowed or no FRTO */
2826 if (!tcp_send_head(sk) ||
2827 after(TCP_SKB_CB(tcp_send_head(sk))->end_seq,
2828 tp->snd_una + tp->snd_wnd)) {
d551e454
IJ
2829 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3),
2830 flag);
575ee714
IJ
2831 return 1;
2832 }
2833
1da177e4 2834 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
94d0ea77 2835 tp->frto_counter = 2;
7c9a4a5b 2836 return 1;
d551e454 2837 } else {
3cfe3baa
IJ
2838 switch (sysctl_tcp_frto_response) {
2839 case 2:
e317f6f6 2840 tcp_undo_spur_to_response(sk, flag);
3cfe3baa
IJ
2841 break;
2842 case 1:
2843 tcp_conservative_spur_to_response(tp);
2844 break;
2845 default:
2846 tcp_ratehalving_spur_to_response(sk);
2847 break;
3ff50b79 2848 }
94d0ea77 2849 tp->frto_counter = 0;
1da177e4 2850 }
7c9a4a5b 2851 return 0;
1da177e4
LT
2852}
2853
1da177e4
LT
2854/* This routine deals with incoming acks, but not outgoing ones. */
2855static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
2856{
6687e988 2857 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
2858 struct tcp_sock *tp = tcp_sk(sk);
2859 u32 prior_snd_una = tp->snd_una;
2860 u32 ack_seq = TCP_SKB_CB(skb)->seq;
2861 u32 ack = TCP_SKB_CB(skb)->ack_seq;
2862 u32 prior_in_flight;
2863 s32 seq_rtt;
2864 int prior_packets;
7c9a4a5b 2865 int frto_cwnd = 0;
1da177e4
LT
2866
2867 /* If the ack is newer than sent or older than previous acks
2868 * then we can probably ignore it.
2869 */
2870 if (after(ack, tp->snd_nxt))
2871 goto uninteresting_ack;
2872
2873 if (before(ack, prior_snd_una))
2874 goto old_ack;
2875
2e605294
IJ
2876 if (after(ack, prior_snd_una))
2877 flag |= FLAG_SND_UNA_ADVANCED;
2878
3fdf3f0c
DO
2879 if (sysctl_tcp_abc) {
2880 if (icsk->icsk_ca_state < TCP_CA_CWR)
2881 tp->bytes_acked += ack - prior_snd_una;
2882 else if (icsk->icsk_ca_state == TCP_CA_Loss)
2883 /* we assume just one segment left network */
2884 tp->bytes_acked += min(ack - prior_snd_una, tp->mss_cache);
2885 }
9772efb9 2886
1da177e4
LT
2887 if (!(flag&FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
2888 /* Window is constant, pure forward advance.
2889 * No more checks are required.
2890 * Note, we use the fact that SND.UNA>=SND.WL2.
2891 */
2892 tcp_update_wl(tp, ack, ack_seq);
2893 tp->snd_una = ack;
1da177e4
LT
2894 flag |= FLAG_WIN_UPDATE;
2895
6687e988 2896 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
317a76f9 2897
1da177e4
LT
2898 NET_INC_STATS_BH(LINUX_MIB_TCPHPACKS);
2899 } else {
2900 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
2901 flag |= FLAG_DATA;
2902 else
2903 NET_INC_STATS_BH(LINUX_MIB_TCPPUREACKS);
2904
9e412ba7 2905 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
1da177e4
LT
2906
2907 if (TCP_SKB_CB(skb)->sacked)
2908 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2909
aa8223c7 2910 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
1da177e4
LT
2911 flag |= FLAG_ECE;
2912
6687e988 2913 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
1da177e4
LT
2914 }
2915
2916 /* We passed data and got it acked, remove any soft error
2917 * log. Something worked...
2918 */
2919 sk->sk_err_soft = 0;
2920 tp->rcv_tstamp = tcp_time_stamp;
2921 prior_packets = tp->packets_out;
2922 if (!prior_packets)
2923 goto no_queue;
2924
2925 prior_in_flight = tcp_packets_in_flight(tp);
2926
2927 /* See if we can take anything off of the retransmit queue. */
2d2abbab 2928 flag |= tcp_clean_rtx_queue(sk, &seq_rtt);
1da177e4
LT
2929
2930 if (tp->frto_counter)
2e605294 2931 frto_cwnd = tcp_process_frto(sk, flag);
1da177e4 2932
6687e988 2933 if (tcp_ack_is_dubious(sk, flag)) {
caa20d9a 2934 /* Advance CWND, if state allows this. */
7c9a4a5b
IJ
2935 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
2936 tcp_may_raise_cwnd(sk, flag))
16751347 2937 tcp_cong_avoid(sk, ack, prior_in_flight, 0);
1b6d427b 2938 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out, flag);
1da177e4 2939 } else {
7c9a4a5b 2940 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
16751347 2941 tcp_cong_avoid(sk, ack, prior_in_flight, 1);
1da177e4
LT
2942 }
2943
2944 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag&FLAG_NOT_DUP))
2945 dst_confirm(sk->sk_dst_cache);
2946
2947 return 1;
2948
2949no_queue:
6687e988 2950 icsk->icsk_probes_out = 0;
1da177e4
LT
2951
2952 /* If this ack opens up a zero window, clear backoff. It was
2953 * being used to time the probes, and is probably far higher than
2954 * it needs to be for normal retransmission.
2955 */
fe067e8a 2956 if (tcp_send_head(sk))
1da177e4
LT
2957 tcp_ack_probe(sk);
2958 return 1;
2959
2960old_ack:
2961 if (TCP_SKB_CB(skb)->sacked)
2962 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
2963
2964uninteresting_ack:
2965 SOCK_DEBUG(sk, "Ack %u out of %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
2966 return 0;
2967}
2968
2969
2970/* Look for tcp options. Normally only called on SYN and SYNACK packets.
2971 * But, this can also be called on packets in the established flow when
2972 * the fast version below fails.
2973 */
2974void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx, int estab)
2975{
2976 unsigned char *ptr;
aa8223c7 2977 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
2978 int length=(th->doff*4)-sizeof(struct tcphdr);
2979
2980 ptr = (unsigned char *)(th + 1);
2981 opt_rx->saw_tstamp = 0;
2982
2de979bd 2983 while (length > 0) {
e905a9ed 2984 int opcode=*ptr++;
1da177e4
LT
2985 int opsize;
2986
2987 switch (opcode) {
2988 case TCPOPT_EOL:
2989 return;
2990 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
2991 length--;
2992 continue;
2993 default:
2994 opsize=*ptr++;
2995 if (opsize < 2) /* "silly options" */
2996 return;
2997 if (opsize > length)
2998 return; /* don't parse partial options */
2de979bd 2999 switch (opcode) {
1da177e4 3000 case TCPOPT_MSS:
2de979bd 3001 if (opsize==TCPOLEN_MSS && th->syn && !estab) {
4f3608b7 3002 u16 in_mss = ntohs(get_unaligned((__be16 *)ptr));
1da177e4
LT
3003 if (in_mss) {
3004 if (opt_rx->user_mss && opt_rx->user_mss < in_mss)
3005 in_mss = opt_rx->user_mss;
3006 opt_rx->mss_clamp = in_mss;
3007 }
3008 }
3009 break;
3010 case TCPOPT_WINDOW:
2de979bd 3011 if (opsize==TCPOLEN_WINDOW && th->syn && !estab)
1da177e4
LT
3012 if (sysctl_tcp_window_scaling) {
3013 __u8 snd_wscale = *(__u8 *) ptr;
3014 opt_rx->wscale_ok = 1;
3015 if (snd_wscale > 14) {
2de979bd 3016 if (net_ratelimit())
1da177e4
LT
3017 printk(KERN_INFO "tcp_parse_options: Illegal window "
3018 "scaling value %d >14 received.\n",
3019 snd_wscale);
3020 snd_wscale = 14;
3021 }
3022 opt_rx->snd_wscale = snd_wscale;
3023 }
3024 break;
3025 case TCPOPT_TIMESTAMP:
2de979bd 3026 if (opsize==TCPOLEN_TIMESTAMP) {
1da177e4
LT
3027 if ((estab && opt_rx->tstamp_ok) ||
3028 (!estab && sysctl_tcp_timestamps)) {
3029 opt_rx->saw_tstamp = 1;
4f3608b7
AV
3030 opt_rx->rcv_tsval = ntohl(get_unaligned((__be32 *)ptr));
3031 opt_rx->rcv_tsecr = ntohl(get_unaligned((__be32 *)(ptr+4)));
1da177e4
LT
3032 }
3033 }
3034 break;
3035 case TCPOPT_SACK_PERM:
2de979bd 3036 if (opsize==TCPOLEN_SACK_PERM && th->syn && !estab) {
1da177e4
LT
3037 if (sysctl_tcp_sack) {
3038 opt_rx->sack_ok = 1;
3039 tcp_sack_reset(opt_rx);
3040 }
3041 }
3042 break;
3043
3044 case TCPOPT_SACK:
2de979bd 3045 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
1da177e4
LT
3046 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3047 opt_rx->sack_ok) {
3048 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3049 }
d7ea5b91 3050 break;
cfb6eeb4
YH
3051#ifdef CONFIG_TCP_MD5SIG
3052 case TCPOPT_MD5SIG:
3053 /*
3054 * The MD5 Hash has already been
3055 * checked (see tcp_v{4,6}_do_rcv()).
3056 */
3057 break;
3058#endif
3ff50b79
SH
3059 }
3060
e905a9ed
YH
3061 ptr+=opsize-2;
3062 length-=opsize;
3ff50b79 3063 }
1da177e4
LT
3064 }
3065}
3066
3067/* Fast parse options. This hopes to only see timestamps.
3068 * If it is wrong it falls back on tcp_parse_options().
