]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzpool/kernel.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sys/signal.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/rrwlock.h>
38 #include <sys/utsname.h>
39 #include <sys/time.h>
40 #include <sys/systeminfo.h>
41
42 /*
43 * Emulation of kernel services in userland.
44 */
45
46 int aok;
47 uint64_t physmem;
48 vnode_t *rootdir = (vnode_t *)0xabcd1234;
49 char hw_serial[HW_HOSTID_LEN];
50 struct utsname hw_utsname;
51
52 /* this only exists to have its address taken */
53 struct proc p0;
54
55 /*
56 * =========================================================================
57 * threads
58 * =========================================================================
59 */
60
61 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
62 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
63 pthread_key_t kthread_key;
64 int kthread_nr = 0;
65
66 static void
67 thread_init(void)
68 {
69 kthread_t *kt;
70
71 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
72
73 /* Create entry for primary kthread */
74 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
75 kt->t_tid = pthread_self();
76 kt->t_func = NULL;
77
78 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
79
80 /* Only the main thread should be running at the moment */
81 ASSERT3S(kthread_nr, ==, 0);
82 kthread_nr = 1;
83 }
84
85 static void
86 thread_fini(void)
87 {
88 kthread_t *kt = curthread;
89
90 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
91 ASSERT3P(kt->t_func, ==, NULL);
92
93 umem_free(kt, sizeof (kthread_t));
94
95 /* Wait for all threads to exit via thread_exit() */
96 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
97
98 kthread_nr--; /* Main thread is exiting */
99
100 while (kthread_nr > 0)
101 VERIFY3S(pthread_cond_wait(&kthread_cond, &kthread_lock), ==,
102 0);
103
104 ASSERT3S(kthread_nr, ==, 0);
105 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
106
107 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
108 }
109
110 kthread_t *
111 zk_thread_current(void)
112 {
113 kthread_t *kt = pthread_getspecific(kthread_key);
114
115 ASSERT3P(kt, !=, NULL);
116
117 return (kt);
118 }
119
120 void *
121 zk_thread_helper(void *arg)
122 {
123 kthread_t *kt = (kthread_t *) arg;
124
125 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
126
127 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
128 kthread_nr++;
129 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
130
131 kt->t_tid = pthread_self();
132 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
133
134 /* Unreachable, thread must exit with thread_exit() */
135 abort();
136
137 return (NULL);
138 }
139
140 kthread_t *
141 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
142 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
143 {
144 kthread_t *kt;
145 pthread_attr_t attr;
146 char *stkstr;
147
148 ASSERT0(state & ~TS_RUN);
149
150 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
151 kt->t_func = func;
152 kt->t_arg = arg;
153
154 VERIFY0(pthread_attr_init(&attr));
155 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
156
157 /*
158 * We allow the default stack size in user space to be specified by
159 * setting the ZFS_STACK_SIZE environment variable. This allows us
160 * the convenience of observing and debugging stack overruns in
161 * user space. Explicitly specified stack sizes will be honored.
