]> git.proxmox.com Git - mirror_zfs-debian.git/blob - lib/libzpool/kernel.c
Fix zmod.h usage in userspace
[mirror_zfs-debian.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sys/spa.h>
33 #include <sys/stat.h>
34 #include <sys/processor.h>
35 #include <sys/zfs_context.h>
36 #include <sys/utsname.h>
37 #include <sys/systeminfo.h>
38
39 /*
40 * Emulation of kernel services in userland.
41 */
42
43 int aok;
44 uint64_t physmem;
45 vnode_t *rootdir = (vnode_t *)0xabcd1234;
46 char hw_serial[HW_HOSTID_LEN];
47
48 struct utsname utsname = {
49 "userland", "libzpool", "1", "1", "na"
50 };
51
52 /* this only exists to have its address taken */
53 struct proc p0;
54
55 /*
56 * =========================================================================
57 * threads
58 * =========================================================================
59 */
60 /*ARGSUSED*/
61 kthread_t *
62 zk_thread_create(void (*func)(), void *arg)
63 {
64 thread_t tid;
65
66 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
67 &tid) == 0);
68
69 return ((void *)(uintptr_t)tid);
70 }
71
72 /*
73 * =========================================================================
74 * kstats
75 * =========================================================================
76 */
77 /*ARGSUSED*/
78 kstat_t *
79 kstat_create(char *module, int instance, char *name, char *class,
80 uchar_t type, ulong_t ndata, uchar_t ks_flag)
81 {
82 return (NULL);
83 }
84
85 /*ARGSUSED*/
86 void
87 kstat_install(kstat_t *ksp)
88 {}
89
90 /*ARGSUSED*/
91 void
92 kstat_delete(kstat_t *ksp)
93 {}
94
95 /*
96 * =========================================================================
97 * mutexes
98 * =========================================================================
99 */
100 void
101 zmutex_init(kmutex_t *mp)
102 {
103 mp->m_owner = NULL;
104 mp->initialized = B_TRUE;
105 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
106 }
107
108 void
109 zmutex_destroy(kmutex_t *mp)
110 {
111 ASSERT(mp->initialized == B_TRUE);
112 ASSERT(mp->m_owner == NULL);
113 (void) _mutex_destroy(&(mp)->m_lock);
114 mp->m_owner = (void *)-1UL;
115 mp->initialized = B_FALSE;
116 }
117
118 void
119 mutex_enter(kmutex_t *mp)
120 {
121 ASSERT(mp->initialized == B_TRUE);
122 ASSERT(mp->m_owner != (void *)-1UL);
123 ASSERT(mp->m_owner != curthread);
124 VERIFY(mutex_lock(&mp->m_lock) == 0);
125 ASSERT(mp->m_owner == NULL);
126 mp->m_owner = curthread;
127 }
128
129 int
130 mutex_tryenter(kmutex_t *mp)
131 {
132 ASSERT(mp->initialized == B_TRUE);
133 ASSERT(mp->m_owner != (void *)-1UL);
134 if (0 == mutex_trylock(&mp->m_lock)) {
135 ASSERT(mp->m_owner == NULL);
136 mp->m_owner = curthread;
137 return (1);
138 } else {
139 return (0);
140 }
141 }
142
143 void
144 mutex_exit(kmutex_t *mp)
145 {
146 ASSERT(mp->initialized == B_TRUE);
147 ASSERT(mutex_owner(mp) == curthread);
148 mp->m_owner = NULL;
149 VERIFY(mutex_unlock(&mp->m_lock) == 0);
150 }
151
152 void *
153 mutex_owner(kmutex_t *mp)
154 {
155 ASSERT(mp->initialized == B_TRUE);
156 return (mp->m_owner);
157 }
158
159 /*
160 * =========================================================================
161 * rwlocks
162 * =========================================================================
163 */
164 /*ARGSUSED*/
165 void
166 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
167 {
168 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