3069 */
40efc6fa
SH
3070static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3071 struct tcp_sock *tp)
1da177e4
LT
3072{
3073 if (th->doff == sizeof(struct tcphdr)>>2) {
3074 tp->rx_opt.saw_tstamp = 0;
3075 return 0;
3076 } else if (tp->rx_opt.tstamp_ok &&
3077 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
4f3608b7
AV
3078 __be32 *ptr = (__be32 *)(th + 1);
3079 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
3080 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3081 tp->rx_opt.saw_tstamp = 1;
3082 ++ptr;
3083 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3084 ++ptr;
3085 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3086 return 1;
3087 }
3088 }
3089 tcp_parse_options(skb, &tp->rx_opt, 1);
3090 return 1;
3091}
3092
3093static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3094{
3095 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
9d729f72 3096 tp->rx_opt.ts_recent_stamp = get_seconds();
1da177e4
LT
3097}
3098
3099static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3100{
3101 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3102 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3103 * extra check below makes sure this can only happen
3104 * for pure ACK frames. -DaveM
3105 *
3106 * Not only, also it occurs for expired timestamps.
3107 */
3108
2de979bd 3109 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) >= 0 ||
9d729f72 3110 get_seconds() >= tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS)
1da177e4
LT
3111 tcp_store_ts_recent(tp);
3112 }
3113}
3114
3115/* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3116 *
3117 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3118 * it can pass through stack. So, the following predicate verifies that
3119 * this segment is not used for anything but congestion avoidance or
3120 * fast retransmit. Moreover, we even are able to eliminate most of such
3121 * second order effects, if we apply some small "replay" window (~RTO)
3122 * to timestamp space.
3123 *
3124 * All these measures still do not guarantee that we reject wrapped ACKs
3125 * on networks with high bandwidth, when sequence space is recycled fastly,
3126 * but it guarantees that such events will be very rare and do not affect
3127 * connection seriously. This doesn't look nice, but alas, PAWS is really
3128 * buggy extension.
3129 *
3130 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3131 * states that events when retransmit arrives after original data are rare.
3132 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3133 * the biggest problem on large power networks even with minor reordering.
3134 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3135 * up to bandwidth of 18Gigabit/sec. 8) ]
3136 */
3137
463c84b9 3138static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3139{
463c84b9 3140 struct tcp_sock *tp = tcp_sk(sk);
aa8223c7 3141 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3142 u32 seq = TCP_SKB_CB(skb)->seq;
3143 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3144
3145 return (/* 1. Pure ACK with correct sequence number. */
3146 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3147
3148 /* 2. ... and duplicate ACK. */
3149 ack == tp->snd_una &&
3150
3151 /* 3. ... and does not update window. */
3152 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3153
3154 /* 4. ... and sits in replay window. */
463c84b9 3155 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
1da177e4
LT
3156}
3157
463c84b9 3158static inline int tcp_paws_discard(const struct sock *sk, const struct sk_buff *skb)
1da177e4 3159{
463c84b9 3160 const struct tcp_sock *tp = tcp_sk(sk);
1da177e4 3161 return ((s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) > TCP_PAWS_WINDOW &&
9d729f72 3162 get_seconds() < tp->rx_opt.ts_recent_stamp + TCP_PAWS_24DAYS &&
463c84b9 3163 !tcp_disordered_ack(sk, skb));
1da177e4
LT
3164}
3165
3166/* Check segment sequence number for validity.
3167 *
3168 * Segment controls are considered valid, if the segment
3169 * fits to the window after truncation to the window. Acceptability
3170 * of data (and SYN, FIN, of course) is checked separately.
3171 * See tcp_data_queue(), for example.
3172 *
3173 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3174 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3175 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3176 * (borrowed from freebsd)
3177 */
3178
3179static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3180{
3181 return !before(end_seq, tp->rcv_wup) &&
3182 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3183}
3184
3185/* When we get a reset we do this. */
3186static void tcp_reset(struct sock *sk)
3187{
3188 /* We want the right error as BSD sees it (and indeed as we do). */
3189 switch (sk->sk_state) {
3190 case TCP_SYN_SENT:
3191 sk->sk_err = ECONNREFUSED;
3192 break;
3193 case TCP_CLOSE_WAIT:
3194 sk->sk_err = EPIPE;
3195 break;
3196 case TCP_CLOSE:
3197 return;
3198 default:
3199 sk->sk_err = ECONNRESET;
3200 }
3201
3202 if (!sock_flag(sk, SOCK_DEAD))
3203 sk->sk_error_report(sk);
3204
3205 tcp_done(sk);
3206}
3207
3208/*
3209 * Process the FIN bit. This now behaves as it is supposed to work
3210 * and the FIN takes effect when it is validly part of sequence
3211 * space. Not before when we get holes.
3212 *
3213 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3214 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3215 * TIME-WAIT)
3216 *
3217 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3218 * close and we go into CLOSING (and later onto TIME-WAIT)
3219 *
3220 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3221 */
3222static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3223{
3224 struct tcp_sock *tp = tcp_sk(sk);
3225
463c84b9 3226 inet_csk_schedule_ack(sk);
1da177e4
LT
3227
3228 sk->sk_shutdown |= RCV_SHUTDOWN;
3229 sock_set_flag(sk, SOCK_DONE);
3230
3231 switch (sk->sk_state) {
3232 case TCP_SYN_RECV:
3233 case TCP_ESTABLISHED:
3234 /* Move to CLOSE_WAIT */
3235 tcp_set_state(sk, TCP_CLOSE_WAIT);
463c84b9 3236 inet_csk(sk)->icsk_ack.pingpong = 1;
1da177e4
LT
3237 break;
3238
3239 case TCP_CLOSE_WAIT:
3240 case TCP_CLOSING:
3241 /* Received a retransmission of the FIN, do
3242 * nothing.
3243 */
3244 break;
3245 case TCP_LAST_ACK:
3246 /* RFC793: Remain in the LAST-ACK state. */
3247 break;
3248
3249 case TCP_FIN_WAIT1:
3250 /* This case occurs when a simultaneous close
3251 * happens, we must ack the received FIN and
3252 * enter the CLOSING state.
3253 */
3254 tcp_send_ack(sk);
3255 tcp_set_state(sk, TCP_CLOSING);
3256 break;
3257 case TCP_FIN_WAIT2:
3258 /* Received a FIN -- send ACK and enter TIME_WAIT. */
3259 tcp_send_ack(sk);
3260 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
3261 break;
3262 default:
3263 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
3264 * cases we should never reach this piece of code.
3265 */
3266 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
3267 __FUNCTION__, sk->sk_state);
3268 break;
3ff50b79 3269 }
1da177e4
LT
3270
3271 /* It _is_ possible, that we have something out-of-order _after_ FIN.
3272 * Probably, we should reset in this case. For now drop them.
3273 */
3274 __skb_queue_purge(&tp->out_of_order_queue);
e60402d0 3275 if (tcp_is_sack(tp))
1da177e4
LT
3276 tcp_sack_reset(&tp->rx_opt);
3277 sk_stream_mem_reclaim(sk);
3278
3279 if (!sock_flag(sk, SOCK_DEAD)) {
3280 sk->sk_state_change(sk);
3281
3282 /* Do not send POLL_HUP for half duplex close. */
3283 if (sk->sk_shutdown == SHUTDOWN_MASK ||
3284 sk->sk_state == TCP_CLOSE)
3285 sk_wake_async(sk, 1, POLL_HUP);
3286 else
3287 sk_wake_async(sk, 1, POLL_IN);
3288 }
3289}
3290
40efc6fa 3291static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq, u32 end_seq)
1da177e4
LT
3292{
3293 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
3294 if (before(seq, sp->start_seq))
3295 sp->start_seq = seq;
3296 if (after(end_seq, sp->end_seq))
3297 sp->end_seq = end_seq;
3298 return 1;
3299 }
3300 return 0;
3301}
3302
40efc6fa 3303static void tcp_dsack_set(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4 3304{
e60402d0 3305 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3306 if (before(seq, tp->rcv_nxt))
3307 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOLDSENT);
3308 else
3309 NET_INC_STATS_BH(LINUX_MIB_TCPDSACKOFOSENT);
3310
3311 tp->rx_opt.dsack = 1;
3312 tp->duplicate_sack[0].start_seq = seq;
3313 tp->duplicate_sack[0].end_seq = end_seq;
3314 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + 1, 4 - tp->rx_opt.tstamp_ok);
3315 }
3316}
3317
40efc6fa 3318static void tcp_dsack_extend(struct tcp_sock *tp, u32 seq, u32 end_seq)
1da177e4
LT
3319{
3320 if (!tp->rx_opt.dsack)
3321 tcp_dsack_set(tp, seq, end_seq);
3322 else
3323 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
3324}
3325
3326static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
3327{
3328 struct tcp_sock *tp = tcp_sk(sk);
3329
3330 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
3331 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3332 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
463c84b9 3333 tcp_enter_quickack_mode(sk);
1da177e4 3334
e60402d0 3335 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
1da177e4
LT
3336 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3337
3338 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
3339 end_seq = tp->rcv_nxt;
3340 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, end_seq);
3341 }
3342 }
3343
3344 tcp_send_ack(sk);
3345}
3346
3347/* These routines update the SACK block as out-of-order packets arrive or
3348 * in-order packets close up the sequence space.
3349 */
3350static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
3351{
3352 int this_sack;
3353 struct tcp_sack_block *sp = &tp->selective_acks[0];
3354 struct tcp_sack_block *swalk = sp+1;
3355
3356 /* See if the recent change to the first SACK eats into
3357 * or hits the sequence space of other SACK blocks, if so coalesce.
3358 */
3359 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks; ) {
3360 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
3361 int i;
3362
3363 /* Zap SWALK, by moving every further SACK up by one slot.
3364 * Decrease num_sacks.