162 * The usage of ZFS_STACK_SIZE is discussed further in the
163 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
164 */
165 if (stksize == 0) {
166 stkstr = getenv("ZFS_STACK_SIZE");
167
168 if (stkstr == NULL)
169 stksize = TS_STACK_MAX;
170 else
171 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
172 }
173
174 VERIFY3S(stksize, >, 0);
175 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
176 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
177 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
178
179 VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
180 VERIFY0(pthread_attr_destroy(&attr));
181
182 return (kt);
183 }
184
185 void
186 zk_thread_exit(void)
187 {
188 kthread_t *kt = curthread;
189
190 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
191
192 umem_free(kt, sizeof (kthread_t));
193
194 pthread_mutex_lock(&kthread_lock);
195 kthread_nr--;
196 pthread_mutex_unlock(&kthread_lock);
197
198 pthread_cond_broadcast(&kthread_cond);
199 pthread_exit((void *)TS_MAGIC);
200 }
201
202 void
203 zk_thread_join(kt_did_t tid)
204 {
205 void *ret;
206
207 pthread_join((pthread_t)tid, &ret);
208 VERIFY3P(ret, ==, (void *)TS_MAGIC);
209 }
210
211 /*
212 * =========================================================================
213 * kstats
214 * =========================================================================
215 */
216 /*ARGSUSED*/
217 kstat_t *
218 kstat_create(const char *module, int instance, const char *name,
219 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
220 {
221 return (NULL);
222 }
223
224 /*ARGSUSED*/
225 void
226 kstat_install(kstat_t *ksp)
227 {}
228
229 /*ARGSUSED*/
230 void
231 kstat_delete(kstat_t *ksp)
232 {}
233
234 /*ARGSUSED*/
235 void
236 kstat_waitq_enter(kstat_io_t *kiop)
237 {}
238
239 /*ARGSUSED*/
240 void
241 kstat_waitq_exit(kstat_io_t *kiop)
242 {}
243
244 /*ARGSUSED*/
245 void
246 kstat_runq_enter(kstat_io_t *kiop)
247 {}
248
249 /*ARGSUSED*/
250 void
251 kstat_runq_exit(kstat_io_t *kiop)
252 {}
253
254 /*ARGSUSED*/
255 void
256 kstat_waitq_to_runq(kstat_io_t *kiop)
257 {}
258
259 /*ARGSUSED*/
260 void
261 kstat_runq_back_to_waitq(kstat_io_t *kiop)
262 {}
263
264 void
265 kstat_set_raw_ops(kstat_t *ksp,
266 int (*headers)(char *buf, size_t size),
267 int (*data)(char *buf, size_t size, void *data),
268 void *(*addr)(kstat_t *ksp, loff_t index))
269 {}
270
271 /*
272 * =========================================================================
273 * mutexes
274 * =========================================================================
275 */
276
277 void
278 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
279 {
280 ASSERT3S(type, ==, MUTEX_DEFAULT);
281 ASSERT3P(cookie, ==, NULL);
282 mp->m_owner = MTX_INIT;
283 mp->m_magic = MTX_MAGIC;
284 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
285 }
286
287 void
288 mutex_destroy(kmutex_t *mp)
289 {
290 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
291 ASSERT3P(mp->m_owner, ==, MTX_INIT);
292 ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
293 mp->m_owner = MTX_DEST;
294 mp->m_magic = 0;
295 }
296
297 void
298 mutex_enter(kmutex_t *mp)
299 {
300 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
301 ASSERT3P(mp->m_owner, !=, MTX_DEST);
302 ASSERT3P(mp->m_owner, !=, curthread);
303 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
304 ASSERT3P(mp->m_owner, ==, MTX_INIT);
305 mp->m_owner = curthread;
306 }
307
308 int
309 mutex_tryenter(kmutex_t *mp)
310 {
311 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
312 ASSERT3P(mp->m_owner, !=, MTX_DEST);
313 if (0 == pthread_mutex_trylock(&mp->m_lock)) {
314 ASSERT3P(mp->m_owner, ==, MTX_INIT);
315 mp->m_owner = curthread;
316 return (1);
317 } else {
318 return (0);
319 }
320 }
321
322 void
323 mutex_exit(kmutex_t *mp)
324 {
325 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
326 ASSERT3P(mutex_owner(mp), ==, curthread);
327 mp->m_owner = MTX_INIT;
328 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
329 }
330
331 void *
332 mutex_owner(kmutex_t *mp)
333 {
334 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
335 return (mp->m_owner);
336 }
337
338 int
339 mutex_held(kmutex_t *mp)
340 {
341 return (mp->m_owner == curthread);
342 }
343
344 /*
345 * =========================================================================
346 * rwlocks
347 * =========================================================================
348 */
349
350 void
351 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