169 rwlp->rw_owner = NULL;
170 rwlp->initialized = B_TRUE;
171 }
172
173 void
174 rw_destroy(krwlock_t *rwlp)
175 {
176 rwlock_destroy(&rwlp->rw_lock);
177 rwlp->rw_owner = (void *)-1UL;
178 rwlp->initialized = B_FALSE;
179 }
180
181 void
182 rw_enter(krwlock_t *rwlp, krw_t rw)
183 {
184 ASSERT(!RW_LOCK_HELD(rwlp));
185 ASSERT(rwlp->initialized == B_TRUE);
186 ASSERT(rwlp->rw_owner != (void *)-1UL);
187 ASSERT(rwlp->rw_owner != curthread);
188
189 if (rw == RW_READER)
190 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
191 else
192 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
193
194 rwlp->rw_owner = curthread;
195 }
196
197 void
198 rw_exit(krwlock_t *rwlp)
199 {
200 ASSERT(rwlp->initialized == B_TRUE);
201 ASSERT(rwlp->rw_owner != (void *)-1UL);
202
203 rwlp->rw_owner = NULL;
204 VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
205 }
206
207 int
208 rw_tryenter(krwlock_t *rwlp, krw_t rw)
209 {
210 int rv;
211
212 ASSERT(rwlp->initialized == B_TRUE);
213 ASSERT(rwlp->rw_owner != (void *)-1UL);
214
215 if (rw == RW_READER)
216 rv = rw_tryrdlock(&rwlp->rw_lock);
217 else
218 rv = rw_trywrlock(&rwlp->rw_lock);
219
220 if (rv == 0) {
221 rwlp->rw_owner = curthread;
222 return (1);
223 }
224
225 return (0);
226 }
227
228 /*ARGSUSED*/
229 int
230 rw_tryupgrade(krwlock_t *rwlp)
231 {
232 ASSERT(rwlp->initialized == B_TRUE);
233 ASSERT(rwlp->rw_owner != (void *)-1UL);
234
235 return (0);
236 }
237
238 /*
239 * =========================================================================
240 * condition variables
241 * =========================================================================
242 */
243 /*ARGSUSED*/
244 void
245 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
246 {
247 VERIFY(cond_init(cv, type, NULL) == 0);
248 }
249
250 void
251 cv_destroy(kcondvar_t *cv)
252 {
253 VERIFY(cond_destroy(cv) == 0);
254 }
255
256 void
257 cv_wait(kcondvar_t *cv, kmutex_t *mp)
258 {
259 ASSERT(mutex_owner(mp) == curthread);
260 mp->m_owner = NULL;
261 int ret = cond_wait(cv, &mp->m_lock);
262 VERIFY(ret == 0 || ret == EINTR);
263 mp->m_owner = curthread;
264 }
265
266 clock_t
267 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
268 {
269 int error;
270 timestruc_t ts;
271 clock_t delta;
272
273 top:
274 delta = abstime - ddi_get_lbolt();
275 if (delta <= 0)
276 return (-1);
277
278 ts.tv_sec = delta / hz;
279 ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
280
281 ASSERT(mutex_owner(mp) == curthread);
282 mp->m_owner = NULL;
283 error = cond_reltimedwait(cv, &mp->m_lock, &ts);
284 mp->m_owner = curthread;
285
286 if (error == ETIME)
287 return (-1);
288
289 if (error == EINTR)
290 goto top;
291
292 ASSERT(error == 0);
293
294 return (1);
295 }
296
297 void
298 cv_signal(kcondvar_t *cv)
299 {
300 VERIFY(cond_signal(cv) == 0);
301 }
302
303 void
304 cv_broadcast(kcondvar_t *cv)
305 {
306 VERIFY(cond_broadcast(cv) == 0);
307 }
308
309 /*
310 * =========================================================================
311 * vnode operations
312 * =========================================================================
313 */
314 /*
315 * Note: for the xxxat() versions of these functions, we assume that the
316 * starting vp is always rootdir (which is true for spa_directory.c, the only
317 * ZFS consumer of these interfaces). We assert this is true, and then emulate
318 * them by adding '/' in front of the path.