3365 */
3366 tp->rx_opt.num_sacks--;
3367 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
2de979bd 3368 for (i=this_sack; i < tp->rx_opt.num_sacks; i++)
1da177e4
LT
3369 sp[i] = sp[i+1];
3370 continue;
3371 }
3372 this_sack++, swalk++;
3373 }
3374}
3375
40efc6fa 3376static inline void tcp_sack_swap(struct tcp_sack_block *sack1, struct tcp_sack_block *sack2)
1da177e4
LT
3377{
3378 __u32 tmp;
3379
3380 tmp = sack1->start_seq;
3381 sack1->start_seq = sack2->start_seq;
3382 sack2->start_seq = tmp;
3383
3384 tmp = sack1->end_seq;
3385 sack1->end_seq = sack2->end_seq;
3386 sack2->end_seq = tmp;
3387}
3388
3389static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
3390{
3391 struct tcp_sock *tp = tcp_sk(sk);
3392 struct tcp_sack_block *sp = &tp->selective_acks[0];
3393 int cur_sacks = tp->rx_opt.num_sacks;
3394 int this_sack;
3395
3396 if (!cur_sacks)
3397 goto new_sack;
3398
3399 for (this_sack=0; this_sack<cur_sacks; this_sack++, sp++) {
3400 if (tcp_sack_extend(sp, seq, end_seq)) {
3401 /* Rotate this_sack to the first one. */
3402 for (; this_sack>0; this_sack--, sp--)
3403 tcp_sack_swap(sp, sp-1);
3404 if (cur_sacks > 1)
3405 tcp_sack_maybe_coalesce(tp);
3406 return;
3407 }
3408 }
3409
3410 /* Could not find an adjacent existing SACK, build a new one,
3411 * put it at the front, and shift everyone else down. We
3412 * always know there is at least one SACK present already here.
3413 *
3414 * If the sack array is full, forget about the last one.
3415 */
3416 if (this_sack >= 4) {
3417 this_sack--;
3418 tp->rx_opt.num_sacks--;
3419 sp--;
3420 }
2de979bd 3421 for (; this_sack > 0; this_sack--, sp--)
1da177e4
LT
3422 *sp = *(sp-1);
3423
3424new_sack:
3425 /* Build the new head SACK, and we're done. */
3426 sp->start_seq = seq;
3427 sp->end_seq = end_seq;
3428 tp->rx_opt.num_sacks++;
3429 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3430}
3431
3432/* RCV.NXT advances, some SACKs should be eaten. */
3433
3434static void tcp_sack_remove(struct tcp_sock *tp)
3435{
3436 struct tcp_sack_block *sp = &tp->selective_acks[0];
3437 int num_sacks = tp->rx_opt.num_sacks;
3438 int this_sack;
3439
3440 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
b03efcfb 3441 if (skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3442 tp->rx_opt.num_sacks = 0;
3443 tp->rx_opt.eff_sacks = tp->rx_opt.dsack;
3444 return;
3445 }
3446
2de979bd 3447 for (this_sack = 0; this_sack < num_sacks; ) {
1da177e4
LT
3448 /* Check if the start of the sack is covered by RCV.NXT. */
3449 if (!before(tp->rcv_nxt, sp->start_seq)) {
3450 int i;
3451
3452 /* RCV.NXT must cover all the block! */
3453 BUG_TRAP(!before(tp->rcv_nxt, sp->end_seq));
3454
3455 /* Zap this SACK, by moving forward any other SACKS. */
3456 for (i=this_sack+1; i < num_sacks; i++)
3457 tp->selective_acks[i-1] = tp->selective_acks[i];
3458 num_sacks--;
3459 continue;
3460 }
3461 this_sack++;
3462 sp++;
3463 }
3464 if (num_sacks != tp->rx_opt.num_sacks) {
3465 tp->rx_opt.num_sacks = num_sacks;
3466 tp->rx_opt.eff_sacks = min(tp->rx_opt.num_sacks + tp->rx_opt.dsack, 4 - tp->rx_opt.tstamp_ok);
3467 }
3468}
3469
3470/* This one checks to see if we can put data from the
3471 * out_of_order queue into the receive_queue.
3472 */
3473static void tcp_ofo_queue(struct sock *sk)
3474{
3475 struct tcp_sock *tp = tcp_sk(sk);
3476 __u32 dsack_high = tp->rcv_nxt;
3477 struct sk_buff *skb;
3478
3479 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
3480 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
3481 break;
3482
3483 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
3484 __u32 dsack = dsack_high;
3485 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
3486 dsack_high = TCP_SKB_CB(skb)->end_seq;
3487 tcp_dsack_extend(tp, TCP_SKB_CB(skb)->seq, dsack);
3488 }
3489
3490 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3491 SOCK_DEBUG(sk, "ofo packet was already received \n");
8728b834 3492 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3493 __kfree_skb(skb);
3494 continue;
3495 }
3496 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
3497 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3498 TCP_SKB_CB(skb)->end_seq);
3499
8728b834 3500 __skb_unlink(skb, &tp->out_of_order_queue);
1da177e4
LT
3501 __skb_queue_tail(&sk->sk_receive_queue, skb);
3502 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
aa8223c7
ACM
3503 if (tcp_hdr(skb)->fin)
3504 tcp_fin(skb, sk, tcp_hdr(skb));
1da177e4
LT
3505 }
3506}
3507
3508static int tcp_prune_queue(struct sock *sk);
3509
3510static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
3511{
aa8223c7 3512 struct tcphdr *th = tcp_hdr(skb);
1da177e4
LT
3513 struct tcp_sock *tp = tcp_sk(sk);
3514 int eaten = -1;
3515
3516 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
3517 goto drop;
3518
1da177e4
LT
3519 __skb_pull(skb, th->doff*4);
3520
3521 TCP_ECN_accept_cwr(tp, skb);
3522
3523 if (tp->rx_opt.dsack) {
3524 tp->rx_opt.dsack = 0;
3525 tp->rx_opt.eff_sacks = min_t(unsigned int, tp->rx_opt.num_sacks,
3526 4 - tp->rx_opt.tstamp_ok);
3527 }
3528
3529 /* Queue data for delivery to the user.
3530 * Packets in sequence go to the receive queue.
3531 * Out of sequence packets to the out_of_order_queue.
3532 */
3533 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
3534 if (tcp_receive_window(tp) == 0)
3535 goto out_of_window;
3536
3537 /* Ok. In sequence. In window. */
3538 if (tp->ucopy.task == current &&
3539 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
3540 sock_owned_by_user(sk) && !tp->urg_data) {
3541 int chunk = min_t(unsigned int, skb->len,
3542 tp->ucopy.len);
3543
3544 __set_current_state(TASK_RUNNING);
3545
3546 local_bh_enable();
3547 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
3548 tp->ucopy.len -= chunk;
3549 tp->copied_seq += chunk;
3550 eaten = (chunk == skb->len && !th->fin);
3551 tcp_rcv_space_adjust(sk);
3552 }
3553 local_bh_disable();
3554 }
3555
3556 if (eaten <= 0) {
3557queue_and_out:
3558 if (eaten < 0 &&
3559 (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3560 !sk_stream_rmem_schedule(sk, skb))) {
3561 if (tcp_prune_queue(sk) < 0 ||
3562 !sk_stream_rmem_schedule(sk, skb))
3563 goto drop;
3564 }
3565 sk_stream_set_owner_r(skb, sk);
3566 __skb_queue_tail(&sk->sk_receive_queue, skb);
3567 }
3568 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
2de979bd 3569 if (skb->len)
9e412ba7 3570 tcp_event_data_recv(sk, skb);
2de979bd 3571 if (th->fin)
1da177e4
LT
3572 tcp_fin(skb, sk, th);
3573
b03efcfb 3574 if (!skb_queue_empty(&tp->out_of_order_queue)) {
1da177e4
LT
3575 tcp_ofo_queue(sk);
3576
3577 /* RFC2581. 4.2. SHOULD send immediate ACK, when
3578 * gap in queue is filled.
3579 */
b03efcfb 3580 if (skb_queue_empty(&tp->out_of_order_queue))
463c84b9 3581 inet_csk(sk)->icsk_ack.pingpong = 0;
1da177e4
LT
3582 }
3583
3584 if (tp->rx_opt.num_sacks)
3585 tcp_sack_remove(tp);
3586
9e412ba7 3587 tcp_fast_path_check(sk);
1da177e4
LT
3588
3589 if (eaten > 0)
3590 __kfree_skb(skb);
3591 else if (!sock_flag(sk, SOCK_DEAD))
3592 sk->sk_data_ready(sk, 0);
3593 return;
3594 }
3595
3596 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
3597 /* A retransmit, 2nd most common case. Force an immediate ack. */
3598 NET_INC_STATS_BH(LINUX_MIB_DELAYEDACKLOST);
3599 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3600
3601out_of_window:
463c84b9
ACM
3602 tcp_enter_quickack_mode(sk);
3603 inet_csk_schedule_ack(sk);
1da177e4
LT
3604drop:
3605 __kfree_skb(skb);
3606 return;
3607 }
3608
3609 /* Out of window. F.e. zero window probe. */
3610 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
3611 goto out_of_window;
3612
463c84b9 3613 tcp_enter_quickack_mode(sk);
1da177e4
LT
3614
3615 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
3616 /* Partial packet, seq < rcv_next < end_seq */
3617 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
3618 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
3619 TCP_SKB_CB(skb)->end_seq);
3620
3621 tcp_dsack_set(tp, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
e905a9ed 3622
1da177e4
LT
3623 /* If window is closed, drop tail of packet. But after
3624 * remembering D-SACK for its head made in previous line.