352 {
353 ASSERT3S(type, ==, RW_DEFAULT);
354 ASSERT3P(arg, ==, NULL);
355 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
356 rwlp->rw_owner = RW_INIT;
357 rwlp->rw_wr_owner = RW_INIT;
358 rwlp->rw_readers = 0;
359 rwlp->rw_magic = RW_MAGIC;
360 }
361
362 void
363 rw_destroy(krwlock_t *rwlp)
364 {
365 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
366 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
367 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
368 rwlp->rw_magic = 0;
369 }
370
371 void
372 rw_enter(krwlock_t *rwlp, krw_t rw)
373 {
374 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
375 ASSERT3P(rwlp->rw_owner, !=, curthread);
376 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
377
378 if (rw == RW_READER) {
379 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
380 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
381
382 atomic_inc_uint(&rwlp->rw_readers);
383 } else {
384 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
385 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
386 ASSERT3U(rwlp->rw_readers, ==, 0);
387
388 rwlp->rw_wr_owner = curthread;
389 }
390
391 rwlp->rw_owner = curthread;
392 }
393
394 void
395 rw_exit(krwlock_t *rwlp)
396 {
397 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
398 ASSERT(RW_LOCK_HELD(rwlp));
399
400 if (RW_READ_HELD(rwlp))
401 atomic_dec_uint(&rwlp->rw_readers);
402 else
403 rwlp->rw_wr_owner = RW_INIT;
404
405 rwlp->rw_owner = RW_INIT;
406 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
407 }
408
409 int
410 rw_tryenter(krwlock_t *rwlp, krw_t rw)
411 {
412 int rv;
413
414 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
415
416 if (rw == RW_READER)
417 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
418 else
419 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
420
421 if (rv == 0) {
422 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
423
424 if (rw == RW_READER)
425 atomic_inc_uint(&rwlp->rw_readers);
426 else {
427 ASSERT3U(rwlp->rw_readers, ==, 0);
428 rwlp->rw_wr_owner = curthread;
429 }
430
431 rwlp->rw_owner = curthread;
432 return (1);
433 }
434
435 VERIFY3S(rv, ==, EBUSY);
436
437 return (0);
438 }
439
440 int
441 rw_tryupgrade(krwlock_t *rwlp)
442 {
443 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
444
445 return (0);
446 }
447
448 /*
449 * =========================================================================
450 * condition variables
451 * =========================================================================
452 */
453
454 void
455 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
456 {
457 ASSERT3S(type, ==, CV_DEFAULT);
458 cv->cv_magic = CV_MAGIC;
459 VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0);
460 }
461
462 void
463 cv_destroy(kcondvar_t *cv)
464 {
465 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
466 VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0);
467 cv->cv_magic = 0;
468 }
469
470 void
471 cv_wait(kcondvar_t *cv, kmutex_t *mp)
472 {
473 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
474 ASSERT3P(mutex_owner(mp), ==, curthread);
475 mp->m_owner = MTX_INIT;
476 int ret = pthread_cond_wait(&cv->cv, &mp->m_lock);
477 if (ret != 0)
478 VERIFY3S(ret, ==, EINTR);
479 mp->m_owner = curthread;
480 }
481
482 clock_t
483 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
484 {
485 int error;
486 struct timeval tv;
487 timestruc_t ts;
488 clock_t delta;
489
490 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
491
492 top:
493 delta = abstime - ddi_get_lbolt();
494 if (delta <= 0)
495 return (-1);
496
497 VERIFY(gettimeofday(&tv, NULL) == 0);
498
499 ts.tv_sec = tv.tv_sec + delta / hz;
500 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
501 if (ts.tv_nsec >= NANOSEC) {
502 ts.tv_sec++;
503 ts.tv_nsec -= NANOSEC;
504 }
505
506 ASSERT3P(mutex_owner(mp), ==, curthread);
507 mp->m_owner = MTX_INIT;
508 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
509 mp->m_owner = curthread;
510
511 if (error == ETIMEDOUT)
512 return (-1);
513
514 if (error == EINTR)
515 goto top;
516
517 VERIFY3S(error, ==, 0);
518
519 return (1);
520 }
521
522 /*ARGSUSED*/
523 clock_t
524 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
525 int flag)
526 {
527 int error;
528 timestruc_t ts;
529 hrtime_t delta;
530
531 ASSERT(flag == 0);
532
533 top:
534 delta = tim - gethrtime();
535 if (delta <= 0)
536 return (-1);
537
538 ts.tv_sec = delta / NANOSEC;
539 ts.tv_nsec = delta % NANOSEC;
540