319 */
320
321 /*ARGSUSED*/
322 int
323 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
324 {
325 int fd;
326 vnode_t *vp;
327 int old_umask;
328 char realpath[MAXPATHLEN];
329 struct stat64 st;
330 int err;
331
332 /*
333 * If we're accessing a real disk from userland, we need to use
334 * the character interface to avoid caching. This is particularly
335 * important if we're trying to look at a real in-kernel storage
336 * pool from userland, e.g. via zdb, because otherwise we won't
337 * see the changes occurring under the segmap cache.
338 * On the other hand, the stupid character device returns zero
339 * for its size. So -- gag -- we open the block device to get
340 * its size, and remember it for subsequent VOP_GETATTR().
341 */
342 if (strncmp(path, "/dev/", 5) == 0) {
343 char *dsk;
344 fd = open64(path, O_RDONLY);
345 if (fd == -1)
346 return (errno);
347 if (fstat64(fd, &st) == -1) {
348 close(fd);
349 return (errno);
350 }
351 close(fd);
352 (void) sprintf(realpath, "%s", path);
353 dsk = strstr(path, "/dsk/");
354 if (dsk != NULL)
355 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
356 dsk + 1);
357 } else {
358 (void) sprintf(realpath, "%s", path);
359 if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
360 return (errno);
361 }
362
363 if (flags & FCREAT)
364 old_umask = umask(0);
365
366 /*
367 * The construct 'flags - FREAD' conveniently maps combinations of
368 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
369 */
370 fd = open64(realpath, flags - FREAD, mode);
371
372 if (flags & FCREAT)
373 (void) umask(old_umask);
374
375 if (fd == -1)
376 return (errno);
377
378 if (fstat64(fd, &st) == -1) {
379 err = errno;
380 close(fd);
381 return (err);
382 }
383
384 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
385
386 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
387
388 vp->v_fd = fd;
389 vp->v_size = st.st_size;
390 vp->v_path = spa_strdup(path);
391
392 return (0);
393 }
394
395 /*ARGSUSED*/
396 int
397 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
398 int x3, vnode_t *startvp, int fd)
399 {
400 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
401 int ret;
402
403 ASSERT(startvp == rootdir);
404 (void) sprintf(realpath, "/%s", path);
405
406 /* fd ignored for now, need if want to simulate nbmand support */
407 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
408
409 umem_free(realpath, strlen(path) + 2);
410
411 return (ret);
412 }
413
414 /*ARGSUSED*/
415 int
416 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
417 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
418 {
419 ssize_t rc, done = 0, split;
420
421 if (uio == UIO_READ) {
422 rc = pread64(vp->v_fd, addr, len, offset);
423 } else {
424 /*
425 * To simulate partial disk writes, we split writes into two
426 * system calls so that the process can be killed in between.
427 */
428 split = (len > 0 ? rand() % len : 0);
429 rc = pwrite64(vp->v_fd, addr, split, offset);
430 if (rc != -1) {
431 done = rc;
432 rc = pwrite64(vp->v_fd, (char *)addr + split,
433 len - split, offset + split);
434 }
435 }
436
437 if (rc == -1)
438 return (errno);
439
440 done += rc;
441
442 if (residp)
443 *residp = len - done;
444 else if (done != len)
445 return (EIO);
446 return (0);
447 }
448
449 void
450 vn_close(vnode_t *vp)
451 {
452 close(vp->v_fd);
453 spa_strfree(vp->v_path);
454 umem_free(vp, sizeof (vnode_t));
455 }
456
457 /*
458 * At a minimum we need to update the size since vdev_reopen()
459 * will no longer call vn_openat().