3625 */
3626 if (!tcp_receive_window(tp))
3627 goto out_of_window;
3628 goto queue_and_out;
3629 }
3630
3631 TCP_ECN_check_ce(tp, skb);
3632
3633 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
3634 !sk_stream_rmem_schedule(sk, skb)) {
3635 if (tcp_prune_queue(sk) < 0 ||
3636 !sk_stream_rmem_schedule(sk, skb))
3637 goto drop;
3638 }
3639
3640 /* Disable header prediction. */
3641 tp->pred_flags = 0;
463c84b9 3642 inet_csk_schedule_ack(sk);
1da177e4
LT
3643
3644 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
3645 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
3646
3647 sk_stream_set_owner_r(skb, sk);
3648
3649 if (!skb_peek(&tp->out_of_order_queue)) {
3650 /* Initial out of order segment, build 1 SACK. */
e60402d0 3651 if (tcp_is_sack(tp)) {
1da177e4
LT
3652 tp->rx_opt.num_sacks = 1;
3653 tp->rx_opt.dsack = 0;
3654 tp->rx_opt.eff_sacks = 1;
3655 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
3656 tp->selective_acks[0].end_seq =
3657 TCP_SKB_CB(skb)->end_seq;
3658 }
3659 __skb_queue_head(&tp->out_of_order_queue,skb);
3660 } else {
3661 struct sk_buff *skb1 = tp->out_of_order_queue.prev;
3662 u32 seq = TCP_SKB_CB(skb)->seq;
3663 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
3664
3665 if (seq == TCP_SKB_CB(skb1)->end_seq) {
8728b834 3666 __skb_append(skb1, skb, &tp->out_of_order_queue);
1da177e4
LT
3667
3668 if (!tp->rx_opt.num_sacks ||
3669 tp->selective_acks[0].end_seq != seq)
3670 goto add_sack;
3671
3672 /* Common case: data arrive in order after hole. */
3673 tp->selective_acks[0].end_seq = end_seq;
3674 return;
3675 }
3676
3677 /* Find place to insert this segment. */
3678 do {
3679 if (!after(TCP_SKB_CB(skb1)->seq, seq))
3680 break;
3681 } while ((skb1 = skb1->prev) !=
3682 (struct sk_buff*)&tp->out_of_order_queue);
3683
3684 /* Do skb overlap to previous one? */
3685 if (skb1 != (struct sk_buff*)&tp->out_of_order_queue &&
3686 before(seq, TCP_SKB_CB(skb1)->end_seq)) {
3687 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3688 /* All the bits are present. Drop. */
3689 __kfree_skb(skb);
3690 tcp_dsack_set(tp, seq, end_seq);
3691 goto add_sack;
3692 }
3693 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
3694 /* Partial overlap. */
3695 tcp_dsack_set(tp, seq, TCP_SKB_CB(skb1)->end_seq);
3696 } else {
3697 skb1 = skb1->prev;
3698 }
3699 }
3700 __skb_insert(skb, skb1, skb1->next, &tp->out_of_order_queue);
e905a9ed 3701
1da177e4
LT
3702 /* And clean segments covered by new one as whole. */
3703 while ((skb1 = skb->next) !=
3704 (struct sk_buff*)&tp->out_of_order_queue &&
3705 after(end_seq, TCP_SKB_CB(skb1)->seq)) {
3706 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
3707 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, end_seq);
3708 break;
3709 }
8728b834 3710 __skb_unlink(skb1, &tp->out_of_order_queue);
1da177e4
LT
3711 tcp_dsack_extend(tp, TCP_SKB_CB(skb1)->seq, TCP_SKB_CB(skb1)->end_seq);
3712 __kfree_skb(skb1);
3713 }
3714
3715add_sack:
e60402d0 3716 if (tcp_is_sack(tp))
1da177e4
LT
3717 tcp_sack_new_ofo_skb(sk, seq, end_seq);
3718 }
3719}
3720
3721/* Collapse contiguous sequence of skbs head..tail with
3722 * sequence numbers start..end.
3723 * Segments with FIN/SYN are not collapsed (only because this
3724 * simplifies code)
3725 */
3726static void
8728b834
DM
3727tcp_collapse(struct sock *sk, struct sk_buff_head *list,
3728 struct sk_buff *head, struct sk_buff *tail,
3729 u32 start, u32 end)
1da177e4
LT
3730{
3731 struct sk_buff *skb;
3732
caa20d9a 3733 /* First, check that queue is collapsible and find
1da177e4
LT
3734 * the point where collapsing can be useful. */
3735 for (skb = head; skb != tail; ) {
3736 /* No new bits? It is possible on ofo queue. */
3737 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3738 struct sk_buff *next = skb->next;
8728b834 3739 __skb_unlink(skb, list);
1da177e4
LT
3740 __kfree_skb(skb);
3741 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3742 skb = next;
3743 continue;
3744 }
3745
3746 /* The first skb to collapse is:
3747 * - not SYN/FIN and
3748 * - bloated or contains data before "start" or
3749 * overlaps to the next one.
3750 */
aa8223c7 3751 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
1da177e4
LT
3752 (tcp_win_from_space(skb->truesize) > skb->len ||
3753 before(TCP_SKB_CB(skb)->seq, start) ||
3754 (skb->next != tail &&
3755 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb->next)->seq)))
3756 break;
3757
3758 /* Decided to skip this, advance start seq. */
3759 start = TCP_SKB_CB(skb)->end_seq;
3760 skb = skb->next;
3761 }
aa8223c7 3762 if (skb == tail || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
1da177e4
LT
3763 return;
3764
3765 while (before(start, end)) {
3766 struct sk_buff *nskb;
3767 int header = skb_headroom(skb);
3768 int copy = SKB_MAX_ORDER(header, 0);
3769
3770 /* Too big header? This can happen with IPv6. */
3771 if (copy < 0)
3772 return;
3773 if (end-start < copy)
3774 copy = end-start;
3775 nskb = alloc_skb(copy+header, GFP_ATOMIC);
3776 if (!nskb)
3777 return;
c51957da 3778
98e399f8 3779 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
9c70220b
ACM
3780 skb_set_network_header(nskb, (skb_network_header(skb) -
3781 skb->head));
3782 skb_set_transport_header(nskb, (skb_transport_header(skb) -
3783 skb->head));
1da177e4
LT
3784 skb_reserve(nskb, header);
3785 memcpy(nskb->head, skb->head, header);
1da177e4
LT
3786 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
3787 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
8728b834 3788 __skb_insert(nskb, skb->prev, skb, list);
1da177e4
LT
3789 sk_stream_set_owner_r(nskb, sk);
3790
3791 /* Copy data, releasing collapsed skbs. */
3792 while (copy > 0) {
3793 int offset = start - TCP_SKB_CB(skb)->seq;
3794 int size = TCP_SKB_CB(skb)->end_seq - start;
3795
09a62660 3796 BUG_ON(offset < 0);
1da177e4
LT
3797 if (size > 0) {
3798 size = min(copy, size);
3799 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
3800 BUG();
3801 TCP_SKB_CB(nskb)->end_seq += size;
3802 copy -= size;
3803 start += size;
3804 }
3805 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
3806 struct sk_buff *next = skb->next;
8728b834 3807 __skb_unlink(skb, list);
1da177e4
LT
3808 __kfree_skb(skb);
3809 NET_INC_STATS_BH(LINUX_MIB_TCPRCVCOLLAPSED);
3810 skb = next;
aa8223c7
ACM
3811 if (skb == tail ||
3812 tcp_hdr(skb)->syn ||
3813 tcp_hdr(skb)->fin)
1da177e4
LT
3814 return;
3815 }
3816 }
3817 }
3818}
3819
3820/* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
3821 * and tcp_collapse() them until all the queue is collapsed.
3822 */
3823static void tcp_collapse_ofo_queue(struct sock *sk)
3824{
3825 struct tcp_sock *tp = tcp_sk(sk);
3826 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
3827 struct sk_buff *head;
3828 u32 start, end;
3829
3830 if (skb == NULL)
3831 return;
3832
3833 start = TCP_SKB_CB(skb)->seq;
3834 end = TCP_SKB_CB(skb)->end_seq;
3835 head = skb;
3836
3837 for (;;) {
3838 skb = skb->next;
3839
3840 /* Segment is terminated when we see gap or when
3841 * we are at the end of all the queue. */
3842 if (skb == (struct sk_buff *)&tp->out_of_order_queue ||
3843 after(TCP_SKB_CB(skb)->seq, end) ||
3844 before(TCP_SKB_CB(skb)->end_seq, start)) {
8728b834
DM
3845 tcp_collapse(sk, &tp->out_of_order_queue,
3846 head, skb, start, end);
1da177e4
LT
3847 head = skb;
3848 if (skb == (struct sk_buff *)&tp->out_of_order_queue)
3849 break;
3850 /* Start new segment */
3851 start = TCP_SKB_CB(skb)->seq;
3852 end = TCP_SKB_CB(skb)->end_seq;
3853 } else {
3854 if (before(TCP_SKB_CB(skb)->seq, start))
3855 start = TCP_SKB_CB(skb)->seq;
3856 if (after(TCP_SKB_CB(skb)->end_seq, end))
3857 end = TCP_SKB_CB(skb)->end_seq;
3858 }
3859 }
3860}
3861
3862/* Reduce allocated memory if we can, trying to get
3863 * the socket within its memory limits again.
3864 *
3865 * Return less than zero if we should start dropping frames
3866 * until the socket owning process reads some of the data
3867 * to stabilize the situation.
3868 */
3869static int tcp_prune_queue(struct sock *sk)
3870{
e905a9ed 3871 struct tcp_sock *tp = tcp_sk(sk);
1da177e4
LT
3872
3873 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
3874
3875 NET_INC_STATS_BH(LINUX_MIB_PRUNECALLED);
3876
3877 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
9e412ba7 3878 tcp_clamp_window(sk);
1da177e4
LT
3879 else if (tcp_memory_pressure)
3880 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
3881
3882 tcp_collapse_ofo_queue(sk);
8728b834
DM
3883 tcp_collapse(sk, &sk->sk_receive_queue,
3884 sk->sk_receive_queue.next,
1da177e4
LT
3885 (struct sk_buff*)&sk->sk_receive_queue,
3886 tp->copied_seq, tp->rcv_nxt);
3887 sk_stream_mem_reclaim(sk);
3888
3889 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3890 return 0;
3891
3892 /* Collapsing did not help, destructive actions follow.