541 ASSERT(mutex_owner(mp) == curthread);
542 mp->m_owner = NULL;
543 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
544 mp->m_owner = curthread;
545
546 if (error == ETIME)
547 return (-1);
548
549 if (error == EINTR)
550 goto top;
551
552 ASSERT(error == 0);
553
554 return (1);
555 }
556
557 void
558 cv_signal(kcondvar_t *cv)
559 {
560 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
561 VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0);
562 }
563
564 void
565 cv_broadcast(kcondvar_t *cv)
566 {
567 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
568 VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0);
569 }
570
571 /*
572 * =========================================================================
573 * vnode operations
574 * =========================================================================
575 */
576 /*
577 * Note: for the xxxat() versions of these functions, we assume that the
578 * starting vp is always rootdir (which is true for spa_directory.c, the only
579 * ZFS consumer of these interfaces). We assert this is true, and then emulate
580 * them by adding '/' in front of the path.
581 */
582
583 /*ARGSUSED*/
584 int
585 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
586 {
587 int fd;
588 vnode_t *vp;
589 int old_umask = 0;
590 char *realpath;
591 struct stat64 st;
592 int err;
593
594 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
595
596 /*
597 * If we're accessing a real disk from userland, we need to use
598 * the character interface to avoid caching. This is particularly
599 * important if we're trying to look at a real in-kernel storage
600 * pool from userland, e.g. via zdb, because otherwise we won't
601 * see the changes occurring under the segmap cache.
602 * On the other hand, the stupid character device returns zero
603 * for its size. So -- gag -- we open the block device to get
604 * its size, and remember it for subsequent VOP_GETATTR().
605 */
606 #if defined(__sun__) || defined(__sun)
607 if (strncmp(path, "/dev/", 5) == 0) {
608 #else
609 if (0) {
610 #endif
611 char *dsk;
612 fd = open64(path, O_RDONLY);
613 if (fd == -1) {
614 err = errno;
615 free(realpath);
616 return (err);
617 }
618 if (fstat64(fd, &st) == -1) {
619 err = errno;
620 close(fd);
621 free(realpath);
622 return (err);
623 }
624 close(fd);
625 (void) sprintf(realpath, "%s", path);
626 dsk = strstr(path, "/dsk/");
627 if (dsk != NULL)
628 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
629 dsk + 1);
630 } else {
631 (void) sprintf(realpath, "%s", path);
632 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
633 err = errno;
634 free(realpath);
635 return (err);
636 }
637 }
638
639 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
640 #ifdef __linux__
641 flags |= O_DIRECT;
642 #endif
643 /* We shouldn't be writing to block devices in userspace */
644 VERIFY(!(flags & FWRITE));
645 }
646
647 if (flags & FCREAT)
648 old_umask = umask(0);
649
650 /*
651 * The construct 'flags - FREAD' conveniently maps combinations of
652 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
653 */
654 fd = open64(realpath, flags - FREAD, mode);
655 free(realpath);
656
657 if (flags & FCREAT)
658 (void) umask(old_umask);
659
660 if (fd == -1)
661 return (errno);
662
663 if (fstat64_blk(fd, &st) == -1) {
664 err = errno;
665 close(fd);
666 return (err);
667 }
668
669 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
670
671 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
672
673 vp->v_fd = fd;
674 vp->v_size = st.st_size;
675 vp->v_path = spa_strdup(path);
676
677 return (0);
678 }
679
680 /*ARGSUSED*/
681 int
682 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
683 int x3, vnode_t *startvp, int fd)
684 {
685 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
686 int ret;
687
688 ASSERT(startvp == rootdir);
689 (void) sprintf(realpath, "/%s", path);
690
691 /* fd ignored for now, need if want to simulate nbmand support */
692 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
693
694 umem_free(realpath, strlen(path) + 2);
695
696 return (ret);
697 }
698
699 /*ARGSUSED*/
700 int
701 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
702 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
703 {
704 ssize_t rc, done = 0, split;
705
706 if (uio == UIO_READ) {
707 rc = pread64(vp->v_fd, addr, len, offset);
708 } else {
709 /*
710 * To simulate partial disk writes, we split writes into two
711 * system calls so that the process can be killed in between.
