]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/arc.c
New upstream version 0.7.6
[mirror_zfs-debian.git] / module / zfs / arc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2014 by Saso Kiselkov. All rights reserved.
26 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
27 */
28
29 /*
30 * DVA-based Adjustable Replacement Cache
31 *
32 * While much of the theory of operation used here is
33 * based on the self-tuning, low overhead replacement cache
34 * presented by Megiddo and Modha at FAST 2003, there are some
35 * significant differences:
36 *
37 * 1. The Megiddo and Modha model assumes any page is evictable.
38 * Pages in its cache cannot be "locked" into memory. This makes
39 * the eviction algorithm simple: evict the last page in the list.
40 * This also make the performance characteristics easy to reason
41 * about. Our cache is not so simple. At any given moment, some
42 * subset of the blocks in the cache are un-evictable because we
43 * have handed out a reference to them. Blocks are only evictable
44 * when there are no external references active. This makes
45 * eviction far more problematic: we choose to evict the evictable
46 * blocks that are the "lowest" in the list.
47 *
48 * There are times when it is not possible to evict the requested
49 * space. In these circumstances we are unable to adjust the cache
50 * size. To prevent the cache growing unbounded at these times we
51 * implement a "cache throttle" that slows the flow of new data
52 * into the cache until we can make space available.
53 *
54 * 2. The Megiddo and Modha model assumes a fixed cache size.
55 * Pages are evicted when the cache is full and there is a cache
56 * miss. Our model has a variable sized cache. It grows with
57 * high use, but also tries to react to memory pressure from the
58 * operating system: decreasing its size when system memory is
59 * tight.
60 *
61 * 3. The Megiddo and Modha model assumes a fixed page size. All
62 * elements of the cache are therefore exactly the same size. So
63 * when adjusting the cache size following a cache miss, its simply
64 * a matter of choosing a single page to evict. In our model, we
65 * have variable sized cache blocks (rangeing from 512 bytes to
66 * 128K bytes). We therefore choose a set of blocks to evict to make
67 * space for a cache miss that approximates as closely as possible
68 * the space used by the new block.
69 *
70 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
71 * by N. Megiddo & D. Modha, FAST 2003
72 */
73
74 /*
75 * The locking model:
76 *
77 * A new reference to a cache buffer can be obtained in two
78 * ways: 1) via a hash table lookup using the DVA as a key,
79 * or 2) via one of the ARC lists. The arc_read() interface
80 * uses method 1, while the internal ARC algorithms for
81 * adjusting the cache use method 2. We therefore provide two
82 * types of locks: 1) the hash table lock array, and 2) the
83 * ARC list locks.
84 *
85 * Buffers do not have their own mutexes, rather they rely on the
86 * hash table mutexes for the bulk of their protection (i.e. most
87 * fields in the arc_buf_hdr_t are protected by these mutexes).
88 *
89 * buf_hash_find() returns the appropriate mutex (held) when it
90 * locates the requested buffer in the hash table. It returns
91 * NULL for the mutex if the buffer was not in the table.
92 *
93 * buf_hash_remove() expects the appropriate hash mutex to be
94 * already held before it is invoked.
95 *
96 * Each ARC state also has a mutex which is used to protect the
97 * buffer list associated with the state. When attempting to
98 * obtain a hash table lock while holding an ARC list lock you
99 * must use: mutex_tryenter() to avoid deadlock. Also note that
100 * the active state mutex must be held before the ghost state mutex.
101 *
102 * It as also possible to register a callback which is run when the
103 * arc_meta_limit is reached and no buffers can be safely evicted. In
104 * this case the arc user should drop a reference on some arc buffers so
105 * they can be reclaimed and the arc_meta_limit honored. For example,
106 * when using the ZPL each dentry holds a references on a znode. These
107 * dentries must be pruned before the arc buffer holding the znode can
108 * be safely evicted.
109 *
110 * Note that the majority of the performance stats are manipulated
111 * with atomic operations.
112 *
113 * The L2ARC uses the l2ad_mtx on each vdev for the following:
114 *
115 * - L2ARC buflist creation
116 * - L2ARC buflist eviction
117 * - L2ARC write completion, which walks L2ARC buflists
118 * - ARC header destruction, as it removes from L2ARC buflists
119 * - ARC header release, as it removes from L2ARC buflists
120 */
121
122 /*
123 * ARC operation:
124 *
125 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
126 * This structure can point either to a block that is still in the cache or to
127 * one that is only accessible in an L2 ARC device, or it can provide
128 * information about a block that was recently evicted. If a block is
129 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
130 * information to retrieve it from the L2ARC device. This information is
131 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
132 * that is in this state cannot access the data directly.
133 *
134 * Blocks that are actively being referenced or have not been evicted
135 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
136 * the arc_buf_hdr_t that will point to the data block in memory. A block can
137 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
138 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
139 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
140 *
141 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
142 * ability to store the physical data (b_pabd) associated with the DVA of the
143 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
144 * it will match its on-disk compression characteristics. This behavior can be
145 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
146 * compressed ARC functionality is disabled, the b_pabd will point to an
147 * uncompressed version of the on-disk data.
148 *
149 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
150 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
151 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
152 * consumer. The ARC will provide references to this data and will keep it
153 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
154 * data block and will evict any arc_buf_t that is no longer referenced. The
155 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
156 * "overhead_size" kstat.
157 *
158 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
159 * compressed form. The typical case is that consumers will want uncompressed
160 * data, and when that happens a new data buffer is allocated where the data is
161 * decompressed for them to use. Currently the only consumer who wants
162 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
163 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
164 * with the arc_buf_hdr_t.
165 *
166 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
167 * first one is owned by a compressed send consumer (and therefore references
168 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
169 * used by any other consumer (and has its own uncompressed copy of the data
170 * buffer).
171 *
172 * arc_buf_hdr_t
173 * +-----------+
174 * | fields |
175 * | common to |
176 * | L1- and |
177 * | L2ARC |
178 * +-----------+
179 * | l2arc_buf_hdr_t
180 * | |
181 * +-----------+
182 * | l1arc_buf_hdr_t
183 * | | arc_buf_t
184 * | b_buf +------------>+-----------+ arc_buf_t
185 * | b_pabd +-+ |b_next +---->+-----------+
186 * +-----------+ | |-----------| |b_next +-->NULL
187 * | |b_comp = T | +-----------+
188 * | |b_data +-+ |b_comp = F |
189 * | +-----------+ | |b_data +-+
190 * +->+------+ | +-----------+ |
191 * compressed | | | |
192 * data | |<--------------+ | uncompressed
193 * +------+ compressed, | data
194 * shared +-->+------+
195 * data | |
196 * | |
197 * +------+
198 *
199 * When a consumer reads a block, the ARC must first look to see if the
200 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
201 * arc_buf_t and either copies uncompressed data into a new data buffer from an
202 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
203 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
204 * hdr is compressed and the desired compression characteristics of the
205 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
206 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
207 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
208 * be anywhere in the hdr's list.
209 *
210 * The diagram below shows an example of an uncompressed ARC hdr that is
211 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
212 * the last element in the buf list):
213 *
214 * arc_buf_hdr_t
215 * +-----------+
216 * | |
217 * | |
218 * | |
219 * +-----------+
220 * l2arc_buf_hdr_t| |
221 * | |
222 * +-----------+
223 * l1arc_buf_hdr_t| |
224 * | | arc_buf_t (shared)
225 * | b_buf +------------>+---------+ arc_buf_t
226 * | | |b_next +---->+---------+
227 * | b_pabd +-+ |---------| |b_next +-->NULL
228 * +-----------+ | | | +---------+
229 * | |b_data +-+ | |
230 * | +---------+ | |b_data +-+
231 * +->+------+ | +---------+ |
232 * | | | |
233 * uncompressed | | | |
234 * data +------+ | |
235 * ^ +->+------+ |
236 * | uncompressed | | |
237 * | data | | |
238 * | +------+ |
239 * +---------------------------------+
240 *
241 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
242 * since the physical block is about to be rewritten. The new data contents
243 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
244 * it may compress the data before writing it to disk. The ARC will be called
245 * with the transformed data and will bcopy the transformed on-disk block into
246 * a newly allocated b_pabd. Writes are always done into buffers which have
247 * either been loaned (and hence are new and don't have other readers) or
248 * buffers which have been released (and hence have their own hdr, if there
249 * were originally other readers of the buf's original hdr). This ensures that
250 * the ARC only needs to update a single buf and its hdr after a write occurs.
251 *
252 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
253 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
254 * that when compressed ARC is enabled that the L2ARC blocks are identical
255 * to the on-disk block in the main data pool. This provides a significant
256 * advantage since the ARC can leverage the bp's checksum when reading from the
257 * L2ARC to determine if the contents are valid. However, if the compressed
258 * ARC is disabled, then the L2ARC's block must be transformed to look
259 * like the physical block in the main data pool before comparing the
260 * checksum and determining its validity.
261 */
262
263 #include <sys/spa.h>
264 #include <sys/zio.h>
265 #include <sys/spa_impl.h>
266 #include <sys/zio_compress.h>
267 #include <sys/zio_checksum.h>
268 #include <sys/zfs_context.h>
269 #include <sys/arc.h>
270 #include <sys/refcount.h>
271 #include <sys/vdev.h>
272 #include <sys/vdev_impl.h>
273 #include <sys/dsl_pool.h>
274 #include <sys/zio_checksum.h>
275 #include <sys/multilist.h>
276 #include <sys/abd.h>
277 #ifdef _KERNEL
278 #include <sys/vmsystm.h>
279 #include <vm/anon.h>
280 #include <sys/fs/swapnode.h>
281 #include <sys/zpl.h>
282 #include <linux/mm_compat.h>
283 #endif
284 #include <sys/callb.h>
285 #include <sys/kstat.h>
286 #include <sys/dmu_tx.h>
287 #include <zfs_fletcher.h>
288 #include <sys/arc_impl.h>
289 #include <sys/trace_arc.h>
290
291 #ifndef _KERNEL
292 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
293 boolean_t arc_watch = B_FALSE;
294 #endif
295
296 static kmutex_t arc_reclaim_lock;
297 static kcondvar_t arc_reclaim_thread_cv;
298 static boolean_t arc_reclaim_thread_exit;
299 static kcondvar_t arc_reclaim_waiters_cv;
300
301 /*
302 * The number of headers to evict in arc_evict_state_impl() before
303 * dropping the sublist lock and evicting from another sublist. A lower
304 * value means we're more likely to evict the "correct" header (i.e. the
305 * oldest header in the arc state), but comes with higher overhead
306 * (i.e. more invocations of arc_evict_state_impl()).
307 */
308 int zfs_arc_evict_batch_limit = 10;
309
310 /* number of seconds before growing cache again */
311 static int arc_grow_retry = 5;
312
313 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
314 int zfs_arc_overflow_shift = 8;
315
316 /* shift of arc_c for calculating both min and max arc_p */
317 static int arc_p_min_shift = 4;
318
319 /* log2(fraction of arc to reclaim) */
320 static int arc_shrink_shift = 7;
321
322 /* percent of pagecache to reclaim arc to */
323 #ifdef _KERNEL
324 static uint_t zfs_arc_pc_percent = 0;
325 #endif
326
327 /*
328 * log2(fraction of ARC which must be free to allow growing).
329 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
330 * when reading a new block into the ARC, we will evict an equal-sized block
331 * from the ARC.
332 *
333 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
334 * we will still not allow it to grow.
335 */
336 int arc_no_grow_shift = 5;
337
338
339 /*
340 * minimum lifespan of a prefetch block in clock ticks
341 * (initialized in arc_init())
342 */
343 static int arc_min_prefetch_lifespan;
344
345 /*
346 * If this percent of memory is free, don't throttle.
347 */
348 int arc_lotsfree_percent = 10;
349
350 static int arc_dead;
351
352 /*
353 * The arc has filled available memory and has now warmed up.
354 */
355 static boolean_t arc_warm;
356
357 /*
358 * log2 fraction of the zio arena to keep free.
359 */
360 int arc_zio_arena_free_shift = 2;
361
362 /*
363 * These tunables are for performance analysis.
364 */
365 unsigned long zfs_arc_max = 0;
366 unsigned long zfs_arc_min = 0;
367 unsigned long zfs_arc_meta_limit = 0;
368 unsigned long zfs_arc_meta_min = 0;
369 unsigned long zfs_arc_dnode_limit = 0;
370 unsigned long zfs_arc_dnode_reduce_percent = 10;
371 int zfs_arc_grow_retry = 0;
372 int zfs_arc_shrink_shift = 0;
373 int zfs_arc_p_min_shift = 0;
374 int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
375
376 int zfs_compressed_arc_enabled = B_TRUE;
377
378 /*
379 * ARC will evict meta buffers that exceed arc_meta_limit. This
380 * tunable make arc_meta_limit adjustable for different workloads.
381 */
382 unsigned long zfs_arc_meta_limit_percent = 75;
383
384 /*
385 * Percentage that can be consumed by dnodes of ARC meta buffers.
386 */
387 unsigned long zfs_arc_dnode_limit_percent = 10;
388
389 /*
390 * These tunables are Linux specific
391 */
392 unsigned long zfs_arc_sys_free = 0;
393 int zfs_arc_min_prefetch_lifespan = 0;
394 int zfs_arc_p_aggressive_disable = 1;
395 int zfs_arc_p_dampener_disable = 1;
396 int zfs_arc_meta_prune = 10000;
397 int zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
398 int zfs_arc_meta_adjust_restarts = 4096;
399 int zfs_arc_lotsfree_percent = 10;
400
401 /* The 6 states: */
402 static arc_state_t ARC_anon;
403 static arc_state_t ARC_mru;
404 static arc_state_t ARC_mru_ghost;
405 static arc_state_t ARC_mfu;
406 static arc_state_t ARC_mfu_ghost;
407 static arc_state_t ARC_l2c_only;
408
409 typedef struct arc_stats {
410 kstat_named_t arcstat_hits;
411 kstat_named_t arcstat_misses;
412 kstat_named_t arcstat_demand_data_hits;
413 kstat_named_t arcstat_demand_data_misses;
414 kstat_named_t arcstat_demand_metadata_hits;
415 kstat_named_t arcstat_demand_metadata_misses;
416 kstat_named_t arcstat_prefetch_data_hits;
417 kstat_named_t arcstat_prefetch_data_misses;
418 kstat_named_t arcstat_prefetch_metadata_hits;
419 kstat_named_t arcstat_prefetch_metadata_misses;
420 kstat_named_t arcstat_mru_hits;
421 kstat_named_t arcstat_mru_ghost_hits;
422 kstat_named_t arcstat_mfu_hits;
423 kstat_named_t arcstat_mfu_ghost_hits;
424 kstat_named_t arcstat_deleted;
425 /*
426 * Number of buffers that could not be evicted because the hash lock
427 * was held by another thread. The lock may not necessarily be held
428 * by something using the same buffer, since hash locks are shared
429 * by multiple buffers.
430 */
431 kstat_named_t arcstat_mutex_miss;
432 /*
433 * Number of buffers skipped when updating the access state due to the
434 * header having already been released after acquiring the hash lock.
435 */
436 kstat_named_t arcstat_access_skip;
437 /*
438 * Number of buffers skipped because they have I/O in progress, are
439 * indirect prefetch buffers that have not lived long enough, or are
440 * not from the spa we're trying to evict from.
441 */
442 kstat_named_t arcstat_evict_skip;
443 /*
444 * Number of times arc_evict_state() was unable to evict enough
445 * buffers to reach its target amount.
446 */
447 kstat_named_t arcstat_evict_not_enough;
448 kstat_named_t arcstat_evict_l2_cached;
449 kstat_named_t arcstat_evict_l2_eligible;
450 kstat_named_t arcstat_evict_l2_ineligible;
451 kstat_named_t arcstat_evict_l2_skip;
452 kstat_named_t arcstat_hash_elements;
453 kstat_named_t arcstat_hash_elements_max;
454 kstat_named_t arcstat_hash_collisions;
455 kstat_named_t arcstat_hash_chains;
456 kstat_named_t arcstat_hash_chain_max;
457 kstat_named_t arcstat_p;
458 kstat_named_t arcstat_c;
459 kstat_named_t arcstat_c_min;
460 kstat_named_t arcstat_c_max;
461 kstat_named_t arcstat_size;
462 /*
463 * Number of compressed bytes stored in the arc_buf_hdr_t's b_pabd.
464 * Note that the compressed bytes may match the uncompressed bytes
465 * if the block is either not compressed or compressed arc is disabled.
466 */
467 kstat_named_t arcstat_compressed_size;
468 /*
469 * Uncompressed size of the data stored in b_pabd. If compressed
470 * arc is disabled then this value will be identical to the stat
471 * above.
472 */
473 kstat_named_t arcstat_uncompressed_size;
474 /*
475 * Number of bytes stored in all the arc_buf_t's. This is classified
476 * as "overhead" since this data is typically short-lived and will
477 * be evicted from the arc when it becomes unreferenced unless the
478 * zfs_keep_uncompressed_metadata or zfs_keep_uncompressed_level
479 * values have been set (see comment in dbuf.c for more information).
480 */
481 kstat_named_t arcstat_overhead_size;
482 /*
483 * Number of bytes consumed by internal ARC structures necessary
484 * for tracking purposes; these structures are not actually
485 * backed by ARC buffers. This includes arc_buf_hdr_t structures
486 * (allocated via arc_buf_hdr_t_full and arc_buf_hdr_t_l2only
487 * caches), and arc_buf_t structures (allocated via arc_buf_t
488 * cache).
489 */
490 kstat_named_t arcstat_hdr_size;
491 /*
492 * Number of bytes consumed by ARC buffers of type equal to
493 * ARC_BUFC_DATA. This is generally consumed by buffers backing
494 * on disk user data (e.g. plain file contents).
495 */
496 kstat_named_t arcstat_data_size;
497 /*
498 * Number of bytes consumed by ARC buffers of type equal to
499 * ARC_BUFC_METADATA. This is generally consumed by buffers
500 * backing on disk data that is used for internal ZFS
501 * structures (e.g. ZAP, dnode, indirect blocks, etc).
502 */
503 kstat_named_t arcstat_metadata_size;
504 /*
505 * Number of bytes consumed by dmu_buf_impl_t objects.
506 */
507 kstat_named_t arcstat_dbuf_size;
508 /*
509 * Number of bytes consumed by dnode_t objects.
510 */
511 kstat_named_t arcstat_dnode_size;
512 /*
513 * Number of bytes consumed by bonus buffers.
514 */
515 kstat_named_t arcstat_bonus_size;
516 /*
517 * Total number of bytes consumed by ARC buffers residing in the
518 * arc_anon state. This includes *all* buffers in the arc_anon
519 * state; e.g. data, metadata, evictable, and unevictable buffers
520 * are all included in this value.
521 */
522 kstat_named_t arcstat_anon_size;
523 /*
524 * Number of bytes consumed by ARC buffers that meet the
525 * following criteria: backing buffers of type ARC_BUFC_DATA,
526 * residing in the arc_anon state, and are eligible for eviction
527 * (e.g. have no outstanding holds on the buffer).
528 */
529 kstat_named_t arcstat_anon_evictable_data;
530 /*
531 * Number of bytes consumed by ARC buffers that meet the
532 * following criteria: backing buffers of type ARC_BUFC_METADATA,
533 * residing in the arc_anon state, and are eligible for eviction
534 * (e.g. have no outstanding holds on the buffer).
535 */
536 kstat_named_t arcstat_anon_evictable_metadata;
537 /*
538 * Total number of bytes consumed by ARC buffers residing in the
539 * arc_mru state. This includes *all* buffers in the arc_mru
540 * state; e.g. data, metadata, evictable, and unevictable buffers
541 * are all included in this value.
542 */
543 kstat_named_t arcstat_mru_size;
544 /*
545 * Number of bytes consumed by ARC buffers that meet the
546 * following criteria: backing buffers of type ARC_BUFC_DATA,
547 * residing in the arc_mru state, and are eligible for eviction
548 * (e.g. have no outstanding holds on the buffer).
549 */
550 kstat_named_t arcstat_mru_evictable_data;
551 /*
552 * Number of bytes consumed by ARC buffers that meet the
553 * following criteria: backing buffers of type ARC_BUFC_METADATA,
554 * residing in the arc_mru state, and are eligible for eviction
555 * (e.g. have no outstanding holds on the buffer).
556 */
557 kstat_named_t arcstat_mru_evictable_metadata;
558 /*
559 * Total number of bytes that *would have been* consumed by ARC
560 * buffers in the arc_mru_ghost state. The key thing to note
561 * here, is the fact that this size doesn't actually indicate
562 * RAM consumption. The ghost lists only consist of headers and
563 * don't actually have ARC buffers linked off of these headers.
564 * Thus, *if* the headers had associated ARC buffers, these
565 * buffers *would have* consumed this number of bytes.
566 */
567 kstat_named_t arcstat_mru_ghost_size;
568 /*
569 * Number of bytes that *would have been* consumed by ARC
570 * buffers that are eligible for eviction, of type
571 * ARC_BUFC_DATA, and linked off the arc_mru_ghost state.
572 */
573 kstat_named_t arcstat_mru_ghost_evictable_data;
574 /*
575 * Number of bytes that *would have been* consumed by ARC
576 * buffers that are eligible for eviction, of type
577 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
578 */
579 kstat_named_t arcstat_mru_ghost_evictable_metadata;
580 /*
581 * Total number of bytes consumed by ARC buffers residing in the
582 * arc_mfu state. This includes *all* buffers in the arc_mfu
583 * state; e.g. data, metadata, evictable, and unevictable buffers
584 * are all included in this value.
585 */
586 kstat_named_t arcstat_mfu_size;
587 /*
588 * Number of bytes consumed by ARC buffers that are eligible for
589 * eviction, of type ARC_BUFC_DATA, and reside in the arc_mfu
590 * state.
591 */
592 kstat_named_t arcstat_mfu_evictable_data;
593 /*
594 * Number of bytes consumed by ARC buffers that are eligible for
595 * eviction, of type ARC_BUFC_METADATA, and reside in the
596 * arc_mfu state.
597 */
598 kstat_named_t arcstat_mfu_evictable_metadata;
599 /*
600 * Total number of bytes that *would have been* consumed by ARC
601 * buffers in the arc_mfu_ghost state. See the comment above
602 * arcstat_mru_ghost_size for more details.
603 */
604 kstat_named_t arcstat_mfu_ghost_size;
605 /*
606 * Number of bytes that *would have been* consumed by ARC
607 * buffers that are eligible for eviction, of type
608 * ARC_BUFC_DATA, and linked off the arc_mfu_ghost state.
609 */
610 kstat_named_t arcstat_mfu_ghost_evictable_data;
611 /*
612 * Number of bytes that *would have been* consumed by ARC
613 * buffers that are eligible for eviction, of type
614 * ARC_BUFC_METADATA, and linked off the arc_mru_ghost state.
615 */
616 kstat_named_t arcstat_mfu_ghost_evictable_metadata;
617 kstat_named_t arcstat_l2_hits;
618 kstat_named_t arcstat_l2_misses;
619 kstat_named_t arcstat_l2_feeds;
620 kstat_named_t arcstat_l2_rw_clash;
621 kstat_named_t arcstat_l2_read_bytes;
622 kstat_named_t arcstat_l2_write_bytes;
623 kstat_named_t arcstat_l2_writes_sent;
624 kstat_named_t arcstat_l2_writes_done;
625 kstat_named_t arcstat_l2_writes_error;
626 kstat_named_t arcstat_l2_writes_lock_retry;
627 kstat_named_t arcstat_l2_evict_lock_retry;
628 kstat_named_t arcstat_l2_evict_reading;
629 kstat_named_t arcstat_l2_evict_l1cached;
630 kstat_named_t arcstat_l2_free_on_write;
631 kstat_named_t arcstat_l2_abort_lowmem;
632 kstat_named_t arcstat_l2_cksum_bad;
633 kstat_named_t arcstat_l2_io_error;
634 kstat_named_t arcstat_l2_lsize;
635 kstat_named_t arcstat_l2_psize;
636 kstat_named_t arcstat_l2_hdr_size;
637 kstat_named_t arcstat_memory_throttle_count;
638 kstat_named_t arcstat_memory_direct_count;
639 kstat_named_t arcstat_memory_indirect_count;
640 kstat_named_t arcstat_memory_all_bytes;
641 kstat_named_t arcstat_memory_free_bytes;
642 kstat_named_t arcstat_memory_available_bytes;
643 kstat_named_t arcstat_no_grow;
644 kstat_named_t arcstat_tempreserve;
645 kstat_named_t arcstat_loaned_bytes;
646 kstat_named_t arcstat_prune;
647 kstat_named_t arcstat_meta_used;
648 kstat_named_t arcstat_meta_limit;
649 kstat_named_t arcstat_dnode_limit;
650 kstat_named_t arcstat_meta_max;
651 kstat_named_t arcstat_meta_min;
652 kstat_named_t arcstat_sync_wait_for_async;
653 kstat_named_t arcstat_demand_hit_predictive_prefetch;
654 kstat_named_t arcstat_need_free;
655 kstat_named_t arcstat_sys_free;
656 } arc_stats_t;
657
658 static arc_stats_t arc_stats = {
659 { "hits", KSTAT_DATA_UINT64 },
660 { "misses", KSTAT_DATA_UINT64 },
661 { "demand_data_hits", KSTAT_DATA_UINT64 },
662 { "demand_data_misses", KSTAT_DATA_UINT64 },
663 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
664 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
665 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
666 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
667 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
668 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
669 { "mru_hits", KSTAT_DATA_UINT64 },
670 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
671 { "mfu_hits", KSTAT_DATA_UINT64 },
672 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
673 { "deleted", KSTAT_DATA_UINT64 },
674 { "mutex_miss", KSTAT_DATA_UINT64 },
675 { "access_skip", KSTAT_DATA_UINT64 },
676 { "evict_skip", KSTAT_DATA_UINT64 },
677 { "evict_not_enough", KSTAT_DATA_UINT64 },
678 { "evict_l2_cached", KSTAT_DATA_UINT64 },
679 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
680 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
681 { "evict_l2_skip", KSTAT_DATA_UINT64 },
682 { "hash_elements", KSTAT_DATA_UINT64 },
683 { "hash_elements_max", KSTAT_DATA_UINT64 },
684 { "hash_collisions", KSTAT_DATA_UINT64 },
685 { "hash_chains", KSTAT_DATA_UINT64 },
686 { "hash_chain_max", KSTAT_DATA_UINT64 },
687 { "p", KSTAT_DATA_UINT64 },
688 { "c", KSTAT_DATA_UINT64 },
689 { "c_min", KSTAT_DATA_UINT64 },
690 { "c_max", KSTAT_DATA_UINT64 },
691 { "size", KSTAT_DATA_UINT64 },
692 { "compressed_size", KSTAT_DATA_UINT64 },
693 { "uncompressed_size", KSTAT_DATA_UINT64 },
694 { "overhead_size", KSTAT_DATA_UINT64 },
695 { "hdr_size", KSTAT_DATA_UINT64 },
696 { "data_size", KSTAT_DATA_UINT64 },
697 { "metadata_size", KSTAT_DATA_UINT64 },
698 { "dbuf_size", KSTAT_DATA_UINT64 },
699 { "dnode_size", KSTAT_DATA_UINT64 },
700 { "bonus_size", KSTAT_DATA_UINT64 },
701 { "anon_size", KSTAT_DATA_UINT64 },
702 { "anon_evictable_data", KSTAT_DATA_UINT64 },
703 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
704 { "mru_size", KSTAT_DATA_UINT64 },
705 { "mru_evictable_data", KSTAT_DATA_UINT64 },
706 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
707 { "mru_ghost_size", KSTAT_DATA_UINT64 },
708 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
709 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
710 { "mfu_size", KSTAT_DATA_UINT64 },
711 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
712 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
713 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
714 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
715 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
716 { "l2_hits", KSTAT_DATA_UINT64 },
717 { "l2_misses", KSTAT_DATA_UINT64 },
718 { "l2_feeds", KSTAT_DATA_UINT64 },
719 { "l2_rw_clash", KSTAT_DATA_UINT64 },
720 { "l2_read_bytes", KSTAT_DATA_UINT64 },
721 { "l2_write_bytes", KSTAT_DATA_UINT64 },
722 { "l2_writes_sent", KSTAT_DATA_UINT64 },
723 { "l2_writes_done", KSTAT_DATA_UINT64 },
724 { "l2_writes_error", KSTAT_DATA_UINT64 },
725 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
726 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
727 { "l2_evict_reading", KSTAT_DATA_UINT64 },
728 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
729 { "l2_free_on_write", KSTAT_DATA_UINT64 },
730 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
731 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
732 { "l2_io_error", KSTAT_DATA_UINT64 },
733 { "l2_size", KSTAT_DATA_UINT64 },
734 { "l2_asize", KSTAT_DATA_UINT64 },
735 { "l2_hdr_size", KSTAT_DATA_UINT64 },
736 { "memory_throttle_count", KSTAT_DATA_UINT64 },
737 { "memory_direct_count", KSTAT_DATA_UINT64 },
738 { "memory_indirect_count", KSTAT_DATA_UINT64 },
739 { "memory_all_bytes", KSTAT_DATA_UINT64 },
740 { "memory_free_bytes", KSTAT_DATA_UINT64 },
741 { "memory_available_bytes", KSTAT_DATA_INT64 },
742 { "arc_no_grow", KSTAT_DATA_UINT64 },
743 { "arc_tempreserve", KSTAT_DATA_UINT64 },
744 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
745 { "arc_prune", KSTAT_DATA_UINT64 },
746 { "arc_meta_used", KSTAT_DATA_UINT64 },
747 { "arc_meta_limit", KSTAT_DATA_UINT64 },
748 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
749 { "arc_meta_max", KSTAT_DATA_UINT64 },
750 { "arc_meta_min", KSTAT_DATA_UINT64 },
751 { "sync_wait_for_async", KSTAT_DATA_UINT64 },
752 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
753 { "arc_need_free", KSTAT_DATA_UINT64 },
754 { "arc_sys_free", KSTAT_DATA_UINT64 }
755 };
756
757 #define ARCSTAT(stat) (arc_stats.stat.value.ui64)
758
759 #define ARCSTAT_INCR(stat, val) \
760 atomic_add_64(&arc_stats.stat.value.ui64, (val))
761
762 #define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
763 #define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
764
765 #define ARCSTAT_MAX(stat, val) { \
766 uint64_t m; \
767 while ((val) > (m = arc_stats.stat.value.ui64) && \
768 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
769 continue; \
770 }
771
772 #define ARCSTAT_MAXSTAT(stat) \
773 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
774
775 /*
776 * We define a macro to allow ARC hits/misses to be easily broken down by
777 * two separate conditions, giving a total of four different subtypes for
778 * each of hits and misses (so eight statistics total).
779 */
780 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
781 if (cond1) { \
782 if (cond2) { \
783 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
784 } else { \
785 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
786 } \
787 } else { \
788 if (cond2) { \
789 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
790 } else { \
791 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
792 } \
793 }
794
795 kstat_t *arc_ksp;
796 static arc_state_t *arc_anon;
797 static arc_state_t *arc_mru;
798 static arc_state_t *arc_mru_ghost;
799 static arc_state_t *arc_mfu;
800 static arc_state_t *arc_mfu_ghost;
801 static arc_state_t *arc_l2c_only;
802
803 /*
804 * There are several ARC variables that are critical to export as kstats --
805 * but we don't want to have to grovel around in the kstat whenever we wish to
806 * manipulate them. For these variables, we therefore define them to be in
807 * terms of the statistic variable. This assures that we are not introducing
808 * the possibility of inconsistency by having shadow copies of the variables,
809 * while still allowing the code to be readable.