3893 * This must not ever occur. */
3894
3895 /* First, purge the out_of_order queue. */
b03efcfb
DM
3896 if (!skb_queue_empty(&tp->out_of_order_queue)) {
3897 NET_INC_STATS_BH(LINUX_MIB_OFOPRUNED);
1da177e4
LT
3898 __skb_queue_purge(&tp->out_of_order_queue);
3899
3900 /* Reset SACK state. A conforming SACK implementation will
3901 * do the same at a timeout based retransmit. When a connection
3902 * is in a sad state like this, we care only about integrity
3903 * of the connection not performance.
3904 */
e60402d0 3905 if (tcp_is_sack(tp))
1da177e4
LT
3906 tcp_sack_reset(&tp->rx_opt);
3907 sk_stream_mem_reclaim(sk);
3908 }
3909
3910 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
3911 return 0;
3912
3913 /* If we are really being abused, tell the caller to silently
3914 * drop receive data on the floor. It will get retransmitted
3915 * and hopefully then we'll have sufficient space.
3916 */
3917 NET_INC_STATS_BH(LINUX_MIB_RCVPRUNED);
3918
3919 /* Massive buffer overcommit. */
3920 tp->pred_flags = 0;
3921 return -1;
3922}
3923
3924
3925/* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
3926 * As additional protections, we do not touch cwnd in retransmission phases,
3927 * and if application hit its sndbuf limit recently.
3928 */
3929void tcp_cwnd_application_limited(struct sock *sk)
3930{
3931 struct tcp_sock *tp = tcp_sk(sk);
3932
6687e988 3933 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
1da177e4
LT
3934 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
3935 /* Limited by application or receiver window. */
d254bcdb
IJ
3936 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
3937 u32 win_used = max(tp->snd_cwnd_used, init_win);
1da177e4 3938 if (win_used < tp->snd_cwnd) {
6687e988 3939 tp->snd_ssthresh = tcp_current_ssthresh(sk);
1da177e4
LT
3940 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
3941 }
3942 tp->snd_cwnd_used = 0;
3943 }
3944 tp->snd_cwnd_stamp = tcp_time_stamp;
3945}
3946
9e412ba7 3947static int tcp_should_expand_sndbuf(struct sock *sk)
0d9901df 3948{
9e412ba7
IJ
3949 struct tcp_sock *tp = tcp_sk(sk);
3950
0d9901df
DM
3951 /* If the user specified a specific send buffer setting, do
3952 * not modify it.
3953 */
3954 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
3955 return 0;
3956
3957 /* If we are under global TCP memory pressure, do not expand. */
3958 if (tcp_memory_pressure)
3959 return 0;
3960
3961 /* If we are under soft global TCP memory pressure, do not expand. */
3962 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
3963 return 0;
3964
3965 /* If we filled the congestion window, do not expand. */
3966 if (tp->packets_out >= tp->snd_cwnd)
3967 return 0;
3968
3969 return 1;
3970}
1da177e4
LT
3971
3972/* When incoming ACK allowed to free some skb from write_queue,
3973 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
3974 * on the exit from tcp input handler.
3975 *
3976 * PROBLEM: sndbuf expansion does not work well with largesend.
3977 */
3978static void tcp_new_space(struct sock *sk)
3979{
3980 struct tcp_sock *tp = tcp_sk(sk);
3981
9e412ba7 3982 if (tcp_should_expand_sndbuf(sk)) {
e905a9ed 3983 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
1da177e4
LT
3984 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff),
3985 demanded = max_t(unsigned int, tp->snd_cwnd,
3986 tp->reordering + 1);
3987 sndmem *= 2*demanded;
3988 if (sndmem > sk->sk_sndbuf)
3989 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
3990 tp->snd_cwnd_stamp = tcp_time_stamp;
3991 }
3992
3993 sk->sk_write_space(sk);
3994}
3995
40efc6fa 3996static void tcp_check_space(struct sock *sk)
1da177e4
LT
3997{
3998 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
3999 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4000 if (sk->sk_socket &&
4001 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4002 tcp_new_space(sk);
4003 }
4004}
4005
9e412ba7 4006static inline void tcp_data_snd_check(struct sock *sk)
1da177e4 4007{
9e412ba7 4008 tcp_push_pending_frames(sk);
1da177e4
LT
4009 tcp_check_space(sk);
4010}
4011
4012/*
4013 * Check if sending an ack is needed.
4014 */
4015static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4016{
4017 struct tcp_sock *tp = tcp_sk(sk);
4018
4019 /* More than one full frame received... */
463c84b9 4020 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
1da177e4
LT
4021 /* ... and right edge of window advances far enough.
4022 * (tcp_recvmsg() will send ACK otherwise). Or...
4023 */
4024 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4025 /* We ACK each frame or... */
463c84b9 4026 tcp_in_quickack_mode(sk) ||
1da177e4
LT
4027 /* We have out of order data. */
4028 (ofo_possible &&
4029 skb_peek(&tp->out_of_order_queue))) {
4030 /* Then ack it now */
4031 tcp_send_ack(sk);
4032 } else {
4033 /* Else, send delayed ack. */
4034 tcp_send_delayed_ack(sk);
4035 }
4036}
4037
40efc6fa 4038static inline void tcp_ack_snd_check(struct sock *sk)
1da177e4 4039{
463c84b9 4040 if (!inet_csk_ack_scheduled(sk)) {
1da177e4
LT
4041 /* We sent a data segment already. */
4042 return;
4043 }
4044 __tcp_ack_snd_check(sk, 1);
4045}
4046
4047/*
4048 * This routine is only called when we have urgent data
caa20d9a 4049 * signaled. Its the 'slow' part of tcp_urg. It could be
1da177e4
LT
4050 * moved inline now as tcp_urg is only called from one
4051 * place. We handle URGent data wrong. We have to - as
4052 * BSD still doesn't use the correction from RFC961.
4053 * For 1003.1g we should support a new option TCP_STDURG to permit
4054 * either form (or just set the sysctl tcp_stdurg).
4055 */
e905a9ed 4056
1da177e4
LT
4057static void tcp_check_urg(struct sock * sk, struct tcphdr * th)
4058{
4059 struct tcp_sock *tp = tcp_sk(sk);
4060 u32 ptr = ntohs(th->urg_ptr);
4061
4062 if (ptr && !sysctl_tcp_stdurg)
4063 ptr--;
4064 ptr += ntohl(th->seq);
4065
4066 /* Ignore urgent data that we've already seen and read. */
4067 if (after(tp->copied_seq, ptr))
4068 return;
4069
4070 /* Do not replay urg ptr.
4071 *
4072 * NOTE: interesting situation not covered by specs.
4073 * Misbehaving sender may send urg ptr, pointing to segment,
4074 * which we already have in ofo queue. We are not able to fetch
4075 * such data and will stay in TCP_URG_NOTYET until will be eaten
4076 * by recvmsg(). Seems, we are not obliged to handle such wicked
4077 * situations. But it is worth to think about possibility of some
4078 * DoSes using some hypothetical application level deadlock.
4079 */
4080 if (before(ptr, tp->rcv_nxt))
4081 return;
4082
4083 /* Do we already have a newer (or duplicate) urgent pointer? */
4084 if (tp->urg_data && !after(ptr, tp->urg_seq))
4085 return;
4086
4087 /* Tell the world about our new urgent pointer. */
4088 sk_send_sigurg(sk);
4089
4090 /* We may be adding urgent data when the last byte read was
4091 * urgent. To do this requires some care. We cannot just ignore
4092 * tp->copied_seq since we would read the last urgent byte again
4093 * as data, nor can we alter copied_seq until this data arrives
caa20d9a 4094 * or we break the semantics of SIOCATMARK (and thus sockatmark())
1da177e4
LT
4095 *
4096 * NOTE. Double Dutch. Rendering to plain English: author of comment
4097 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4098 * and expect that both A and B disappear from stream. This is _wrong_.
4099 * Though this happens in BSD with high probability, this is occasional.
4100 * Any application relying on this is buggy. Note also, that fix "works"
4101 * only in this artificial test. Insert some normal data between A and B and we will
4102 * decline of BSD again. Verdict: it is better to remove to trap
4103 * buggy users.