712 */
713 int sectors = len >> SPA_MINBLOCKSHIFT;
714 split = (sectors > 0 ? rand() % sectors : 0) <<
715 SPA_MINBLOCKSHIFT;
716 rc = pwrite64(vp->v_fd, addr, split, offset);
717 if (rc != -1) {
718 done = rc;
719 rc = pwrite64(vp->v_fd, (char *)addr + split,
720 len - split, offset + split);
721 }
722 }
723
724 #ifdef __linux__
725 if (rc == -1 && errno == EINVAL) {
726 /*
727 * Under Linux, this most likely means an alignment issue
728 * (memory or disk) due to O_DIRECT, so we abort() in order to
729 * catch the offender.
730 */
731 abort();
732 }
733 #endif
734 if (rc == -1)
735 return (errno);
736
737 done += rc;
738
739 if (residp)
740 *residp = len - done;
741 else if (done != len)
742 return (EIO);
743 return (0);
744 }
745
746 void
747 vn_close(vnode_t *vp)
748 {
749 close(vp->v_fd);
750 spa_strfree(vp->v_path);
751 umem_free(vp, sizeof (vnode_t));
752 }
753
754 /*
755 * At a minimum we need to update the size since vdev_reopen()
756 * will no longer call vn_openat().
757 */
758 int
759 fop_getattr(vnode_t *vp, vattr_t *vap)
760 {
761 struct stat64 st;
762 int err;
763
764 if (fstat64_blk(vp->v_fd, &st) == -1) {
765 err = errno;
766 close(vp->v_fd);
767 return (err);
768 }
769
770 vap->va_size = st.st_size;
771 return (0);
772 }
773
774 /*
775 * =========================================================================
776 * Figure out which debugging statements to print
777 * =========================================================================
778 */
779
780 static char *dprintf_string;
781 static int dprintf_print_all;
782
783 int
784 dprintf_find_string(const char *string)
785 {
786 char *tmp_str = dprintf_string;
787 int len = strlen(string);
788
789 /*
790 * Find out if this is a string we want to print.
791 * String format: file1.c,function_name1,file2.c,file3.c
792 */
793
794 while (tmp_str != NULL) {
795 if (strncmp(tmp_str, string, len) == 0 &&
796 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
797 return (1);
798 tmp_str = strchr(tmp_str, ',');
799 if (tmp_str != NULL)
800 tmp_str++; /* Get rid of , */
801 }
802 return (0);
803 }
804
805 void
806 dprintf_setup(int *argc, char **argv)
807 {
808 int i, j;
809
810 /*
811 * Debugging can be specified two ways: by setting the
812 * environment variable ZFS_DEBUG, or by including a
813 * "debug=..." argument on the command line. The command
814 * line setting overrides the environment variable.