810 */
811 #define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
812 #define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
813 #define arc_c ARCSTAT(arcstat_c) /* target size of cache */
814 #define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
815 #define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
816 #define arc_no_grow ARCSTAT(arcstat_no_grow) /* do not grow cache size */
817 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
818 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
819 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
820 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
821 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
822 #define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
823 #define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
824 #define arc_dbuf_size ARCSTAT(arcstat_dbuf_size) /* dbuf metadata */
825 #define arc_dnode_size ARCSTAT(arcstat_dnode_size) /* dnode metadata */
826 #define arc_bonus_size ARCSTAT(arcstat_bonus_size) /* bonus buffer metadata */
827 #define arc_need_free ARCSTAT(arcstat_need_free) /* bytes to be freed */
828 #define arc_sys_free ARCSTAT(arcstat_sys_free) /* target system free bytes */
829
830 /* compressed size of entire arc */
831 #define arc_compressed_size ARCSTAT(arcstat_compressed_size)
832 /* uncompressed size of entire arc */
833 #define arc_uncompressed_size ARCSTAT(arcstat_uncompressed_size)
834 /* number of bytes in the arc from arc_buf_t's */
835 #define arc_overhead_size ARCSTAT(arcstat_overhead_size)
836
837 static list_t arc_prune_list;
838 static kmutex_t arc_prune_mtx;
839 static taskq_t *arc_prune_taskq;
840
841 #define GHOST_STATE(state) \
842 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
843 (state) == arc_l2c_only)
844
845 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
846 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
847 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
848 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
849 #define HDR_COMPRESSION_ENABLED(hdr) \
850 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
851
852 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
853 #define HDR_L2_READING(hdr) \
854 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
855 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
856 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
857 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
858 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
859 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
860
861 #define HDR_ISTYPE_METADATA(hdr) \
862 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
863 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
864
865 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
866 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
867
868 /* For storing compression mode in b_flags */
869 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
870
871 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
872 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
873 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
874 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
875
876 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
877 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
878 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
879
880 /*
881 * Other sizes
882 */
883
884 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
885 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
886
887 /*
888 * Hash table routines
889 */
890
891 #define HT_LOCK_ALIGN 64
892 #define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
893
894 struct ht_lock {
895 kmutex_t ht_lock;
896 #ifdef _KERNEL
897 unsigned char pad[HT_LOCK_PAD];
898 #endif
899 };
900
901 #define BUF_LOCKS 8192
902 typedef struct buf_hash_table {
903 uint64_t ht_mask;
904 arc_buf_hdr_t **ht_table;
905 struct ht_lock ht_locks[BUF_LOCKS];
906 } buf_hash_table_t;
907
908 static buf_hash_table_t buf_hash_table;
909
910 #define BUF_HASH_INDEX(spa, dva, birth) \
911 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
912 #define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
913 #define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
914 #define HDR_LOCK(hdr) \
915 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
916
917 uint64_t zfs_crc64_table[256];
918
919 /*
920 * Level 2 ARC
921 */
922
923 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
924 #define L2ARC_HEADROOM 2 /* num of writes */
925
926 /*
927 * If we discover during ARC scan any buffers to be compressed, we boost
928 * our headroom for the next scanning cycle by this percentage multiple.
929 */
930 #define L2ARC_HEADROOM_BOOST 200
931 #define L2ARC_FEED_SECS 1 /* caching interval secs */
932 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
933
934 /*
935 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
936 * and each of the state has two types: data and metadata.
937 */
938 #define L2ARC_FEED_TYPES 4
939
940 #define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
941 #define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
942
943 /* L2ARC Performance Tunables */
944 unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
945 unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
946 unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
947 unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
948 unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
949 unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
950 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
951 int l2arc_feed_again = B_TRUE; /* turbo warmup */
952 int l2arc_norw = B_FALSE; /* no reads during writes */
953
954 /*
955 * L2ARC Internals
956 */
957 static list_t L2ARC_dev_list; /* device list */
958 static list_t *l2arc_dev_list; /* device list pointer */
959 static kmutex_t l2arc_dev_mtx; /* device list mutex */
960 static l2arc_dev_t *l2arc_dev_last; /* last device used */
961 static list_t L2ARC_free_on_write; /* free after write buf list */
962 static list_t *l2arc_free_on_write; /* free after write list ptr */
963 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
964 static uint64_t l2arc_ndev; /* number of devices */
965
966 typedef struct l2arc_read_callback {
967 arc_buf_hdr_t *l2rcb_hdr; /* read header */
968 blkptr_t l2rcb_bp; /* original blkptr */
969 zbookmark_phys_t l2rcb_zb; /* original bookmark */
970 int l2rcb_flags; /* original flags */
971 abd_t *l2rcb_abd; /* temporary buffer */
972 } l2arc_read_callback_t;
973
974 typedef struct l2arc_data_free {
975 /* protected by l2arc_free_on_write_mtx */
976 abd_t *l2df_abd;
977 size_t l2df_size;
978 arc_buf_contents_t l2df_type;
979 list_node_t l2df_list_node;
980 } l2arc_data_free_t;
981
982 static kmutex_t l2arc_feed_thr_lock;
983 static kcondvar_t l2arc_feed_thr_cv;
984 static uint8_t l2arc_thread_exit;
985
986 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, void *);
987 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, void *);
988 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, void *);
989 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, void *);
990 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, void *);
991 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag);
992 static void arc_hdr_free_pabd(arc_buf_hdr_t *);
993 static void arc_hdr_alloc_pabd(arc_buf_hdr_t *);
994 static void arc_access(arc_buf_hdr_t *, kmutex_t *);
995 static boolean_t arc_is_overflowing(void);
996 static void arc_buf_watch(arc_buf_t *);
997 static void arc_tuning_update(void);
998 static void arc_prune_async(int64_t);
999 static uint64_t arc_all_memory(void);
1000
1001 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
1002 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
1003 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1004 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
1005
1006 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
1007 static void l2arc_read_done(zio_t *);
1008
1009 static uint64_t
1010 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
1011 {
1012 uint8_t *vdva = (uint8_t *)dva;
1013 uint64_t crc = -1ULL;
1014 int i;
1015
1016 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
1017
1018 for (i = 0; i < sizeof (dva_t); i++)
1019 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
1020
1021 crc ^= (spa>>8) ^ birth;
1022
1023 return (crc);
1024 }
1025
1026 #define HDR_EMPTY(hdr) \
1027 ((hdr)->b_dva.dva_word[0] == 0 && \
1028 (hdr)->b_dva.dva_word[1] == 0)
1029
1030 #define HDR_EQUAL(spa, dva, birth, hdr) \
1031 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1032 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1033 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1034
1035 static void
1036 buf_discard_identity(arc_buf_hdr_t *hdr)
1037 {
1038 hdr->b_dva.dva_word[0] = 0;
1039 hdr->b_dva.dva_word[1] = 0;
1040 hdr->b_birth = 0;
1041 }
1042
1043 static arc_buf_hdr_t *
1044 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1045 {
1046 const dva_t *dva = BP_IDENTITY(bp);
1047 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1048 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1049 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1050 arc_buf_hdr_t *hdr;
1051
1052 mutex_enter(hash_lock);
1053 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1054 hdr = hdr->b_hash_next) {
1055 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1056 *lockp = hash_lock;
1057 return (hdr);
1058 }
1059 }
1060 mutex_exit(hash_lock);
1061 *lockp = NULL;
1062 return (NULL);
1063 }
1064
1065 /*
1066 * Insert an entry into the hash table. If there is already an element
1067 * equal to elem in the hash table, then the already existing element
1068 * will be returned and the new element will not be inserted.
1069 * Otherwise returns NULL.
1070 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1071 */
1072 static arc_buf_hdr_t *
1073 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1074 {
1075 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1076 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1077 arc_buf_hdr_t *fhdr;
1078 uint32_t i;
1079
1080 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1081 ASSERT(hdr->b_birth != 0);
1082 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1083
1084 if (lockp != NULL) {
1085 *lockp = hash_lock;
1086 mutex_enter(hash_lock);
1087 } else {
1088 ASSERT(MUTEX_HELD(hash_lock));
1089 }
1090
1091 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1092 fhdr = fhdr->b_hash_next, i++) {
1093 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1094 return (fhdr);
1095 }
1096
1097 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1098 buf_hash_table.ht_table[idx] = hdr;
1099 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1100
1101 /* collect some hash table performance data */
1102 if (i > 0) {
1103 ARCSTAT_BUMP(arcstat_hash_collisions);
1104 if (i == 1)
1105 ARCSTAT_BUMP(arcstat_hash_chains);
1106
1107 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1108 }
1109
1110 ARCSTAT_BUMP(arcstat_hash_elements);
1111 ARCSTAT_MAXSTAT(arcstat_hash_elements);
1112
1113 return (NULL);
1114 }
1115
1116 static void
1117 buf_hash_remove(arc_buf_hdr_t *hdr)
1118 {
1119 arc_buf_hdr_t *fhdr, **hdrp;
1120 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1121
1122 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1123 ASSERT(HDR_IN_HASH_TABLE(hdr));
1124
1125 hdrp = &buf_hash_table.ht_table[idx];
1126 while ((fhdr = *hdrp) != hdr) {
1127 ASSERT3P(fhdr, !=, NULL);
1128 hdrp = &fhdr->b_hash_next;
1129 }
1130 *hdrp = hdr->b_hash_next;
1131 hdr->b_hash_next = NULL;
1132 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1133
1134 /* collect some hash table performance data */
1135 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
1136
1137 if (buf_hash_table.ht_table[idx] &&
1138 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1139 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1140 }
1141
1142 /*
1143 * Global data structures and functions for the buf kmem cache.
1144 */
1145 static kmem_cache_t *hdr_full_cache;
1146 static kmem_cache_t *hdr_l2only_cache;
1147 static kmem_cache_t *buf_cache;
1148
1149 static void
1150 buf_fini(void)
1151 {
1152 int i;
1153
1154 #if defined(_KERNEL) && defined(HAVE_SPL)
1155 /*
1156 * Large allocations which do not require contiguous pages
1157 * should be using vmem_free() in the linux kernel\
1158 */
1159 vmem_free(buf_hash_table.ht_table,
1160 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1161 #else
1162 kmem_free(buf_hash_table.ht_table,
1163 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1164 #endif
1165 for (i = 0; i < BUF_LOCKS; i++)
1166 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
1167 kmem_cache_destroy(hdr_full_cache);
1168 kmem_cache_destroy(hdr_l2only_cache);
1169 kmem_cache_destroy(buf_cache);
1170 }
1171
1172 /*
1173 * Constructor callback - called when the cache is empty
1174 * and a new buf is requested.
1175 */
1176 /* ARGSUSED */
1177 static int
1178 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1179 {
1180 arc_buf_hdr_t *hdr = vbuf;
1181
1182 bzero(hdr, HDR_FULL_SIZE);
1183 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1184 refcount_create(&hdr->b_l1hdr.b_refcnt);
1185 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1186 list_link_init(&hdr->b_l1hdr.b_arc_node);
1187 list_link_init(&hdr->b_l2hdr.b_l2node);
1188 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1189 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1190
1191 return (0);
1192 }
1193
1194 /* ARGSUSED */
1195 static int
1196 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1197 {
1198 arc_buf_hdr_t *hdr = vbuf;
1199
1200 bzero(hdr, HDR_L2ONLY_SIZE);
1201 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1202
1203 return (0);
1204 }
1205
1206 /* ARGSUSED */
1207 static int
1208 buf_cons(void *vbuf, void *unused, int kmflag)
1209 {
1210 arc_buf_t *buf = vbuf;
1211
1212 bzero(buf, sizeof (arc_buf_t));
1213 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
1214 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1215
1216 return (0);
1217 }
1218
1219 /*
1220 * Destructor callback - called when a cached buf is
1221 * no longer required.
1222 */
1223 /* ARGSUSED */
1224 static void
1225 hdr_full_dest(void *vbuf, void *unused)
1226 {
1227 arc_buf_hdr_t *hdr = vbuf;
1228
1229 ASSERT(HDR_EMPTY(hdr));
1230 cv_destroy(&hdr->b_l1hdr.b_cv);
1231 refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1232 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1233 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1234 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1235 }
1236
1237 /* ARGSUSED */
1238 static void
1239 hdr_l2only_dest(void *vbuf, void *unused)
1240 {
1241 ASSERTV(arc_buf_hdr_t *hdr = vbuf);
1242
1243 ASSERT(HDR_EMPTY(hdr));
1244 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1245 }
1246
1247 /* ARGSUSED */
1248 static void
1249 buf_dest(void *vbuf, void *unused)
1250 {
1251 arc_buf_t *buf = vbuf;
1252
1253 mutex_destroy(&buf->b_evict_lock);
1254 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1255 }
1256
1257 /*
1258 * Reclaim callback -- invoked when memory is low.
1259 */
1260 /* ARGSUSED */
1261 static void
1262 hdr_recl(void *unused)
1263 {
1264 dprintf("hdr_recl called\n");
1265 /*
1266 * umem calls the reclaim func when we destroy the buf cache,
1267 * which is after we do arc_fini().
1268 */
1269 if (!arc_dead)
1270 cv_signal(&arc_reclaim_thread_cv);
1271 }
1272
1273 static void
1274 buf_init(void)
1275 {
1276 uint64_t *ct = NULL;
1277 uint64_t hsize = 1ULL << 12;
1278 int i, j;
1279
1280 /*
1281 * The hash table is big enough to fill all of physical memory
1282 * with an average block size of zfs_arc_average_blocksize (default 8K).
1283 * By default, the table will take up
1284 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1285 */
1286 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1287 hsize <<= 1;
1288 retry:
1289 buf_hash_table.ht_mask = hsize - 1;
1290 #if defined(_KERNEL) && defined(HAVE_SPL)
1291 /*
1292 * Large allocations which do not require contiguous pages
1293 * should be using vmem_alloc() in the linux kernel
1294 */
1295 buf_hash_table.ht_table =
1296 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1297 #else
1298 buf_hash_table.ht_table =
1299 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1300 #endif
1301 if (buf_hash_table.ht_table == NULL) {
1302 ASSERT(hsize > (1ULL << 8));
1303 hsize >>= 1;
1304 goto retry;
1305 }
1306
1307 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1308 0, hdr_full_cons, hdr_full_dest, hdr_recl, NULL, NULL, 0);
1309 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1310 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, hdr_recl,
1311 NULL, NULL, 0);
1312 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1313 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1314
1315 for (i = 0; i < 256; i++)
1316 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1317 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1318
1319 for (i = 0; i < BUF_LOCKS; i++) {
1320 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
1321 NULL, MUTEX_DEFAULT, NULL);
1322 }
1323 }
1324
1325 #define ARC_MINTIME (hz>>4) /* 62 ms */
1326
1327 /*
1328 * This is the size that the buf occupies in memory. If the buf is compressed,
1329 * it will correspond to the compressed size. You should use this method of
1330 * getting the buf size unless you explicitly need the logical size.
1331 */
1332 uint64_t
1333 arc_buf_size(arc_buf_t *buf)
1334 {
1335 return (ARC_BUF_COMPRESSED(buf) ?
1336 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1337 }
1338
1339 uint64_t
1340 arc_buf_lsize(arc_buf_t *buf)
1341 {
1342 return (HDR_GET_LSIZE(buf->b_hdr));
1343 }
1344
1345 enum zio_compress
1346 arc_get_compression(arc_buf_t *buf)
1347 {
1348 return (ARC_BUF_COMPRESSED(buf) ?
1349 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1350 }
1351
1352 static inline boolean_t
1353 arc_buf_is_shared(arc_buf_t *buf)
1354 {
1355 boolean_t shared = (buf->b_data != NULL &&
1356 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1357 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1358 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1359 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1360 IMPLY(shared, ARC_BUF_SHARED(buf));
1361 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1362
1363 /*
1364 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1365 * already being shared" requirement prevents us from doing that.
1366 */
1367
1368 return (shared);
1369 }
1370
1371 /*
1372 * Free the checksum associated with this header. If there is no checksum, this
1373 * is a no-op.
1374 */
1375 static inline void
1376 arc_cksum_free(arc_buf_hdr_t *hdr)
1377 {
1378 ASSERT(HDR_HAS_L1HDR(hdr));
1379 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1380 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1381 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1382 hdr->b_l1hdr.b_freeze_cksum = NULL;
1383 }
1384 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1385 }
1386
1387 /*
1388 * Return true iff at least one of the bufs on hdr is not compressed.
1389 */
1390 static boolean_t
1391 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1392 {
1393 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1394 if (!ARC_BUF_COMPRESSED(b)) {
1395 return (B_TRUE);
1396 }
1397 }
1398 return (B_FALSE);
1399 }
1400
1401
1402 /*
1403 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1404 * matches the checksum that is stored in the hdr. If there is no checksum,
1405 * or if the buf is compressed, this is a no-op.
1406 */
1407 static void
1408 arc_cksum_verify(arc_buf_t *buf)
1409 {
1410 arc_buf_hdr_t *hdr = buf->b_hdr;
1411 zio_cksum_t zc;
1412
1413 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1414 return;
1415
1416 if (ARC_BUF_COMPRESSED(buf)) {
1417 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1418 arc_hdr_has_uncompressed_buf(hdr));
1419 return;
1420 }
1421
1422 ASSERT(HDR_HAS_L1HDR(hdr));
1423
1424 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1425 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1426 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1427 return;
1428 }
1429
1430 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1431 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1432 panic("buffer modified while frozen!");
1433 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1434 }
1435
1436 static boolean_t
1437 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1438 {
1439 enum zio_compress compress = BP_GET_COMPRESS(zio->io_bp);
1440 boolean_t valid_cksum;
1441
1442 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1443 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1444
1445 /*
1446 * We rely on the blkptr's checksum to determine if the block
1447 * is valid or not. When compressed arc is enabled, the l2arc
1448 * writes the block to the l2arc just as it appears in the pool.
1449 * This allows us to use the blkptr's checksum to validate the
1450 * data that we just read off of the l2arc without having to store
1451 * a separate checksum in the arc_buf_hdr_t. However, if compressed
1452 * arc is disabled, then the data written to the l2arc is always
1453 * uncompressed and won't match the block as it exists in the main
1454 * pool. When this is the case, we must first compress it if it is
1455 * compressed on the main pool before we can validate the checksum.
1456 */
1457 if (!HDR_COMPRESSION_ENABLED(hdr) && compress != ZIO_COMPRESS_OFF) {
1458 uint64_t lsize;
1459 uint64_t csize;
1460 void *cbuf;
1461 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1462
1463 cbuf = zio_buf_alloc(HDR_GET_PSIZE(hdr));
1464 lsize = HDR_GET_LSIZE(hdr);
1465 csize = zio_compress_data(compress, zio->io_abd, cbuf, lsize);
1466
1467 ASSERT3U(csize, <=, HDR_GET_PSIZE(hdr));
1468 if (csize < HDR_GET_PSIZE(hdr)) {
1469 /*
1470 * Compressed blocks are always a multiple of the
1471 * smallest ashift in the pool. Ideally, we would
1472 * like to round up the csize to the next
1473 * spa_min_ashift but that value may have changed
1474 * since the block was last written. Instead,
1475 * we rely on the fact that the hdr's psize
1476 * was set to the psize of the block when it was
1477 * last written. We set the csize to that value
1478 * and zero out any part that should not contain
1479 * data.
1480 */
1481 bzero((char *)cbuf + csize, HDR_GET_PSIZE(hdr) - csize);
1482 csize = HDR_GET_PSIZE(hdr);
1483 }
1484 zio_push_transform(zio, cbuf, csize, HDR_GET_PSIZE(hdr), NULL);
1485 }
1486
1487 /*
1488 * Block pointers always store the checksum for the logical data.
1489 * If the block pointer has the gang bit set, then the checksum
1490 * it represents is for the reconstituted data and not for an
1491 * individual gang member. The zio pipeline, however, must be able to
1492 * determine the checksum of each of the gang constituents so it
1493 * treats the checksum comparison differently than what we need
1494 * for l2arc blocks. This prevents us from using the
1495 * zio_checksum_error() interface directly. Instead we must call the
1496 * zio_checksum_error_impl() so that we can ensure the checksum is
1497 * generated using the correct checksum algorithm and accounts for the
1498 * logical I/O size and not just a gang fragment.
1499 */
1500 valid_cksum = (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1501 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1502 zio->io_offset, NULL) == 0);
1503 zio_pop_transforms(zio);
1504 return (valid_cksum);
1505 }
1506
1507 /*
1508 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1509 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1510 * isn't modified later on. If buf is compressed or there is already a checksum
1511 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1512 */
1513 static void
1514 arc_cksum_compute(arc_buf_t *buf)
1515 {
1516 arc_buf_hdr_t *hdr = buf->b_hdr;
1517
1518 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1519 return;
1520
1521 ASSERT(HDR_HAS_L1HDR(hdr));
1522
1523 mutex_enter(&buf->b_hdr->b_l1hdr.b_freeze_lock);
1524 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1525 ASSERT(arc_hdr_has_uncompressed_buf(hdr));
1526 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1527 return;
1528 } else if (ARC_BUF_COMPRESSED(buf)) {
1529 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1530 return;
1531 }
1532
1533 ASSERT(!ARC_BUF_COMPRESSED(buf));
1534 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1535 KM_SLEEP);
1536 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1537 hdr->b_l1hdr.b_freeze_cksum);
1538 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1539 arc_buf_watch(buf);
1540 }
1541
1542 #ifndef _KERNEL
1543 void
1544 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1545 {
1546 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1547 }
1548 #endif
1549
1550 /* ARGSUSED */
1551 static void
1552 arc_buf_unwatch(arc_buf_t *buf)
1553 {
1554 #ifndef _KERNEL
1555 if (arc_watch) {
1556 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1557 PROT_READ | PROT_WRITE));
1558 }
1559 #endif
1560 }
1561
1562 /* ARGSUSED */
1563 static void
1564 arc_buf_watch(arc_buf_t *buf)
1565 {
1566 #ifndef _KERNEL
1567 if (arc_watch)
1568 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1569 PROT_READ));
1570 #endif
1571 }
1572
1573 static arc_buf_contents_t
1574 arc_buf_type(arc_buf_hdr_t *hdr)
1575 {
1576 arc_buf_contents_t type;
1577 if (HDR_ISTYPE_METADATA(hdr)) {
1578 type = ARC_BUFC_METADATA;
1579 } else {
1580 type = ARC_BUFC_DATA;
1581 }
1582 VERIFY3U(hdr->b_type, ==, type);
1583 return (type);
1584 }
1585
1586 boolean_t
1587 arc_is_metadata(arc_buf_t *buf)
1588 {
1589 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1590 }
1591
1592 static uint32_t
1593 arc_bufc_to_flags(arc_buf_contents_t type)
1594 {
1595 switch (type) {
1596 case ARC_BUFC_DATA:
1597 /* metadata field is 0 if buffer contains normal data */
1598 return (0);
1599 case ARC_BUFC_METADATA:
1600 return (ARC_FLAG_BUFC_METADATA);
1601 default:
1602 break;
1603 }
1604 panic("undefined ARC buffer type!");
1605 return ((uint32_t)-1);
1606 }
1607
1608 void
1609 arc_buf_thaw(arc_buf_t *buf)
1610 {
1611 arc_buf_hdr_t *hdr = buf->b_hdr;
1612
1613 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1614 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1615
1616 arc_cksum_verify(buf);
1617
1618 /*
1619 * Compressed buffers do not manipulate the b_freeze_cksum or
1620 * allocate b_thawed.
1621 */
1622 if (ARC_BUF_COMPRESSED(buf)) {
1623 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1624 arc_hdr_has_uncompressed_buf(hdr));
1625 return;
1626 }
1627
1628 ASSERT(HDR_HAS_L1HDR(hdr));
1629 arc_cksum_free(hdr);
1630 arc_buf_unwatch(buf);
1631 }
1632
1633 void
1634 arc_buf_freeze(arc_buf_t *buf)
1635 {
1636 arc_buf_hdr_t *hdr = buf->b_hdr;
1637 kmutex_t *hash_lock;
1638
1639 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1640 return;
1641
1642 if (ARC_BUF_COMPRESSED(buf)) {
1643 ASSERT(hdr->b_l1hdr.b_freeze_cksum == NULL ||
1644 arc_hdr_has_uncompressed_buf(hdr));
1645 return;
1646 }
1647
1648 hash_lock = HDR_LOCK(hdr);
1649 mutex_enter(hash_lock);
1650
1651 ASSERT(HDR_HAS_L1HDR(hdr));
1652 ASSERT(hdr->b_l1hdr.b_freeze_cksum != NULL ||
1653 hdr->b_l1hdr.b_state == arc_anon);
1654 arc_cksum_compute(buf);
1655 mutex_exit(hash_lock);
1656 }
1657
1658 /*
1659 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1660 * the following functions should be used to ensure that the flags are
1661 * updated in a thread-safe way. When manipulating the flags either
1662 * the hash_lock must be held or the hdr must be undiscoverable. This
1663 * ensures that we're not racing with any other threads when updating
1664 * the flags.
1665 */
1666 static inline void
1667 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1668 {
1669 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1670 hdr->b_flags |= flags;
1671 }
1672
1673 static inline void
1674 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1675 {
1676 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1677 hdr->b_flags &= ~flags;
1678 }
1679
1680 /*
1681 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1682 * done in a special way since we have to clear and set bits
1683 * at the same time. Consumers that wish to set the compression bits
1684 * must use this function to ensure that the flags are updated in
1685 * thread-safe manner.
1686 */
1687 static void
1688 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1689 {
1690 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
1691
1692 /*
1693 * Holes and embedded blocks will always have a psize = 0 so
1694 * we ignore the compression of the blkptr and set the
1695 * want to uncompress them. Mark them as uncompressed.
1696 */
1697 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1698 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1699 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
1700 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1701 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1702 } else {
1703 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1704 HDR_SET_COMPRESS(hdr, cmp);
1705 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1706 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1707 }
1708 }
1709
1710 /*
1711 * Looks for another buf on the same hdr which has the data decompressed, copies
1712 * from it, and returns true. If no such buf exists, returns false.
1713 */
1714 static boolean_t
1715 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1716 {
1717 arc_buf_hdr_t *hdr = buf->b_hdr;
1718 boolean_t copied = B_FALSE;
1719
1720 ASSERT(HDR_HAS_L1HDR(hdr));
1721 ASSERT3P(buf->b_data, !=, NULL);
1722 ASSERT(!ARC_BUF_COMPRESSED(buf));
1723
1724 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1725 from = from->b_next) {
1726 /* can't use our own data buffer */
1727 if (from == buf) {
1728 continue;
1729 }
1730
1731 if (!ARC_BUF_COMPRESSED(from)) {
1732 bcopy(from->b_data, buf->b_data, arc_buf_size(buf));
1733 copied = B_TRUE;
1734 break;
1735 }
1736 }
1737
1738 /*
1739 * There were no decompressed bufs, so there should not be a
1740 * checksum on the hdr either.
1741 */
1742 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1743
1744 return (copied);
1745 }
1746
1747 /*
1748 * Given a buf that has a data buffer attached to it, this function will
1749 * efficiently fill the buf with data of the specified compression setting from
1750 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1751 * are already sharing a data buf, no copy is performed.
1752 *
1753 * If the buf is marked as compressed but uncompressed data was requested, this
1754 * will allocate a new data buffer for the buf, remove that flag, and fill the
1755 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1756 * uncompressed data, and (since we haven't added support for it yet) if you
1757 * want compressed data your buf must already be marked as compressed and have
1758 * the correct-sized data buffer.
1759 */
1760 static int
1761 arc_buf_fill(arc_buf_t *buf, boolean_t compressed)
1762 {
1763 arc_buf_hdr_t *hdr = buf->b_hdr;
1764 boolean_t hdr_compressed = (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
1765 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
1766
1767 ASSERT3P(buf->b_data, !=, NULL);
1768 IMPLY(compressed, hdr_compressed);
1769 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
1770
1771 if (hdr_compressed == compressed) {
1772 if (!arc_buf_is_shared(buf)) {
1773 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
1774 arc_buf_size(buf));
1775 }
1776 } else {
1777 ASSERT(hdr_compressed);
1778 ASSERT(!compressed);
1779 ASSERT3U(HDR_GET_LSIZE(hdr), !=, HDR_GET_PSIZE(hdr));
1780
1781 /*
1782 * If the buf is sharing its data with the hdr, unlink it and
1783 * allocate a new data buffer for the buf.
1784 */
1785 if (arc_buf_is_shared(buf)) {
1786 ASSERT(ARC_BUF_COMPRESSED(buf));
1787
1788 /* We need to give the buf it's own b_data */
1789 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
1790 buf->b_data =
1791 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1792 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
1793
1794 /* Previously overhead was 0; just add new overhead */
1795 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
1796 } else if (ARC_BUF_COMPRESSED(buf)) {
1797 /* We need to reallocate the buf's b_data */
1798 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
1799 buf);
1800 buf->b_data =
1801 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
1802
1803 /* We increased the size of b_data; update overhead */
1804 ARCSTAT_INCR(arcstat_overhead_size,
1805 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
1806 }
1807
1808 /*
1809 * Regardless of the buf's previous compression settings, it
1810 * should not be compressed at the end of this function.
1811 */
1812 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
1813
1814 /*
1815 * Try copying the data from another buf which already has a
1816 * decompressed version. If that's not possible, it's time to
1817 * bite the bullet and decompress the data from the hdr.
1818 */
1819 if (arc_buf_try_copy_decompressed_data(buf)) {
1820 /* Skip byteswapping and checksumming (already done) */
1821 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, !=, NULL);
1822 return (0);
1823 } else {
1824 int error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1825 hdr->b_l1hdr.b_pabd, buf->b_data,
1826 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1827
1828 /*
1829 * Absent hardware errors or software bugs, this should
1830 * be impossible, but log it anyway so we can debug it.
1831 */
1832 if (error != 0) {
1833 zfs_dbgmsg(
1834 "hdr %p, compress %d, psize %d, lsize %d",
1835 hdr, HDR_GET_COMPRESS(hdr),
1836 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
1837 return (SET_ERROR(EIO));
1838 }
1839 }
1840 }
1841
1842 /* Byteswap the buf's data if necessary */
1843 if (bswap != DMU_BSWAP_NUMFUNCS) {
1844 ASSERT(!HDR_SHARED_DATA(hdr));
1845 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
1846 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
1847 }
1848
1849 /* Compute the hdr's checksum if necessary */
1850 arc_cksum_compute(buf);
1851
1852 return (0);
1853 }
1854
1855 int
1856 arc_decompress(arc_buf_t *buf)
1857 {
1858 return (arc_buf_fill(buf, B_FALSE));
1859 }
1860
1861 /*
1862 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1863 */
1864 static uint64_t
1865 arc_hdr_size(arc_buf_hdr_t *hdr)
1866 {
1867 uint64_t size;
1868
1869 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1870 HDR_GET_PSIZE(hdr) > 0) {
1871 size = HDR_GET_PSIZE(hdr);
1872 } else {
1873 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1874 size = HDR_GET_LSIZE(hdr);
1875 }
1876 return (size);
1877 }
1878
1879 /*
1880 * Increment the amount of evictable space in the arc_state_t's refcount.
1881 * We account for the space used by the hdr and the arc buf individually
1882 * so that we can add and remove them from the refcount individually.
1883 */
1884 static void
1885 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
1886 {
1887 arc_buf_contents_t type = arc_buf_type(hdr);
1888 arc_buf_t *buf;
1889
1890 ASSERT(HDR_HAS_L1HDR(hdr));
1891
1892 if (GHOST_STATE(state)) {
1893 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1894 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1895 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1896 (void) refcount_add_many(&state->arcs_esize[type],
1897 HDR_GET_LSIZE(hdr), hdr);
1898 return;
1899 }
1900
1901 ASSERT(!GHOST_STATE(state));
1902 if (hdr->b_l1hdr.b_pabd != NULL) {
1903 (void) refcount_add_many(&state->arcs_esize[type],
1904 arc_hdr_size(hdr), hdr);
1905 }
1906 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1907 if (arc_buf_is_shared(buf))
1908 continue;
1909 (void) refcount_add_many(&state->arcs_esize[type],
1910 arc_buf_size(buf), buf);
1911 }
1912 }
1913
1914 /*
1915 * Decrement the amount of evictable space in the arc_state_t's refcount.
1916 * We account for the space used by the hdr and the arc buf individually
1917 * so that we can add and remove them from the refcount individually.