4104 */
4105 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4106 !sock_flag(sk, SOCK_URGINLINE) &&
4107 tp->copied_seq != tp->rcv_nxt) {
4108 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4109 tp->copied_seq++;
4110 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
8728b834 4111 __skb_unlink(skb, &sk->sk_receive_queue);
1da177e4
LT
4112 __kfree_skb(skb);
4113 }
4114 }
4115
4116 tp->urg_data = TCP_URG_NOTYET;
4117 tp->urg_seq = ptr;
4118
4119 /* Disable header prediction. */
4120 tp->pred_flags = 0;
4121}
4122
4123/* This is the 'fast' part of urgent handling. */
4124static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4125{
4126 struct tcp_sock *tp = tcp_sk(sk);
4127
4128 /* Check if we get a new urgent pointer - normally not. */
4129 if (th->urg)
4130 tcp_check_urg(sk,th);
4131
4132 /* Do we wait for any urgent data? - normally not... */
4133 if (tp->urg_data == TCP_URG_NOTYET) {
4134 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4135 th->syn;
4136
e905a9ed 4137 /* Is the urgent pointer pointing into this packet? */
1da177e4
LT
4138 if (ptr < skb->len) {
4139 u8 tmp;
4140 if (skb_copy_bits(skb, ptr, &tmp, 1))
4141 BUG();
4142 tp->urg_data = TCP_URG_VALID | tmp;
4143 if (!sock_flag(sk, SOCK_DEAD))
4144 sk->sk_data_ready(sk, 0);
4145 }
4146 }
4147}
4148
4149static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4150{
4151 struct tcp_sock *tp = tcp_sk(sk);
4152 int chunk = skb->len - hlen;
4153 int err;
4154
4155 local_bh_enable();
60476372 4156 if (skb_csum_unnecessary(skb))
1da177e4
LT
4157 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4158 else
4159 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4160 tp->ucopy.iov);
4161
4162 if (!err) {
4163 tp->ucopy.len -= chunk;
4164 tp->copied_seq += chunk;
4165 tcp_rcv_space_adjust(sk);
4166 }
4167
4168 local_bh_disable();
4169 return err;
4170}
4171
b51655b9 4172static __sum16 __tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4173{
b51655b9 4174 __sum16 result;
1da177e4
LT
4175
4176 if (sock_owned_by_user(sk)) {
4177 local_bh_enable();
4178 result = __tcp_checksum_complete(skb);
4179 local_bh_disable();
4180 } else {
4181 result = __tcp_checksum_complete(skb);
4182 }
4183 return result;
4184}
4185
40efc6fa 4186static inline int tcp_checksum_complete_user(struct sock *sk, struct sk_buff *skb)
1da177e4 4187{
60476372 4188 return !skb_csum_unnecessary(skb) &&
1da177e4
LT
4189 __tcp_checksum_complete_user(sk, skb);
4190}
4191
1a2449a8
CL
4192#ifdef CONFIG_NET_DMA
4193static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb, int hlen)
4194{
4195 struct tcp_sock *tp = tcp_sk(sk);
4196 int chunk = skb->len - hlen;
4197 int dma_cookie;
4198 int copied_early = 0;
4199
4200 if (tp->ucopy.wakeup)
e905a9ed 4201 return 0;
1a2449a8
CL
4202
4203 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
4204 tp->ucopy.dma_chan = get_softnet_dma();
4205
60476372 4206 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
1a2449a8
CL
4207
4208 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
4209 skb, hlen, tp->ucopy.iov, chunk, tp->ucopy.pinned_list);
4210
4211 if (dma_cookie < 0)
4212 goto out;
4213
4214 tp->ucopy.dma_cookie = dma_cookie;
4215 copied_early = 1;
4216
4217 tp->ucopy.len -= chunk;
4218 tp->copied_seq += chunk;
4219 tcp_rcv_space_adjust(sk);
4220
4221 if ((tp->ucopy.len == 0) ||
aa8223c7 4222 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
1a2449a8
CL
4223 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
4224 tp->ucopy.wakeup = 1;
4225 sk->sk_data_ready(sk, 0);
4226 }
4227 } else if (chunk > 0) {
4228 tp->ucopy.wakeup = 1;
4229 sk->sk_data_ready(sk, 0);
4230 }
4231out:
4232 return copied_early;
4233}
4234#endif /* CONFIG_NET_DMA */
4235
1da177e4 4236/*
e905a9ed 4237 * TCP receive function for the ESTABLISHED state.
1da177e4 4238 *
e905a9ed 4239 * It is split into a fast path and a slow path. The fast path is
1da177e4
LT
4240 * disabled when:
4241 * - A zero window was announced from us - zero window probing
e905a9ed 4242 * is only handled properly in the slow path.
1da177e4
LT
4243 * - Out of order segments arrived.
4244 * - Urgent data is expected.
4245 * - There is no buffer space left
4246 * - Unexpected TCP flags/window values/header lengths are received
e905a9ed 4247 * (detected by checking the TCP header against pred_flags)
1da177e4
LT
4248 * - Data is sent in both directions. Fast path only supports pure senders
4249 * or pure receivers (this means either the sequence number or the ack
4250 * value must stay constant)
4251 * - Unexpected TCP option.
4252 *
e905a9ed 4253 * When these conditions are not satisfied it drops into a standard
1da177e4
LT
4254 * receive procedure patterned after RFC793 to handle all cases.
4255 * The first three cases are guaranteed by proper pred_flags setting,
e905a9ed 4256 * the rest is checked inline. Fast processing is turned on in
1da177e4
LT
4257 * tcp_data_queue when everything is OK.
4258 */
4259int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
4260 struct tcphdr *th, unsigned len)
4261{
4262 struct tcp_sock *tp = tcp_sk(sk);
4263
4264 /*
4265 * Header prediction.
e905a9ed 4266 * The code loosely follows the one in the famous
1da177e4 4267 * "30 instruction TCP receive" Van Jacobson mail.
e905a9ed
YH
4268 *
4269 * Van's trick is to deposit buffers into socket queue
1da177e4
LT
4270 * on a device interrupt, to call tcp_recv function
4271 * on the receive process context and checksum and copy
4272 * the buffer to user space. smart...
4273 *
e905a9ed 4274 * Our current scheme is not silly either but we take the
1da177e4
LT
4275 * extra cost of the net_bh soft interrupt processing...
4276 * We do checksum and copy also but from device to kernel.
4277 */
4278
4279 tp->rx_opt.saw_tstamp = 0;
4280
4281 /* pred_flags is 0xS?10 << 16 + snd_wnd
caa20d9a 4282 * if header_prediction is to be made
1da177e4
LT
4283 * 'S' will always be tp->tcp_header_len >> 2
4284 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
e905a9ed 4285 * turn it off (when there are holes in the receive
1da177e4
LT
4286 * space for instance)
4287 * PSH flag is ignored.
4288 */
4289
4290 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
4291 TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4292 int tcp_header_len = tp->tcp_header_len;
4293
4294 /* Timestamp header prediction: tcp_header_len
4295 * is automatically equal to th->doff*4 due to pred_flags
4296 * match.
4297 */
4298
4299 /* Check timestamp */
4300 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
4f3608b7 4301 __be32 *ptr = (__be32 *)(th + 1);
1da177e4
LT
4302
4303 /* No? Slow path! */
4f3608b7 4304 if (*ptr != htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
1da177e4
LT
4305 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP))
4306 goto slow_path;
4307
4308 tp->rx_opt.saw_tstamp = 1;
e905a9ed 4309 ++ptr;
1da177e4
LT
4310 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4311 ++ptr;
4312 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
4313
4314 /* If PAWS failed, check it more carefully in slow path */
4315 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
4316 goto slow_path;
4317
4318 /* DO NOT update ts_recent here, if checksum fails
4319 * and timestamp was corrupted part, it will result
4320 * in a hung connection since we will drop all
4321 * future packets due to the PAWS test.
4322 */
4323 }
4324
4325 if (len <= tcp_header_len) {
4326 /* Bulk data transfer: sender */
4327 if (len == tcp_header_len) {
4328 /* Predicted packet is in window by definition.
4329 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4330 * Hence, check seq<=rcv_wup reduces to:
4331 */
4332 if (tcp_header_len ==
4333 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4334 tp->rcv_nxt == tp->rcv_wup)
4335 tcp_store_ts_recent(tp);
4336
1da177e4
LT
4337 /* We know that such packets are checksummed
4338 * on entry.
4339 */
4340 tcp_ack(sk, skb, 0);
e905a9ed 4341 __kfree_skb(skb);
9e412ba7 4342 tcp_data_snd_check(sk);
1da177e4
LT
4343 return 0;
4344 } else { /* Header too small */
4345 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4346 goto discard;
4347 }
4348 } else {
4349 int eaten = 0;
1a2449a8 4350 int copied_early = 0;
1da177e4 4351
1a2449a8
CL
4352 if (tp->copied_seq == tp->rcv_nxt &&
4353 len - tcp_header_len <= tp->ucopy.len) {
4354#ifdef CONFIG_NET_DMA
4355 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
4356 copied_early = 1;
4357 eaten = 1;
4358 }
4359#endif
4360 if (tp->ucopy.task == current && sock_owned_by_user(sk) && !copied_early) {
4361 __set_current_state(TASK_RUNNING);
1da177e4 4362
1a2449a8
CL
4363 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
4364 eaten = 1;
4365 }
4366 if (eaten) {
1da177e4
LT
4367 /* Predicted packet is in window by definition.
4368 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4369 * Hence, check seq<=rcv_wup reduces to:
4370 */
4371 if (tcp_header_len ==
4372 (sizeof(struct tcphdr) +
4373 TCPOLEN_TSTAMP_ALIGNED) &&
4374 tp->rcv_nxt == tp->rcv_wup)
4375 tcp_store_ts_recent(tp);
4376
463c84b9 4377 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4378
4379 __skb_pull(skb, tcp_header_len);
4380 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4381 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITSTOUSER);
1da177e4 4382 }
1a2449a8
CL
4383 if (copied_early)
4384 tcp_cleanup_rbuf(sk, skb->len);
1da177e4
LT
4385 }
4386 if (!eaten) {
4387 if (tcp_checksum_complete_user(sk, skb))
4388 goto csum_error;
4389
4390 /* Predicted packet is in window by definition.
4391 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
4392 * Hence, check seq<=rcv_wup reduces to:
4393 */
4394 if (tcp_header_len ==
4395 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
4396 tp->rcv_nxt == tp->rcv_wup)
4397 tcp_store_ts_recent(tp);
4398
463c84b9 4399 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4400
4401 if ((int)skb->truesize > sk->sk_forward_alloc)
4402 goto step5;
4403
4404 NET_INC_STATS_BH(LINUX_MIB_TCPHPHITS);
4405
4406 /* Bulk data transfer: receiver */
4407 __skb_pull(skb,tcp_header_len);
4408 __skb_queue_tail(&sk->sk_receive_queue, skb);
4409 sk_stream_set_owner_r(skb, sk);
4410 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4411 }
4412
9e412ba7 4413 tcp_event_data_recv(sk, skb);
1da177e4
LT
4414
4415 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
4416 /* Well, only one small jumplet in fast path... */
4417 tcp_ack(sk, skb, FLAG_DATA);
9e412ba7 4418 tcp_data_snd_check(sk);
463c84b9 4419 if (!inet_csk_ack_scheduled(sk))
1da177e4
LT
4420 goto no_ack;
4421 }
4422
31432412 4423 __tcp_ack_snd_check(sk, 0);
1da177e4 4424no_ack:
1a2449a8
CL
4425#ifdef CONFIG_NET_DMA
4426 if (copied_early)
4427 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
4428 else
4429#endif
1da177e4
LT
4430 if (eaten)
4431 __kfree_skb(skb);
4432 else
4433 sk->sk_data_ready(sk, 0);
4434 return 0;
4435 }
4436 }
4437
4438slow_path:
4439 if (len < (th->doff<<2) || tcp_checksum_complete_user(sk, skb))
4440 goto csum_error;
4441
4442 /*
4443 * RFC1323: H1. Apply PAWS check first.