815 */
816
817 for (i = 1; i < *argc; i++) {
818 int len = strlen("debug=");
819 /* First look for a command line argument */
820 if (strncmp("debug=", argv[i], len) == 0) {
821 dprintf_string = argv[i] + len;
822 /* Remove from args */
823 for (j = i; j < *argc; j++)
824 argv[j] = argv[j+1];
825 argv[j] = NULL;
826 (*argc)--;
827 }
828 }
829
830 if (dprintf_string == NULL) {
831 /* Look for ZFS_DEBUG environment variable */
832 dprintf_string = getenv("ZFS_DEBUG");
833 }
834
835 /*
836 * Are we just turning on all debugging?
837 */
838 if (dprintf_find_string("on"))
839 dprintf_print_all = 1;
840 }
841
842 /*
843 * =========================================================================
844 * debug printfs
845 * =========================================================================
846 */
847 void
848 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
849 {
850 const char *newfile;
851 va_list adx;
852
853 /*
854 * Get rid of annoying "../common/" prefix to filename.
855 */
856 newfile = strrchr(file, '/');
857 if (newfile != NULL) {
858 newfile = newfile + 1; /* Get rid of leading / */
859 } else {
860 newfile = file;
861 }
862
863 if (dprintf_print_all ||
864 dprintf_find_string(newfile) ||
865 dprintf_find_string(func)) {
866 /* Print out just the function name if requested */
867 flockfile(stdout);
868 if (dprintf_find_string("pid"))
869 (void) printf("%d ", getpid());
870 if (dprintf_find_string("tid"))
871 (void) printf("%u ", (uint_t) pthread_self());
872 if (dprintf_find_string("cpu"))
873 (void) printf("%u ", getcpuid());
874 if (dprintf_find_string("time"))
875 (void) printf("%llu ", gethrtime());
876 if (dprintf_find_string("long"))
877 (void) printf("%s, line %d: ", newfile, line);
878 (void) printf("%s: ", func);
879 va_start(adx, fmt);
880 (void) vprintf(fmt, adx);
881 va_end(adx);
882 funlockfile(stdout);
883 }
884 }
885
886 /*
887 * =========================================================================
888 * cmn_err() and panic()
889 * =========================================================================
890 */
891 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
892 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
893
894 void
895 vpanic(const char *fmt, va_list adx)
896 {
897 (void) fprintf(stderr, "error: ");
898 (void) vfprintf(stderr, fmt, adx);
899 (void) fprintf(stderr, "\n");
900
901 abort(); /* think of it as a "user-level crash dump" */
902 }
903
904 void
905 panic(const char *fmt, ...)
906 {
907 va_list adx;
908
909 va_start(adx, fmt);
910 vpanic(fmt, adx);
911 va_end(adx);
912 }
913
914 void
915 vcmn_err(int ce, const char *fmt, va_list adx)
916 {
917 if (ce == CE_PANIC)
918 vpanic(fmt, adx);
919 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
920 (void) fprintf(stderr, "%s", ce_prefix[ce]);
921 (void) vfprintf(stderr, fmt, adx);
922 (void) fprintf(stderr, "%s", ce_suffix[ce]);
923 }
924 }
925
926 /*PRINTFLIKE2*/
927 void
928 cmn_err(int ce, const char *fmt, ...)
929 {
930 va_list adx;
931
932 va_start(adx, fmt);
933 vcmn_err(ce, fmt, adx);
934 va_end(adx);
935 }
936
937 /*
938 * =========================================================================
939 * kobj interfaces
940 * =========================================================================
941 */
942 struct _buf *
943 kobj_open_file(char *name)
944 {
945 struct _buf *file;
946 vnode_t *vp;
947
948 /* set vp as the _fd field of the file */
949 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
950 -1) != 0)
951 return ((void *)-1UL);
952
953 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
954 file->_fd = (intptr_t)vp;
955 return (file);
956 }
957
958 int
959 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
960 {
961 ssize_t resid;
962
963 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
964 UIO_SYSSPACE, 0, 0, 0, &resid);
965
966 return (size - resid);
967 }
968
969 void
970 kobj_close_file(struct _buf *file)
971 {
972 vn_close((vnode_t *)file->_fd);
973 umem_free(file, sizeof (struct _buf));
974 }
975
976 int
977 kobj_get_filesize(struct _buf *file, uint64_t *size)
978 {
979 struct stat64 st;
980 vnode_t *vp = (vnode_t *)file->_fd;
981
982 if (fstat64(vp->v_fd, &st) == -1) {
983 vn_close(vp);
984 return (errno);
985 }
986 *size = st.st_size;
987 return (0);
988 }
989
990 /*
991 * =========================================================================
992 * misc routines
993 * =========================================================================
994 */
995
996 void
997 delay(clock_t ticks)
998 {
999 poll(0, 0, ticks * (1000 / hz));
1000 }
1001
1002 /*
1003 * Find highest one bit set.