1918 */
1919 static void
1920 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
1921 {
1922 arc_buf_contents_t type = arc_buf_type(hdr);
1923 arc_buf_t *buf;
1924
1925 ASSERT(HDR_HAS_L1HDR(hdr));
1926
1927 if (GHOST_STATE(state)) {
1928 ASSERT0(hdr->b_l1hdr.b_bufcnt);
1929 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1930 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
1931 (void) refcount_remove_many(&state->arcs_esize[type],
1932 HDR_GET_LSIZE(hdr), hdr);
1933 return;
1934 }
1935
1936 ASSERT(!GHOST_STATE(state));
1937 if (hdr->b_l1hdr.b_pabd != NULL) {
1938 (void) refcount_remove_many(&state->arcs_esize[type],
1939 arc_hdr_size(hdr), hdr);
1940 }
1941 for (buf = hdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next) {
1942 if (arc_buf_is_shared(buf))
1943 continue;
1944 (void) refcount_remove_many(&state->arcs_esize[type],
1945 arc_buf_size(buf), buf);
1946 }
1947 }
1948
1949 /*
1950 * Add a reference to this hdr indicating that someone is actively
1951 * referencing that memory. When the refcount transitions from 0 to 1,
1952 * we remove it from the respective arc_state_t list to indicate that
1953 * it is not evictable.
1954 */
1955 static void
1956 add_reference(arc_buf_hdr_t *hdr, void *tag)
1957 {
1958 arc_state_t *state;
1959
1960 ASSERT(HDR_HAS_L1HDR(hdr));
1961 if (!MUTEX_HELD(HDR_LOCK(hdr))) {
1962 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
1963 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
1964 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
1965 }
1966
1967 state = hdr->b_l1hdr.b_state;
1968
1969 if ((refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
1970 (state != arc_anon)) {
1971 /* We don't use the L2-only state list. */
1972 if (state != arc_l2c_only) {
1973 multilist_remove(state->arcs_list[arc_buf_type(hdr)],
1974 hdr);
1975 arc_evictable_space_decrement(hdr, state);
1976 }
1977 /* remove the prefetch flag if we get a reference */
1978 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
1979 }
1980 }
1981
1982 /*
1983 * Remove a reference from this hdr. When the reference transitions from
1984 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
1985 * list making it eligible for eviction.
1986 */
1987 static int
1988 remove_reference(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, void *tag)
1989 {
1990 int cnt;
1991 arc_state_t *state = hdr->b_l1hdr.b_state;
1992
1993 ASSERT(HDR_HAS_L1HDR(hdr));
1994 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1995 ASSERT(!GHOST_STATE(state));
1996
1997 /*
1998 * arc_l2c_only counts as a ghost state so we don't need to explicitly
1999 * check to prevent usage of the arc_l2c_only list.
2000 */
2001 if (((cnt = refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) == 0) &&
2002 (state != arc_anon)) {
2003 multilist_insert(state->arcs_list[arc_buf_type(hdr)], hdr);
2004 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
2005 arc_evictable_space_increment(hdr, state);
2006 }
2007 return (cnt);
2008 }
2009
2010 /*
2011 * Returns detailed information about a specific arc buffer. When the
2012 * state_index argument is set the function will calculate the arc header
2013 * list position for its arc state. Since this requires a linear traversal
2014 * callers are strongly encourage not to do this. However, it can be helpful
2015 * for targeted analysis so the functionality is provided.
2016 */
2017 void
2018 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2019 {
2020 arc_buf_hdr_t *hdr = ab->b_hdr;
2021 l1arc_buf_hdr_t *l1hdr = NULL;
2022 l2arc_buf_hdr_t *l2hdr = NULL;
2023 arc_state_t *state = NULL;
2024
2025 memset(abi, 0, sizeof (arc_buf_info_t));
2026
2027 if (hdr == NULL)
2028 return;
2029
2030 abi->abi_flags = hdr->b_flags;
2031
2032 if (HDR_HAS_L1HDR(hdr)) {
2033 l1hdr = &hdr->b_l1hdr;
2034 state = l1hdr->b_state;
2035 }
2036 if (HDR_HAS_L2HDR(hdr))
2037 l2hdr = &hdr->b_l2hdr;
2038
2039 if (l1hdr) {
2040 abi->abi_bufcnt = l1hdr->b_bufcnt;
2041 abi->abi_access = l1hdr->b_arc_access;
2042 abi->abi_mru_hits = l1hdr->b_mru_hits;
2043 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2044 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2045 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2046 abi->abi_holds = refcount_count(&l1hdr->b_refcnt);
2047 }
2048
2049 if (l2hdr) {
2050 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2051 abi->abi_l2arc_hits = l2hdr->b_hits;
2052 }
2053
2054 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2055 abi->abi_state_contents = arc_buf_type(hdr);
2056 abi->abi_size = arc_hdr_size(hdr);
2057 }
2058
2059 /*
2060 * Move the supplied buffer to the indicated state. The hash lock
2061 * for the buffer must be held by the caller.
2062 */
2063 static void
2064 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr,
2065 kmutex_t *hash_lock)
2066 {
2067 arc_state_t *old_state;
2068 int64_t refcnt;
2069 uint32_t bufcnt;
2070 boolean_t update_old, update_new;
2071 arc_buf_contents_t buftype = arc_buf_type(hdr);
2072
2073 /*
2074 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2075 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2076 * L1 hdr doesn't always exist when we change state to arc_anon before
2077 * destroying a header, in which case reallocating to add the L1 hdr is
2078 * pointless.
2079 */
2080 if (HDR_HAS_L1HDR(hdr)) {
2081 old_state = hdr->b_l1hdr.b_state;
2082 refcnt = refcount_count(&hdr->b_l1hdr.b_refcnt);
2083 bufcnt = hdr->b_l1hdr.b_bufcnt;
2084 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL);
2085 } else {
2086 old_state = arc_l2c_only;
2087 refcnt = 0;
2088 bufcnt = 0;
2089 update_old = B_FALSE;
2090 }
2091 update_new = update_old;
2092
2093 ASSERT(MUTEX_HELD(hash_lock));
2094 ASSERT3P(new_state, !=, old_state);
2095 ASSERT(!GHOST_STATE(new_state) || bufcnt == 0);
2096 ASSERT(old_state != arc_anon || bufcnt <= 1);
2097
2098 /*
2099 * If this buffer is evictable, transfer it from the
2100 * old state list to the new state list.
2101 */
2102 if (refcnt == 0) {
2103 if (old_state != arc_anon && old_state != arc_l2c_only) {
2104 ASSERT(HDR_HAS_L1HDR(hdr));
2105 multilist_remove(old_state->arcs_list[buftype], hdr);
2106
2107 if (GHOST_STATE(old_state)) {
2108 ASSERT0(bufcnt);
2109 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2110 update_old = B_TRUE;
2111 }
2112 arc_evictable_space_decrement(hdr, old_state);
2113 }
2114 if (new_state != arc_anon && new_state != arc_l2c_only) {
2115 /*
2116 * An L1 header always exists here, since if we're
2117 * moving to some L1-cached state (i.e. not l2c_only or
2118 * anonymous), we realloc the header to add an L1hdr
2119 * beforehand.
2120 */
2121 ASSERT(HDR_HAS_L1HDR(hdr));
2122 multilist_insert(new_state->arcs_list[buftype], hdr);
2123
2124 if (GHOST_STATE(new_state)) {
2125 ASSERT0(bufcnt);
2126 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2127 update_new = B_TRUE;
2128 }
2129 arc_evictable_space_increment(hdr, new_state);
2130 }
2131 }
2132
2133 ASSERT(!HDR_EMPTY(hdr));
2134 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2135 buf_hash_remove(hdr);
2136
2137 /* adjust state sizes (ignore arc_l2c_only) */
2138
2139 if (update_new && new_state != arc_l2c_only) {
2140 ASSERT(HDR_HAS_L1HDR(hdr));
2141 if (GHOST_STATE(new_state)) {
2142 ASSERT0(bufcnt);
2143
2144 /*
2145 * When moving a header to a ghost state, we first
2146 * remove all arc buffers. Thus, we'll have a
2147 * bufcnt of zero, and no arc buffer to use for
2148 * the reference. As a result, we use the arc
2149 * header pointer for the reference.
2150 */
2151 (void) refcount_add_many(&new_state->arcs_size,
2152 HDR_GET_LSIZE(hdr), hdr);
2153 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2154 } else {
2155 arc_buf_t *buf;
2156 uint32_t buffers = 0;
2157
2158 /*
2159 * Each individual buffer holds a unique reference,
2160 * thus we must remove each of these references one
2161 * at a time.
2162 */
2163 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2164 buf = buf->b_next) {
2165 ASSERT3U(bufcnt, !=, 0);
2166 buffers++;
2167
2168 /*
2169 * When the arc_buf_t is sharing the data
2170 * block with the hdr, the owner of the
2171 * reference belongs to the hdr. Only
2172 * add to the refcount if the arc_buf_t is
2173 * not shared.
2174 */
2175 if (arc_buf_is_shared(buf))
2176 continue;
2177
2178 (void) refcount_add_many(&new_state->arcs_size,
2179 arc_buf_size(buf), buf);
2180 }
2181 ASSERT3U(bufcnt, ==, buffers);
2182
2183 if (hdr->b_l1hdr.b_pabd != NULL) {
2184 (void) refcount_add_many(&new_state->arcs_size,
2185 arc_hdr_size(hdr), hdr);
2186 } else {
2187 ASSERT(GHOST_STATE(old_state));
2188 }
2189 }
2190 }
2191
2192 if (update_old && old_state != arc_l2c_only) {
2193 ASSERT(HDR_HAS_L1HDR(hdr));
2194 if (GHOST_STATE(old_state)) {
2195 ASSERT0(bufcnt);
2196 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2197
2198 /*
2199 * When moving a header off of a ghost state,
2200 * the header will not contain any arc buffers.
2201 * We use the arc header pointer for the reference
2202 * which is exactly what we did when we put the
2203 * header on the ghost state.
2204 */
2205
2206 (void) refcount_remove_many(&old_state->arcs_size,
2207 HDR_GET_LSIZE(hdr), hdr);
2208 } else {
2209 arc_buf_t *buf;
2210 uint32_t buffers = 0;
2211
2212 /*
2213 * Each individual buffer holds a unique reference,
2214 * thus we must remove each of these references one
2215 * at a time.
2216 */
2217 for (buf = hdr->b_l1hdr.b_buf; buf != NULL;
2218 buf = buf->b_next) {
2219 ASSERT3U(bufcnt, !=, 0);
2220 buffers++;
2221
2222 /*
2223 * When the arc_buf_t is sharing the data
2224 * block with the hdr, the owner of the
2225 * reference belongs to the hdr. Only
2226 * add to the refcount if the arc_buf_t is
2227 * not shared.
2228 */
2229 if (arc_buf_is_shared(buf))
2230 continue;
2231
2232 (void) refcount_remove_many(
2233 &old_state->arcs_size, arc_buf_size(buf),
2234 buf);
2235 }
2236 ASSERT3U(bufcnt, ==, buffers);
2237 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2238 (void) refcount_remove_many(
2239 &old_state->arcs_size, arc_hdr_size(hdr), hdr);
2240 }
2241 }
2242
2243 if (HDR_HAS_L1HDR(hdr))
2244 hdr->b_l1hdr.b_state = new_state;
2245
2246 /*
2247 * L2 headers should never be on the L2 state list since they don't
2248 * have L1 headers allocated.
2249 */
2250 ASSERT(multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_DATA]) &&
2251 multilist_is_empty(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]));
2252 }
2253
2254 void
2255 arc_space_consume(uint64_t space, arc_space_type_t type)
2256 {
2257 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2258
2259 switch (type) {
2260 default:
2261 break;
2262 case ARC_SPACE_DATA:
2263 ARCSTAT_INCR(arcstat_data_size, space);
2264 break;
2265 case ARC_SPACE_META:
2266 ARCSTAT_INCR(arcstat_metadata_size, space);
2267 break;
2268 case ARC_SPACE_BONUS:
2269 ARCSTAT_INCR(arcstat_bonus_size, space);
2270 break;
2271 case ARC_SPACE_DNODE:
2272 ARCSTAT_INCR(arcstat_dnode_size, space);
2273 break;
2274 case ARC_SPACE_DBUF:
2275 ARCSTAT_INCR(arcstat_dbuf_size, space);
2276 break;
2277 case ARC_SPACE_HDRS:
2278 ARCSTAT_INCR(arcstat_hdr_size, space);
2279 break;
2280 case ARC_SPACE_L2HDRS:
2281 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
2282 break;
2283 }
2284
2285 if (type != ARC_SPACE_DATA)
2286 ARCSTAT_INCR(arcstat_meta_used, space);
2287
2288 atomic_add_64(&arc_size, space);
2289 }
2290
2291 void
2292 arc_space_return(uint64_t space, arc_space_type_t type)
2293 {
2294 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2295
2296 switch (type) {
2297 default:
2298 break;
2299 case ARC_SPACE_DATA:
2300 ARCSTAT_INCR(arcstat_data_size, -space);
2301 break;
2302 case ARC_SPACE_META:
2303 ARCSTAT_INCR(arcstat_metadata_size, -space);
2304 break;
2305 case ARC_SPACE_BONUS:
2306 ARCSTAT_INCR(arcstat_bonus_size, -space);
2307 break;
2308 case ARC_SPACE_DNODE:
2309 ARCSTAT_INCR(arcstat_dnode_size, -space);
2310 break;
2311 case ARC_SPACE_DBUF:
2312 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2313 break;
2314 case ARC_SPACE_HDRS:
2315 ARCSTAT_INCR(arcstat_hdr_size, -space);
2316 break;
2317 case ARC_SPACE_L2HDRS:
2318 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
2319 break;
2320 }
2321
2322 if (type != ARC_SPACE_DATA) {
2323 ASSERT(arc_meta_used >= space);
2324 if (arc_meta_max < arc_meta_used)
2325 arc_meta_max = arc_meta_used;
2326 ARCSTAT_INCR(arcstat_meta_used, -space);
2327 }
2328
2329 ASSERT(arc_size >= space);
2330 atomic_add_64(&arc_size, -space);
2331 }
2332
2333 /*
2334 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2335 * with the hdr's b_pabd.
2336 */
2337 static boolean_t
2338 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2339 {
2340 /*
2341 * The criteria for sharing a hdr's data are:
2342 * 1. the hdr's compression matches the buf's compression
2343 * 2. the hdr doesn't need to be byteswapped
2344 * 3. the hdr isn't already being shared
2345 * 4. the buf is either compressed or it is the last buf in the hdr list
2346 *
2347 * Criterion #4 maintains the invariant that shared uncompressed
2348 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2349 * might ask, "if a compressed buf is allocated first, won't that be the
2350 * last thing in the list?", but in that case it's impossible to create
2351 * a shared uncompressed buf anyway (because the hdr must be compressed
2352 * to have the compressed buf). You might also think that #3 is
2353 * sufficient to make this guarantee, however it's possible
2354 * (specifically in the rare L2ARC write race mentioned in
2355 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2356 * is sharable, but wasn't at the time of its allocation. Rather than
2357 * allow a new shared uncompressed buf to be created and then shuffle
2358 * the list around to make it the last element, this simply disallows
2359 * sharing if the new buf isn't the first to be added.
2360 */
2361 ASSERT3P(buf->b_hdr, ==, hdr);
2362 boolean_t hdr_compressed = HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF;
2363 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2364 return (buf_compressed == hdr_compressed &&
2365 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2366 !HDR_SHARED_DATA(hdr) &&
2367 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2368 }
2369
2370 /*
2371 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2372 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2373 * copy was made successfully, or an error code otherwise.
2374 */
2375 static int
2376 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, void *tag, boolean_t compressed,
2377 boolean_t fill, arc_buf_t **ret)
2378 {
2379 arc_buf_t *buf;
2380
2381 ASSERT(HDR_HAS_L1HDR(hdr));
2382 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2383 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2384 hdr->b_type == ARC_BUFC_METADATA);
2385 ASSERT3P(ret, !=, NULL);
2386 ASSERT3P(*ret, ==, NULL);
2387
2388 hdr->b_l1hdr.b_mru_hits = 0;
2389 hdr->b_l1hdr.b_mru_ghost_hits = 0;
2390 hdr->b_l1hdr.b_mfu_hits = 0;
2391 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
2392 hdr->b_l1hdr.b_l2_hits = 0;
2393
2394 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2395 buf->b_hdr = hdr;
2396 buf->b_data = NULL;
2397 buf->b_next = hdr->b_l1hdr.b_buf;
2398 buf->b_flags = 0;
2399
2400 add_reference(hdr, tag);
2401
2402 /*
2403 * We're about to change the hdr's b_flags. We must either
2404 * hold the hash_lock or be undiscoverable.
2405 */
2406 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2407
2408 /*
2409 * Only honor requests for compressed bufs if the hdr is actually
2410 * compressed.
2411 */
2412 if (compressed && HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF)
2413 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2414
2415 /*
2416 * If the hdr's data can be shared then we share the data buffer and
2417 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2418 * allocate a new buffer to store the buf's data.
2419 *
2420 * There are two additional restrictions here because we're sharing
2421 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2422 * actively involved in an L2ARC write, because if this buf is used by
2423 * an arc_write() then the hdr's data buffer will be released when the
2424 * write completes, even though the L2ARC write might still be using it.
2425 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2426 * need to be ABD-aware.
2427 */
2428 boolean_t can_share = arc_can_share(hdr, buf) && !HDR_L2_WRITING(hdr) &&
2429 abd_is_linear(hdr->b_l1hdr.b_pabd);
2430
2431 /* Set up b_data and sharing */
2432 if (can_share) {
2433 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2434 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2435 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2436 } else {
2437 buf->b_data =
2438 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2439 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2440 }
2441 VERIFY3P(buf->b_data, !=, NULL);
2442
2443 hdr->b_l1hdr.b_buf = buf;
2444 hdr->b_l1hdr.b_bufcnt += 1;
2445
2446 /*
2447 * If the user wants the data from the hdr, we need to either copy or
2448 * decompress the data.
2449 */
2450 if (fill) {
2451 return (arc_buf_fill(buf, ARC_BUF_COMPRESSED(buf) != 0));
2452 }
2453
2454 return (0);
2455 }
2456
2457 static char *arc_onloan_tag = "onloan";
2458
2459 static inline void
2460 arc_loaned_bytes_update(int64_t delta)
2461 {
2462 atomic_add_64(&arc_loaned_bytes, delta);
2463
2464 /* assert that it did not wrap around */
2465 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2466 }
2467
2468 /*
2469 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2470 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2471 * buffers must be returned to the arc before they can be used by the DMU or
2472 * freed.
2473 */
2474 arc_buf_t *
2475 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2476 {
2477 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2478 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2479
2480 arc_loaned_bytes_update(size);
2481
2482 return (buf);
2483 }
2484
2485 arc_buf_t *
2486 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2487 enum zio_compress compression_type)
2488 {
2489 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2490 psize, lsize, compression_type);
2491
2492 arc_loaned_bytes_update(psize);
2493
2494 return (buf);
2495 }
2496
2497
2498 /*
2499 * Return a loaned arc buffer to the arc.
2500 */
2501 void
2502 arc_return_buf(arc_buf_t *buf, void *tag)
2503 {
2504 arc_buf_hdr_t *hdr = buf->b_hdr;
2505
2506 ASSERT3P(buf->b_data, !=, NULL);
2507 ASSERT(HDR_HAS_L1HDR(hdr));
2508 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2509 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2510
2511 arc_loaned_bytes_update(-arc_buf_size(buf));
2512 }
2513
2514 /* Detach an arc_buf from a dbuf (tag) */
2515 void
2516 arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
2517 {
2518 arc_buf_hdr_t *hdr = buf->b_hdr;
2519
2520 ASSERT3P(buf->b_data, !=, NULL);
2521 ASSERT(HDR_HAS_L1HDR(hdr));
2522 (void) refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2523 (void) refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2524
2525 arc_loaned_bytes_update(arc_buf_size(buf));
2526 }
2527
2528 static void
2529 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2530 {
2531 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2532
2533 df->l2df_abd = abd;
2534 df->l2df_size = size;
2535 df->l2df_type = type;
2536 mutex_enter(&l2arc_free_on_write_mtx);
2537 list_insert_head(l2arc_free_on_write, df);
2538 mutex_exit(&l2arc_free_on_write_mtx);
2539 }
2540
2541 static void
2542 arc_hdr_free_on_write(arc_buf_hdr_t *hdr)
2543 {
2544 arc_state_t *state = hdr->b_l1hdr.b_state;
2545 arc_buf_contents_t type = arc_buf_type(hdr);
2546 uint64_t size = arc_hdr_size(hdr);
2547
2548 /* protected by hash lock, if in the hash table */
2549 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2550 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2551 ASSERT(state != arc_anon && state != arc_l2c_only);
2552
2553 (void) refcount_remove_many(&state->arcs_esize[type],
2554 size, hdr);
2555 }
2556 (void) refcount_remove_many(&state->arcs_size, size, hdr);
2557 if (type == ARC_BUFC_METADATA) {
2558 arc_space_return(size, ARC_SPACE_META);
2559 } else {
2560 ASSERT(type == ARC_BUFC_DATA);
2561 arc_space_return(size, ARC_SPACE_DATA);
2562 }
2563
2564 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2565 }
2566
2567 /*
2568 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2569 * data buffer, we transfer the refcount ownership to the hdr and update
2570 * the appropriate kstats.
2571 */
2572 static void
2573 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2574 {
2575 ASSERT(arc_can_share(hdr, buf));
2576 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2577 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2578
2579 /*
2580 * Start sharing the data buffer. We transfer the
2581 * refcount ownership to the hdr since it always owns
2582 * the refcount whenever an arc_buf_t is shared.
2583 */
2584 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, buf, hdr);
2585 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
2586 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
2587 HDR_ISTYPE_METADATA(hdr));
2588 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2589 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2590
2591 /*
2592 * Since we've transferred ownership to the hdr we need
2593 * to increment its compressed and uncompressed kstats and
2594 * decrement the overhead size.
2595 */
2596 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2597 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2598 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
2599 }
2600
2601 static void
2602 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2603 {
2604 ASSERT(arc_buf_is_shared(buf));
2605 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2606 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2607
2608 /*
2609 * We are no longer sharing this buffer so we need
2610 * to transfer its ownership to the rightful owner.
2611 */
2612 refcount_transfer_ownership(&hdr->b_l1hdr.b_state->arcs_size, hdr, buf);
2613 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2614 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
2615 abd_put(hdr->b_l1hdr.b_pabd);
2616 hdr->b_l1hdr.b_pabd = NULL;
2617 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2618
2619 /*
2620 * Since the buffer is no longer shared between
2621 * the arc buf and the hdr, count it as overhead.
2622 */
2623 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2624 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2625 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2626 }
2627
2628 /*
2629 * Remove an arc_buf_t from the hdr's buf list and return the last
2630 * arc_buf_t on the list. If no buffers remain on the list then return
2631 * NULL.
2632 */
2633 static arc_buf_t *
2634 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2635 {
2636 ASSERT(HDR_HAS_L1HDR(hdr));
2637 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2638
2639 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
2640 arc_buf_t *lastbuf = NULL;
2641
2642 /*
2643 * Remove the buf from the hdr list and locate the last
2644 * remaining buffer on the list.
2645 */
2646 while (*bufp != NULL) {
2647 if (*bufp == buf)
2648 *bufp = buf->b_next;
2649
2650 /*
2651 * If we've removed a buffer in the middle of
2652 * the list then update the lastbuf and update
2653 * bufp.
2654 */
2655 if (*bufp != NULL) {
2656 lastbuf = *bufp;
2657 bufp = &(*bufp)->b_next;
2658 }
2659 }
2660 buf->b_next = NULL;
2661 ASSERT3P(lastbuf, !=, buf);
2662 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
2663 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
2664 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
2665
2666 return (lastbuf);
2667 }
2668
2669 /*
2670 * Free up buf->b_data and pull the arc_buf_t off of the the arc_buf_hdr_t's
2671 * list and free it.
2672 */
2673 static void
2674 arc_buf_destroy_impl(arc_buf_t *buf)
2675 {
2676 arc_buf_hdr_t *hdr = buf->b_hdr;
2677
2678 /*
2679 * Free up the data associated with the buf but only if we're not
2680 * sharing this with the hdr. If we are sharing it with the hdr, the
2681 * hdr is responsible for doing the free.
2682 */
2683 if (buf->b_data != NULL) {
2684 /*
2685 * We're about to change the hdr's b_flags. We must either
2686 * hold the hash_lock or be undiscoverable.
2687 */
2688 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)) || HDR_EMPTY(hdr));
2689
2690 arc_cksum_verify(buf);
2691 arc_buf_unwatch(buf);
2692
2693 if (arc_buf_is_shared(buf)) {
2694 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2695 } else {
2696 uint64_t size = arc_buf_size(buf);
2697 arc_free_data_buf(hdr, buf->b_data, size, buf);
2698 ARCSTAT_INCR(arcstat_overhead_size, -size);
2699 }
2700 buf->b_data = NULL;
2701
2702 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
2703 hdr->b_l1hdr.b_bufcnt -= 1;
2704 }
2705
2706 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
2707
2708 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
2709 /*
2710 * If the current arc_buf_t is sharing its data buffer with the
2711 * hdr, then reassign the hdr's b_pabd to share it with the new
2712 * buffer at the end of the list. The shared buffer is always
2713 * the last one on the hdr's buffer list.
2714 *
2715 * There is an equivalent case for compressed bufs, but since
2716 * they aren't guaranteed to be the last buf in the list and
2717 * that is an exceedingly rare case, we just allow that space be
2718 * wasted temporarily.
2719 */
2720 if (lastbuf != NULL) {
2721 /* Only one buf can be shared at once */
2722 VERIFY(!arc_buf_is_shared(lastbuf));
2723 /* hdr is uncompressed so can't have compressed buf */
2724 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
2725
2726 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2727 arc_hdr_free_pabd(hdr);
2728
2729 /*
2730 * We must setup a new shared block between the
2731 * last buffer and the hdr. The data would have
2732 * been allocated by the arc buf so we need to transfer
2733 * ownership to the hdr since it's now being shared.
2734 */
2735 arc_share_buf(hdr, lastbuf);
2736 }
2737 } else if (HDR_SHARED_DATA(hdr)) {
2738 /*
2739 * Uncompressed shared buffers are always at the end
2740 * of the list. Compressed buffers don't have the
2741 * same requirements. This makes it hard to
2742 * simply assert that the lastbuf is shared so
2743 * we rely on the hdr's compression flags to determine
2744 * if we have a compressed, shared buffer.
2745 */
2746 ASSERT3P(lastbuf, !=, NULL);
2747 ASSERT(arc_buf_is_shared(lastbuf) ||
2748 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
2749 }
2750
2751 /*
2752 * Free the checksum if we're removing the last uncompressed buf from
2753 * this hdr.
2754 */
2755 if (!arc_hdr_has_uncompressed_buf(hdr)) {
2756 arc_cksum_free(hdr);
2757 }
2758
2759 /* clean up the buf */
2760 buf->b_hdr = NULL;
2761 kmem_cache_free(buf_cache, buf);
2762 }
2763
2764 static void
2765 arc_hdr_alloc_pabd(arc_buf_hdr_t *hdr)
2766 {
2767 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2768 ASSERT(HDR_HAS_L1HDR(hdr));
2769 ASSERT(!HDR_SHARED_DATA(hdr));
2770
2771 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2772 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr);
2773 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2774 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2775
2776 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
2777 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
2778 }
2779
2780 static void
2781 arc_hdr_free_pabd(arc_buf_hdr_t *hdr)
2782 {
2783 ASSERT(HDR_HAS_L1HDR(hdr));
2784 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
2785
2786 /*
2787 * If the hdr is currently being written to the l2arc then
2788 * we defer freeing the data by adding it to the l2arc_free_on_write
2789 * list. The l2arc will free the data once it's finished
2790 * writing it to the l2arc device.
2791 */
2792 if (HDR_L2_WRITING(hdr)) {
2793 arc_hdr_free_on_write(hdr);
2794 ARCSTAT_BUMP(arcstat_l2_free_on_write);
2795 } else {
2796 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
2797 arc_hdr_size(hdr), hdr);
2798 }
2799 hdr->b_l1hdr.b_pabd = NULL;
2800 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
2801
2802 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
2803 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
2804 }
2805
2806 static arc_buf_hdr_t *
2807 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
2808 enum zio_compress compression_type, arc_buf_contents_t type)
2809 {
2810 arc_buf_hdr_t *hdr;
2811
2812 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
2813
2814 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
2815 ASSERT(HDR_EMPTY(hdr));
2816 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2817 HDR_SET_PSIZE(hdr, psize);
2818 HDR_SET_LSIZE(hdr, lsize);
2819 hdr->b_spa = spa;
2820 hdr->b_type = type;
2821 hdr->b_flags = 0;
2822 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
2823 arc_hdr_set_compress(hdr, compression_type);
2824
2825 hdr->b_l1hdr.b_state = arc_anon;
2826 hdr->b_l1hdr.b_arc_access = 0;
2827 hdr->b_l1hdr.b_bufcnt = 0;
2828 hdr->b_l1hdr.b_buf = NULL;
2829
2830 /*
2831 * Allocate the hdr's buffer. This will contain either
2832 * the compressed or uncompressed data depending on the block
2833 * it references and compressed arc enablement.
2834 */
2835 arc_hdr_alloc_pabd(hdr);
2836 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2837
2838 return (hdr);
2839 }
2840
2841 /*
2842 * Transition between the two allocation states for the arc_buf_hdr struct.
2843 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
2844 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
2845 * version is used when a cache buffer is only in the L2ARC in order to reduce
2846 * memory usage.
2847 */
2848 static arc_buf_hdr_t *
2849 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
2850 {
2851 arc_buf_hdr_t *nhdr;
2852 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
2853
2854 ASSERT(HDR_HAS_L2HDR(hdr));
2855 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
2856 (old == hdr_l2only_cache && new == hdr_full_cache));
2857
2858 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
2859
2860 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2861 buf_hash_remove(hdr);
2862
2863 bcopy(hdr, nhdr, HDR_L2ONLY_SIZE);
2864
2865 if (new == hdr_full_cache) {
2866 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2867 /*
2868 * arc_access and arc_change_state need to be aware that a
2869 * header has just come out of L2ARC, so we set its state to
2870 * l2c_only even though it's about to change.
2871 */
2872 nhdr->b_l1hdr.b_state = arc_l2c_only;
2873
2874 /* Verify previous threads set to NULL before freeing */
2875 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
2876 } else {
2877 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2878 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2879 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2880
2881 /*
2882 * If we've reached here, We must have been called from
2883 * arc_evict_hdr(), as such we should have already been
2884 * removed from any ghost list we were previously on
2885 * (which protects us from racing with arc_evict_state),
2886 * thus no locking is needed during this check.
2887 */
2888 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
2889
2890 /*
2891 * A buffer must not be moved into the arc_l2c_only
2892 * state if it's not finished being written out to the
2893 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
2894 * might try to be accessed, even though it was removed.
2895 */
2896 VERIFY(!HDR_L2_WRITING(hdr));
2897 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2898
2899 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
2900 }
2901 /*
2902 * The header has been reallocated so we need to re-insert it into any
2903 * lists it was on.
2904 */
2905 (void) buf_hash_insert(nhdr, NULL);
2906
2907 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
2908
2909 mutex_enter(&dev->l2ad_mtx);
2910
2911 /*
2912 * We must place the realloc'ed header back into the list at
2913 * the same spot. Otherwise, if it's placed earlier in the list,
2914 * l2arc_write_buffers() could find it during the function's
2915 * write phase, and try to write it out to the l2arc.
2916 */
2917 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
2918 list_remove(&dev->l2ad_buflist, hdr);
2919
2920 mutex_exit(&dev->l2ad_mtx);
2921
2922 /*
2923 * Since we're using the pointer address as the tag when
2924 * incrementing and decrementing the l2ad_alloc refcount, we
2925 * must remove the old pointer (that we're about to destroy) and
2926 * add the new pointer to the refcount. Otherwise we'd remove
2927 * the wrong pointer address when calling arc_hdr_destroy() later.