460 */
461 int
462 fop_getattr(vnode_t *vp, vattr_t *vap)
463 {
464 struct stat64 st;
465
466 if (fstat64(vp->v_fd, &st) == -1) {
467 close(vp->v_fd);
468 return (errno);
469 }
470
471 vap->va_size = st.st_size;
472 return (0);
473 }
474
475 #ifdef ZFS_DEBUG
476
477 /*
478 * =========================================================================
479 * Figure out which debugging statements to print
480 * =========================================================================
481 */
482
483 static char *dprintf_string;
484 static int dprintf_print_all;
485
486 int
487 dprintf_find_string(const char *string)
488 {
489 char *tmp_str = dprintf_string;
490 int len = strlen(string);
491
492 /*
493 * Find out if this is a string we want to print.
494 * String format: file1.c,function_name1,file2.c,file3.c
495 */
496
497 while (tmp_str != NULL) {
498 if (strncmp(tmp_str, string, len) == 0 &&
499 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
500 return (1);
501 tmp_str = strchr(tmp_str, ',');
502 if (tmp_str != NULL)
503 tmp_str++; /* Get rid of , */
504 }
505 return (0);
506 }
507
508 void
509 dprintf_setup(int *argc, char **argv)
510 {
511 int i, j;
512
513 /*
514 * Debugging can be specified two ways: by setting the
515 * environment variable ZFS_DEBUG, or by including a
516 * "debug=..." argument on the command line. The command
517 * line setting overrides the environment variable.
518 */
519
520 for (i = 1; i < *argc; i++) {
521 int len = strlen("debug=");
522 /* First look for a command line argument */
523 if (strncmp("debug=", argv[i], len) == 0) {
524 dprintf_string = argv[i] + len;
525 /* Remove from args */
526 for (j = i; j < *argc; j++)
527 argv[j] = argv[j+1];
528 argv[j] = NULL;
529 (*argc)--;
530 }
531 }
532
533 if (dprintf_string == NULL) {
534 /* Look for ZFS_DEBUG environment variable */
535 dprintf_string = getenv("ZFS_DEBUG");
536 }
537
538 /*
539 * Are we just turning on all debugging?
540 */
541 if (dprintf_find_string("on"))
542 dprintf_print_all = 1;
543 }
544
545 /*
546 * =========================================================================
547 * debug printfs
548 * =========================================================================
549 */
550 void
551 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
552 {
553 const char *newfile;
554 va_list adx;
555
556 /*
557 * Get rid of annoying "../common/" prefix to filename.
558 */
559 newfile = strrchr(file, '/');
560 if (newfile != NULL) {
561 newfile = newfile + 1; /* Get rid of leading / */
562 } else {
563 newfile = file;
564 }
565
566 if (dprintf_print_all ||
567 dprintf_find_string(newfile) ||
568 dprintf_find_string(func)) {
569 /* Print out just the function name if requested */
570 flockfile(stdout);
571 if (dprintf_find_string("pid"))
572 (void) printf("%d ", getpid());
573 if (dprintf_find_string("tid"))
574 (void) printf("%u ", thr_self());
575 if (dprintf_find_string("cpu"))
576 (void) printf("%u ", getcpuid());
577 if (dprintf_find_string("time"))
578 (void) printf("%llu ", gethrtime());
579 if (dprintf_find_string("long"))
580 (void) printf("%s, line %d: ", newfile, line);
581 (void) printf("%s: ", func);
582 va_start(adx, fmt);
583 (void) vprintf(fmt, adx);
584 va_end(adx);
585 funlockfile(stdout);
586 }
587 }
588
589 #endif /* ZFS_DEBUG */
590
591 /*
592 * =========================================================================
593 * cmn_err() and panic()
594 * =========================================================================
595 */
596 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
597 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
598
599 void
600 vpanic(const char *fmt, va_list adx)
601 {
602 (void) fprintf(stderr, "error: ");
603 (void) vfprintf(stderr, fmt, adx);
604 (void) fprintf(stderr, "\n");
605
606 abort(); /* think of it as a "user-level crash dump" */
607 }
608
609 void
610 panic(const char *fmt, ...)