1004 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1005 * High order bit is 31 (or 63 in _LP64 kernel).
1006 */
1007 int
1008 highbit64(uint64_t i)
1009 {
1010 register int h = 1;
1011
1012 if (i == 0)
1013 return (0);
1014 if (i & 0xffffffff00000000ULL) {
1015 h += 32; i >>= 32;
1016 }
1017 if (i & 0xffff0000) {
1018 h += 16; i >>= 16;
1019 }
1020 if (i & 0xff00) {
1021 h += 8; i >>= 8;
1022 }
1023 if (i & 0xf0) {
1024 h += 4; i >>= 4;
1025 }
1026 if (i & 0xc) {
1027 h += 2; i >>= 2;
1028 }
1029 if (i & 0x2) {
1030 h += 1;
1031 }
1032 return (h);
1033 }
1034
1035 static int random_fd = -1, urandom_fd = -1;
1036
1037 static int
1038 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1039 {
1040 size_t resid = len;
1041 ssize_t bytes;
1042
1043 ASSERT(fd != -1);
1044
1045 while (resid != 0) {
1046 bytes = read(fd, ptr, resid);
1047 ASSERT3S(bytes, >=, 0);
1048 ptr += bytes;
1049 resid -= bytes;
1050 }
1051
1052 return (0);
1053 }
1054
1055 int
1056 random_get_bytes(uint8_t *ptr, size_t len)
1057 {
1058 return (random_get_bytes_common(ptr, len, random_fd));
1059 }
1060
1061 int
1062 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1063 {
1064 return (random_get_bytes_common(ptr, len, urandom_fd));
1065 }
1066
1067 int
1068 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1069 {
1070 char *end;
1071
1072 *result = strtoul(hw_serial, &end, base);
1073 if (*result == 0)
1074 return (errno);
1075 return (0);
1076 }
1077
1078 int
1079 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1080 {
1081 char *end;
1082
1083 *result = strtoull(str, &end, base);
1084 if (*result == 0)
1085 return (errno);
1086 return (0);
1087 }
1088
1089 utsname_t *
1090 utsname(void)
1091 {
1092 return (&hw_utsname);
1093 }
1094
1095 /*
1096 * =========================================================================
1097 * kernel emulation setup & teardown
1098 * =========================================================================
1099 */
1100 static int
1101 umem_out_of_memory(void)
1102 {
1103 char errmsg[] = "out of memory -- generating core dump\n";
1104
1105 (void) fprintf(stderr, "%s", errmsg);
1106 abort();
1107 return (0);
1108 }
1109
1110 static unsigned long
1111 get_spl_hostid(void)
1112 {
1113 FILE *f;
1114 unsigned long hostid;
1115
1116 f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
1117 if (!f)
1118 return (0);
1119 if (fscanf(f, "%lu", &hostid) != 1)
1120 hostid = 0;
1121 fclose(f);
1122 return (hostid & 0xffffffff);
1123 }
1124
1125 unsigned long
1126 get_system_hostid(void)
1127 {
1128 unsigned long system_hostid = get_spl_hostid();
1129 if (system_hostid == 0)
1130 system_hostid = gethostid() & 0xffffffff;
1131 return (system_hostid);
1132 }
1133
1134 void
1135 kernel_init(int mode)
1136 {
1137 extern uint_t rrw_tsd_key;
1138
1139 umem_nofail_callback(umem_out_of_memory);
1140
1141 physmem = sysconf(_SC_PHYS_PAGES);
1142
1143 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1144 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1145