2928 */
2929
2930 (void) refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
2931 (void) refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(nhdr), nhdr);
2932
2933 buf_discard_identity(hdr);
2934 kmem_cache_free(old, hdr);
2935
2936 return (nhdr);
2937 }
2938
2939 /*
2940 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
2941 * The buf is returned thawed since we expect the consumer to modify it.
2942 */
2943 arc_buf_t *
2944 arc_alloc_buf(spa_t *spa, void *tag, arc_buf_contents_t type, int32_t size)
2945 {
2946 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
2947 ZIO_COMPRESS_OFF, type);
2948 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2949
2950 arc_buf_t *buf = NULL;
2951 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_FALSE, B_FALSE, &buf));
2952 arc_buf_thaw(buf);
2953
2954 return (buf);
2955 }
2956
2957 /*
2958 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
2959 * for bufs containing metadata.
2960 */
2961 arc_buf_t *
2962 arc_alloc_compressed_buf(spa_t *spa, void *tag, uint64_t psize, uint64_t lsize,
2963 enum zio_compress compression_type)
2964 {
2965 ASSERT3U(lsize, >, 0);
2966 ASSERT3U(lsize, >=, psize);
2967 ASSERT(compression_type > ZIO_COMPRESS_OFF);
2968 ASSERT(compression_type < ZIO_COMPRESS_FUNCTIONS);
2969
2970 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
2971 compression_type, ARC_BUFC_DATA);
2972 ASSERT(!MUTEX_HELD(HDR_LOCK(hdr)));
2973
2974 arc_buf_t *buf = NULL;
2975 VERIFY0(arc_buf_alloc_impl(hdr, tag, B_TRUE, B_FALSE, &buf));
2976 arc_buf_thaw(buf);
2977 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
2978
2979 if (!arc_buf_is_shared(buf)) {
2980 /*
2981 * To ensure that the hdr has the correct data in it if we call
2982 * arc_decompress() on this buf before it's been written to
2983 * disk, it's easiest if we just set up sharing between the
2984 * buf and the hdr.
2985 */
2986 ASSERT(!abd_is_linear(hdr->b_l1hdr.b_pabd));
2987 arc_hdr_free_pabd(hdr);
2988 arc_share_buf(hdr, buf);
2989 }
2990
2991 return (buf);
2992 }
2993
2994 static void
2995 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
2996 {
2997 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
2998 l2arc_dev_t *dev = l2hdr->b_dev;
2999 uint64_t psize = arc_hdr_size(hdr);
3000
3001 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3002 ASSERT(HDR_HAS_L2HDR(hdr));
3003
3004 list_remove(&dev->l2ad_buflist, hdr);
3005
3006 ARCSTAT_INCR(arcstat_l2_psize, -psize);
3007 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
3008
3009 vdev_space_update(dev->l2ad_vdev, -psize, 0, 0);
3010
3011 (void) refcount_remove_many(&dev->l2ad_alloc, psize, hdr);
3012 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3013 }
3014
3015 static void
3016 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3017 {
3018 if (HDR_HAS_L1HDR(hdr)) {
3019 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3020 hdr->b_l1hdr.b_bufcnt > 0);
3021 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3022 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3023 }
3024 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3025 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3026
3027 if (!HDR_EMPTY(hdr))
3028 buf_discard_identity(hdr);
3029
3030 if (HDR_HAS_L2HDR(hdr)) {
3031 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3032 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3033
3034 if (!buflist_held)
3035 mutex_enter(&dev->l2ad_mtx);
3036
3037 /*
3038 * Even though we checked this conditional above, we
3039 * need to check this again now that we have the
3040 * l2ad_mtx. This is because we could be racing with
3041 * another thread calling l2arc_evict() which might have
3042 * destroyed this header's L2 portion as we were waiting
3043 * to acquire the l2ad_mtx. If that happens, we don't
3044 * want to re-destroy the header's L2 portion.
3045 */
3046 if (HDR_HAS_L2HDR(hdr))
3047 arc_hdr_l2hdr_destroy(hdr);
3048
3049 if (!buflist_held)
3050 mutex_exit(&dev->l2ad_mtx);
3051 }
3052
3053 if (HDR_HAS_L1HDR(hdr)) {
3054 arc_cksum_free(hdr);
3055
3056 while (hdr->b_l1hdr.b_buf != NULL)
3057 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3058
3059 if (hdr->b_l1hdr.b_pabd != NULL)
3060 arc_hdr_free_pabd(hdr);
3061 }
3062
3063 ASSERT3P(hdr->b_hash_next, ==, NULL);
3064 if (HDR_HAS_L1HDR(hdr)) {
3065 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3066 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3067 kmem_cache_free(hdr_full_cache, hdr);
3068 } else {
3069 kmem_cache_free(hdr_l2only_cache, hdr);
3070 }
3071 }
3072
3073 void
3074 arc_buf_destroy(arc_buf_t *buf, void* tag)
3075 {
3076 arc_buf_hdr_t *hdr = buf->b_hdr;
3077 kmutex_t *hash_lock = HDR_LOCK(hdr);
3078
3079 if (hdr->b_l1hdr.b_state == arc_anon) {
3080 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3081 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3082 VERIFY0(remove_reference(hdr, NULL, tag));
3083 arc_hdr_destroy(hdr);
3084 return;
3085 }
3086
3087 mutex_enter(hash_lock);
3088 ASSERT3P(hdr, ==, buf->b_hdr);
3089 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3090 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3091 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3092 ASSERT3P(buf->b_data, !=, NULL);
3093
3094 (void) remove_reference(hdr, hash_lock, tag);
3095 arc_buf_destroy_impl(buf);
3096 mutex_exit(hash_lock);
3097 }
3098
3099 /*
3100 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3101 * state of the header is dependent on its state prior to entering this
3102 * function. The following transitions are possible:
3103 *
3104 * - arc_mru -> arc_mru_ghost
3105 * - arc_mfu -> arc_mfu_ghost
3106 * - arc_mru_ghost -> arc_l2c_only
3107 * - arc_mru_ghost -> deleted
3108 * - arc_mfu_ghost -> arc_l2c_only
3109 * - arc_mfu_ghost -> deleted
3110 */
3111 static int64_t
3112 arc_evict_hdr(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
3113 {
3114 arc_state_t *evicted_state, *state;
3115 int64_t bytes_evicted = 0;
3116
3117 ASSERT(MUTEX_HELD(hash_lock));
3118 ASSERT(HDR_HAS_L1HDR(hdr));
3119
3120 state = hdr->b_l1hdr.b_state;
3121 if (GHOST_STATE(state)) {
3122 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3123 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3124
3125 /*
3126 * l2arc_write_buffers() relies on a header's L1 portion
3127 * (i.e. its b_pabd field) during it's write phase.
3128 * Thus, we cannot push a header onto the arc_l2c_only
3129 * state (removing its L1 piece) until the header is
3130 * done being written to the l2arc.
3131 */
3132 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3133 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3134 return (bytes_evicted);
3135 }
3136
3137 ARCSTAT_BUMP(arcstat_deleted);
3138 bytes_evicted += HDR_GET_LSIZE(hdr);
3139
3140 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3141
3142 if (HDR_HAS_L2HDR(hdr)) {
3143 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3144 /*
3145 * This buffer is cached on the 2nd Level ARC;
3146 * don't destroy the header.
3147 */
3148 arc_change_state(arc_l2c_only, hdr, hash_lock);
3149 /*
3150 * dropping from L1+L2 cached to L2-only,
3151 * realloc to remove the L1 header.
3152 */
3153 hdr = arc_hdr_realloc(hdr, hdr_full_cache,
3154 hdr_l2only_cache);
3155 } else {
3156 arc_change_state(arc_anon, hdr, hash_lock);
3157 arc_hdr_destroy(hdr);
3158 }
3159 return (bytes_evicted);
3160 }
3161
3162 ASSERT(state == arc_mru || state == arc_mfu);
3163 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
3164
3165 /* prefetch buffers have a minimum lifespan */
3166 if (HDR_IO_IN_PROGRESS(hdr) ||
3167 ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3168 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3169 arc_min_prefetch_lifespan)) {
3170 ARCSTAT_BUMP(arcstat_evict_skip);
3171 return (bytes_evicted);
3172 }
3173
3174 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
3175 while (hdr->b_l1hdr.b_buf) {
3176 arc_buf_t *buf = hdr->b_l1hdr.b_buf;
3177 if (!mutex_tryenter(&buf->b_evict_lock)) {
3178 ARCSTAT_BUMP(arcstat_mutex_miss);
3179 break;
3180 }
3181 if (buf->b_data != NULL)
3182 bytes_evicted += HDR_GET_LSIZE(hdr);
3183 mutex_exit(&buf->b_evict_lock);
3184 arc_buf_destroy_impl(buf);
3185 }
3186
3187 if (HDR_HAS_L2HDR(hdr)) {
3188 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3189 } else {
3190 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3191 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3192 HDR_GET_LSIZE(hdr));
3193 } else {
3194 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
3195 HDR_GET_LSIZE(hdr));
3196 }
3197 }
3198
3199 if (hdr->b_l1hdr.b_bufcnt == 0) {
3200 arc_cksum_free(hdr);
3201
3202 bytes_evicted += arc_hdr_size(hdr);
3203
3204 /*
3205 * If this hdr is being evicted and has a compressed
3206 * buffer then we discard it here before we change states.
3207 * This ensures that the accounting is updated correctly
3208 * in arc_free_data_impl().
3209 */
3210 arc_hdr_free_pabd(hdr);
3211
3212 arc_change_state(evicted_state, hdr, hash_lock);
3213 ASSERT(HDR_IN_HASH_TABLE(hdr));
3214 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
3215 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
3216 }
3217
3218 return (bytes_evicted);
3219 }
3220
3221 static uint64_t
3222 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
3223 uint64_t spa, int64_t bytes)
3224 {
3225 multilist_sublist_t *mls;
3226 uint64_t bytes_evicted = 0;
3227 arc_buf_hdr_t *hdr;
3228 kmutex_t *hash_lock;
3229 int evict_count = 0;
3230
3231 ASSERT3P(marker, !=, NULL);
3232 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3233
3234 mls = multilist_sublist_lock(ml, idx);
3235
3236 for (hdr = multilist_sublist_prev(mls, marker); hdr != NULL;
3237 hdr = multilist_sublist_prev(mls, marker)) {
3238 if ((bytes != ARC_EVICT_ALL && bytes_evicted >= bytes) ||
3239 (evict_count >= zfs_arc_evict_batch_limit))
3240 break;
3241
3242 /*
3243 * To keep our iteration location, move the marker
3244 * forward. Since we're not holding hdr's hash lock, we
3245 * must be very careful and not remove 'hdr' from the
3246 * sublist. Otherwise, other consumers might mistake the
3247 * 'hdr' as not being on a sublist when they call the
3248 * multilist_link_active() function (they all rely on
3249 * the hash lock protecting concurrent insertions and
3250 * removals). multilist_sublist_move_forward() was
3251 * specifically implemented to ensure this is the case
3252 * (only 'marker' will be removed and re-inserted).
3253 */
3254 multilist_sublist_move_forward(mls, marker);
3255
3256 /*
3257 * The only case where the b_spa field should ever be
3258 * zero, is the marker headers inserted by
3259 * arc_evict_state(). It's possible for multiple threads
3260 * to be calling arc_evict_state() concurrently (e.g.
3261 * dsl_pool_close() and zio_inject_fault()), so we must
3262 * skip any markers we see from these other threads.
3263 */
3264 if (hdr->b_spa == 0)
3265 continue;
3266
3267 /* we're only interested in evicting buffers of a certain spa */
3268 if (spa != 0 && hdr->b_spa != spa) {
3269 ARCSTAT_BUMP(arcstat_evict_skip);
3270 continue;
3271 }
3272
3273 hash_lock = HDR_LOCK(hdr);
3274
3275 /*
3276 * We aren't calling this function from any code path
3277 * that would already be holding a hash lock, so we're
3278 * asserting on this assumption to be defensive in case
3279 * this ever changes. Without this check, it would be
3280 * possible to incorrectly increment arcstat_mutex_miss
3281 * below (e.g. if the code changed such that we called
3282 * this function with a hash lock held).
3283 */
3284 ASSERT(!MUTEX_HELD(hash_lock));
3285
3286 if (mutex_tryenter(hash_lock)) {
3287 uint64_t evicted = arc_evict_hdr(hdr, hash_lock);
3288 mutex_exit(hash_lock);
3289
3290 bytes_evicted += evicted;
3291
3292 /*
3293 * If evicted is zero, arc_evict_hdr() must have
3294 * decided to skip this header, don't increment
3295 * evict_count in this case.
3296 */
3297 if (evicted != 0)
3298 evict_count++;
3299
3300 /*
3301 * If arc_size isn't overflowing, signal any
3302 * threads that might happen to be waiting.
3303 *
3304 * For each header evicted, we wake up a single
3305 * thread. If we used cv_broadcast, we could
3306 * wake up "too many" threads causing arc_size
3307 * to significantly overflow arc_c; since
3308 * arc_get_data_impl() doesn't check for overflow
3309 * when it's woken up (it doesn't because it's
3310 * possible for the ARC to be overflowing while
3311 * full of un-evictable buffers, and the
3312 * function should proceed in this case).
3313 *
3314 * If threads are left sleeping, due to not
3315 * using cv_broadcast, they will be woken up
3316 * just before arc_reclaim_thread() sleeps.
3317 */
3318 mutex_enter(&arc_reclaim_lock);
3319 if (!arc_is_overflowing())
3320 cv_signal(&arc_reclaim_waiters_cv);
3321 mutex_exit(&arc_reclaim_lock);
3322 } else {
3323 ARCSTAT_BUMP(arcstat_mutex_miss);
3324 }
3325 }
3326
3327 multilist_sublist_unlock(mls);
3328
3329 return (bytes_evicted);
3330 }
3331
3332 /*
3333 * Evict buffers from the given arc state, until we've removed the
3334 * specified number of bytes. Move the removed buffers to the
3335 * appropriate evict state.
3336 *
3337 * This function makes a "best effort". It skips over any buffers
3338 * it can't get a hash_lock on, and so, may not catch all candidates.
3339 * It may also return without evicting as much space as requested.
3340 *
3341 * If bytes is specified using the special value ARC_EVICT_ALL, this
3342 * will evict all available (i.e. unlocked and evictable) buffers from
3343 * the given arc state; which is used by arc_flush().
3344 */
3345 static uint64_t
3346 arc_evict_state(arc_state_t *state, uint64_t spa, int64_t bytes,
3347 arc_buf_contents_t type)
3348 {
3349 uint64_t total_evicted = 0;
3350 multilist_t *ml = state->arcs_list[type];
3351 int num_sublists;
3352 arc_buf_hdr_t **markers;
3353 int i;
3354
3355 IMPLY(bytes < 0, bytes == ARC_EVICT_ALL);
3356
3357 num_sublists = multilist_get_num_sublists(ml);
3358
3359 /*
3360 * If we've tried to evict from each sublist, made some
3361 * progress, but still have not hit the target number of bytes
3362 * to evict, we want to keep trying. The markers allow us to
3363 * pick up where we left off for each individual sublist, rather
3364 * than starting from the tail each time.
3365 */
3366 markers = kmem_zalloc(sizeof (*markers) * num_sublists, KM_SLEEP);
3367 for (i = 0; i < num_sublists; i++) {
3368 multilist_sublist_t *mls;
3369
3370 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
3371
3372 /*
3373 * A b_spa of 0 is used to indicate that this header is
3374 * a marker. This fact is used in arc_adjust_type() and
3375 * arc_evict_state_impl().
3376 */
3377 markers[i]->b_spa = 0;
3378
3379 mls = multilist_sublist_lock(ml, i);
3380 multilist_sublist_insert_tail(mls, markers[i]);
3381 multilist_sublist_unlock(mls);
3382 }
3383
3384 /*
3385 * While we haven't hit our target number of bytes to evict, or
3386 * we're evicting all available buffers.
3387 */
3388 while (total_evicted < bytes || bytes == ARC_EVICT_ALL) {
3389 int sublist_idx = multilist_get_random_index(ml);
3390 uint64_t scan_evicted = 0;
3391
3392 /*
3393 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
3394 * Request that 10% of the LRUs be scanned by the superblock
3395 * shrinker.
3396 */
3397 if (type == ARC_BUFC_DATA && arc_dnode_size > arc_dnode_limit)
3398 arc_prune_async((arc_dnode_size - arc_dnode_limit) /
3399 sizeof (dnode_t) / zfs_arc_dnode_reduce_percent);
3400
3401 /*
3402 * Start eviction using a randomly selected sublist,
3403 * this is to try and evenly balance eviction across all
3404 * sublists. Always starting at the same sublist
3405 * (e.g. index 0) would cause evictions to favor certain
3406 * sublists over others.
3407 */
3408 for (i = 0; i < num_sublists; i++) {
3409 uint64_t bytes_remaining;
3410 uint64_t bytes_evicted;
3411
3412 if (bytes == ARC_EVICT_ALL)
3413 bytes_remaining = ARC_EVICT_ALL;
3414 else if (total_evicted < bytes)
3415 bytes_remaining = bytes - total_evicted;
3416 else
3417 break;
3418
3419 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
3420 markers[sublist_idx], spa, bytes_remaining);
3421
3422 scan_evicted += bytes_evicted;
3423 total_evicted += bytes_evicted;
3424
3425 /* we've reached the end, wrap to the beginning */
3426 if (++sublist_idx >= num_sublists)
3427 sublist_idx = 0;
3428 }
3429
3430 /*
3431 * If we didn't evict anything during this scan, we have
3432 * no reason to believe we'll evict more during another
3433 * scan, so break the loop.
3434 */
3435 if (scan_evicted == 0) {
3436 /* This isn't possible, let's make that obvious */
3437 ASSERT3S(bytes, !=, 0);
3438
3439 /*
3440 * When bytes is ARC_EVICT_ALL, the only way to
3441 * break the loop is when scan_evicted is zero.
3442 * In that case, we actually have evicted enough,
3443 * so we don't want to increment the kstat.
3444 */
3445 if (bytes != ARC_EVICT_ALL) {
3446 ASSERT3S(total_evicted, <, bytes);
3447 ARCSTAT_BUMP(arcstat_evict_not_enough);
3448 }
3449
3450 break;
3451 }
3452 }
3453
3454 for (i = 0; i < num_sublists; i++) {
3455 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
3456 multilist_sublist_remove(mls, markers[i]);
3457 multilist_sublist_unlock(mls);
3458
3459 kmem_cache_free(hdr_full_cache, markers[i]);
3460 }
3461 kmem_free(markers, sizeof (*markers) * num_sublists);
3462
3463 return (total_evicted);
3464 }
3465
3466 /*
3467 * Flush all "evictable" data of the given type from the arc state
3468 * specified. This will not evict any "active" buffers (i.e. referenced).
3469 *
3470 * When 'retry' is set to B_FALSE, the function will make a single pass
3471 * over the state and evict any buffers that it can. Since it doesn't
3472 * continually retry the eviction, it might end up leaving some buffers
3473 * in the ARC due to lock misses.
3474 *
3475 * When 'retry' is set to B_TRUE, the function will continually retry the
3476 * eviction until *all* evictable buffers have been removed from the
3477 * state. As a result, if concurrent insertions into the state are
3478 * allowed (e.g. if the ARC isn't shutting down), this function might
3479 * wind up in an infinite loop, continually trying to evict buffers.
3480 */
3481 static uint64_t
3482 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
3483 boolean_t retry)
3484 {
3485 uint64_t evicted = 0;
3486
3487 while (refcount_count(&state->arcs_esize[type]) != 0) {
3488 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
3489
3490 if (!retry)
3491 break;
3492 }
3493
3494 return (evicted);
3495 }
3496
3497 /*
3498 * Helper function for arc_prune_async() it is responsible for safely
3499 * handling the execution of a registered arc_prune_func_t.
3500 */
3501 static void
3502 arc_prune_task(void *ptr)
3503 {
3504 arc_prune_t *ap = (arc_prune_t *)ptr;
3505 arc_prune_func_t *func = ap->p_pfunc;
3506
3507 if (func != NULL)
3508 func(ap->p_adjust, ap->p_private);
3509
3510 refcount_remove(&ap->p_refcnt, func);
3511 }
3512
3513 /*
3514 * Notify registered consumers they must drop holds on a portion of the ARC
3515 * buffered they reference. This provides a mechanism to ensure the ARC can
3516 * honor the arc_meta_limit and reclaim otherwise pinned ARC buffers. This
3517 * is analogous to dnlc_reduce_cache() but more generic.
3518 *
3519 * This operation is performed asynchronously so it may be safely called
3520 * in the context of the arc_reclaim_thread(). A reference is taken here
3521 * for each registered arc_prune_t and the arc_prune_task() is responsible
3522 * for releasing it once the registered arc_prune_func_t has completed.
3523 */
3524 static void
3525 arc_prune_async(int64_t adjust)
3526 {
3527 arc_prune_t *ap;
3528
3529 mutex_enter(&arc_prune_mtx);
3530 for (ap = list_head(&arc_prune_list); ap != NULL;
3531 ap = list_next(&arc_prune_list, ap)) {
3532
3533 if (refcount_count(&ap->p_refcnt) >= 2)
3534 continue;
3535
3536 refcount_add(&ap->p_refcnt, ap->p_pfunc);
3537 ap->p_adjust = adjust;
3538 if (taskq_dispatch(arc_prune_taskq, arc_prune_task,
3539 ap, TQ_SLEEP) == TASKQID_INVALID) {
3540 refcount_remove(&ap->p_refcnt, ap->p_pfunc);
3541 continue;
3542 }
3543 ARCSTAT_BUMP(arcstat_prune);
3544 }
3545 mutex_exit(&arc_prune_mtx);
3546 }
3547
3548 /*
3549 * Evict the specified number of bytes from the state specified,
3550 * restricting eviction to the spa and type given. This function
3551 * prevents us from trying to evict more from a state's list than
3552 * is "evictable", and to skip evicting altogether when passed a
3553 * negative value for "bytes". In contrast, arc_evict_state() will
3554 * evict everything it can, when passed a negative value for "bytes".
3555 */
3556 static uint64_t
3557 arc_adjust_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
3558 arc_buf_contents_t type)
3559 {
3560 int64_t delta;
3561
3562 if (bytes > 0 && refcount_count(&state->arcs_esize[type]) > 0) {
3563 delta = MIN(refcount_count(&state->arcs_esize[type]), bytes);
3564 return (arc_evict_state(state, spa, delta, type));
3565 }
3566
3567 return (0);
3568 }
3569
3570 /*
3571 * The goal of this function is to evict enough meta data buffers from the
3572 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
3573 * more complicated than it appears because it is common for data buffers
3574 * to have holds on meta data buffers. In addition, dnode meta data buffers
3575 * will be held by the dnodes in the block preventing them from being freed.
3576 * This means we can't simply traverse the ARC and expect to always find
3577 * enough unheld meta data buffer to release.
3578 *
3579 * Therefore, this function has been updated to make alternating passes
3580 * over the ARC releasing data buffers and then newly unheld meta data
3581 * buffers. This ensures forward progress is maintained and arc_meta_used
3582 * will decrease. Normally this is sufficient, but if required the ARC
3583 * will call the registered prune callbacks causing dentry and inodes to
3584 * be dropped from the VFS cache. This will make dnode meta data buffers
3585 * available for reclaim.
3586 */
3587 static uint64_t
3588 arc_adjust_meta_balanced(void)
3589 {
3590 int64_t delta, prune = 0, adjustmnt;
3591 uint64_t total_evicted = 0;
3592 arc_buf_contents_t type = ARC_BUFC_DATA;
3593 int restarts = MAX(zfs_arc_meta_adjust_restarts, 0);
3594
3595 restart:
3596 /*
3597 * This slightly differs than the way we evict from the mru in
3598 * arc_adjust because we don't have a "target" value (i.e. no
3599 * "meta" arc_p). As a result, I think we can completely
3600 * cannibalize the metadata in the MRU before we evict the
3601 * metadata from the MFU. I think we probably need to implement a
3602 * "metadata arc_p" value to do this properly.
3603 */
3604 adjustmnt = arc_meta_used - arc_meta_limit;
3605
3606 if (adjustmnt > 0 && refcount_count(&arc_mru->arcs_esize[type]) > 0) {
3607 delta = MIN(refcount_count(&arc_mru->arcs_esize[type]),
3608 adjustmnt);
3609 total_evicted += arc_adjust_impl(arc_mru, 0, delta, type);
3610 adjustmnt -= delta;
3611 }
3612
3613 /*
3614 * We can't afford to recalculate adjustmnt here. If we do,
3615 * new metadata buffers can sneak into the MRU or ANON lists,
3616 * thus penalize the MFU metadata. Although the fudge factor is
3617 * small, it has been empirically shown to be significant for
3618 * certain workloads (e.g. creating many empty directories). As
3619 * such, we use the original calculation for adjustmnt, and
3620 * simply decrement the amount of data evicted from the MRU.
3621 */
3622
3623 if (adjustmnt > 0 && refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
3624 delta = MIN(refcount_count(&arc_mfu->arcs_esize[type]),
3625 adjustmnt);
3626 total_evicted += arc_adjust_impl(arc_mfu, 0, delta, type);
3627 }
3628
3629 adjustmnt = arc_meta_used - arc_meta_limit;
3630
3631 if (adjustmnt > 0 &&
3632 refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
3633 delta = MIN(adjustmnt,
3634 refcount_count(&arc_mru_ghost->arcs_esize[type]));
3635 total_evicted += arc_adjust_impl(arc_mru_ghost, 0, delta, type);
3636 adjustmnt -= delta;
3637 }
3638
3639 if (adjustmnt > 0 &&
3640 refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
3641 delta = MIN(adjustmnt,
3642 refcount_count(&arc_mfu_ghost->arcs_esize[type]));
3643 total_evicted += arc_adjust_impl(arc_mfu_ghost, 0, delta, type);
3644 }
3645
3646 /*
3647 * If after attempting to make the requested adjustment to the ARC
3648 * the meta limit is still being exceeded then request that the
3649 * higher layers drop some cached objects which have holds on ARC
3650 * meta buffers. Requests to the upper layers will be made with
3651 * increasingly large scan sizes until the ARC is below the limit.
3652 */
3653 if (arc_meta_used > arc_meta_limit) {
3654 if (type == ARC_BUFC_DATA) {
3655 type = ARC_BUFC_METADATA;
3656 } else {
3657 type = ARC_BUFC_DATA;
3658
3659 if (zfs_arc_meta_prune) {
3660 prune += zfs_arc_meta_prune;
3661 arc_prune_async(prune);
3662 }
3663 }
3664
3665 if (restarts > 0) {
3666 restarts--;
3667 goto restart;
3668 }
3669 }
3670 return (total_evicted);
3671 }
3672
3673 /*
3674 * Evict metadata buffers from the cache, such that arc_meta_used is
3675 * capped by the arc_meta_limit tunable.
3676 */
3677 static uint64_t
3678 arc_adjust_meta_only(void)
3679 {
3680 uint64_t total_evicted = 0;
3681 int64_t target;
3682
3683 /*
3684 * If we're over the meta limit, we want to evict enough
3685 * metadata to get back under the meta limit. We don't want to
3686 * evict so much that we drop the MRU below arc_p, though. If
3687 * we're over the meta limit more than we're over arc_p, we
3688 * evict some from the MRU here, and some from the MFU below.
3689 */
3690 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3691 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3692 refcount_count(&arc_mru->arcs_size) - arc_p));
3693
3694 total_evicted += arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3695
3696 /*
3697 * Similar to the above, we want to evict enough bytes to get us
3698 * below the meta limit, but not so much as to drop us below the
3699 * space allotted to the MFU (which is defined as arc_c - arc_p).
3700 */
3701 target = MIN((int64_t)(arc_meta_used - arc_meta_limit),
3702 (int64_t)(refcount_count(&arc_mfu->arcs_size) - (arc_c - arc_p)));
3703
3704 total_evicted += arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3705
3706 return (total_evicted);
3707 }
3708
3709 static uint64_t
3710 arc_adjust_meta(void)
3711 {
3712 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
3713 return (arc_adjust_meta_only());
3714 else
3715 return (arc_adjust_meta_balanced());
3716 }
3717
3718 /*
3719 * Return the type of the oldest buffer in the given arc state
3720 *
3721 * This function will select a random sublist of type ARC_BUFC_DATA and
3722 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
3723 * is compared, and the type which contains the "older" buffer will be
3724 * returned.
3725 */
3726 static arc_buf_contents_t
3727 arc_adjust_type(arc_state_t *state)
3728 {
3729 multilist_t *data_ml = state->arcs_list[ARC_BUFC_DATA];
3730 multilist_t *meta_ml = state->arcs_list[ARC_BUFC_METADATA];
3731 int data_idx = multilist_get_random_index(data_ml);
3732 int meta_idx = multilist_get_random_index(meta_ml);
3733 multilist_sublist_t *data_mls;
3734 multilist_sublist_t *meta_mls;
3735 arc_buf_contents_t type;
3736 arc_buf_hdr_t *data_hdr;
3737 arc_buf_hdr_t *meta_hdr;
3738
3739 /*
3740 * We keep the sublist lock until we're finished, to prevent
3741 * the headers from being destroyed via arc_evict_state().
3742 */
3743 data_mls = multilist_sublist_lock(data_ml, data_idx);
3744 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
3745
3746 /*
3747 * These two loops are to ensure we skip any markers that
3748 * might be at the tail of the lists due to arc_evict_state().
3749 */
3750
3751 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
3752 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
3753 if (data_hdr->b_spa != 0)
3754 break;
3755 }
3756
3757 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
3758 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
3759 if (meta_hdr->b_spa != 0)
3760 break;
3761 }
3762
3763 if (data_hdr == NULL && meta_hdr == NULL) {
3764 type = ARC_BUFC_DATA;
3765 } else if (data_hdr == NULL) {
3766 ASSERT3P(meta_hdr, !=, NULL);
3767 type = ARC_BUFC_METADATA;
3768 } else if (meta_hdr == NULL) {
3769 ASSERT3P(data_hdr, !=, NULL);
3770 type = ARC_BUFC_DATA;
3771 } else {
3772 ASSERT3P(data_hdr, !=, NULL);
3773 ASSERT3P(meta_hdr, !=, NULL);
3774
3775 /* The headers can't be on the sublist without an L1 header */
3776 ASSERT(HDR_HAS_L1HDR(data_hdr));
3777 ASSERT(HDR_HAS_L1HDR(meta_hdr));
3778
3779 if (data_hdr->b_l1hdr.b_arc_access <
3780 meta_hdr->b_l1hdr.b_arc_access) {
3781 type = ARC_BUFC_DATA;
3782 } else {
3783 type = ARC_BUFC_METADATA;
3784 }
3785 }
3786
3787 multilist_sublist_unlock(meta_mls);
3788 multilist_sublist_unlock(data_mls);
3789
3790 return (type);
3791 }
3792
3793 /*
3794 * Evict buffers from the cache, such that arc_size is capped by arc_c.
3795 */
3796 static uint64_t
3797 arc_adjust(void)
3798 {
3799 uint64_t total_evicted = 0;
3800 uint64_t bytes;
3801 int64_t target;
3802
3803 /*
3804 * If we're over arc_meta_limit, we want to correct that before
3805 * potentially evicting data buffers below.
3806 */
3807 total_evicted += arc_adjust_meta();
3808
3809 /*
3810 * Adjust MRU size
3811 *
3812 * If we're over the target cache size, we want to evict enough
3813 * from the list to get back to our target size. We don't want
3814 * to evict too much from the MRU, such that it drops below
3815 * arc_p. So, if we're over our target cache size more than
3816 * the MRU is over arc_p, we'll evict enough to get back to
3817 * arc_p here, and then evict more from the MFU below.
3818 */
3819 target = MIN((int64_t)(arc_size - arc_c),
3820 (int64_t)(refcount_count(&arc_anon->arcs_size) +
3821 refcount_count(&arc_mru->arcs_size) + arc_meta_used - arc_p));
3822
3823 /*
3824 * If we're below arc_meta_min, always prefer to evict data.
3825 * Otherwise, try to satisfy the requested number of bytes to
3826 * evict from the type which contains older buffers; in an
3827 * effort to keep newer buffers in the cache regardless of their
3828 * type. If we cannot satisfy the number of bytes from this
3829 * type, spill over into the next type.