4444 */
4445 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4446 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4447 if (!th->rst) {
4448 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4449 tcp_send_dupack(sk, skb);
4450 goto discard;
4451 }
4452 /* Resets are accepted even if PAWS failed.
4453
4454 ts_recent update must be made after we are sure
4455 that the packet is in window.
4456 */
4457 }
4458
4459 /*
4460 * Standard slow path.
4461 */
4462
4463 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4464 /* RFC793, page 37: "In all states except SYN-SENT, all reset
4465 * (RST) segments are validated by checking their SEQ-fields."
4466 * And page 69: "If an incoming segment is not acceptable,
4467 * an acknowledgment should be sent in reply (unless the RST bit
4468 * is set, if so drop the segment and return)".
4469 */
4470 if (!th->rst)
4471 tcp_send_dupack(sk, skb);
4472 goto discard;
4473 }
4474
2de979bd 4475 if (th->rst) {
1da177e4
LT
4476 tcp_reset(sk);
4477 goto discard;
4478 }
4479
4480 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4481
4482 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4483 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4484 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4485 tcp_reset(sk);
4486 return 1;
4487 }
4488
4489step5:
2de979bd 4490 if (th->ack)
1da177e4
LT
4491 tcp_ack(sk, skb, FLAG_SLOWPATH);
4492
463c84b9 4493 tcp_rcv_rtt_measure_ts(sk, skb);
1da177e4
LT
4494
4495 /* Process urgent data. */
4496 tcp_urg(sk, skb, th);
4497
4498 /* step 7: process the segment text */
4499 tcp_data_queue(sk, skb);
4500
9e412ba7 4501 tcp_data_snd_check(sk);
1da177e4
LT
4502 tcp_ack_snd_check(sk);
4503 return 0;
4504
4505csum_error:
4506 TCP_INC_STATS_BH(TCP_MIB_INERRS);
4507
4508discard:
4509 __kfree_skb(skb);
4510 return 0;
4511}
4512
4513static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
4514 struct tcphdr *th, unsigned len)
4515{
4516 struct tcp_sock *tp = tcp_sk(sk);
d83d8461 4517 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4518 int saved_clamp = tp->rx_opt.mss_clamp;
4519
4520 tcp_parse_options(skb, &tp->rx_opt, 0);
4521
4522 if (th->ack) {
4523 /* rfc793:
4524 * "If the state is SYN-SENT then
4525 * first check the ACK bit
4526 * If the ACK bit is set
4527 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
4528 * a reset (unless the RST bit is set, if so drop
4529 * the segment and return)"
4530 *
4531 * We do not send data with SYN, so that RFC-correct
4532 * test reduces to:
4533 */
4534 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
4535 goto reset_and_undo;
4536
4537 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4538 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
4539 tcp_time_stamp)) {
4540 NET_INC_STATS_BH(LINUX_MIB_PAWSACTIVEREJECTED);
4541 goto reset_and_undo;
4542 }
4543
4544 /* Now ACK is acceptable.
4545 *
4546 * "If the RST bit is set
4547 * If the ACK was acceptable then signal the user "error:
4548 * connection reset", drop the segment, enter CLOSED state,
4549 * delete TCB, and return."
4550 */
4551
4552 if (th->rst) {
4553 tcp_reset(sk);
4554 goto discard;
4555 }
4556
4557 /* rfc793:
4558 * "fifth, if neither of the SYN or RST bits is set then
4559 * drop the segment and return."
4560 *
4561 * See note below!
4562 * --ANK(990513)
4563 */
4564 if (!th->syn)
4565 goto discard_and_undo;
4566
4567 /* rfc793:
4568 * "If the SYN bit is on ...
4569 * are acceptable then ...
4570 * (our SYN has been ACKed), change the connection
4571 * state to ESTABLISHED..."
4572 */
4573
4574 TCP_ECN_rcv_synack(tp, th);
1da177e4
LT
4575
4576 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4577 tcp_ack(sk, skb, FLAG_SLOWPATH);
4578
4579 /* Ok.. it's good. Set up sequence numbers and
4580 * move to established.
4581 */
4582 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4583 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4584
4585 /* RFC1323: The window in SYN & SYN/ACK segments is
4586 * never scaled.
4587 */
4588 tp->snd_wnd = ntohs(th->window);
4589 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq, TCP_SKB_CB(skb)->seq);
4590
4591 if (!tp->rx_opt.wscale_ok) {
4592 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
4593 tp->window_clamp = min(tp->window_clamp, 65535U);
4594 }
4595
4596 if (tp->rx_opt.saw_tstamp) {
4597 tp->rx_opt.tstamp_ok = 1;
4598 tp->tcp_header_len =
4599 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4600 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4601 tcp_store_ts_recent(tp);
4602 } else {
4603 tp->tcp_header_len = sizeof(struct tcphdr);
4604 }
4605
e60402d0
IJ
4606 if (tcp_is_sack(tp) && sysctl_tcp_fack)
4607 tcp_enable_fack(tp);
1da177e4 4608
5d424d5a 4609 tcp_mtup_init(sk);
d83d8461 4610 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4611 tcp_initialize_rcv_mss(sk);
4612
4613 /* Remember, tcp_poll() does not lock socket!
4614 * Change state from SYN-SENT only after copied_seq
4615 * is initialized. */
4616 tp->copied_seq = tp->rcv_nxt;
e16aa207 4617 smp_mb();
1da177e4
LT
4618 tcp_set_state(sk, TCP_ESTABLISHED);
4619
6b877699
VY
4620 security_inet_conn_established(sk, skb);
4621
1da177e4 4622 /* Make sure socket is routed, for correct metrics. */
8292a17a 4623 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4624
4625 tcp_init_metrics(sk);
4626
6687e988 4627 tcp_init_congestion_control(sk);
317a76f9 4628
1da177e4
LT
4629 /* Prevent spurious tcp_cwnd_restart() on first data
4630 * packet.
4631 */
4632 tp->lsndtime = tcp_time_stamp;
4633
4634 tcp_init_buffer_space(sk);
4635
4636 if (sock_flag(sk, SOCK_KEEPOPEN))
463c84b9 4637 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
1da177e4
LT
4638
4639 if (!tp->rx_opt.snd_wscale)
4640 __tcp_fast_path_on(tp, tp->snd_wnd);
4641 else
4642 tp->pred_flags = 0;
4643
4644 if (!sock_flag(sk, SOCK_DEAD)) {
4645 sk->sk_state_change(sk);
4646 sk_wake_async(sk, 0, POLL_OUT);
4647 }
4648
295f7324
ACM
4649 if (sk->sk_write_pending ||
4650 icsk->icsk_accept_queue.rskq_defer_accept ||
4651 icsk->icsk_ack.pingpong) {
1da177e4
LT
4652 /* Save one ACK. Data will be ready after
4653 * several ticks, if write_pending is set.
4654 *
4655 * It may be deleted, but with this feature tcpdumps
4656 * look so _wonderfully_ clever, that I was not able
4657 * to stand against the temptation 8) --ANK
4658 */
463c84b9 4659 inet_csk_schedule_ack(sk);
295f7324
ACM
4660 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
4661 icsk->icsk_ack.ato = TCP_ATO_MIN;
463c84b9
ACM
4662 tcp_incr_quickack(sk);
4663 tcp_enter_quickack_mode(sk);
3f421baa
ACM
4664 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
4665 TCP_DELACK_MAX, TCP_RTO_MAX);
1da177e4
LT
4666
4667discard:
4668 __kfree_skb(skb);
4669 return 0;
4670 } else {
4671 tcp_send_ack(sk);
4672 }
4673 return -1;
4674 }
4675
4676 /* No ACK in the segment */
4677
4678 if (th->rst) {
4679 /* rfc793:
4680 * "If the RST bit is set
4681 *
4682 * Otherwise (no ACK) drop the segment and return."
4683 */
4684
4685 goto discard_and_undo;
4686 }
4687
4688 /* PAWS check. */
4689 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp && tcp_paws_check(&tp->rx_opt, 0))
4690 goto discard_and_undo;
4691
4692 if (th->syn) {
4693 /* We see SYN without ACK. It is attempt of
4694 * simultaneous connect with crossed SYNs.
4695 * Particularly, it can be connect to self.
4696 */
4697 tcp_set_state(sk, TCP_SYN_RECV);
4698
4699 if (tp->rx_opt.saw_tstamp) {
4700 tp->rx_opt.tstamp_ok = 1;
4701 tcp_store_ts_recent(tp);
4702 tp->tcp_header_len =
4703 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
4704 } else {
4705 tp->tcp_header_len = sizeof(struct tcphdr);
4706 }
4707
4708 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
4709 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
4710
4711 /* RFC1323: The window in SYN & SYN/ACK segments is
4712 * never scaled.
4713 */
4714 tp->snd_wnd = ntohs(th->window);
4715 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
4716 tp->max_window = tp->snd_wnd;
4717
4718 TCP_ECN_rcv_syn(tp, th);
1da177e4 4719
5d424d5a 4720 tcp_mtup_init(sk);
d83d8461 4721 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
1da177e4
LT
4722 tcp_initialize_rcv_mss(sk);
4723
4724
4725 tcp_send_synack(sk);
4726#if 0
4727 /* Note, we could accept data and URG from this segment.
4728 * There are no obstacles to make this.
4729 *
4730 * However, if we ignore data in ACKless segments sometimes,
4731 * we have no reasons to accept it sometimes.
4732 * Also, seems the code doing it in step6 of tcp_rcv_state_process
4733 * is not flawless. So, discard packet for sanity.
4734 * Uncomment this return to process the data.
4735 */
4736 return -1;
4737#else
4738 goto discard;
4739#endif
4740 }
4741 /* "fifth, if neither of the SYN or RST bits is set then
4742 * drop the segment and return."