1146 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1147 (mode & FWRITE) ? get_system_hostid() : 0);
1148
1149 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1150 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1151 VERIFY0(uname(&hw_utsname));
1152
1153 thread_init();
1154 system_taskq_init();
1155
1156 spa_init(mode);
1157
1158 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1159 }
1160
1161 void
1162 kernel_fini(void)
1163 {
1164 spa_fini();
1165
1166 system_taskq_fini();
1167 thread_fini();
1168
1169 close(random_fd);
1170 close(urandom_fd);
1171
1172 random_fd = -1;
1173 urandom_fd = -1;
1174 }
1175
1176 uid_t
1177 crgetuid(cred_t *cr)
1178 {
1179 return (0);
1180 }
1181
1182 uid_t
1183 crgetruid(cred_t *cr)
1184 {
1185 return (0);
1186 }
1187
1188 gid_t
1189 crgetgid(cred_t *cr)
1190 {
1191 return (0);
1192 }
1193
1194 int
1195 crgetngroups(cred_t *cr)
1196 {
1197 return (0);
1198 }
1199
1200 gid_t *
1201 crgetgroups(cred_t *cr)
1202 {
1203 return (NULL);
1204 }
1205
1206 int
1207 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1208 {
1209 return (0);
1210 }
1211
1212 int
1213 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1214 {
1215 return (0);
1216 }
1217
1218 int
1219 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1220 {
1221 return (0);
1222 }
1223
1224 ksiddomain_t *
1225 ksid_lookupdomain(const char *dom)
1226 {
1227 ksiddomain_t *kd;
1228
1229 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1230 kd->kd_name = spa_strdup(dom);
1231 return (kd);
1232 }
1233
1234 void
1235 ksiddomain_rele(ksiddomain_t *ksid)
1236 {
1237 spa_strfree(ksid->kd_name);
1238 umem_free(ksid, sizeof (ksiddomain_t));
1239 }
1240
1241 char *
1242 kmem_vasprintf(const char *fmt, va_list adx)
1243 {
1244 char *buf = NULL;
1245 va_list adx_copy;
1246
1247 va_copy(adx_copy, adx);
1248 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1249 va_end(adx_copy);
1250
1251 return (buf);
1252 }
1253
1254 char *
1255 kmem_asprintf(const char *fmt, ...)
1256 {
1257 char *buf = NULL;
1258 va_list adx;
1259
1260 va_start(adx, fmt);
1261 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1262 va_end(adx);
1263
1264 return (buf);
1265 }
1266
1267 /* ARGSUSED */
1268 int
1269 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1270 {
1271 *minorp = 0;
1272 return (0);
1273 }
1274
1275 /* ARGSUSED */
1276 void
1277 zfs_onexit_fd_rele(int fd)
1278 {
1279 }
1280
1281 /* ARGSUSED */
1282 int
1283 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1284 uint64_t *action_handle)
1285 {
1286 return (0);
1287 }
1288
1289 /* ARGSUSED */
1290 int
1291 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1292 {
1293 return (0);
1294 }
1295
1296 /* ARGSUSED */
1297 int
1298 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1299 {
1300 return (0);
1301 }
1302
1303 fstrans_cookie_t
1304 spl_fstrans_mark(void)
1305 {
1306 return ((fstrans_cookie_t) 0);
1307 }
1308
1309 void
1310 spl_fstrans_unmark(fstrans_cookie_t cookie)
1311 {
1312 }
1313
1314 int
1315 spl_fstrans_check(void)
1316 {
1317 return (0);
1318 }