3830 */
3831 if (arc_adjust_type(arc_mru) == ARC_BUFC_METADATA &&
3832 arc_meta_used > arc_meta_min) {
3833 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3834 total_evicted += bytes;
3835
3836 /*
3837 * If we couldn't evict our target number of bytes from
3838 * metadata, we try to get the rest from data.
3839 */
3840 target -= bytes;
3841
3842 total_evicted +=
3843 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3844 } else {
3845 bytes = arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_DATA);
3846 total_evicted += bytes;
3847
3848 /*
3849 * If we couldn't evict our target number of bytes from
3850 * data, we try to get the rest from metadata.
3851 */
3852 target -= bytes;
3853
3854 total_evicted +=
3855 arc_adjust_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
3856 }
3857
3858 /*
3859 * Adjust MFU size
3860 *
3861 * Now that we've tried to evict enough from the MRU to get its
3862 * size back to arc_p, if we're still above the target cache
3863 * size, we evict the rest from the MFU.
3864 */
3865 target = arc_size - arc_c;
3866
3867 if (arc_adjust_type(arc_mfu) == ARC_BUFC_METADATA &&
3868 arc_meta_used > arc_meta_min) {
3869 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3870 total_evicted += bytes;
3871
3872 /*
3873 * If we couldn't evict our target number of bytes from
3874 * metadata, we try to get the rest from data.
3875 */
3876 target -= bytes;
3877
3878 total_evicted +=
3879 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3880 } else {
3881 bytes = arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
3882 total_evicted += bytes;
3883
3884 /*
3885 * If we couldn't evict our target number of bytes from
3886 * data, we try to get the rest from data.
3887 */
3888 target -= bytes;
3889
3890 total_evicted +=
3891 arc_adjust_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
3892 }
3893
3894 /*
3895 * Adjust ghost lists
3896 *
3897 * In addition to the above, the ARC also defines target values
3898 * for the ghost lists. The sum of the mru list and mru ghost
3899 * list should never exceed the target size of the cache, and
3900 * the sum of the mru list, mfu list, mru ghost list, and mfu
3901 * ghost list should never exceed twice the target size of the
3902 * cache. The following logic enforces these limits on the ghost
3903 * caches, and evicts from them as needed.
3904 */
3905 target = refcount_count(&arc_mru->arcs_size) +
3906 refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
3907
3908 bytes = arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
3909 total_evicted += bytes;
3910
3911 target -= bytes;
3912
3913 total_evicted +=
3914 arc_adjust_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
3915
3916 /*
3917 * We assume the sum of the mru list and mfu list is less than
3918 * or equal to arc_c (we enforced this above), which means we
3919 * can use the simpler of the two equations below:
3920 *
3921 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
3922 * mru ghost + mfu ghost <= arc_c
3923 */
3924 target = refcount_count(&arc_mru_ghost->arcs_size) +
3925 refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
3926
3927 bytes = arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
3928 total_evicted += bytes;
3929
3930 target -= bytes;
3931
3932 total_evicted +=
3933 arc_adjust_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
3934
3935 return (total_evicted);
3936 }
3937
3938 void
3939 arc_flush(spa_t *spa, boolean_t retry)
3940 {
3941 uint64_t guid = 0;
3942
3943 /*
3944 * If retry is B_TRUE, a spa must not be specified since we have
3945 * no good way to determine if all of a spa's buffers have been
3946 * evicted from an arc state.
3947 */
3948 ASSERT(!retry || spa == 0);
3949
3950 if (spa != NULL)
3951 guid = spa_load_guid(spa);
3952
3953 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
3954 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
3955
3956 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
3957 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
3958
3959 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
3960 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
3961
3962 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
3963 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
3964 }
3965
3966 void
3967 arc_shrink(int64_t to_free)
3968 {
3969 uint64_t c = arc_c;
3970
3971 if (c > to_free && c - to_free > arc_c_min) {
3972 arc_c = c - to_free;
3973 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
3974 if (arc_c > arc_size)
3975 arc_c = MAX(arc_size, arc_c_min);
3976 if (arc_p > arc_c)
3977 arc_p = (arc_c >> 1);
3978 ASSERT(arc_c >= arc_c_min);
3979 ASSERT((int64_t)arc_p >= 0);
3980 } else {
3981 arc_c = arc_c_min;
3982 }
3983
3984 if (arc_size > arc_c)
3985 (void) arc_adjust();
3986 }
3987
3988 /*
3989 * Return maximum amount of memory that we could possibly use. Reduced
3990 * to half of all memory in user space which is primarily used for testing.
3991 */
3992 static uint64_t
3993 arc_all_memory(void)
3994 {
3995 #ifdef _KERNEL
3996 #ifdef CONFIG_HIGHMEM
3997 return (ptob(totalram_pages - totalhigh_pages));
3998 #else
3999 return (ptob(totalram_pages));
4000 #endif /* CONFIG_HIGHMEM */
4001 #else
4002 return (ptob(physmem) / 2);
4003 #endif /* _KERNEL */
4004 }
4005
4006 /*
4007 * Return the amount of memory that is considered free. In user space
4008 * which is primarily used for testing we pretend that free memory ranges
4009 * from 0-20% of all memory.
4010 */
4011 static uint64_t
4012 arc_free_memory(void)
4013 {
4014 #ifdef _KERNEL
4015 #ifdef CONFIG_HIGHMEM
4016 struct sysinfo si;
4017 si_meminfo(&si);
4018 return (ptob(si.freeram - si.freehigh));
4019 #else
4020 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
4021 return (ptob(nr_free_pages() +
4022 global_node_page_state(NR_INACTIVE_FILE) +
4023 global_node_page_state(NR_INACTIVE_ANON) +
4024 global_node_page_state(NR_SLAB_RECLAIMABLE)));
4025 #else
4026 return (ptob(nr_free_pages() +
4027 global_page_state(NR_INACTIVE_FILE) +
4028 global_page_state(NR_INACTIVE_ANON) +
4029 global_page_state(NR_SLAB_RECLAIMABLE)));
4030 #endif /* ZFS_GLOBAL_NODE_PAGE_STATE */
4031 #endif /* CONFIG_HIGHMEM */
4032 #else
4033 return (spa_get_random(arc_all_memory() * 20 / 100));
4034 #endif /* _KERNEL */
4035 }
4036
4037 typedef enum free_memory_reason_t {
4038 FMR_UNKNOWN,
4039 FMR_NEEDFREE,
4040 FMR_LOTSFREE,
4041 FMR_SWAPFS_MINFREE,
4042 FMR_PAGES_PP_MAXIMUM,
4043 FMR_HEAP_ARENA,
4044 FMR_ZIO_ARENA,
4045 } free_memory_reason_t;
4046
4047 int64_t last_free_memory;
4048 free_memory_reason_t last_free_reason;
4049
4050 #ifdef _KERNEL
4051 /*
4052 * Additional reserve of pages for pp_reserve.
4053 */
4054 int64_t arc_pages_pp_reserve = 64;
4055
4056 /*
4057 * Additional reserve of pages for swapfs.
4058 */
4059 int64_t arc_swapfs_reserve = 64;
4060 #endif /* _KERNEL */
4061
4062 /*
4063 * Return the amount of memory that can be consumed before reclaim will be
4064 * needed. Positive if there is sufficient free memory, negative indicates
4065 * the amount of memory that needs to be freed up.
4066 */
4067 static int64_t
4068 arc_available_memory(void)
4069 {
4070 int64_t lowest = INT64_MAX;
4071 free_memory_reason_t r = FMR_UNKNOWN;
4072 #ifdef _KERNEL
4073 int64_t n;
4074 #ifdef __linux__
4075 #ifdef freemem
4076 #undef freemem
4077 #endif
4078 pgcnt_t needfree = btop(arc_need_free);
4079 pgcnt_t lotsfree = btop(arc_sys_free);
4080 pgcnt_t desfree = 0;
4081 pgcnt_t freemem = btop(arc_free_memory());
4082 #endif
4083
4084 if (needfree > 0) {
4085 n = PAGESIZE * (-needfree);
4086 if (n < lowest) {
4087 lowest = n;
4088 r = FMR_NEEDFREE;
4089 }
4090 }
4091
4092 /*
4093 * check that we're out of range of the pageout scanner. It starts to
4094 * schedule paging if freemem is less than lotsfree and needfree.
4095 * lotsfree is the high-water mark for pageout, and needfree is the
4096 * number of needed free pages. We add extra pages here to make sure
4097 * the scanner doesn't start up while we're freeing memory.
4098 */
4099 n = PAGESIZE * (freemem - lotsfree - needfree - desfree);
4100 if (n < lowest) {
4101 lowest = n;
4102 r = FMR_LOTSFREE;
4103 }
4104
4105 #ifndef __linux__
4106 /*
4107 * check to make sure that swapfs has enough space so that anon
4108 * reservations can still succeed. anon_resvmem() checks that the
4109 * availrmem is greater than swapfs_minfree, and the number of reserved
4110 * swap pages. We also add a bit of extra here just to prevent
4111 * circumstances from getting really dire.
4112 */
4113 n = PAGESIZE * (availrmem - swapfs_minfree - swapfs_reserve -
4114 desfree - arc_swapfs_reserve);
4115 if (n < lowest) {
4116 lowest = n;
4117 r = FMR_SWAPFS_MINFREE;
4118 }
4119
4120 /*
4121 * Check that we have enough availrmem that memory locking (e.g., via
4122 * mlock(3C) or memcntl(2)) can still succeed. (pages_pp_maximum
4123 * stores the number of pages that cannot be locked; when availrmem
4124 * drops below pages_pp_maximum, page locking mechanisms such as
4125 * page_pp_lock() will fail.)
4126 */
4127 n = PAGESIZE * (availrmem - pages_pp_maximum -
4128 arc_pages_pp_reserve);
4129 if (n < lowest) {
4130 lowest = n;
4131 r = FMR_PAGES_PP_MAXIMUM;
4132 }
4133 #endif
4134
4135 #if defined(_ILP32)
4136 /*
4137 * If we're on a 32-bit platform, it's possible that we'll exhaust the
4138 * kernel heap space before we ever run out of available physical
4139 * memory. Most checks of the size of the heap_area compare against
4140 * tune.t_minarmem, which is the minimum available real memory that we
4141 * can have in the system. However, this is generally fixed at 25 pages
4142 * which is so low that it's useless. In this comparison, we seek to
4143 * calculate the total heap-size, and reclaim if more than 3/4ths of the
4144 * heap is allocated. (Or, in the calculation, if less than 1/4th is
4145 * free)
4146 */
4147 n = vmem_size(heap_arena, VMEM_FREE) -
4148 (vmem_size(heap_arena, VMEM_FREE | VMEM_ALLOC) >> 2);
4149 if (n < lowest) {
4150 lowest = n;
4151 r = FMR_HEAP_ARENA;
4152 }
4153 #endif
4154
4155 /*
4156 * If zio data pages are being allocated out of a separate heap segment,
4157 * then enforce that the size of available vmem for this arena remains
4158 * above about 1/4th (1/(2^arc_zio_arena_free_shift)) free.
4159 *
4160 * Note that reducing the arc_zio_arena_free_shift keeps more virtual
4161 * memory (in the zio_arena) free, which can avoid memory
4162 * fragmentation issues.
4163 */
4164 if (zio_arena != NULL) {
4165 n = (int64_t)vmem_size(zio_arena, VMEM_FREE) -
4166 (vmem_size(zio_arena, VMEM_ALLOC) >>
4167 arc_zio_arena_free_shift);
4168 if (n < lowest) {
4169 lowest = n;
4170 r = FMR_ZIO_ARENA;
4171 }
4172 }
4173 #else /* _KERNEL */
4174 /* Every 100 calls, free a small amount */
4175 if (spa_get_random(100) == 0)
4176 lowest = -1024;
4177 #endif /* _KERNEL */
4178
4179 last_free_memory = lowest;
4180 last_free_reason = r;
4181
4182 return (lowest);
4183 }
4184
4185 /*
4186 * Determine if the system is under memory pressure and is asking
4187 * to reclaim memory. A return value of B_TRUE indicates that the system
4188 * is under memory pressure and that the arc should adjust accordingly.
4189 */
4190 static boolean_t
4191 arc_reclaim_needed(void)
4192 {
4193 return (arc_available_memory() < 0);
4194 }
4195
4196 static void
4197 arc_kmem_reap_now(void)
4198 {
4199 size_t i;
4200 kmem_cache_t *prev_cache = NULL;
4201 kmem_cache_t *prev_data_cache = NULL;
4202 extern kmem_cache_t *zio_buf_cache[];
4203 extern kmem_cache_t *zio_data_buf_cache[];
4204 extern kmem_cache_t *range_seg_cache;
4205
4206 #ifdef _KERNEL
4207 if ((arc_meta_used >= arc_meta_limit) && zfs_arc_meta_prune) {
4208 /*
4209 * We are exceeding our meta-data cache limit.
4210 * Prune some entries to release holds on meta-data.
4211 */
4212 arc_prune_async(zfs_arc_meta_prune);
4213 }
4214 #if defined(_ILP32)
4215 /*
4216 * Reclaim unused memory from all kmem caches.
4217 */
4218 kmem_reap();
4219 #endif
4220 #endif
4221
4222 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4223 #if defined(_ILP32)
4224 /* reach upper limit of cache size on 32-bit */
4225 if (zio_buf_cache[i] == NULL)
4226 break;
4227 #endif
4228 if (zio_buf_cache[i] != prev_cache) {
4229 prev_cache = zio_buf_cache[i];
4230 kmem_cache_reap_now(zio_buf_cache[i]);
4231 }
4232 if (zio_data_buf_cache[i] != prev_data_cache) {
4233 prev_data_cache = zio_data_buf_cache[i];
4234 kmem_cache_reap_now(zio_data_buf_cache[i]);
4235 }
4236 }
4237 kmem_cache_reap_now(buf_cache);
4238 kmem_cache_reap_now(hdr_full_cache);
4239 kmem_cache_reap_now(hdr_l2only_cache);
4240 kmem_cache_reap_now(range_seg_cache);
4241
4242 if (zio_arena != NULL) {
4243 /*
4244 * Ask the vmem arena to reclaim unused memory from its
4245 * quantum caches.
4246 */
4247 vmem_qcache_reap(zio_arena);
4248 }
4249 }
4250
4251 /*
4252 * Threads can block in arc_get_data_impl() waiting for this thread to evict
4253 * enough data and signal them to proceed. When this happens, the threads in
4254 * arc_get_data_impl() are sleeping while holding the hash lock for their
4255 * particular arc header. Thus, we must be careful to never sleep on a
4256 * hash lock in this thread. This is to prevent the following deadlock:
4257 *
4258 * - Thread A sleeps on CV in arc_get_data_impl() holding hash lock "L",
4259 * waiting for the reclaim thread to signal it.
4260 *
4261 * - arc_reclaim_thread() tries to acquire hash lock "L" using mutex_enter,
4262 * fails, and goes to sleep forever.
4263 *
4264 * This possible deadlock is avoided by always acquiring a hash lock
4265 * using mutex_tryenter() from arc_reclaim_thread().
4266 */
4267 static void
4268 arc_reclaim_thread(void)
4269 {
4270 fstrans_cookie_t cookie = spl_fstrans_mark();
4271 hrtime_t growtime = 0;
4272 callb_cpr_t cpr;
4273
4274 CALLB_CPR_INIT(&cpr, &arc_reclaim_lock, callb_generic_cpr, FTAG);
4275
4276 mutex_enter(&arc_reclaim_lock);
4277 while (!arc_reclaim_thread_exit) {
4278 int64_t to_free;
4279 uint64_t evicted = 0;
4280 uint64_t need_free = arc_need_free;
4281 arc_tuning_update();
4282
4283 /*
4284 * This is necessary in order for the mdb ::arc dcmd to
4285 * show up to date information. Since the ::arc command
4286 * does not call the kstat's update function, without
4287 * this call, the command may show stale stats for the
4288 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4289 * with this change, the data might be up to 1 second
4290 * out of date; but that should suffice. The arc_state_t
4291 * structures can be queried directly if more accurate
4292 * information is needed.
4293 */
4294 #ifndef __linux__
4295 if (arc_ksp != NULL)
4296 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4297 #endif
4298 mutex_exit(&arc_reclaim_lock);
4299
4300 /*
4301 * We call arc_adjust() before (possibly) calling
4302 * arc_kmem_reap_now(), so that we can wake up
4303 * arc_get_data_buf() sooner.
4304 */
4305 evicted = arc_adjust();
4306
4307 int64_t free_memory = arc_available_memory();
4308 if (free_memory < 0) {
4309
4310 arc_no_grow = B_TRUE;
4311 arc_warm = B_TRUE;
4312
4313 /*
4314 * Wait at least zfs_grow_retry (default 5) seconds
4315 * before considering growing.
4316 */
4317 growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
4318
4319 arc_kmem_reap_now();
4320
4321 /*
4322 * If we are still low on memory, shrink the ARC
4323 * so that we have arc_shrink_min free space.
4324 */
4325 free_memory = arc_available_memory();
4326
4327 to_free = (arc_c >> arc_shrink_shift) - free_memory;
4328 if (to_free > 0) {
4329 #ifdef _KERNEL
4330 to_free = MAX(to_free, need_free);
4331 #endif
4332 arc_shrink(to_free);
4333 }
4334 } else if (free_memory < arc_c >> arc_no_grow_shift) {
4335 arc_no_grow = B_TRUE;
4336 } else if (gethrtime() >= growtime) {
4337 arc_no_grow = B_FALSE;
4338 }
4339
4340 mutex_enter(&arc_reclaim_lock);
4341
4342 /*
4343 * If evicted is zero, we couldn't evict anything via
4344 * arc_adjust(). This could be due to hash lock
4345 * collisions, but more likely due to the majority of
4346 * arc buffers being unevictable. Therefore, even if
4347 * arc_size is above arc_c, another pass is unlikely to
4348 * be helpful and could potentially cause us to enter an
4349 * infinite loop.
4350 */
4351 if (arc_size <= arc_c || evicted == 0) {
4352 /*
4353 * We're either no longer overflowing, or we
4354 * can't evict anything more, so we should wake
4355 * up any threads before we go to sleep and remove
4356 * the bytes we were working on from arc_need_free
4357 * since nothing more will be done here.
4358 */
4359 cv_broadcast(&arc_reclaim_waiters_cv);
4360 ARCSTAT_INCR(arcstat_need_free, -need_free);
4361
4362 /*
4363 * Block until signaled, or after one second (we
4364 * might need to perform arc_kmem_reap_now()
4365 * even if we aren't being signalled)
4366 */
4367 CALLB_CPR_SAFE_BEGIN(&cpr);
4368 (void) cv_timedwait_sig_hires(&arc_reclaim_thread_cv,
4369 &arc_reclaim_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
4370 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_lock);
4371 }
4372 }
4373
4374 arc_reclaim_thread_exit = B_FALSE;
4375 cv_broadcast(&arc_reclaim_thread_cv);
4376 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_lock */
4377 spl_fstrans_unmark(cookie);
4378 thread_exit();
4379 }
4380
4381 #ifdef _KERNEL
4382 /*
4383 * Determine the amount of memory eligible for eviction contained in the
4384 * ARC. All clean data reported by the ghost lists can always be safely
4385 * evicted. Due to arc_c_min, the same does not hold for all clean data
4386 * contained by the regular mru and mfu lists.
4387 *
4388 * In the case of the regular mru and mfu lists, we need to report as
4389 * much clean data as possible, such that evicting that same reported
4390 * data will not bring arc_size below arc_c_min. Thus, in certain
4391 * circumstances, the total amount of clean data in the mru and mfu
4392 * lists might not actually be evictable.
4393 *
4394 * The following two distinct cases are accounted for:
4395 *
4396 * 1. The sum of the amount of dirty data contained by both the mru and
4397 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4398 * is greater than or equal to arc_c_min.
4399 * (i.e. amount of dirty data >= arc_c_min)
4400 *
4401 * This is the easy case; all clean data contained by the mru and mfu
4402 * lists is evictable. Evicting all clean data can only drop arc_size
4403 * to the amount of dirty data, which is greater than arc_c_min.
4404 *
4405 * 2. The sum of the amount of dirty data contained by both the mru and
4406 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4407 * is less than arc_c_min.
4408 * (i.e. arc_c_min > amount of dirty data)
4409 *
4410 * 2.1. arc_size is greater than or equal arc_c_min.
4411 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4412 *
4413 * In this case, not all clean data from the regular mru and mfu
4414 * lists is actually evictable; we must leave enough clean data
4415 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4416 * evictable data from the two lists combined, is exactly the
4417 * difference between arc_size and arc_c_min.
4418 *
4419 * 2.2. arc_size is less than arc_c_min
4420 * (i.e. arc_c_min > arc_size > amount of dirty data)
4421 *
4422 * In this case, none of the data contained in the mru and mfu
4423 * lists is evictable, even if it's clean. Since arc_size is
4424 * already below arc_c_min, evicting any more would only
4425 * increase this negative difference.
4426 */
4427 static uint64_t
4428 arc_evictable_memory(void)
4429 {
4430 uint64_t arc_clean =
4431 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_DATA]) +
4432 refcount_count(&arc_mru->arcs_esize[ARC_BUFC_METADATA]) +
4433 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_DATA]) +
4434 refcount_count(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
4435 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
4436
4437 /*
4438 * Scale reported evictable memory in proportion to page cache, cap
4439 * at specified min/max.
4440 */
4441 #ifdef ZFS_GLOBAL_NODE_PAGE_STATE
4442 uint64_t min = (ptob(global_node_page_state(NR_FILE_PAGES)) / 100) *
4443 zfs_arc_pc_percent;
4444 #else
4445 uint64_t min = (ptob(global_page_state(NR_FILE_PAGES)) / 100) *
4446 zfs_arc_pc_percent;
4447 #endif
4448 min = MAX(arc_c_min, MIN(arc_c_max, min));
4449
4450 if (arc_dirty >= min)
4451 return (arc_clean);
4452
4453 return (MAX((int64_t)arc_size - (int64_t)min, 0));
4454 }
4455
4456 /*
4457 * If sc->nr_to_scan is zero, the caller is requesting a query of the
4458 * number of objects which can potentially be freed. If it is nonzero,
4459 * the request is to free that many objects.
4460 *
4461 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
4462 * in struct shrinker and also require the shrinker to return the number
4463 * of objects freed.
4464 *
4465 * Older kernels require the shrinker to return the number of freeable
4466 * objects following the freeing of nr_to_free.
4467 */
4468 static spl_shrinker_t
4469 __arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
4470 {
4471 int64_t pages;
4472
4473 /* The arc is considered warm once reclaim has occurred */
4474 if (unlikely(arc_warm == B_FALSE))
4475 arc_warm = B_TRUE;
4476
4477 /* Return the potential number of reclaimable pages */
4478 pages = btop((int64_t)arc_evictable_memory());
4479 if (sc->nr_to_scan == 0)
4480 return (pages);
4481
4482 /* Not allowed to perform filesystem reclaim */
4483 if (!(sc->gfp_mask & __GFP_FS))
4484 return (SHRINK_STOP);
4485
4486 /* Reclaim in progress */
4487 if (mutex_tryenter(&arc_reclaim_lock) == 0) {
4488 ARCSTAT_INCR(arcstat_need_free, ptob(sc->nr_to_scan));
4489 return (0);
4490 }
4491
4492 mutex_exit(&arc_reclaim_lock);
4493
4494 /*
4495 * Evict the requested number of pages by shrinking arc_c the
4496 * requested amount.
4497 */
4498 if (pages > 0) {
4499 arc_shrink(ptob(sc->nr_to_scan));
4500 if (current_is_kswapd())
4501 arc_kmem_reap_now();
4502 #ifdef HAVE_SPLIT_SHRINKER_CALLBACK
4503 pages = MAX((int64_t)pages -
4504 (int64_t)btop(arc_evictable_memory()), 0);
4505 #else
4506 pages = btop(arc_evictable_memory());
4507 #endif
4508 /*
4509 * We've shrunk what we can, wake up threads.
4510 */
4511 cv_broadcast(&arc_reclaim_waiters_cv);
4512 } else
4513 pages = SHRINK_STOP;
4514
4515 /*
4516 * When direct reclaim is observed it usually indicates a rapid
4517 * increase in memory pressure. This occurs because the kswapd
4518 * threads were unable to asynchronously keep enough free memory
4519 * available. In this case set arc_no_grow to briefly pause arc
4520 * growth to avoid compounding the memory pressure.
4521 */
4522 if (current_is_kswapd()) {
4523 ARCSTAT_BUMP(arcstat_memory_indirect_count);
4524 } else {
4525 arc_no_grow = B_TRUE;
4526 arc_kmem_reap_now();
4527 ARCSTAT_BUMP(arcstat_memory_direct_count);
4528 }
4529
4530 return (pages);
4531 }
4532 SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
4533
4534 SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
4535 #endif /* _KERNEL */
4536
4537 /*
4538 * Adapt arc info given the number of bytes we are trying to add and
4539 * the state that we are coming from. This function is only called
4540 * when we are adding new content to the cache.
4541 */
4542 static void
4543 arc_adapt(int bytes, arc_state_t *state)
4544 {
4545 int mult;
4546 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
4547 int64_t mrug_size = refcount_count(&arc_mru_ghost->arcs_size);
4548 int64_t mfug_size = refcount_count(&arc_mfu_ghost->arcs_size);
4549
4550 if (state == arc_l2c_only)
4551 return;
4552
4553 ASSERT(bytes > 0);
4554 /*
4555 * Adapt the target size of the MRU list:
4556 * - if we just hit in the MRU ghost list, then increase
4557 * the target size of the MRU list.
4558 * - if we just hit in the MFU ghost list, then increase
4559 * the target size of the MFU list by decreasing the
4560 * target size of the MRU list.
4561 */
4562 if (state == arc_mru_ghost) {
4563 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
4564 if (!zfs_arc_p_dampener_disable)
4565 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
4566
4567 arc_p = MIN(arc_c - arc_p_min, arc_p + bytes * mult);
4568 } else if (state == arc_mfu_ghost) {
4569 uint64_t delta;
4570
4571 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
4572 if (!zfs_arc_p_dampener_disable)
4573 mult = MIN(mult, 10);
4574
4575 delta = MIN(bytes * mult, arc_p);
4576 arc_p = MAX(arc_p_min, arc_p - delta);
4577 }
4578 ASSERT((int64_t)arc_p >= 0);
4579
4580 if (arc_reclaim_needed()) {
4581 cv_signal(&arc_reclaim_thread_cv);
4582 return;
4583 }
4584
4585 if (arc_no_grow)
4586 return;
4587
4588 if (arc_c >= arc_c_max)
4589 return;
4590
4591 /*
4592 * If we're within (2 * maxblocksize) bytes of the target
4593 * cache size, increment the target cache size
4594 */
4595 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
4596 if (arc_size >= arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
4597 atomic_add_64(&arc_c, (int64_t)bytes);
4598 if (arc_c > arc_c_max)
4599 arc_c = arc_c_max;
4600 else if (state == arc_anon)
4601 atomic_add_64(&arc_p, (int64_t)bytes);
4602 if (arc_p > arc_c)
4603 arc_p = arc_c;
4604 }
4605 ASSERT((int64_t)arc_p >= 0);
4606 }
4607
4608 /*
4609 * Check if arc_size has grown past our upper threshold, determined by
4610 * zfs_arc_overflow_shift.
4611 */
4612 static boolean_t
4613 arc_is_overflowing(void)
4614 {
4615 /* Always allow at least one block of overflow */
4616 uint64_t overflow = MAX(SPA_MAXBLOCKSIZE,
4617 arc_c >> zfs_arc_overflow_shift);
4618
4619 return (arc_size >= arc_c + overflow);
4620 }
4621
4622 static abd_t *
4623 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4624 {
4625 arc_buf_contents_t type = arc_buf_type(hdr);
4626
4627 arc_get_data_impl(hdr, size, tag);
4628 if (type == ARC_BUFC_METADATA) {
4629 return (abd_alloc(size, B_TRUE));
4630 } else {
4631 ASSERT(type == ARC_BUFC_DATA);
4632 return (abd_alloc(size, B_FALSE));
4633 }
4634 }
4635
4636 static void *
4637 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4638 {
4639 arc_buf_contents_t type = arc_buf_type(hdr);
4640
4641 arc_get_data_impl(hdr, size, tag);
4642 if (type == ARC_BUFC_METADATA) {
4643 return (zio_buf_alloc(size));
4644 } else {
4645 ASSERT(type == ARC_BUFC_DATA);
4646 return (zio_data_buf_alloc(size));
4647 }
4648 }
4649
4650 /*
4651 * Allocate a block and return it to the caller. If we are hitting the
4652 * hard limit for the cache size, we must sleep, waiting for the eviction
4653 * thread to catch up. If we're past the target size but below the hard
4654 * limit, we'll only signal the reclaim thread and continue on.
4655 */
4656 static void
4657 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4658 {
4659 arc_state_t *state = hdr->b_l1hdr.b_state;
4660 arc_buf_contents_t type = arc_buf_type(hdr);
4661
4662 arc_adapt(size, state);
4663
4664 /*
4665 * If arc_size is currently overflowing, and has grown past our
4666 * upper limit, we must be adding data faster than the evict
4667 * thread can evict. Thus, to ensure we don't compound the
4668 * problem by adding more data and forcing arc_size to grow even
4669 * further past it's target size, we halt and wait for the
4670 * eviction thread to catch up.
4671 *
4672 * It's also possible that the reclaim thread is unable to evict
4673 * enough buffers to get arc_size below the overflow limit (e.g.
4674 * due to buffers being un-evictable, or hash lock collisions).
4675 * In this case, we want to proceed regardless if we're
4676 * overflowing; thus we don't use a while loop here.
4677 */
4678 if (arc_is_overflowing()) {
4679 mutex_enter(&arc_reclaim_lock);
4680
4681 /*
4682 * Now that we've acquired the lock, we may no longer be
4683 * over the overflow limit, lets check.
4684 *
4685 * We're ignoring the case of spurious wake ups. If that
4686 * were to happen, it'd let this thread consume an ARC
4687 * buffer before it should have (i.e. before we're under
4688 * the overflow limit and were signalled by the reclaim
4689 * thread). As long as that is a rare occurrence, it
4690 * shouldn't cause any harm.
4691 */
4692 if (arc_is_overflowing()) {
4693 cv_signal(&arc_reclaim_thread_cv);
4694 cv_wait(&arc_reclaim_waiters_cv, &arc_reclaim_lock);
4695 }
4696
4697 mutex_exit(&arc_reclaim_lock);
4698 }
4699
4700 VERIFY3U(hdr->b_type, ==, type);
4701 if (type == ARC_BUFC_METADATA) {
4702 arc_space_consume(size, ARC_SPACE_META);
4703 } else {
4704 arc_space_consume(size, ARC_SPACE_DATA);
4705 }
4706
4707 /*
4708 * Update the state size. Note that ghost states have a
4709 * "ghost size" and so don't need to be updated.
4710 */
4711 if (!GHOST_STATE(state)) {
4712
4713 (void) refcount_add_many(&state->arcs_size, size, tag);
4714
4715 /*
4716 * If this is reached via arc_read, the link is
4717 * protected by the hash lock. If reached via
4718 * arc_buf_alloc, the header should not be accessed by
4719 * any other thread. And, if reached via arc_read_done,
4720 * the hash lock will protect it if it's found in the
4721 * hash table; otherwise no other thread should be
4722 * trying to [add|remove]_reference it.