4743 */
4744
4745discard_and_undo:
4746 tcp_clear_options(&tp->rx_opt);
4747 tp->rx_opt.mss_clamp = saved_clamp;
4748 goto discard;
4749
4750reset_and_undo:
4751 tcp_clear_options(&tp->rx_opt);
4752 tp->rx_opt.mss_clamp = saved_clamp;
4753 return 1;
4754}
4755
4756
4757/*
4758 * This function implements the receiving procedure of RFC 793 for
e905a9ed 4759 * all states except ESTABLISHED and TIME_WAIT.
1da177e4
LT
4760 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
4761 * address independent.
4762 */
e905a9ed 4763
1da177e4
LT
4764int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
4765 struct tcphdr *th, unsigned len)
4766{
4767 struct tcp_sock *tp = tcp_sk(sk);
8292a17a 4768 struct inet_connection_sock *icsk = inet_csk(sk);
1da177e4
LT
4769 int queued = 0;
4770
4771 tp->rx_opt.saw_tstamp = 0;
4772
4773 switch (sk->sk_state) {
4774 case TCP_CLOSE:
4775 goto discard;
4776
4777 case TCP_LISTEN:
2de979bd 4778 if (th->ack)
1da177e4
LT
4779 return 1;
4780
2de979bd 4781 if (th->rst)
1da177e4
LT
4782 goto discard;
4783
2de979bd 4784 if (th->syn) {
8292a17a 4785 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
1da177e4
LT
4786 return 1;
4787
e905a9ed
YH
4788 /* Now we have several options: In theory there is
4789 * nothing else in the frame. KA9Q has an option to
1da177e4 4790 * send data with the syn, BSD accepts data with the
e905a9ed
YH
4791 * syn up to the [to be] advertised window and
4792 * Solaris 2.1 gives you a protocol error. For now
4793 * we just ignore it, that fits the spec precisely
1da177e4
LT
4794 * and avoids incompatibilities. It would be nice in
4795 * future to drop through and process the data.
4796 *
e905a9ed 4797 * Now that TTCP is starting to be used we ought to
1da177e4
LT
4798 * queue this data.
4799 * But, this leaves one open to an easy denial of
e905a9ed 4800 * service attack, and SYN cookies can't defend
1da177e4 4801 * against this problem. So, we drop the data
fb7e2399
MN
4802 * in the interest of security over speed unless
4803 * it's still in use.
1da177e4 4804 */
fb7e2399
MN
4805 kfree_skb(skb);
4806 return 0;
1da177e4
LT
4807 }
4808 goto discard;
4809
4810 case TCP_SYN_SENT:
1da177e4
LT
4811 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
4812 if (queued >= 0)
4813 return queued;
4814
4815 /* Do step6 onward by hand. */
4816 tcp_urg(sk, skb, th);
4817 __kfree_skb(skb);
9e412ba7 4818 tcp_data_snd_check(sk);
1da177e4
LT
4819 return 0;
4820 }
4821
4822 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
463c84b9 4823 tcp_paws_discard(sk, skb)) {
1da177e4
LT
4824 if (!th->rst) {
4825 NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED);
4826 tcp_send_dupack(sk, skb);
4827 goto discard;
4828 }
4829 /* Reset is accepted even if it did not pass PAWS. */
4830 }
4831
4832 /* step 1: check sequence number */
4833 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
4834 if (!th->rst)
4835 tcp_send_dupack(sk, skb);
4836 goto discard;
4837 }
4838
4839 /* step 2: check RST bit */
2de979bd 4840 if (th->rst) {
1da177e4
LT
4841 tcp_reset(sk);
4842 goto discard;
4843 }
4844
4845 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
4846
4847 /* step 3: check security and precedence [ignored] */
4848
4849 /* step 4:
4850 *
4851 * Check for a SYN in window.
4852 */
4853 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4854 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONSYN);
4855 tcp_reset(sk);
4856 return 1;
4857 }
4858
4859 /* step 5: check the ACK field */
4860 if (th->ack) {
4861 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH);
4862
2de979bd 4863 switch (sk->sk_state) {
1da177e4
LT
4864 case TCP_SYN_RECV:
4865 if (acceptable) {
4866 tp->copied_seq = tp->rcv_nxt;
e16aa207 4867 smp_mb();
1da177e4
LT
4868 tcp_set_state(sk, TCP_ESTABLISHED);
4869 sk->sk_state_change(sk);
4870
4871 /* Note, that this wakeup is only for marginal
4872 * crossed SYN case. Passively open sockets
4873 * are not waked up, because sk->sk_sleep ==
4874 * NULL and sk->sk_socket == NULL.
4875 */
4876 if (sk->sk_socket) {
4877 sk_wake_async(sk,0,POLL_OUT);
4878 }
4879
4880 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
4881 tp->snd_wnd = ntohs(th->window) <<
4882 tp->rx_opt.snd_wscale;
4883 tcp_init_wl(tp, TCP_SKB_CB(skb)->ack_seq,
4884 TCP_SKB_CB(skb)->seq);
4885
4886 /* tcp_ack considers this ACK as duplicate
4887 * and does not calculate rtt.
4888 * Fix it at least with timestamps.
4889 */
4890 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
4891 !tp->srtt)
2d2abbab 4892 tcp_ack_saw_tstamp(sk, 0);
1da177e4
LT
4893
4894 if (tp->rx_opt.tstamp_ok)
4895 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
4896
4897 /* Make sure socket is routed, for
4898 * correct metrics.
4899 */
8292a17a 4900 icsk->icsk_af_ops->rebuild_header(sk);
1da177e4
LT
4901
4902 tcp_init_metrics(sk);
4903
6687e988 4904 tcp_init_congestion_control(sk);
317a76f9 4905
1da177e4
LT
4906 /* Prevent spurious tcp_cwnd_restart() on
4907 * first data packet.
4908 */
4909 tp->lsndtime = tcp_time_stamp;
4910
5d424d5a 4911 tcp_mtup_init(sk);
1da177e4
LT
4912 tcp_initialize_rcv_mss(sk);
4913 tcp_init_buffer_space(sk);
4914 tcp_fast_path_on(tp);
4915 } else {
4916 return 1;
4917 }
4918 break;
4919
4920 case TCP_FIN_WAIT1:
4921 if (tp->snd_una == tp->write_seq) {
4922 tcp_set_state(sk, TCP_FIN_WAIT2);
4923 sk->sk_shutdown |= SEND_SHUTDOWN;
4924 dst_confirm(sk->sk_dst_cache);
4925
4926 if (!sock_flag(sk, SOCK_DEAD))
4927 /* Wake up lingering close() */
4928 sk->sk_state_change(sk);
4929 else {
4930 int tmo;
4931
4932 if (tp->linger2 < 0 ||
4933 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4934 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
4935 tcp_done(sk);
4936 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4937 return 1;
4938 }
4939
463c84b9 4940 tmo = tcp_fin_time(sk);
1da177e4 4941 if (tmo > TCP_TIMEWAIT_LEN) {
463c84b9 4942 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
1da177e4
LT
4943 } else if (th->fin || sock_owned_by_user(sk)) {
4944 /* Bad case. We could lose such FIN otherwise.
4945 * It is not a big problem, but it looks confusing
4946 * and not so rare event. We still can lose it now,
4947 * if it spins in bh_lock_sock(), but it is really
4948 * marginal case.
4949 */
463c84b9 4950 inet_csk_reset_keepalive_timer(sk, tmo);
1da177e4
LT
4951 } else {
4952 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
4953 goto discard;
4954 }
4955 }
4956 }
4957 break;
4958
4959 case TCP_CLOSING:
4960 if (tp->snd_una == tp->write_seq) {
4961 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4962 goto discard;
4963 }
4964 break;
4965
4966 case TCP_LAST_ACK:
4967 if (tp->snd_una == tp->write_seq) {
4968 tcp_update_metrics(sk);
4969 tcp_done(sk);
4970 goto discard;
4971 }
4972 break;
4973 }
4974 } else
4975 goto discard;
4976
4977 /* step 6: check the URG bit */
4978 tcp_urg(sk, skb, th);
4979
4980 /* step 7: process the segment text */
4981 switch (sk->sk_state) {
4982 case TCP_CLOSE_WAIT:
4983 case TCP_CLOSING:
4984 case TCP_LAST_ACK:
4985 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4986 break;
4987 case TCP_FIN_WAIT1:
4988 case TCP_FIN_WAIT2:
4989 /* RFC 793 says to queue data in these states,
e905a9ed 4990 * RFC 1122 says we MUST send a reset.
1da177e4
LT
4991 * BSD 4.4 also does reset.
4992 */
4993 if (sk->sk_shutdown & RCV_SHUTDOWN) {
4994 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4995 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
4996 NET_INC_STATS_BH(LINUX_MIB_TCPABORTONDATA);
4997 tcp_reset(sk);
4998 return 1;
4999 }
5000 }
5001 /* Fall through */
e905a9ed 5002 case TCP_ESTABLISHED:
1da177e4
LT
5003 tcp_data_queue(sk, skb);
5004 queued = 1;
5005 break;
5006 }
5007
5008 /* tcp_data could move socket to TIME-WAIT */
5009 if (sk->sk_state != TCP_CLOSE) {
9e412ba7 5010 tcp_data_snd_check(sk);
1da177e4
LT
5011 tcp_ack_snd_check(sk);
5012 }
5013
e905a9ed 5014 if (!queued) {
1da177e4
LT
5015discard:
5016 __kfree_skb(skb);
5017 }
5018 return 0;
5019}
5020
5021EXPORT_SYMBOL(sysctl_tcp_ecn);
5022EXPORT_SYMBOL(sysctl_tcp_reordering);
5023EXPORT_SYMBOL(tcp_parse_options);
5024EXPORT_SYMBOL(tcp_rcv_established);
5025EXPORT_SYMBOL(tcp_rcv_state_process);
40efc6fa 5026EXPORT_SYMBOL(tcp_initialize_rcv_mss);