611 {
612 va_list adx;
613
614 va_start(adx, fmt);
615 vpanic(fmt, adx);
616 va_end(adx);
617 }
618
619 void
620 vcmn_err(int ce, const char *fmt, va_list adx)
621 {
622 if (ce == CE_PANIC)
623 vpanic(fmt, adx);
624 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
625 (void) fprintf(stderr, "%s", ce_prefix[ce]);
626 (void) vfprintf(stderr, fmt, adx);
627 (void) fprintf(stderr, "%s", ce_suffix[ce]);
628 }
629 }
630
631 /*PRINTFLIKE2*/
632 void
633 cmn_err(int ce, const char *fmt, ...)
634 {
635 va_list adx;
636
637 va_start(adx, fmt);
638 vcmn_err(ce, fmt, adx);
639 va_end(adx);
640 }
641
642 /*
643 * =========================================================================
644 * kobj interfaces
645 * =========================================================================
646 */
647 struct _buf *
648 kobj_open_file(char *name)
649 {
650 struct _buf *file;
651 vnode_t *vp;
652
653 /* set vp as the _fd field of the file */
654 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
655 -1) != 0)
656 return ((void *)-1UL);
657
658 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
659 file->_fd = (intptr_t)vp;
660 return (file);
661 }
662
663 int
664 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
665 {
666 ssize_t resid;
667
668 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
669 UIO_SYSSPACE, 0, 0, 0, &resid);
670
671 return (size - resid);
672 }
673
674 void
675 kobj_close_file(struct _buf *file)
676 {
677 vn_close((vnode_t *)file->_fd);
678 umem_free(file, sizeof (struct _buf));
679 }
680
681 int
682 kobj_get_filesize(struct _buf *file, uint64_t *size)
683 {
684 struct stat64 st;
685 vnode_t *vp = (vnode_t *)file->_fd;
686
687 if (fstat64(vp->v_fd, &st) == -1) {
688 vn_close(vp);
689 return (errno);
690 }
691 *size = st.st_size;
692 return (0);
693 }
694
695 /*
696 * =========================================================================
697 * misc routines
698 * =========================================================================
699 */
700
701 void
702 delay(clock_t ticks)
703 {
704 poll(0, 0, ticks * (1000 / hz));
705 }
706
707 /*
708 * Find highest one bit set.
709 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
710 * High order bit is 31 (or 63 in _LP64 kernel).
711 */
712 int
713 highbit(ulong_t i)
714 {
715 register int h = 1;
716
717 if (i == 0)
718 return (0);
719 #ifdef _LP64
720 if (i & 0xffffffff00000000ul) {
721 h += 32; i >>= 32;
722 }
723 #endif
724 if (i & 0xffff0000) {
725 h += 16; i >>= 16;
726 }
727 if (i & 0xff00) {
728 h += 8; i >>= 8;
729 }
730 if (i & 0xf0) {
731 h += 4; i >>= 4;
732 }
733 if (i & 0xc) {
734 h += 2; i >>= 2;
735 }
736 if (i & 0x2) {
737 h += 1;
738 }
739 return (h);
740 }
741
742 static int random_fd = -1, urandom_fd = -1;
743
744 static int
745 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
746 {
747 size_t resid = len;
748 ssize_t bytes;
749
750 ASSERT(fd != -1);
751
752 while (resid != 0) {
753 bytes = read(fd, ptr, resid);
754 ASSERT3S(bytes, >=, 0);
755 ptr += bytes;
756 resid -= bytes;
757 }
758
759 return (0);
760 }
761
762 int
763 random_get_bytes(uint8_t *ptr, size_t len)
764 {
765 return (random_get_bytes_common(ptr, len, random_fd));
766 }
767
768 int
769 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
770 {
771 return (random_get_bytes_common(ptr, len, urandom_fd));
772 }
773
774 int
775 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
776 {
777 char *end;