4723 */
4724 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4725 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4726 (void) refcount_add_many(&state->arcs_esize[type],
4727 size, tag);
4728 }
4729
4730 /*
4731 * If we are growing the cache, and we are adding anonymous
4732 * data, and we have outgrown arc_p, update arc_p
4733 */
4734 if (arc_size < arc_c && hdr->b_l1hdr.b_state == arc_anon &&
4735 (refcount_count(&arc_anon->arcs_size) +
4736 refcount_count(&arc_mru->arcs_size) > arc_p))
4737 arc_p = MIN(arc_c, arc_p + size);
4738 }
4739 }
4740
4741 static void
4742 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size, void *tag)
4743 {
4744 arc_free_data_impl(hdr, size, tag);
4745 abd_free(abd);
4746 }
4747
4748 static void
4749 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, void *tag)
4750 {
4751 arc_buf_contents_t type = arc_buf_type(hdr);
4752
4753 arc_free_data_impl(hdr, size, tag);
4754 if (type == ARC_BUFC_METADATA) {
4755 zio_buf_free(buf, size);
4756 } else {
4757 ASSERT(type == ARC_BUFC_DATA);
4758 zio_data_buf_free(buf, size);
4759 }
4760 }
4761
4762 /*
4763 * Free the arc data buffer.
4764 */
4765 static void
4766 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, void *tag)
4767 {
4768 arc_state_t *state = hdr->b_l1hdr.b_state;
4769 arc_buf_contents_t type = arc_buf_type(hdr);
4770
4771 /* protected by hash lock, if in the hash table */
4772 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
4773 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4774 ASSERT(state != arc_anon && state != arc_l2c_only);
4775
4776 (void) refcount_remove_many(&state->arcs_esize[type],
4777 size, tag);
4778 }
4779 (void) refcount_remove_many(&state->arcs_size, size, tag);
4780
4781 VERIFY3U(hdr->b_type, ==, type);
4782 if (type == ARC_BUFC_METADATA) {
4783 arc_space_return(size, ARC_SPACE_META);
4784 } else {
4785 ASSERT(type == ARC_BUFC_DATA);
4786 arc_space_return(size, ARC_SPACE_DATA);
4787 }
4788 }
4789
4790 /*
4791 * This routine is called whenever a buffer is accessed.
4792 * NOTE: the hash lock is dropped in this function.
4793 */
4794 static void
4795 arc_access(arc_buf_hdr_t *hdr, kmutex_t *hash_lock)
4796 {
4797 clock_t now;
4798
4799 ASSERT(MUTEX_HELD(hash_lock));
4800 ASSERT(HDR_HAS_L1HDR(hdr));
4801
4802 if (hdr->b_l1hdr.b_state == arc_anon) {
4803 /*
4804 * This buffer is not in the cache, and does not
4805 * appear in our "ghost" list. Add the new buffer
4806 * to the MRU state.
4807 */
4808
4809 ASSERT0(hdr->b_l1hdr.b_arc_access);
4810 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4811 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4812 arc_change_state(arc_mru, hdr, hash_lock);
4813
4814 } else if (hdr->b_l1hdr.b_state == arc_mru) {
4815 now = ddi_get_lbolt();
4816
4817 /*
4818 * If this buffer is here because of a prefetch, then either:
4819 * - clear the flag if this is a "referencing" read
4820 * (any subsequent access will bump this into the MFU state).
4821 * or
4822 * - move the buffer to the head of the list if this is
4823 * another prefetch (to make it less likely to be evicted).
4824 */
4825 if (HDR_PREFETCH(hdr)) {
4826 if (refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
4827 /* link protected by hash lock */
4828 ASSERT(multilist_link_active(
4829 &hdr->b_l1hdr.b_arc_node));
4830 } else {
4831 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4832 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4833 ARCSTAT_BUMP(arcstat_mru_hits);
4834 }
4835 hdr->b_l1hdr.b_arc_access = now;
4836 return;
4837 }
4838
4839 /*
4840 * This buffer has been "accessed" only once so far,
4841 * but it is still in the cache. Move it to the MFU
4842 * state.
4843 */
4844 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
4845 ARC_MINTIME)) {
4846 /*
4847 * More than 125ms have passed since we
4848 * instantiated this buffer. Move it to the
4849 * most frequently used state.
4850 */
4851 hdr->b_l1hdr.b_arc_access = now;
4852 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4853 arc_change_state(arc_mfu, hdr, hash_lock);
4854 }
4855 atomic_inc_32(&hdr->b_l1hdr.b_mru_hits);
4856 ARCSTAT_BUMP(arcstat_mru_hits);
4857 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
4858 arc_state_t *new_state;
4859 /*
4860 * This buffer has been "accessed" recently, but
4861 * was evicted from the cache. Move it to the
4862 * MFU state.
4863 */
4864
4865 if (HDR_PREFETCH(hdr)) {
4866 new_state = arc_mru;
4867 if (refcount_count(&hdr->b_l1hdr.b_refcnt) > 0)
4868 arc_hdr_clear_flags(hdr, ARC_FLAG_PREFETCH);
4869 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
4870 } else {
4871 new_state = arc_mfu;
4872 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4873 }
4874
4875 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4876 arc_change_state(new_state, hdr, hash_lock);
4877
4878 atomic_inc_32(&hdr->b_l1hdr.b_mru_ghost_hits);
4879 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
4880 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
4881 /*
4882 * This buffer has been accessed more than once and is
4883 * still in the cache. Keep it in the MFU state.
4884 *
4885 * NOTE: an add_reference() that occurred when we did
4886 * the arc_read() will have kicked this off the list.
4887 * If it was a prefetch, we will explicitly move it to
4888 * the head of the list now.
4889 */
4890 if ((HDR_PREFETCH(hdr)) != 0) {
4891 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
4892 /* link protected by hash_lock */
4893 ASSERT(multilist_link_active(&hdr->b_l1hdr.b_arc_node));
4894 }
4895 atomic_inc_32(&hdr->b_l1hdr.b_mfu_hits);
4896 ARCSTAT_BUMP(arcstat_mfu_hits);
4897 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4898 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
4899 arc_state_t *new_state = arc_mfu;
4900 /*
4901 * This buffer has been accessed more than once but has
4902 * been evicted from the cache. Move it back to the
4903 * MFU state.
4904 */
4905
4906 if (HDR_PREFETCH(hdr)) {
4907 /*
4908 * This is a prefetch access...
4909 * move this block back to the MRU state.
4910 */
4911 ASSERT0(refcount_count(&hdr->b_l1hdr.b_refcnt));
4912 new_state = arc_mru;
4913 }
4914
4915 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4916 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4917 arc_change_state(new_state, hdr, hash_lock);
4918
4919 atomic_inc_32(&hdr->b_l1hdr.b_mfu_ghost_hits);
4920 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
4921 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
4922 /*
4923 * This buffer is on the 2nd Level ARC.
4924 */
4925
4926 hdr->b_l1hdr.b_arc_access = ddi_get_lbolt();
4927 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
4928 arc_change_state(arc_mfu, hdr, hash_lock);
4929 } else {
4930 cmn_err(CE_PANIC, "invalid arc state 0x%p",
4931 hdr->b_l1hdr.b_state);
4932 }
4933 }
4934
4935 /*
4936 * This routine is called by dbuf_hold() to update the arc_access() state
4937 * which otherwise would be skipped for entries in the dbuf cache.
4938 */
4939 void
4940 arc_buf_access(arc_buf_t *buf)
4941 {
4942 mutex_enter(&buf->b_evict_lock);
4943 arc_buf_hdr_t *hdr = buf->b_hdr;
4944
4945 /*
4946 * Avoid taking the hash_lock when possible as an optimization.
4947 * The header must be checked again under the hash_lock in order
4948 * to handle the case where it is concurrently being released.
4949 */
4950 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
4951 mutex_exit(&buf->b_evict_lock);
4952 return;
4953 }
4954
4955 kmutex_t *hash_lock = HDR_LOCK(hdr);
4956 mutex_enter(hash_lock);
4957
4958 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
4959 mutex_exit(hash_lock);
4960 mutex_exit(&buf->b_evict_lock);
4961 ARCSTAT_BUMP(arcstat_access_skip);
4962 return;
4963 }
4964
4965 mutex_exit(&buf->b_evict_lock);
4966
4967 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
4968 hdr->b_l1hdr.b_state == arc_mfu);
4969
4970 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
4971 arc_access(hdr, hash_lock);
4972 mutex_exit(hash_lock);
4973
4974 ARCSTAT_BUMP(arcstat_hits);
4975 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr), demand, prefetch,
4976 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
4977 }
4978
4979 /* a generic arc_read_done_func_t which you can use */
4980 /* ARGSUSED */
4981 void
4982 arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
4983 {
4984 if (zio == NULL || zio->io_error == 0)
4985 bcopy(buf->b_data, arg, arc_buf_size(buf));
4986 arc_buf_destroy(buf, arg);
4987 }
4988
4989 /* a generic arc_done_func_t */
4990 void
4991 arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
4992 {
4993 arc_buf_t **bufp = arg;
4994 if (zio && zio->io_error) {
4995 arc_buf_destroy(buf, arg);
4996 *bufp = NULL;
4997 } else {
4998 *bufp = buf;
4999 ASSERT(buf->b_data);
5000 }
5001 }
5002
5003 static void
5004 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5005 {
5006 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5007 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5008 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
5009 } else {
5010 if (HDR_COMPRESSION_ENABLED(hdr)) {
5011 ASSERT3U(HDR_GET_COMPRESS(hdr), ==,
5012 BP_GET_COMPRESS(bp));
5013 }
5014 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5015 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5016 }
5017 }
5018
5019 static void
5020 arc_read_done(zio_t *zio)
5021 {
5022 arc_buf_hdr_t *hdr = zio->io_private;
5023 kmutex_t *hash_lock = NULL;
5024 arc_callback_t *callback_list;
5025 arc_callback_t *acb;
5026 boolean_t freeable = B_FALSE;
5027 boolean_t no_zio_error = (zio->io_error == 0);
5028
5029 /*
5030 * The hdr was inserted into hash-table and removed from lists
5031 * prior to starting I/O. We should find this header, since
5032 * it's in the hash table, and it should be legit since it's
5033 * not possible to evict it during the I/O. The only possible
5034 * reason for it not to be found is if we were freed during the
5035 * read.
5036 */
5037 if (HDR_IN_HASH_TABLE(hdr)) {
5038 arc_buf_hdr_t *found;
5039
5040 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5041 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5042 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5043 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5044 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5045
5046 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5047
5048 ASSERT((found == hdr &&
5049 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5050 (found == hdr && HDR_L2_READING(hdr)));
5051 ASSERT3P(hash_lock, !=, NULL);
5052 }
5053
5054 if (no_zio_error) {
5055 /* byteswap if necessary */
5056 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5057 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5058 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5059 } else {
5060 hdr->b_l1hdr.b_byteswap =
5061 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5062 }
5063 } else {
5064 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5065 }
5066 }
5067
5068 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5069 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5070 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5071
5072 callback_list = hdr->b_l1hdr.b_acb;
5073 ASSERT3P(callback_list, !=, NULL);
5074
5075 if (hash_lock && no_zio_error && hdr->b_l1hdr.b_state == arc_anon) {
5076 /*
5077 * Only call arc_access on anonymous buffers. This is because
5078 * if we've issued an I/O for an evicted buffer, we've already
5079 * called arc_access (to prevent any simultaneous readers from
5080 * getting confused).
5081 */
5082 arc_access(hdr, hash_lock);
5083 }
5084
5085 /*
5086 * If a read request has a callback (i.e. acb_done is not NULL), then we
5087 * make a buf containing the data according to the parameters which were
5088 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5089 * aren't needlessly decompressing the data multiple times.
5090 */
5091 int callback_cnt = 0;
5092 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5093 if (!acb->acb_done)
5094 continue;
5095
5096 /* This is a demand read since prefetches don't use callbacks */
5097 callback_cnt++;
5098
5099 int error = arc_buf_alloc_impl(hdr, acb->acb_private,
5100 acb->acb_compressed, no_zio_error, &acb->acb_buf);
5101 if (no_zio_error) {
5102 zio->io_error = error;
5103 }
5104 }
5105 hdr->b_l1hdr.b_acb = NULL;
5106 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5107 if (callback_cnt == 0) {
5108 ASSERT(HDR_PREFETCH(hdr));
5109 ASSERT0(hdr->b_l1hdr.b_bufcnt);
5110 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5111 }
5112
5113 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt) ||
5114 callback_list != NULL);
5115
5116 if (no_zio_error) {
5117 arc_hdr_verify(hdr, zio->io_bp);
5118 } else {
5119 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5120 if (hdr->b_l1hdr.b_state != arc_anon)
5121 arc_change_state(arc_anon, hdr, hash_lock);
5122 if (HDR_IN_HASH_TABLE(hdr))
5123 buf_hash_remove(hdr);
5124 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5125 }
5126
5127 /*
5128 * Broadcast before we drop the hash_lock to avoid the possibility
5129 * that the hdr (and hence the cv) might be freed before we get to
5130 * the cv_broadcast().
5131 */
5132 cv_broadcast(&hdr->b_l1hdr.b_cv);
5133
5134 if (hash_lock != NULL) {
5135 mutex_exit(hash_lock);
5136 } else {
5137 /*
5138 * This block was freed while we waited for the read to
5139 * complete. It has been removed from the hash table and
5140 * moved to the anonymous state (so that it won't show up
5141 * in the cache).
5142 */
5143 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
5144 freeable = refcount_is_zero(&hdr->b_l1hdr.b_refcnt);
5145 }
5146
5147 /* execute each callback and free its structure */
5148 while ((acb = callback_list) != NULL) {
5149 if (acb->acb_done)
5150 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
5151
5152 if (acb->acb_zio_dummy != NULL) {
5153 acb->acb_zio_dummy->io_error = zio->io_error;
5154 zio_nowait(acb->acb_zio_dummy);
5155 }
5156
5157 callback_list = acb->acb_next;
5158 kmem_free(acb, sizeof (arc_callback_t));
5159 }
5160
5161 if (freeable)
5162 arc_hdr_destroy(hdr);
5163 }
5164
5165 /*
5166 * "Read" the block at the specified DVA (in bp) via the
5167 * cache. If the block is found in the cache, invoke the provided
5168 * callback immediately and return. Note that the `zio' parameter
5169 * in the callback will be NULL in this case, since no IO was
5170 * required. If the block is not in the cache pass the read request
5171 * on to the spa with a substitute callback function, so that the
5172 * requested block will be added to the cache.
5173 *
5174 * If a read request arrives for a block that has a read in-progress,
5175 * either wait for the in-progress read to complete (and return the
5176 * results); or, if this is a read with a "done" func, add a record
5177 * to the read to invoke the "done" func when the read completes,
5178 * and return; or just return.
5179 *
5180 * arc_read_done() will invoke all the requested "done" functions
5181 * for readers of this block.
5182 */
5183 int
5184 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
5185 void *private, zio_priority_t priority, int zio_flags,
5186 arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5187 {
5188 arc_buf_hdr_t *hdr = NULL;
5189 kmutex_t *hash_lock = NULL;
5190 zio_t *rzio;
5191 uint64_t guid = spa_load_guid(spa);
5192 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW) != 0;
5193 int rc = 0;
5194
5195 ASSERT(!BP_IS_EMBEDDED(bp) ||
5196 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5197
5198 top:
5199 if (!BP_IS_EMBEDDED(bp)) {
5200 /*
5201 * Embedded BP's have no DVA and require no I/O to "read".
5202 * Create an anonymous arc buf to back it.
5203 */
5204 hdr = buf_hash_find(guid, bp, &hash_lock);
5205 }
5206
5207 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && hdr->b_l1hdr.b_pabd != NULL) {
5208 arc_buf_t *buf = NULL;
5209 *arc_flags |= ARC_FLAG_CACHED;
5210
5211 if (HDR_IO_IN_PROGRESS(hdr)) {
5212
5213 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
5214 priority == ZIO_PRIORITY_SYNC_READ) {
5215 /*
5216 * This sync read must wait for an
5217 * in-progress async read (e.g. a predictive
5218 * prefetch). Async reads are queued
5219 * separately at the vdev_queue layer, so
5220 * this is a form of priority inversion.
5221 * Ideally, we would "inherit" the demand
5222 * i/o's priority by moving the i/o from
5223 * the async queue to the synchronous queue,
5224 * but there is currently no mechanism to do
5225 * so. Track this so that we can evaluate
5226 * the magnitude of this potential performance
5227 * problem.
5228 *
5229 * Note that if the prefetch i/o is already
5230 * active (has been issued to the device),
5231 * the prefetch improved performance, because
5232 * we issued it sooner than we would have
5233 * without the prefetch.
5234 */
5235 DTRACE_PROBE1(arc__sync__wait__for__async,
5236 arc_buf_hdr_t *, hdr);
5237 ARCSTAT_BUMP(arcstat_sync_wait_for_async);
5238 }
5239 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5240 arc_hdr_clear_flags(hdr,
5241 ARC_FLAG_PREDICTIVE_PREFETCH);
5242 }
5243
5244 if (*arc_flags & ARC_FLAG_WAIT) {
5245 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
5246 mutex_exit(hash_lock);
5247 goto top;
5248 }
5249 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5250
5251 if (done) {
5252 arc_callback_t *acb = NULL;
5253
5254 acb = kmem_zalloc(sizeof (arc_callback_t),
5255 KM_SLEEP);
5256 acb->acb_done = done;
5257 acb->acb_private = private;
5258 acb->acb_compressed = compressed_read;
5259 if (pio != NULL)
5260 acb->acb_zio_dummy = zio_null(pio,
5261 spa, NULL, NULL, NULL, zio_flags);
5262
5263 ASSERT3P(acb->acb_done, !=, NULL);
5264 acb->acb_next = hdr->b_l1hdr.b_acb;
5265 hdr->b_l1hdr.b_acb = acb;
5266 mutex_exit(hash_lock);
5267 goto out;
5268 }
5269 mutex_exit(hash_lock);
5270 goto out;
5271 }
5272
5273 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5274 hdr->b_l1hdr.b_state == arc_mfu);
5275
5276 if (done) {
5277 if (hdr->b_flags & ARC_FLAG_PREDICTIVE_PREFETCH) {
5278 /*
5279 * This is a demand read which does not have to
5280 * wait for i/o because we did a predictive
5281 * prefetch i/o for it, which has completed.
5282 */
5283 DTRACE_PROBE1(
5284 arc__demand__hit__predictive__prefetch,
5285 arc_buf_hdr_t *, hdr);
5286 ARCSTAT_BUMP(
5287 arcstat_demand_hit_predictive_prefetch);
5288 arc_hdr_clear_flags(hdr,
5289 ARC_FLAG_PREDICTIVE_PREFETCH);
5290 }
5291 ASSERT(!BP_IS_EMBEDDED(bp) || !BP_IS_HOLE(bp));
5292
5293 /* Get a buf with the desired data in it. */
5294 VERIFY0(arc_buf_alloc_impl(hdr, private,
5295 compressed_read, B_TRUE, &buf));
5296 } else if (*arc_flags & ARC_FLAG_PREFETCH &&
5297 refcount_count(&hdr->b_l1hdr.b_refcnt) == 0) {
5298 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5299 }
5300 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5301 arc_access(hdr, hash_lock);
5302 if (*arc_flags & ARC_FLAG_L2CACHE)
5303 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5304 mutex_exit(hash_lock);
5305 ARCSTAT_BUMP(arcstat_hits);
5306 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5307 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5308 data, metadata, hits);
5309
5310 if (done)
5311 done(NULL, buf, private);
5312 } else {
5313 uint64_t lsize = BP_GET_LSIZE(bp);
5314 uint64_t psize = BP_GET_PSIZE(bp);
5315 arc_callback_t *acb;
5316 vdev_t *vd = NULL;
5317 uint64_t addr = 0;
5318 boolean_t devw = B_FALSE;
5319 uint64_t size;
5320
5321 /*
5322 * Gracefully handle a damaged logical block size as a
5323 * checksum error.
5324 */
5325 if (lsize > spa_maxblocksize(spa)) {
5326 rc = SET_ERROR(ECKSUM);
5327 goto out;
5328 }
5329
5330 if (hdr == NULL) {
5331 /* this block is not in the cache */
5332 arc_buf_hdr_t *exists = NULL;
5333 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
5334 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
5335 BP_GET_COMPRESS(bp), type);
5336
5337 if (!BP_IS_EMBEDDED(bp)) {
5338 hdr->b_dva = *BP_IDENTITY(bp);
5339 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
5340 exists = buf_hash_insert(hdr, &hash_lock);
5341 }
5342 if (exists != NULL) {
5343 /* somebody beat us to the hash insert */
5344 mutex_exit(hash_lock);
5345 buf_discard_identity(hdr);
5346 arc_hdr_destroy(hdr);
5347 goto top; /* restart the IO request */
5348 }
5349 } else {
5350 /*
5351 * This block is in the ghost cache. If it was L2-only
5352 * (and thus didn't have an L1 hdr), we realloc the
5353 * header to add an L1 hdr.
5354 */
5355 if (!HDR_HAS_L1HDR(hdr)) {
5356 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
5357 hdr_full_cache);
5358 }
5359
5360 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5361 ASSERT(GHOST_STATE(hdr->b_l1hdr.b_state));
5362 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5363 ASSERT(refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5364 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
5365 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
5366
5367 /*
5368 * This is a delicate dance that we play here.
5369 * This hdr is in the ghost list so we access it
5370 * to move it out of the ghost list before we
5371 * initiate the read. If it's a prefetch then
5372 * it won't have a callback so we'll remove the
5373 * reference that arc_buf_alloc_impl() created. We
5374 * do this after we've called arc_access() to
5375 * avoid hitting an assert in remove_reference().
5376 */
5377 arc_access(hdr, hash_lock);
5378 arc_hdr_alloc_pabd(hdr);
5379 }
5380 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5381 size = arc_hdr_size(hdr);
5382
5383 /*
5384 * If compression is enabled on the hdr, then will do
5385 * RAW I/O and will store the compressed data in the hdr's
5386 * data block. Otherwise, the hdr's data block will contain
5387 * the uncompressed data.
5388 */
5389 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5390 zio_flags |= ZIO_FLAG_RAW;
5391 }
5392
5393 if (*arc_flags & ARC_FLAG_PREFETCH)
5394 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5395 if (*arc_flags & ARC_FLAG_L2CACHE)
5396 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5397 if (BP_GET_LEVEL(bp) > 0)
5398 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
5399 if (*arc_flags & ARC_FLAG_PREDICTIVE_PREFETCH)
5400 arc_hdr_set_flags(hdr, ARC_FLAG_PREDICTIVE_PREFETCH);
5401 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
5402
5403 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
5404 acb->acb_done = done;
5405 acb->acb_private = private;
5406 acb->acb_compressed = compressed_read;
5407
5408 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
5409 hdr->b_l1hdr.b_acb = acb;
5410 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5411
5412 if (HDR_HAS_L2HDR(hdr) &&
5413 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
5414 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
5415 addr = hdr->b_l2hdr.b_daddr;
5416 /*
5417 * Lock out device removal.
5418 */
5419 if (vdev_is_dead(vd) ||
5420 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
5421 vd = NULL;
5422 }
5423
5424 if (priority == ZIO_PRIORITY_ASYNC_READ)
5425 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5426 else
5427 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
5428
5429 if (hash_lock != NULL)
5430 mutex_exit(hash_lock);
5431
5432 /*
5433 * At this point, we have a level 1 cache miss. Try again in
5434 * L2ARC if possible.
5435 */
5436 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
5437
5438 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5439 uint64_t, lsize, zbookmark_phys_t *, zb);
5440 ARCSTAT_BUMP(arcstat_misses);
5441 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr),
5442 demand, prefetch, !HDR_ISTYPE_METADATA(hdr),
5443 data, metadata, misses);
5444
5445 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
5446 /*
5447 * Read from the L2ARC if the following are true:
5448 * 1. The L2ARC vdev was previously cached.
5449 * 2. This buffer still has L2ARC metadata.
5450 * 3. This buffer isn't currently writing to the L2ARC.
5451 * 4. The L2ARC entry wasn't evicted, which may
5452 * also have invalidated the vdev.
5453 * 5. This isn't prefetch and l2arc_noprefetch is set.
5454 */
5455 if (HDR_HAS_L2HDR(hdr) &&
5456 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
5457 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
5458 l2arc_read_callback_t *cb;
5459 abd_t *abd;
5460 uint64_t asize;
5461
5462 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
5463 ARCSTAT_BUMP(arcstat_l2_hits);
5464 atomic_inc_32(&hdr->b_l2hdr.b_hits);
5465
5466 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
5467 KM_SLEEP);
5468 cb->l2rcb_hdr = hdr;
5469 cb->l2rcb_bp = *bp;
5470 cb->l2rcb_zb = *zb;
5471 cb->l2rcb_flags = zio_flags;
5472
5473 asize = vdev_psize_to_asize(vd, size);
5474 if (asize != size) {
5475 abd = abd_alloc_for_io(asize,
5476 HDR_ISTYPE_METADATA(hdr));
5477 cb->l2rcb_abd = abd;
5478 } else {
5479 abd = hdr->b_l1hdr.b_pabd;
5480 }
5481
5482 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
5483 addr + asize <= vd->vdev_psize -
5484 VDEV_LABEL_END_SIZE);
5485
5486 /*
5487 * l2arc read. The SCL_L2ARC lock will be
5488 * released by l2arc_read_done().
5489 * Issue a null zio if the underlying buffer
5490 * was squashed to zero size by compression.
5491 */
5492 ASSERT3U(HDR_GET_COMPRESS(hdr), !=,
5493 ZIO_COMPRESS_EMPTY);
5494 rzio = zio_read_phys(pio, vd, addr,
5495 asize, abd,
5496 ZIO_CHECKSUM_OFF,
5497 l2arc_read_done, cb, priority,
5498 zio_flags | ZIO_FLAG_DONT_CACHE |
5499 ZIO_FLAG_CANFAIL |
5500 ZIO_FLAG_DONT_PROPAGATE |
5501 ZIO_FLAG_DONT_RETRY, B_FALSE);
5502
5503 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
5504 zio_t *, rzio);
5505 ARCSTAT_INCR(arcstat_l2_read_bytes, size);
5506
5507 if (*arc_flags & ARC_FLAG_NOWAIT) {
5508 zio_nowait(rzio);
5509 goto out;
5510 }
5511
5512 ASSERT(*arc_flags & ARC_FLAG_WAIT);
5513 if (zio_wait(rzio) == 0)
5514 goto out;
5515
5516 /* l2arc read error; goto zio_read() */
5517 } else {
5518 DTRACE_PROBE1(l2arc__miss,
5519 arc_buf_hdr_t *, hdr);
5520 ARCSTAT_BUMP(arcstat_l2_misses);
5521 if (HDR_L2_WRITING(hdr))
5522 ARCSTAT_BUMP(arcstat_l2_rw_clash);
5523 spa_config_exit(spa, SCL_L2ARC, vd);
5524 }
5525 } else {
5526 if (vd != NULL)
5527 spa_config_exit(spa, SCL_L2ARC, vd);
5528 if (l2arc_ndev != 0) {
5529 DTRACE_PROBE1(l2arc__miss,
5530 arc_buf_hdr_t *, hdr);
5531 ARCSTAT_BUMP(arcstat_l2_misses);
5532 }
5533 }
5534
5535 rzio = zio_read(pio, spa, bp, hdr->b_l1hdr.b_pabd, size,
5536 arc_read_done, hdr, priority, zio_flags, zb);
5537
5538 if (*arc_flags & ARC_FLAG_WAIT) {
5539 rc = zio_wait(rzio);
5540 goto out;
5541 }
5542
5543 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
5544 zio_nowait(rzio);
5545 }
5546
5547 out:
5548 spa_read_history_add(spa, zb, *arc_flags);
5549 return (rc);
5550 }
5551
5552 arc_prune_t *
5553 arc_add_prune_callback(arc_prune_func_t *func, void *private)
5554 {
5555 arc_prune_t *p;
5556
5557 p = kmem_alloc(sizeof (*p), KM_SLEEP);
5558 p->p_pfunc = func;
5559 p->p_private = private;
5560 list_link_init(&p->p_node);
5561 refcount_create(&p->p_refcnt);
5562
5563 mutex_enter(&arc_prune_mtx);
5564 refcount_add(&p->p_refcnt, &arc_prune_list);
5565 list_insert_head(&arc_prune_list, p);
5566 mutex_exit(&arc_prune_mtx);
5567
5568 return (p);
5569 }
5570
5571 void
5572 arc_remove_prune_callback(arc_prune_t *p)
5573 {
5574 boolean_t wait = B_FALSE;
5575 mutex_enter(&arc_prune_mtx);
5576 list_remove(&arc_prune_list, p);
5577 if (refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
5578 wait = B_TRUE;
5579 mutex_exit(&arc_prune_mtx);
5580
5581 /* wait for arc_prune_task to finish */
5582 if (wait)
5583 taskq_wait_outstanding(arc_prune_taskq, 0);
5584 ASSERT0(refcount_count(&p->p_refcnt));
5585 refcount_destroy(&p->p_refcnt);
5586 kmem_free(p, sizeof (*p));
5587 }
5588
5589 /*
5590 * Notify the arc that a block was freed, and thus will never be used again.
5591 */
5592 void
5593 arc_freed(spa_t *spa, const blkptr_t *bp)
5594 {
5595 arc_buf_hdr_t *hdr;
5596 kmutex_t *hash_lock;
5597 uint64_t guid = spa_load_guid(spa);
5598
5599 ASSERT(!BP_IS_EMBEDDED(bp));
5600
5601 hdr = buf_hash_find(guid, bp, &hash_lock);
5602 if (hdr == NULL)
5603 return;
5604
5605 /*
5606 * We might be trying to free a block that is still doing I/O
5607 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
5608 * dmu_sync-ed block). If this block is being prefetched, then it
5609 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
5610 * until the I/O completes. A block may also have a reference if it is
5611 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
5612 * have written the new block to its final resting place on disk but
5613 * without the dedup flag set. This would have left the hdr in the MRU
5614 * state and discoverable. When the txg finally syncs it detects that
5615 * the block was overridden in open context and issues an override I/O.
5616 * Since this is a dedup block, the override I/O will determine if the
5617 * block is already in the DDT. If so, then it will replace the io_bp
5618 * with the bp from the DDT and allow the I/O to finish. When the I/O
5619 * reaches the done callback, dbuf_write_override_done, it will
5620 * check to see if the io_bp and io_bp_override are identical.
5621 * If they are not, then it indicates that the bp was replaced with
5622 * the bp in the DDT and the override bp is freed. This allows
5623 * us to arrive here with a reference on a block that is being
5624 * freed. So if we have an I/O in progress, or a reference to
5625 * this hdr, then we don't destroy the hdr.
5626 */
5627 if (!HDR_HAS_L1HDR(hdr) || (!HDR_IO_IN_PROGRESS(hdr) &&
5628 refcount_is_zero(&hdr->b_l1hdr.b_refcnt))) {
5629 arc_change_state(arc_anon, hdr, hash_lock);
5630 arc_hdr_destroy(hdr);
5631 mutex_exit(hash_lock);
5632 } else {
5633 mutex_exit(hash_lock);
5634 }
5635
5636 }
5637
5638 /*
5639 * Release this buffer from the cache, making it an anonymous buffer. This
5640 * must be done after a read and prior to modifying the buffer contents.
5641 * If the buffer has more than one reference, we must make
5642 * a new hdr for the buffer.
5643 */
5644 void
5645 arc_release(arc_buf_t *buf, void *tag)
5646 {
5647 kmutex_t *hash_lock;
5648 arc_state_t *state;
5649 arc_buf_hdr_t *hdr = buf->b_hdr;
5650
5651 /*
5652 * It would be nice to assert that if its DMU metadata (level >
5653 * 0 || it's the dnode file), then it must be syncing context.
5654 * But we don't know that information at this level.
5655 */
5656
5657 mutex_enter(&buf->b_evict_lock);
5658
5659 ASSERT(HDR_HAS_L1HDR(hdr));
5660
5661 /*
5662 * We don't grab the hash lock prior to this check, because if
5663 * the buffer's header is in the arc_anon state, it won't be
5664 * linked into the hash table.
5665 */
5666 if (hdr->b_l1hdr.b_state == arc_anon) {
5667 mutex_exit(&buf->b_evict_lock);
5668 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5669 ASSERT(!HDR_IN_HASH_TABLE(hdr));
5670 ASSERT(!HDR_HAS_L2HDR(hdr));
5671 ASSERT(HDR_EMPTY(hdr));
5672
5673 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5674 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
5675 ASSERT(!list_link_active(&hdr->b_l1hdr.b_arc_node));
5676
5677 hdr->b_l1hdr.b_arc_access = 0;
5678
5679 /*
5680 * If the buf is being overridden then it may already
5681 * have a hdr that is not empty.
5682 */
5683 buf_discard_identity(hdr);
5684 arc_buf_thaw(buf);
5685
5686 return;
5687 }
5688
5689 hash_lock = HDR_LOCK(hdr);
5690 mutex_enter(hash_lock);
5691
5692 /*
5693 * This assignment is only valid as long as the hash_lock is
5694 * held, we must be careful not to reference state or the
5695 * b_state field after dropping the lock.
5696 */
5697 state = hdr->b_l1hdr.b_state;
5698 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
5699 ASSERT3P(state, !=, arc_anon);
5700
5701 /* this buffer is not on any list */
5702 ASSERT3S(refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
5703
5704 if (HDR_HAS_L2HDR(hdr)) {
5705 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5706
5707 /*
5708 * We have to recheck this conditional again now that
5709 * we're holding the l2ad_mtx to prevent a race with
5710 * another thread which might be concurrently calling
5711 * l2arc_evict(). In that case, l2arc_evict() might have
5712 * destroyed the header's L2 portion as we were waiting
5713 * to acquire the l2ad_mtx.
5714 */
5715 if (HDR_HAS_L2HDR(hdr))
5716 arc_hdr_l2hdr_destroy(hdr);
5717
5718 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
5719 }
5720
5721 /*
5722 * Do we have more than one buf?
5723 */
5724 if (hdr->b_l1hdr.b_bufcnt > 1) {
5725 arc_buf_hdr_t *nhdr;
5726 uint64_t spa = hdr->b_spa;
5727 uint64_t psize = HDR_GET_PSIZE(hdr);
5728 uint64_t lsize = HDR_GET_LSIZE(hdr);
5729 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
5730 arc_buf_contents_t type = arc_buf_type(hdr);
5731 VERIFY3U(hdr->b_type, ==, type);
5732
5733 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
5734 (void) remove_reference(hdr, hash_lock, tag);
5735
5736 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
5737 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5738 ASSERT(ARC_BUF_LAST(buf));
5739 }
5740
5741 /*
5742 * Pull the data off of this hdr and attach it to
5743 * a new anonymous hdr. Also find the last buffer
5744 * in the hdr's buffer list.
5745 */
5746 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
5747 ASSERT3P(lastbuf, !=, NULL);
5748
5749 /*
5750 * If the current arc_buf_t and the hdr are sharing their data
5751 * buffer, then we must stop sharing that block.
5752 */
5753 if (arc_buf_is_shared(buf)) {
5754 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
5755 VERIFY(!arc_buf_is_shared(lastbuf));
5756
5757 /*
5758 * First, sever the block sharing relationship between
5759 * buf and the arc_buf_hdr_t.
5760 */
5761 arc_unshare_buf(hdr, buf);
5762
5763 /*
5764 * Now we need to recreate the hdr's b_pabd. Since we
5765 * have lastbuf handy, we try to share with it, but if
5766 * we can't then we allocate a new b_pabd and copy the
5767 * data from buf into it.
5768 */
5769 if (arc_can_share(hdr, lastbuf)) {
5770 arc_share_buf(hdr, lastbuf);
5771 } else {
5772 arc_hdr_alloc_pabd(hdr);
5773 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
5774 buf->b_data, psize);
5775 }
5776 VERIFY3P(lastbuf->b_data, !=, NULL);
5777 } else if (HDR_SHARED_DATA(hdr)) {
5778 /*
5779 * Uncompressed shared buffers are always at the end
5780 * of the list. Compressed buffers don't have the
5781 * same requirements. This makes it hard to
5782 * simply assert that the lastbuf is shared so
5783 * we rely on the hdr's compression flags to determine
5784 * if we have a compressed, shared buffer.
5785 */
5786 ASSERT(arc_buf_is_shared(lastbuf) ||
5787 HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF);
5788 ASSERT(!ARC_BUF_SHARED(buf));
5789 }
5790 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
5791 ASSERT3P(state, !=, arc_l2c_only);
5792
5793 (void) refcount_remove_many(&state->arcs_size,
5794 arc_buf_size(buf), buf);
5795
5796 if (refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
5797 ASSERT3P(state, !=, arc_l2c_only);
5798 (void) refcount_remove_many(&state->arcs_esize[type],
5799 arc_buf_size(buf), buf);
5800 }
5801
5802 hdr->b_l1hdr.b_bufcnt -= 1;
5803 arc_cksum_verify(buf);
5804 arc_buf_unwatch(buf);
5805
5806 /* if this is the last uncompressed buf free the checksum */
5807 if (!arc_hdr_has_uncompressed_buf(hdr))
5808 arc_cksum_free(hdr);
5809
5810 mutex_exit(hash_lock);
5811
5812 /*
5813 * Allocate a new hdr. The new hdr will contain a b_pabd
5814 * buffer which will be freed in arc_write().
5815 */
5816 nhdr = arc_hdr_alloc(spa, psize, lsize, compress, type);
5817 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
5818 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
5819 ASSERT0(refcount_count(&nhdr->b_l1hdr.b_refcnt));
5820 VERIFY3U(nhdr->b_type, ==, type);
5821 ASSERT(!HDR_SHARED_DATA(nhdr));
5822
5823 nhdr->b_l1hdr.b_buf = buf;
5824 nhdr->b_l1hdr.b_bufcnt = 1;
5825 nhdr->b_l1hdr.b_mru_hits = 0;
5826 nhdr->b_l1hdr.b_mru_ghost_hits = 0;
5827 nhdr->b_l1hdr.b_mfu_hits = 0;
5828 nhdr->b_l1hdr.b_mfu_ghost_hits = 0;
5829 nhdr->b_l1hdr.b_l2_hits = 0;
5830 (void) refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
5831 buf->b_hdr = nhdr;
5832
5833 mutex_exit(&buf->b_evict_lock);
5834 (void) refcount_add_many(&arc_anon->arcs_size,
5835 HDR_GET_LSIZE(nhdr), buf);
5836 } else {
5837 mutex_exit(&buf->b_evict_lock);
5838 ASSERT(refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
5839 /* protected by hash lock, or hdr is on arc_anon */
5840 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
5841 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
5842 hdr->b_l1hdr.b_mru_hits = 0;
5843 hdr->b_l1hdr.b_mru_ghost_hits = 0;
5844 hdr->b_l1hdr.b_mfu_hits = 0;
5845 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
5846 hdr->b_l1hdr.b_l2_hits = 0;
5847 arc_change_state(arc_anon, hdr, hash_lock);
5848 hdr->b_l1hdr.b_arc_access = 0;
5849 mutex_exit(hash_lock);
5850
5851 buf_discard_identity(hdr);
5852 arc_buf_thaw(buf);
5853 }
5854 }
5855
5856 int
5857 arc_released(arc_buf_t *buf)
5858 {
5859 int released;
5860
5861 mutex_enter(&buf->b_evict_lock);
5862 released = (buf->b_data != NULL &&
5863 buf->b_hdr->b_l1hdr.b_state == arc_anon);
5864 mutex_exit(&buf->b_evict_lock);
5865 return (released);
5866 }
5867
5868 #ifdef ZFS_DEBUG
5869 int
5870 arc_referenced(arc_buf_t *buf)
5871 {
5872 int referenced;
5873
5874 mutex_enter(&buf->b_evict_lock);
5875 referenced = (refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
5876 mutex_exit(&buf->b_evict_lock);
5877 return (referenced);
5878 }
5879 #endif
5880
5881 static void
5882 arc_write_ready(zio_t *zio)
5883 {
5884 arc_write_callback_t *callback = zio->io_private;
5885 arc_buf_t *buf = callback->awcb_buf;
5886 arc_buf_hdr_t *hdr = buf->b_hdr;
5887 uint64_t psize = BP_IS_HOLE(zio->io_bp) ? 0 : BP_GET_PSIZE(zio->io_bp);
5888 enum zio_compress compress;
5889 fstrans_cookie_t cookie = spl_fstrans_mark();
5890
5891 ASSERT(HDR_HAS_L1HDR(hdr));
5892 ASSERT(!refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
5893 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
5894
5895 /*
5896 * If we're reexecuting this zio because the pool suspended, then
5897 * cleanup any state that was previously set the first time the
5898 * callback was invoked.
5899 */
5900 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
5901 arc_cksum_free(hdr);
5902 arc_buf_unwatch(buf);
5903 if (hdr->b_l1hdr.b_pabd != NULL) {
5904 if (arc_buf_is_shared(buf)) {
5905 arc_unshare_buf(hdr, buf);
5906 } else {
5907 arc_hdr_free_pabd(hdr);
5908 }
5909 }
5910 }
5911 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
5912 ASSERT(!HDR_SHARED_DATA(hdr));
5913 ASSERT(!arc_buf_is_shared(buf));
5914
5915 callback->awcb_ready(zio, buf, callback->awcb_private);
5916
5917 if (HDR_IO_IN_PROGRESS(hdr))
5918 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
5919
5920 arc_cksum_compute(buf);
5921 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5922
5923 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
5924 compress = ZIO_COMPRESS_OFF;
5925 } else {
5926 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(zio->io_bp));
5927 compress = BP_GET_COMPRESS(zio->io_bp);
5928 }
5929 HDR_SET_PSIZE(hdr, psize);
5930 arc_hdr_set_compress(hdr, compress);
5931
5932 /*
5933 * Fill the hdr with data. If the hdr is compressed, the data we want
5934 * is available from the zio, otherwise we can take it from the buf.
5935 *
5936 * We might be able to share the buf's data with the hdr here. However,
5937 * doing so would cause the ARC to be full of linear ABDs if we write a
5938 * lot of shareable data. As a compromise, we check whether scattered
5939 * ABDs are allowed, and assume that if they are then the user wants
5940 * the ARC to be primarily filled with them regardless of the data being
5941 * written. Therefore, if they're allowed then we allocate one and copy
5942 * the data into it; otherwise, we share the data directly if we can.
5943 */
5944 if (zfs_abd_scatter_enabled || !arc_can_share(hdr, buf)) {
5945 arc_hdr_alloc_pabd(hdr);
5946
5947 /*
5948 * Ideally, we would always copy the io_abd into b_pabd, but the
5949 * user may have disabled compressed ARC, thus we must check the
5950 * hdr's compression setting rather than the io_bp's.
5951 */
5952 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF) {
5953 ASSERT3U(BP_GET_COMPRESS(zio->io_bp), !=,
5954 ZIO_COMPRESS_OFF);
5955 ASSERT3U(psize, >, 0);
5956
5957 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
5958 } else {
5959 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
5960
5961 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
5962 arc_buf_size(buf));
5963 }
5964 } else {
5965 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
5966 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
5967 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
5968
5969 arc_share_buf(hdr, buf);
5970 }
5971
5972 arc_hdr_verify(hdr, zio->io_bp);
5973 spl_fstrans_unmark(cookie);
5974 }
5975
5976 static void
5977 arc_write_children_ready(zio_t *zio)
5978 {
5979 arc_write_callback_t *callback = zio->io_private;
5980 arc_buf_t *buf = callback->awcb_buf;
5981
5982 callback->awcb_children_ready(zio, buf, callback->awcb_private);
5983 }
5984
5985 /*
5986 * The SPA calls this callback for each physical write that happens on behalf
5987 * of a logical write. See the comment in dbuf_write_physdone() for details.
5988 */
5989 static void
5990 arc_write_physdone(zio_t *zio)
5991 {
5992 arc_write_callback_t *cb = zio->io_private;
5993 if (cb->awcb_physdone != NULL)
5994 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
5995 }
5996
5997 static void
5998 arc_write_done(zio_t *zio)
5999 {
6000 arc_write_callback_t *callback = zio->io_private;
6001 arc_buf_t *buf = callback->awcb_buf;
6002 arc_buf_hdr_t *hdr = buf->b_hdr;
6003
6004 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6005
6006 if (zio->io_error == 0) {
6007 arc_hdr_verify(hdr, zio->io_bp);
6008
6009 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
6010 buf_discard_identity(hdr);
6011 } else {
6012 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
6013 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
6014 }
6015 } else {
6016 ASSERT(HDR_EMPTY(hdr));
6017 }
6018
6019 /*
6020 * If the block to be written was all-zero or compressed enough to be
6021 * embedded in the BP, no write was performed so there will be no
6022 * dva/birth/checksum. The buffer must therefore remain anonymous
6023 * (and uncached).
6024 */
6025 if (!HDR_EMPTY(hdr)) {
6026 arc_buf_hdr_t *exists;
6027 kmutex_t *hash_lock;
6028
6029 ASSERT3U(zio->io_error, ==, 0);
6030
6031 arc_cksum_verify(buf);
6032
6033 exists = buf_hash_insert(hdr, &hash_lock);
6034 if (exists != NULL) {
6035 /*
6036 * This can only happen if we overwrite for
6037 * sync-to-convergence, because we remove
6038 * buffers from the hash table when we arc_free().
6039 */
6040 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
6041 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6042 panic("bad overwrite, hdr=%p exists=%p",
6043 (void *)hdr, (void *)exists);
6044 ASSERT(refcount_is_zero(
6045 &exists->b_l1hdr.b_refcnt));
6046 arc_change_state(arc_anon, exists, hash_lock);
6047 mutex_exit(hash_lock);
6048 arc_hdr_destroy(exists);
6049 exists = buf_hash_insert(hdr, &hash_lock);
6050 ASSERT3P(exists, ==, NULL);
6051 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
6052 /* nopwrite */
6053 ASSERT(zio->io_prop.zp_nopwrite);
6054 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
6055 panic("bad nopwrite, hdr=%p exists=%p",
6056 (void *)hdr, (void *)exists);
6057 } else {
6058 /* Dedup */
6059 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
6060 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
6061 ASSERT(BP_GET_DEDUP(zio->io_bp));
6062 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
6063 }
6064 }
6065 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6066 /* if it's not anon, we are doing a scrub */
6067 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
6068 arc_access(hdr, hash_lock);
6069 mutex_exit(hash_lock);
6070 } else {
6071 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6072 }
6073
6074 ASSERT(!refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
6075 callback->awcb_done(zio, buf, callback->awcb_private);
6076
6077 abd_put(zio->io_abd);
6078 kmem_free(callback, sizeof (arc_write_callback_t));
6079 }
6080
6081 zio_t *
6082 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
6083 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc,
6084 const zio_prop_t *zp, arc_done_func_t *ready,
6085 arc_done_func_t *children_ready, arc_done_func_t *physdone,
6086 arc_done_func_t *done, void *private, zio_priority_t priority,
6087 int zio_flags, const zbookmark_phys_t *zb)
6088 {
6089 arc_buf_hdr_t *hdr = buf->b_hdr;
6090 arc_write_callback_t *callback;
6091 zio_t *zio;
6092 zio_prop_t localprop = *zp;
6093
6094 ASSERT3P(ready, !=, NULL);
6095 ASSERT3P(done, !=, NULL);
6096 ASSERT(!HDR_IO_ERROR(hdr));
6097 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6098 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6099 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
6100 if (l2arc)
6101 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
6102 if (ARC_BUF_COMPRESSED(buf)) {
6103 /*
6104 * We're writing a pre-compressed buffer. Make the
6105 * compression algorithm requested by the zio_prop_t match
6106 * the pre-compressed buffer's compression algorithm.
6107 */
6108 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
6109
6110 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
6111 zio_flags |= ZIO_FLAG_RAW;
6112 }
6113 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
6114 callback->awcb_ready = ready;
6115 callback->awcb_children_ready = children_ready;
6116 callback->awcb_physdone = physdone;
6117 callback->awcb_done = done;
6118 callback->awcb_private = private;
6119 callback->awcb_buf = buf;
6120
6121 /*
6122 * The hdr's b_pabd is now stale, free it now. A new data block
6123 * will be allocated when the zio pipeline calls arc_write_ready().
6124 */
6125 if (hdr->b_l1hdr.b_pabd != NULL) {
6126 /*
6127 * If the buf is currently sharing the data block with
6128 * the hdr then we need to break that relationship here.
6129 * The hdr will remain with a NULL data pointer and the
6130 * buf will take sole ownership of the block.
6131 */
6132 if (arc_buf_is_shared(buf)) {
6133 arc_unshare_buf(hdr, buf);
6134 } else {
6135 arc_hdr_free_pabd(hdr);
6136 }
6137 VERIFY3P(buf->b_data, !=, NULL);
6138 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6139 }
6140
6141 if (!(zio_flags & ZIO_FLAG_RAW))
6142 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
6143
6144 ASSERT(!arc_buf_is_shared(buf));
6145 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6146
6147 zio = zio_write(pio, spa, txg, bp,
6148 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
6149 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
6150 (children_ready != NULL) ? arc_write_children_ready : NULL,
6151 arc_write_physdone, arc_write_done, callback,
6152 priority, zio_flags, zb);
6153
6154 return (zio);
6155 }
6156
6157 static int
6158 arc_memory_throttle(uint64_t reserve, uint64_t txg)
6159 {
6160 #ifdef _KERNEL
6161 uint64_t available_memory = arc_free_memory();
6162 static uint64_t page_load = 0;
6163 static uint64_t last_txg = 0;
6164
6165 #if defined(_ILP32)
6166 available_memory =
6167 MIN(available_memory, vmem_size(heap_arena, VMEM_FREE));
6168 #endif
6169
6170 if (available_memory > arc_all_memory() * arc_lotsfree_percent / 100)
6171 return (0);
6172
6173 if (txg > last_txg) {
6174 last_txg = txg;
6175 page_load = 0;
6176 }
6177 /*
6178 * If we are in pageout, we know that memory is already tight,
6179 * the arc is already going to be evicting, so we just want to
6180 * continue to let page writes occur as quickly as possible.
6181 */
6182 if (current_is_kswapd()) {
6183 if (page_load > MAX(arc_sys_free / 4, available_memory) / 4) {
6184 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6185 return (SET_ERROR(ERESTART));
6186 }
6187 /* Note: reserve is inflated, so we deflate */
6188 page_load += reserve / 8;
6189 return (0);
6190 } else if (page_load > 0 && arc_reclaim_needed()) {
6191 /* memory is low, delay before restarting */
6192 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
6193 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
6194 return (SET_ERROR(EAGAIN));
6195 }
6196 page_load = 0;
6197 #endif
6198 return (0);
6199 }
6200
6201 void
6202 arc_tempreserve_clear(uint64_t reserve)
6203 {
6204 atomic_add_64(&arc_tempreserve, -reserve);
6205 ASSERT((int64_t)arc_tempreserve >= 0);
6206 }
6207
6208 int
6209 arc_tempreserve_space(uint64_t reserve, uint64_t txg)
6210 {
6211 int error;
6212 uint64_t anon_size;
6213
6214 if (!arc_no_grow &&
6215 reserve > arc_c/4 &&
6216 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
6217 arc_c = MIN(arc_c_max, reserve * 4);
6218
6219 /*
6220 * Throttle when the calculated memory footprint for the TXG
6221 * exceeds the target ARC size.
6222 */
6223 if (reserve > arc_c) {
6224 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
6225 return (SET_ERROR(ERESTART));
6226 }
6227
6228 /*
6229 * Don't count loaned bufs as in flight dirty data to prevent long
6230 * network delays from blocking transactions that are ready to be
6231 * assigned to a txg.
6232 */
6233
6234 /* assert that it has not wrapped around */
6235 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
6236
6237 anon_size = MAX((int64_t)(refcount_count(&arc_anon->arcs_size) -
6238 arc_loaned_bytes), 0);
6239
6240 /*
6241 * Writes will, almost always, require additional memory allocations
6242 * in order to compress/encrypt/etc the data. We therefore need to
6243 * make sure that there is sufficient available memory for this.
6244 */
6245 error = arc_memory_throttle(reserve, txg);
6246 if (error != 0)
6247 return (error);
6248
6249 /*
6250 * Throttle writes when the amount of dirty data in the cache
6251 * gets too large. We try to keep the cache less than half full
6252 * of dirty blocks so that our sync times don't grow too large.
6253 * Note: if two requests come in concurrently, we might let them
6254 * both succeed, when one of them should fail. Not a huge deal.
6255 */
6256
6257 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
6258 anon_size > arc_c / 4) {
6259 uint64_t meta_esize =
6260 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6261 uint64_t data_esize =
6262 refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6263 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6264 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
6265 arc_tempreserve >> 10, meta_esize >> 10,
6266 data_esize >> 10, reserve >> 10, arc_c >> 10);
6267 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
6268 return (SET_ERROR(ERESTART));
6269 }
6270 atomic_add_64(&arc_tempreserve, reserve);
6271 return (0);
6272 }
6273
6274 static void
6275 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
6276 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
6277 {
6278 size->value.ui64 = refcount_count(&state->arcs_size);
6279 evict_data->value.ui64 =
6280 refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
6281 evict_metadata->value.ui64 =
6282 refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
6283 }
6284
6285 static int
6286 arc_kstat_update(kstat_t *ksp, int rw)
6287 {
6288 arc_stats_t *as = ksp->ks_data;
6289
6290 if (rw == KSTAT_WRITE) {
6291 return (EACCES);
6292 } else {
6293 arc_kstat_update_state(arc_anon,
6294 &as->arcstat_anon_size,
6295 &as->arcstat_anon_evictable_data,
6296 &as->arcstat_anon_evictable_metadata);
6297 arc_kstat_update_state(arc_mru,
6298 &as->arcstat_mru_size,
6299 &as->arcstat_mru_evictable_data,
6300 &as->arcstat_mru_evictable_metadata);
6301 arc_kstat_update_state(arc_mru_ghost,
6302 &as->arcstat_mru_ghost_size,
6303 &as->arcstat_mru_ghost_evictable_data,
6304 &as->arcstat_mru_ghost_evictable_metadata);
6305 arc_kstat_update_state(arc_mfu,
6306 &as->arcstat_mfu_size,
6307 &as->arcstat_mfu_evictable_data,
6308 &as->arcstat_mfu_evictable_metadata);
6309 arc_kstat_update_state(arc_mfu_ghost,
6310 &as->arcstat_mfu_ghost_size,
6311 &as->arcstat_mfu_ghost_evictable_data,
6312 &as->arcstat_mfu_ghost_evictable_metadata);
6313
6314 as->arcstat_memory_all_bytes.value.ui64 =
6315 arc_all_memory();
6316 as->arcstat_memory_free_bytes.value.ui64 =
6317 arc_free_memory();
6318 as->arcstat_memory_available_bytes.value.i64 =
6319 arc_available_memory();
6320 }
6321
6322 return (0);
6323 }
6324
6325 /*
6326 * This function *must* return indices evenly distributed between all
6327 * sublists of the multilist. This is needed due to how the ARC eviction
6328 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
6329 * distributed between all sublists and uses this assumption when
6330 * deciding which sublist to evict from and how much to evict from it.
6331 */
6332 unsigned int
6333 arc_state_multilist_index_func(multilist_t *ml, void *obj)
6334 {
6335 arc_buf_hdr_t *hdr = obj;
6336
6337 /*
6338 * We rely on b_dva to generate evenly distributed index
6339 * numbers using buf_hash below. So, as an added precaution,
6340 * let's make sure we never add empty buffers to the arc lists.
6341 */
6342 ASSERT(!HDR_EMPTY(hdr));
6343
6344 /*
6345 * The assumption here, is the hash value for a given
6346 * arc_buf_hdr_t will remain constant throughout its lifetime
6347 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
6348 * Thus, we don't need to store the header's sublist index
6349 * on insertion, as this index can be recalculated on removal.
6350 *
6351 * Also, the low order bits of the hash value are thought to be
6352 * distributed evenly. Otherwise, in the case that the multilist
6353 * has a power of two number of sublists, each sublists' usage
6354 * would not be evenly distributed.
6355 */
6356 return (buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
6357 multilist_get_num_sublists(ml));
6358 }
6359
6360 /*
6361 * Called during module initialization and periodically thereafter to
6362 * apply reasonable changes to the exposed performance tunings. Non-zero
6363 * zfs_* values which differ from the currently set values will be applied.
6364 */
6365 static void
6366 arc_tuning_update(void)
6367 {
6368 uint64_t allmem = arc_all_memory();
6369 unsigned long limit;
6370
6371 /* Valid range: 64M - <all physical memory> */
6372 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
6373 (zfs_arc_max > 64 << 20) && (zfs_arc_max < allmem) &&
6374 (zfs_arc_max > arc_c_min)) {
6375 arc_c_max = zfs_arc_max;
6376 arc_c = arc_c_max;
6377 arc_p = (arc_c >> 1);
6378 if (arc_meta_limit > arc_c_max)
6379 arc_meta_limit = arc_c_max;
6380 if (arc_dnode_limit > arc_meta_limit)
6381 arc_dnode_limit = arc_meta_limit;
6382 }
6383
6384 /* Valid range: 32M - <arc_c_max> */
6385 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
6386 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
6387 (zfs_arc_min <= arc_c_max)) {
6388 arc_c_min = zfs_arc_min;
6389 arc_c = MAX(arc_c, arc_c_min);
6390 }
6391
6392 /* Valid range: 16M - <arc_c_max> */
6393 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
6394 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
6395 (zfs_arc_meta_min <= arc_c_max)) {
6396 arc_meta_min = zfs_arc_meta_min;
6397 if (arc_meta_limit < arc_meta_min)
6398 arc_meta_limit = arc_meta_min;
6399 if (arc_dnode_limit < arc_meta_min)
6400 arc_dnode_limit = arc_meta_min;
6401 }
6402
6403 /* Valid range: <arc_meta_min> - <arc_c_max> */
6404 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
6405 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
6406 if ((limit != arc_meta_limit) &&
6407 (limit >= arc_meta_min) &&
6408 (limit <= arc_c_max))
6409 arc_meta_limit = limit;
6410
6411 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
6412 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
6413 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
6414 if ((limit != arc_dnode_limit) &&
6415 (limit >= arc_meta_min) &&
6416 (limit <= arc_meta_limit))
6417 arc_dnode_limit = limit;
6418
6419 /* Valid range: 1 - N */
6420 if (zfs_arc_grow_retry)
6421 arc_grow_retry = zfs_arc_grow_retry;
6422
6423 /* Valid range: 1 - N */
6424 if (zfs_arc_shrink_shift) {
6425 arc_shrink_shift = zfs_arc_shrink_shift;
6426 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
6427 }
6428
6429 /* Valid range: 1 - N */
6430 if (zfs_arc_p_min_shift)
6431 arc_p_min_shift = zfs_arc_p_min_shift;
6432
6433 /* Valid range: 1 - N ticks */
6434 if (zfs_arc_min_prefetch_lifespan)
6435 arc_min_prefetch_lifespan = zfs_arc_min_prefetch_lifespan;
6436
6437 /* Valid range: 0 - 100 */
6438 if ((zfs_arc_lotsfree_percent >= 0) &&
6439 (zfs_arc_lotsfree_percent <= 100))
6440 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
6441
6442 /* Valid range: 0 - <all physical memory> */
6443 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
6444 arc_sys_free = MIN(MAX(zfs_arc_sys_free, 0), allmem);
6445
6446 }
6447
6448 static void
6449 arc_state_init(void)
6450 {
6451 arc_anon = &ARC_anon;
6452 arc_mru = &ARC_mru;
6453 arc_mru_ghost = &ARC_mru_ghost;
6454 arc_mfu = &ARC_mfu;
6455 arc_mfu_ghost = &ARC_mfu_ghost;
6456 arc_l2c_only = &ARC_l2c_only;
6457
6458 arc_mru->arcs_list[ARC_BUFC_METADATA] =
6459 multilist_create(sizeof (arc_buf_hdr_t),
6460 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6461 arc_state_multilist_index_func);
6462 arc_mru->arcs_list[ARC_BUFC_DATA] =
6463 multilist_create(sizeof (arc_buf_hdr_t),
6464 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6465 arc_state_multilist_index_func);
6466 arc_mru_ghost->arcs_list[ARC_BUFC_METADATA] =
6467 multilist_create(sizeof (arc_buf_hdr_t),
6468 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6469 arc_state_multilist_index_func);
6470 arc_mru_ghost->arcs_list[ARC_BUFC_DATA] =
6471 multilist_create(sizeof (arc_buf_hdr_t),
6472 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6473 arc_state_multilist_index_func);
6474 arc_mfu->arcs_list[ARC_BUFC_METADATA] =
6475 multilist_create(sizeof (arc_buf_hdr_t),
6476 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6477 arc_state_multilist_index_func);
6478 arc_mfu->arcs_list[ARC_BUFC_DATA] =
6479 multilist_create(sizeof (arc_buf_hdr_t),
6480 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6481 arc_state_multilist_index_func);
6482 arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA] =
6483 multilist_create(sizeof (arc_buf_hdr_t),
6484 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6485 arc_state_multilist_index_func);
6486 arc_mfu_ghost->arcs_list[ARC_BUFC_DATA] =
6487 multilist_create(sizeof (arc_buf_hdr_t),
6488 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6489 arc_state_multilist_index_func);
6490 arc_l2c_only->arcs_list[ARC_BUFC_METADATA] =
6491 multilist_create(sizeof (arc_buf_hdr_t),
6492 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6493 arc_state_multilist_index_func);
6494 arc_l2c_only->arcs_list[ARC_BUFC_DATA] =
6495 multilist_create(sizeof (arc_buf_hdr_t),
6496 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node),
6497 arc_state_multilist_index_func);
6498
6499 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6500 refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6501 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6502 refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6503 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6504 refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6505 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6506 refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6507 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6508 refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6509 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6510 refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6511
6512 refcount_create(&arc_anon->arcs_size);
6513 refcount_create(&arc_mru->arcs_size);
6514 refcount_create(&arc_mru_ghost->arcs_size);
6515 refcount_create(&arc_mfu->arcs_size);
6516 refcount_create(&arc_mfu_ghost->arcs_size);
6517 refcount_create(&arc_l2c_only->arcs_size);
6518
6519 arc_anon->arcs_state = ARC_STATE_ANON;
6520 arc_mru->arcs_state = ARC_STATE_MRU;
6521 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
6522 arc_mfu->arcs_state = ARC_STATE_MFU;
6523 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
6524 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
6525 }
6526
6527 static void
6528 arc_state_fini(void)
6529 {
6530 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
6531 refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
6532 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
6533 refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
6534 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
6535 refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
6536 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
6537 refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
6538 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
6539 refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
6540 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
6541 refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
6542
6543 refcount_destroy(&arc_anon->arcs_size);
6544 refcount_destroy(&arc_mru->arcs_size);
6545 refcount_destroy(&arc_mru_ghost->arcs_size);
6546 refcount_destroy(&arc_mfu->arcs_size);
6547 refcount_destroy(&arc_mfu_ghost->arcs_size);
6548 refcount_destroy(&arc_l2c_only->arcs_size);
6549
6550 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_METADATA]);
6551 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
6552 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_METADATA]);
6553 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
6554 multilist_destroy(arc_mru->arcs_list[ARC_BUFC_DATA]);
6555 multilist_destroy(arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
6556 multilist_destroy(arc_mfu->arcs_list[ARC_BUFC_DATA]);
6557 multilist_destroy(arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
6558 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
6559 multilist_destroy(arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
6560 }
6561
6562 uint64_t
6563 arc_target_bytes(void)
6564 {
6565 return (arc_c);
6566 }
6567
6568 void
6569 arc_init(void)
6570 {
6571 uint64_t percent, allmem = arc_all_memory();
6572
6573 mutex_init(&arc_reclaim_lock, NULL, MUTEX_DEFAULT, NULL);
6574 cv_init(&arc_reclaim_thread_cv, NULL, CV_DEFAULT, NULL);
6575 cv_init(&arc_reclaim_waiters_cv, NULL, CV_DEFAULT, NULL);
6576
6577 /* Convert seconds to clock ticks */
6578 arc_min_prefetch_lifespan = 1 * hz;
6579
6580 #ifdef _KERNEL
6581 /*
6582 * Register a shrinker to support synchronous (direct) memory
6583 * reclaim from the arc. This is done to prevent kswapd from
6584 * swapping out pages when it is preferable to shrink the arc.