778
779 *result = strtoul(hw_serial, &end, base);
780 if (*result == 0)
781 return (errno);
782 return (0);
783 }
784
785 int
786 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
787 {
788 char *end;
789
790 *result = strtoull(str, &end, base);
791 if (*result == 0)
792 return (errno);
793 return (0);
794 }
795
796 /*
797 * =========================================================================
798 * kernel emulation setup & teardown
799 * =========================================================================
800 */
801 static int
802 umem_out_of_memory(void)
803 {
804 char errmsg[] = "out of memory -- generating core dump\n";
805
806 (void) fprintf(stderr, "%s", errmsg);
807 abort();
808 return (0);
809 }
810
811 void
812 kernel_init(int mode)
813 {
814 umem_nofail_callback(umem_out_of_memory);
815
816 physmem = sysconf(_SC_PHYS_PAGES);
817
818 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
819 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
820
821 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
822 (mode & FWRITE) ? gethostid() : 0);
823
824 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
825 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
826
827 system_taskq_init();
828
829 spa_init(mode);
830 }
831
832 void
833 kernel_fini(void)
834 {
835 spa_fini();
836
837 system_taskq_fini();
838
839 close(random_fd);
840 close(urandom_fd);
841
842 random_fd = -1;
843 urandom_fd = -1;
844 }
845
846 uid_t
847 crgetuid(cred_t *cr)
848 {
849 return (0);
850 }
851
852 gid_t
853 crgetgid(cred_t *cr)
854 {
855 return (0);
856 }
857
858 int
859 crgetngroups(cred_t *cr)
860 {
861 return (0);
862 }
863
864 gid_t *
865 crgetgroups(cred_t *cr)
866 {
867 return (NULL);
868 }
869
870 int
871 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
872 {
873 return (0);
874 }
875
876 int
877 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
878 {
879 return (0);
880 }
881
882 int
883 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
884 {
885 return (0);
886 }
887
888 ksiddomain_t *
889 ksid_lookupdomain(const char *dom)
890 {
891 ksiddomain_t *kd;
892
893 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
894 kd->kd_name = spa_strdup(dom);
895 return (kd);
896 }
897
898 void
899 ksiddomain_rele(ksiddomain_t *ksid)
900 {
901 spa_strfree(ksid->kd_name);
902 umem_free(ksid, sizeof (ksiddomain_t));
903 }
904
905 /*
906 * Do not change the length of the returned string; it must be freed
907 * with strfree().
908 */
909 char *
910 kmem_asprintf(const char *fmt, ...)
911 {
912 int size;
913 va_list adx;
914 char *buf;
915
916 va_start(adx, fmt);
917 size = vsnprintf(NULL, 0, fmt, adx) + 1;
918 va_end(adx);
919
920 buf = kmem_alloc(size, KM_SLEEP);
921
922 va_start(adx, fmt);
923 size = vsnprintf(buf, size, fmt, adx);
924 va_end(adx);
925
926 return (buf);
927 }
928
929 /* ARGSUSED */
930 int
931 zfs_onexit_fd_hold(int fd, minor_t *minorp)
932 {
933 *minorp = 0;
934 return (0);
935 }
936
937 /* ARGSUSED */
938 void
939 zfs_onexit_fd_rele(int fd)
940 {
941 }
942
943 /* ARGSUSED */
944 int
945 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
946 uint64_t *action_handle)
947 {
948 return (0);
949 }
950
951 /* ARGSUSED */
952 int
953 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
954 {
955 return (0);
956 }
957
958 /* ARGSUSED */
959 int
960 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
961 {
962 return (0);
963 }