6585 */
6586 spl_register_shrinker(&arc_shrinker);
6587
6588 /* Set to 1/64 of all memory or a minimum of 512K */
6589 arc_sys_free = MAX(allmem / 64, (512 * 1024));
6590 arc_need_free = 0;
6591 #endif
6592
6593 /* Set max to 1/2 of all memory */
6594 arc_c_max = allmem / 2;
6595
6596 #ifdef _KERNEL
6597 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more */
6598 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
6599 #else
6600 /*
6601 * In userland, there's only the memory pressure that we artificially
6602 * create (see arc_available_memory()). Don't let arc_c get too
6603 * small, because it can cause transactions to be larger than
6604 * arc_c, causing arc_tempreserve_space() to fail.
6605 */
6606 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
6607 #endif
6608
6609 arc_c = arc_c_max;
6610 arc_p = (arc_c >> 1);
6611 arc_size = 0;
6612
6613 /* Set min to 1/2 of arc_c_min */
6614 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
6615 /* Initialize maximum observed usage to zero */
6616 arc_meta_max = 0;
6617 /*
6618 * Set arc_meta_limit to a percent of arc_c_max with a floor of
6619 * arc_meta_min, and a ceiling of arc_c_max.
6620 */
6621 percent = MIN(zfs_arc_meta_limit_percent, 100);
6622 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
6623 percent = MIN(zfs_arc_dnode_limit_percent, 100);
6624 arc_dnode_limit = (percent * arc_meta_limit) / 100;
6625
6626 /* Apply user specified tunings */
6627 arc_tuning_update();
6628
6629 /* if kmem_flags are set, lets try to use less memory */
6630 if (kmem_debugging())
6631 arc_c = arc_c / 2;
6632 if (arc_c < arc_c_min)
6633 arc_c = arc_c_min;
6634
6635 arc_state_init();
6636 buf_init();
6637
6638 list_create(&arc_prune_list, sizeof (arc_prune_t),
6639 offsetof(arc_prune_t, p_node));
6640 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
6641
6642 arc_prune_taskq = taskq_create("arc_prune", max_ncpus, defclsyspri,
6643 max_ncpus, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
6644
6645 arc_reclaim_thread_exit = B_FALSE;
6646
6647 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
6648 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
6649
6650 if (arc_ksp != NULL) {
6651 arc_ksp->ks_data = &arc_stats;
6652 arc_ksp->ks_update = arc_kstat_update;
6653 kstat_install(arc_ksp);
6654 }
6655
6656 (void) thread_create(NULL, 0, arc_reclaim_thread, NULL, 0, &p0,
6657 TS_RUN, defclsyspri);
6658
6659 arc_dead = B_FALSE;
6660 arc_warm = B_FALSE;
6661
6662 /*
6663 * Calculate maximum amount of dirty data per pool.
6664 *
6665 * If it has been set by a module parameter, take that.
6666 * Otherwise, use a percentage of physical memory defined by
6667 * zfs_dirty_data_max_percent (default 10%) with a cap at
6668 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
6669 */
6670 if (zfs_dirty_data_max_max == 0)
6671 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
6672 allmem * zfs_dirty_data_max_max_percent / 100);
6673
6674 if (zfs_dirty_data_max == 0) {
6675 zfs_dirty_data_max = allmem *
6676 zfs_dirty_data_max_percent / 100;
6677 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
6678 zfs_dirty_data_max_max);
6679 }
6680 }
6681
6682 void
6683 arc_fini(void)
6684 {
6685 arc_prune_t *p;
6686
6687 #ifdef _KERNEL
6688 spl_unregister_shrinker(&arc_shrinker);
6689 #endif /* _KERNEL */
6690
6691 mutex_enter(&arc_reclaim_lock);
6692 arc_reclaim_thread_exit = B_TRUE;
6693 /*
6694 * The reclaim thread will set arc_reclaim_thread_exit back to
6695 * B_FALSE when it is finished exiting; we're waiting for that.
6696 */
6697 while (arc_reclaim_thread_exit) {
6698 cv_signal(&arc_reclaim_thread_cv);
6699 cv_wait(&arc_reclaim_thread_cv, &arc_reclaim_lock);
6700 }
6701 mutex_exit(&arc_reclaim_lock);
6702
6703 /* Use B_TRUE to ensure *all* buffers are evicted */
6704 arc_flush(NULL, B_TRUE);
6705
6706 arc_dead = B_TRUE;
6707
6708 if (arc_ksp != NULL) {
6709 kstat_delete(arc_ksp);
6710 arc_ksp = NULL;
6711 }
6712
6713 taskq_wait(arc_prune_taskq);
6714 taskq_destroy(arc_prune_taskq);
6715
6716 mutex_enter(&arc_prune_mtx);
6717 while ((p = list_head(&arc_prune_list)) != NULL) {
6718 list_remove(&arc_prune_list, p);
6719 refcount_remove(&p->p_refcnt, &arc_prune_list);
6720 refcount_destroy(&p->p_refcnt);
6721 kmem_free(p, sizeof (*p));
6722 }
6723 mutex_exit(&arc_prune_mtx);
6724
6725 list_destroy(&arc_prune_list);
6726 mutex_destroy(&arc_prune_mtx);
6727 mutex_destroy(&arc_reclaim_lock);
6728 cv_destroy(&arc_reclaim_thread_cv);
6729 cv_destroy(&arc_reclaim_waiters_cv);
6730
6731 arc_state_fini();
6732 buf_fini();
6733
6734 ASSERT0(arc_loaned_bytes);
6735 }
6736
6737 /*
6738 * Level 2 ARC
6739 *
6740 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
6741 * It uses dedicated storage devices to hold cached data, which are populated
6742 * using large infrequent writes. The main role of this cache is to boost
6743 * the performance of random read workloads. The intended L2ARC devices
6744 * include short-stroked disks, solid state disks, and other media with
6745 * substantially faster read latency than disk.
6746 *
6747 * +-----------------------+
6748 * | ARC |
6749 * +-----------------------+
6750 * | ^ ^
6751 * | | |
6752 * l2arc_feed_thread() arc_read()
6753 * | | |
6754 * | l2arc read |
6755 * V | |
6756 * +---------------+ |
6757 * | L2ARC | |
6758 * +---------------+ |
6759 * | ^ |
6760 * l2arc_write() | |
6761 * | | |
6762 * V | |
6763 * +-------+ +-------+
6764 * | vdev | | vdev |
6765 * | cache | | cache |
6766 * +-------+ +-------+
6767 * +=========+ .-----.
6768 * : L2ARC : |-_____-|
6769 * : devices : | Disks |
6770 * +=========+ `-_____-'
6771 *
6772 * Read requests are satisfied from the following sources, in order:
6773 *
6774 * 1) ARC
6775 * 2) vdev cache of L2ARC devices
6776 * 3) L2ARC devices
6777 * 4) vdev cache of disks
6778 * 5) disks
6779 *
6780 * Some L2ARC device types exhibit extremely slow write performance.
6781 * To accommodate for this there are some significant differences between
6782 * the L2ARC and traditional cache design:
6783 *
6784 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
6785 * the ARC behave as usual, freeing buffers and placing headers on ghost
6786 * lists. The ARC does not send buffers to the L2ARC during eviction as
6787 * this would add inflated write latencies for all ARC memory pressure.
6788 *
6789 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
6790 * It does this by periodically scanning buffers from the eviction-end of
6791 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
6792 * not already there. It scans until a headroom of buffers is satisfied,
6793 * which itself is a buffer for ARC eviction. If a compressible buffer is
6794 * found during scanning and selected for writing to an L2ARC device, we
6795 * temporarily boost scanning headroom during the next scan cycle to make
6796 * sure we adapt to compression effects (which might significantly reduce
6797 * the data volume we write to L2ARC). The thread that does this is
6798 * l2arc_feed_thread(), illustrated below; example sizes are included to
6799 * provide a better sense of ratio than this diagram:
6800 *
6801 * head --> tail
6802 * +---------------------+----------+
6803 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
6804 * +---------------------+----------+ | o L2ARC eligible
6805 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
6806 * +---------------------+----------+ |
6807 * 15.9 Gbytes ^ 32 Mbytes |
6808 * headroom |
6809 * l2arc_feed_thread()
6810 * |
6811 * l2arc write hand <--[oooo]--'
6812 * | 8 Mbyte
6813 * | write max
6814 * V
6815 * +==============================+
6816 * L2ARC dev |####|#|###|###| |####| ... |
6817 * +==============================+
6818 * 32 Gbytes
6819 *
6820 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
6821 * evicted, then the L2ARC has cached a buffer much sooner than it probably
6822 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
6823 * safe to say that this is an uncommon case, since buffers at the end of
6824 * the ARC lists have moved there due to inactivity.
6825 *
6826 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
6827 * then the L2ARC simply misses copying some buffers. This serves as a
6828 * pressure valve to prevent heavy read workloads from both stalling the ARC
6829 * with waits and clogging the L2ARC with writes. This also helps prevent
6830 * the potential for the L2ARC to churn if it attempts to cache content too
6831 * quickly, such as during backups of the entire pool.
6832 *
6833 * 5. After system boot and before the ARC has filled main memory, there are
6834 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
6835 * lists can remain mostly static. Instead of searching from tail of these
6836 * lists as pictured, the l2arc_feed_thread() will search from the list heads
6837 * for eligible buffers, greatly increasing its chance of finding them.
6838 *
6839 * The L2ARC device write speed is also boosted during this time so that
6840 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
6841 * there are no L2ARC reads, and no fear of degrading read performance
6842 * through increased writes.
6843 *
6844 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
6845 * the vdev queue can aggregate them into larger and fewer writes. Each
6846 * device is written to in a rotor fashion, sweeping writes through
6847 * available space then repeating.
6848 *
6849 * 7. The L2ARC does not store dirty content. It never needs to flush
6850 * write buffers back to disk based storage.
6851 *
6852 * 8. If an ARC buffer is written (and dirtied) which also exists in the
6853 * L2ARC, the now stale L2ARC buffer is immediately dropped.
6854 *
6855 * The performance of the L2ARC can be tweaked by a number of tunables, which
6856 * may be necessary for different workloads:
6857 *
6858 * l2arc_write_max max write bytes per interval
6859 * l2arc_write_boost extra write bytes during device warmup
6860 * l2arc_noprefetch skip caching prefetched buffers
6861 * l2arc_headroom number of max device writes to precache
6862 * l2arc_headroom_boost when we find compressed buffers during ARC
6863 * scanning, we multiply headroom by this
6864 * percentage factor for the next scan cycle,
6865 * since more compressed buffers are likely to
6866 * be present
6867 * l2arc_feed_secs seconds between L2ARC writing
6868 *
6869 * Tunables may be removed or added as future performance improvements are
6870 * integrated, and also may become zpool properties.
6871 *
6872 * There are three key functions that control how the L2ARC warms up:
6873 *
6874 * l2arc_write_eligible() check if a buffer is eligible to cache
6875 * l2arc_write_size() calculate how much to write
6876 * l2arc_write_interval() calculate sleep delay between writes
6877 *
6878 * These three functions determine what to write, how much, and how quickly
6879 * to send writes.
6880 */
6881
6882 static boolean_t
6883 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
6884 {
6885 /*
6886 * A buffer is *not* eligible for the L2ARC if it:
6887 * 1. belongs to a different spa.
6888 * 2. is already cached on the L2ARC.
6889 * 3. has an I/O in progress (it may be an incomplete read).
6890 * 4. is flagged not eligible (zfs property).
6891 */
6892 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
6893 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
6894 return (B_FALSE);
6895
6896 return (B_TRUE);
6897 }
6898
6899 static uint64_t
6900 l2arc_write_size(void)
6901 {
6902 uint64_t size;
6903
6904 /*
6905 * Make sure our globals have meaningful values in case the user
6906 * altered them.
6907 */
6908 size = l2arc_write_max;
6909 if (size == 0) {
6910 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
6911 "be greater than zero, resetting it to the default (%d)",
6912 L2ARC_WRITE_SIZE);
6913 size = l2arc_write_max = L2ARC_WRITE_SIZE;
6914 }
6915
6916 if (arc_warm == B_FALSE)
6917 size += l2arc_write_boost;
6918
6919 return (size);
6920
6921 }
6922
6923 static clock_t
6924 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
6925 {
6926 clock_t interval, next, now;
6927
6928 /*
6929 * If the ARC lists are busy, increase our write rate; if the
6930 * lists are stale, idle back. This is achieved by checking
6931 * how much we previously wrote - if it was more than half of
6932 * what we wanted, schedule the next write much sooner.
6933 */
6934 if (l2arc_feed_again && wrote > (wanted / 2))
6935 interval = (hz * l2arc_feed_min_ms) / 1000;
6936 else
6937 interval = hz * l2arc_feed_secs;
6938
6939 now = ddi_get_lbolt();
6940 next = MAX(now, MIN(now + interval, began + interval));
6941
6942 return (next);
6943 }
6944
6945 /*
6946 * Cycle through L2ARC devices. This is how L2ARC load balances.
6947 * If a device is returned, this also returns holding the spa config lock.
6948 */
6949 static l2arc_dev_t *
6950 l2arc_dev_get_next(void)
6951 {
6952 l2arc_dev_t *first, *next = NULL;
6953
6954 /*
6955 * Lock out the removal of spas (spa_namespace_lock), then removal
6956 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
6957 * both locks will be dropped and a spa config lock held instead.
6958 */
6959 mutex_enter(&spa_namespace_lock);
6960 mutex_enter(&l2arc_dev_mtx);
6961
6962 /* if there are no vdevs, there is nothing to do */
6963 if (l2arc_ndev == 0)
6964 goto out;
6965
6966 first = NULL;
6967 next = l2arc_dev_last;
6968 do {
6969 /* loop around the list looking for a non-faulted vdev */
6970 if (next == NULL) {
6971 next = list_head(l2arc_dev_list);
6972 } else {
6973 next = list_next(l2arc_dev_list, next);
6974 if (next == NULL)
6975 next = list_head(l2arc_dev_list);
6976 }
6977
6978 /* if we have come back to the start, bail out */
6979 if (first == NULL)
6980 first = next;
6981 else if (next == first)
6982 break;
6983
6984 } while (vdev_is_dead(next->l2ad_vdev));
6985
6986 /* if we were unable to find any usable vdevs, return NULL */
6987 if (vdev_is_dead(next->l2ad_vdev))
6988 next = NULL;
6989
6990 l2arc_dev_last = next;
6991
6992 out:
6993 mutex_exit(&l2arc_dev_mtx);
6994
6995 /*
6996 * Grab the config lock to prevent the 'next' device from being
6997 * removed while we are writing to it.
6998 */
6999 if (next != NULL)
7000 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
7001 mutex_exit(&spa_namespace_lock);
7002
7003 return (next);
7004 }
7005
7006 /*
7007 * Free buffers that were tagged for destruction.
7008 */
7009 static void
7010 l2arc_do_free_on_write(void)
7011 {
7012 list_t *buflist;
7013 l2arc_data_free_t *df, *df_prev;
7014
7015 mutex_enter(&l2arc_free_on_write_mtx);
7016 buflist = l2arc_free_on_write;
7017
7018 for (df = list_tail(buflist); df; df = df_prev) {
7019 df_prev = list_prev(buflist, df);
7020 ASSERT3P(df->l2df_abd, !=, NULL);
7021 abd_free(df->l2df_abd);
7022 list_remove(buflist, df);
7023 kmem_free(df, sizeof (l2arc_data_free_t));
7024 }
7025
7026 mutex_exit(&l2arc_free_on_write_mtx);
7027 }
7028
7029 /*
7030 * A write to a cache device has completed. Update all headers to allow
7031 * reads from these buffers to begin.
7032 */
7033 static void
7034 l2arc_write_done(zio_t *zio)
7035 {
7036 l2arc_write_callback_t *cb;
7037 l2arc_dev_t *dev;
7038 list_t *buflist;
7039 arc_buf_hdr_t *head, *hdr, *hdr_prev;
7040 kmutex_t *hash_lock;
7041 int64_t bytes_dropped = 0;
7042
7043 cb = zio->io_private;
7044 ASSERT3P(cb, !=, NULL);
7045 dev = cb->l2wcb_dev;
7046 ASSERT3P(dev, !=, NULL);
7047 head = cb->l2wcb_head;
7048 ASSERT3P(head, !=, NULL);
7049 buflist = &dev->l2ad_buflist;
7050 ASSERT3P(buflist, !=, NULL);
7051 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
7052 l2arc_write_callback_t *, cb);
7053
7054 if (zio->io_error != 0)
7055 ARCSTAT_BUMP(arcstat_l2_writes_error);
7056
7057 /*
7058 * All writes completed, or an error was hit.
7059 */
7060 top:
7061 mutex_enter(&dev->l2ad_mtx);
7062 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
7063 hdr_prev = list_prev(buflist, hdr);
7064
7065 hash_lock = HDR_LOCK(hdr);
7066
7067 /*
7068 * We cannot use mutex_enter or else we can deadlock
7069 * with l2arc_write_buffers (due to swapping the order
7070 * the hash lock and l2ad_mtx are taken).
7071 */
7072 if (!mutex_tryenter(hash_lock)) {
7073 /*
7074 * Missed the hash lock. We must retry so we
7075 * don't leave the ARC_FLAG_L2_WRITING bit set.
7076 */
7077 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
7078
7079 /*
7080 * We don't want to rescan the headers we've
7081 * already marked as having been written out, so
7082 * we reinsert the head node so we can pick up
7083 * where we left off.
7084 */
7085 list_remove(buflist, head);
7086 list_insert_after(buflist, hdr, head);
7087
7088 mutex_exit(&dev->l2ad_mtx);
7089
7090 /*
7091 * We wait for the hash lock to become available
7092 * to try and prevent busy waiting, and increase
7093 * the chance we'll be able to acquire the lock
7094 * the next time around.
7095 */
7096 mutex_enter(hash_lock);
7097 mutex_exit(hash_lock);
7098 goto top;
7099 }
7100
7101 /*
7102 * We could not have been moved into the arc_l2c_only
7103 * state while in-flight due to our ARC_FLAG_L2_WRITING
7104 * bit being set. Let's just ensure that's being enforced.
7105 */
7106 ASSERT(HDR_HAS_L1HDR(hdr));
7107
7108 /*
7109 * Skipped - drop L2ARC entry and mark the header as no
7110 * longer L2 eligibile.
7111 */
7112 if (zio->io_error != 0) {
7113 /*
7114 * Error - drop L2ARC entry.
7115 */
7116 list_remove(buflist, hdr);
7117 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
7118
7119 ARCSTAT_INCR(arcstat_l2_psize, -arc_hdr_size(hdr));
7120 ARCSTAT_INCR(arcstat_l2_lsize, -HDR_GET_LSIZE(hdr));
7121
7122 bytes_dropped += arc_hdr_size(hdr);
7123 (void) refcount_remove_many(&dev->l2ad_alloc,
7124 arc_hdr_size(hdr), hdr);
7125 }
7126
7127 /*
7128 * Allow ARC to begin reads and ghost list evictions to
7129 * this L2ARC entry.
7130 */
7131 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
7132
7133 mutex_exit(hash_lock);
7134 }
7135
7136 atomic_inc_64(&l2arc_writes_done);
7137 list_remove(buflist, head);
7138 ASSERT(!HDR_HAS_L1HDR(head));
7139 kmem_cache_free(hdr_l2only_cache, head);
7140 mutex_exit(&dev->l2ad_mtx);
7141
7142 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
7143
7144 l2arc_do_free_on_write();
7145
7146 kmem_free(cb, sizeof (l2arc_write_callback_t));
7147 }
7148
7149 /*
7150 * A read to a cache device completed. Validate buffer contents before
7151 * handing over to the regular ARC routines.
7152 */
7153 static void
7154 l2arc_read_done(zio_t *zio)
7155 {
7156 l2arc_read_callback_t *cb;
7157 arc_buf_hdr_t *hdr;
7158 kmutex_t *hash_lock;
7159 boolean_t valid_cksum;
7160
7161 ASSERT3P(zio->io_vd, !=, NULL);
7162 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
7163
7164 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
7165
7166 cb = zio->io_private;
7167 ASSERT3P(cb, !=, NULL);
7168 hdr = cb->l2rcb_hdr;
7169 ASSERT3P(hdr, !=, NULL);
7170
7171 hash_lock = HDR_LOCK(hdr);
7172 mutex_enter(hash_lock);
7173 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
7174
7175 /*
7176 * If the data was read into a temporary buffer,
7177 * move it and free the buffer.
7178 */
7179 if (cb->l2rcb_abd != NULL) {
7180 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
7181 if (zio->io_error == 0) {
7182 abd_copy(hdr->b_l1hdr.b_pabd, cb->l2rcb_abd,
7183 arc_hdr_size(hdr));
7184 }
7185
7186 /*
7187 * The following must be done regardless of whether
7188 * there was an error:
7189 * - free the temporary buffer
7190 * - point zio to the real ARC buffer
7191 * - set zio size accordingly
7192 * These are required because zio is either re-used for
7193 * an I/O of the block in the case of the error
7194 * or the zio is passed to arc_read_done() and it
7195 * needs real data.
7196 */
7197 abd_free(cb->l2rcb_abd);
7198 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
7199 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
7200 }
7201
7202 ASSERT3P(zio->io_abd, !=, NULL);
7203
7204 /*
7205 * Check this survived the L2ARC journey.
7206 */
7207 ASSERT3P(zio->io_abd, ==, hdr->b_l1hdr.b_pabd);
7208 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
7209 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
7210
7211 valid_cksum = arc_cksum_is_equal(hdr, zio);
7212 if (valid_cksum && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
7213 mutex_exit(hash_lock);
7214 zio->io_private = hdr;
7215 arc_read_done(zio);
7216 } else {
7217 mutex_exit(hash_lock);
7218 /*
7219 * Buffer didn't survive caching. Increment stats and
7220 * reissue to the original storage device.
7221 */
7222 if (zio->io_error != 0) {
7223 ARCSTAT_BUMP(arcstat_l2_io_error);
7224 } else {
7225 zio->io_error = SET_ERROR(EIO);
7226 }
7227 if (!valid_cksum)
7228 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
7229
7230 /*
7231 * If there's no waiter, issue an async i/o to the primary
7232 * storage now. If there *is* a waiter, the caller must
7233 * issue the i/o in a context where it's OK to block.
7234 */
7235 if (zio->io_waiter == NULL) {
7236 zio_t *pio = zio_unique_parent(zio);
7237
7238 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
7239
7240 zio_nowait(zio_read(pio, zio->io_spa, zio->io_bp,
7241 hdr->b_l1hdr.b_pabd, zio->io_size, arc_read_done,
7242 hdr, zio->io_priority, cb->l2rcb_flags,
7243 &cb->l2rcb_zb));
7244 }
7245 }
7246
7247 kmem_free(cb, sizeof (l2arc_read_callback_t));
7248 }
7249
7250 /*
7251 * This is the list priority from which the L2ARC will search for pages to
7252 * cache. This is used within loops (0..3) to cycle through lists in the
7253 * desired order. This order can have a significant effect on cache
7254 * performance.
7255 *
7256 * Currently the metadata lists are hit first, MFU then MRU, followed by
7257 * the data lists. This function returns a locked list, and also returns
7258 * the lock pointer.
7259 */
7260 static multilist_sublist_t *
7261 l2arc_sublist_lock(int list_num)
7262 {
7263 multilist_t *ml = NULL;
7264 unsigned int idx;
7265
7266 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
7267
7268 switch (list_num) {
7269 case 0:
7270 ml = arc_mfu->arcs_list[ARC_BUFC_METADATA];
7271 break;
7272 case 1:
7273 ml = arc_mru->arcs_list[ARC_BUFC_METADATA];
7274 break;
7275 case 2:
7276 ml = arc_mfu->arcs_list[ARC_BUFC_DATA];
7277 break;
7278 case 3:
7279 ml = arc_mru->arcs_list[ARC_BUFC_DATA];
7280 break;
7281 default:
7282 return (NULL);
7283 }
7284
7285 /*
7286 * Return a randomly-selected sublist. This is acceptable
7287 * because the caller feeds only a little bit of data for each
7288 * call (8MB). Subsequent calls will result in different
7289 * sublists being selected.
7290 */
7291 idx = multilist_get_random_index(ml);
7292 return (multilist_sublist_lock(ml, idx));
7293 }
7294
7295 /*
7296 * Evict buffers from the device write hand to the distance specified in
7297 * bytes. This distance may span populated buffers, it may span nothing.
7298 * This is clearing a region on the L2ARC device ready for writing.
7299 * If the 'all' boolean is set, every buffer is evicted.
7300 */
7301 static void
7302 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
7303 {
7304 list_t *buflist;
7305 arc_buf_hdr_t *hdr, *hdr_prev;
7306 kmutex_t *hash_lock;
7307 uint64_t taddr;
7308
7309 buflist = &dev->l2ad_buflist;
7310
7311 if (!all && dev->l2ad_first) {
7312 /*
7313 * This is the first sweep through the device. There is
7314 * nothing to evict.
7315 */
7316 return;
7317 }
7318
7319 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
7320 /*
7321 * When nearing the end of the device, evict to the end
7322 * before the device write hand jumps to the start.
7323 */
7324 taddr = dev->l2ad_end;
7325 } else {
7326 taddr = dev->l2ad_hand + distance;
7327 }
7328 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
7329 uint64_t, taddr, boolean_t, all);
7330
7331 top:
7332 mutex_enter(&dev->l2ad_mtx);
7333 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
7334 hdr_prev = list_prev(buflist, hdr);
7335
7336 hash_lock = HDR_LOCK(hdr);
7337
7338 /*
7339 * We cannot use mutex_enter or else we can deadlock
7340 * with l2arc_write_buffers (due to swapping the order
7341 * the hash lock and l2ad_mtx are taken).
7342 */
7343 if (!mutex_tryenter(hash_lock)) {
7344 /*
7345 * Missed the hash lock. Retry.
7346 */
7347 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
7348 mutex_exit(&dev->l2ad_mtx);
7349 mutex_enter(hash_lock);
7350 mutex_exit(hash_lock);
7351 goto top;
7352 }
7353
7354 if (HDR_L2_WRITE_HEAD(hdr)) {
7355 /*
7356 * We hit a write head node. Leave it for
7357 * l2arc_write_done().
7358 */
7359 list_remove(buflist, hdr);
7360 mutex_exit(hash_lock);
7361 continue;
7362 }
7363
7364 if (!all && HDR_HAS_L2HDR(hdr) &&
7365 (hdr->b_l2hdr.b_daddr > taddr ||
7366 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
7367 /*
7368 * We've evicted to the target address,
7369 * or the end of the device.
7370 */
7371 mutex_exit(hash_lock);
7372 break;
7373 }
7374
7375 ASSERT(HDR_HAS_L2HDR(hdr));
7376 if (!HDR_HAS_L1HDR(hdr)) {
7377 ASSERT(!HDR_L2_READING(hdr));
7378 /*
7379 * This doesn't exist in the ARC. Destroy.
7380 * arc_hdr_destroy() will call list_remove()
7381 * and decrement arcstat_l2_lsize.
7382 */
7383 arc_change_state(arc_anon, hdr, hash_lock);
7384 arc_hdr_destroy(hdr);
7385 } else {
7386 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
7387 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
7388 /*
7389 * Invalidate issued or about to be issued
7390 * reads, since we may be about to write
7391 * over this location.
7392 */
7393 if (HDR_L2_READING(hdr)) {
7394 ARCSTAT_BUMP(arcstat_l2_evict_reading);
7395 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
7396 }
7397
7398 /* Ensure this header has finished being written */
7399 ASSERT(!HDR_L2_WRITING(hdr));
7400
7401 arc_hdr_l2hdr_destroy(hdr);
7402 }
7403 mutex_exit(hash_lock);
7404 }
7405 mutex_exit(&dev->l2ad_mtx);
7406 }
7407
7408 /*
7409 * Find and write ARC buffers to the L2ARC device.
7410 *
7411 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
7412 * for reading until they have completed writing.
7413 * The headroom_boost is an in-out parameter used to maintain headroom boost
7414 * state between calls to this function.
7415 *
7416 * Returns the number of bytes actually written (which may be smaller than
7417 * the delta by which the device hand has changed due to alignment).
7418 */
7419 static uint64_t
7420 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
7421 {
7422 arc_buf_hdr_t *hdr, *hdr_prev, *head;
7423 uint64_t write_asize, write_psize, write_lsize, headroom;
7424 boolean_t full;
7425 l2arc_write_callback_t *cb;
7426 zio_t *pio, *wzio;
7427 uint64_t guid = spa_load_guid(spa);
7428 int try;
7429
7430 ASSERT3P(dev->l2ad_vdev, !=, NULL);
7431
7432 pio = NULL;
7433 write_lsize = write_asize = write_psize = 0;
7434 full = B_FALSE;
7435 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
7436 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
7437
7438 /*
7439 * Copy buffers for L2ARC writing.
7440 */
7441 for (try = 0; try < L2ARC_FEED_TYPES; try++) {
7442 multilist_sublist_t *mls = l2arc_sublist_lock(try);
7443 uint64_t passed_sz = 0;
7444
7445 VERIFY3P(mls, !=, NULL);
7446
7447 /*
7448 * L2ARC fast warmup.
7449 *
7450 * Until the ARC is warm and starts to evict, read from the
7451 * head of the ARC lists rather than the tail.
7452 */
7453 if (arc_warm == B_FALSE)
7454 hdr = multilist_sublist_head(mls);
7455 else
7456 hdr = multilist_sublist_tail(mls);
7457
7458 headroom = target_sz * l2arc_headroom;
7459 if (zfs_compressed_arc_enabled)
7460 headroom = (headroom * l2arc_headroom_boost) / 100;
7461
7462 for (; hdr; hdr = hdr_prev) {
7463 kmutex_t *hash_lock;
7464
7465 if (arc_warm == B_FALSE)
7466 hdr_prev = multilist_sublist_next(mls, hdr);
7467 else
7468 hdr_prev = multilist_sublist_prev(mls, hdr);
7469
7470 hash_lock = HDR_LOCK(hdr);
7471 if (!mutex_tryenter(hash_lock)) {
7472 /*
7473 * Skip this buffer rather than waiting.
7474 */
7475 continue;
7476 }
7477
7478 passed_sz += HDR_GET_LSIZE(hdr);
7479 if (passed_sz > headroom) {
7480 /*
7481 * Searched too far.
7482 */
7483 mutex_exit(hash_lock);
7484 break;
7485 }
7486
7487 if (!l2arc_write_eligible(guid, hdr)) {
7488 mutex_exit(hash_lock);
7489 continue;
7490 }
7491
7492 /*
7493 * We rely on the L1 portion of the header below, so
7494 * it's invalid for this header to have been evicted out
7495 * of the ghost cache, prior to being written out. The
7496 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
7497 */
7498 ASSERT(HDR_HAS_L1HDR(hdr));
7499
7500 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
7501 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
7502 ASSERT3U(arc_hdr_size(hdr), >, 0);
7503 uint64_t psize = arc_hdr_size(hdr);
7504 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
7505 psize);
7506
7507 if ((write_asize + asize) > target_sz) {
7508 full = B_TRUE;
7509 mutex_exit(hash_lock);
7510 break;
7511 }
7512
7513 if (pio == NULL) {
7514 /*
7515 * Insert a dummy header on the buflist so
7516 * l2arc_write_done() can find where the
7517 * write buffers begin without searching.
7518 */
7519 mutex_enter(&dev->l2ad_mtx);
7520 list_insert_head(&dev->l2ad_buflist, head);
7521 mutex_exit(&dev->l2ad_mtx);
7522
7523 cb = kmem_alloc(
7524 sizeof (l2arc_write_callback_t), KM_SLEEP);
7525 cb->l2wcb_dev = dev;
7526 cb->l2wcb_head = head;
7527 pio = zio_root(spa, l2arc_write_done, cb,
7528 ZIO_FLAG_CANFAIL);
7529 }
7530
7531 hdr->b_l2hdr.b_dev = dev;
7532 hdr->b_l2hdr.b_hits = 0;
7533
7534 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
7535 arc_hdr_set_flags(hdr,
7536 ARC_FLAG_L2_WRITING | ARC_FLAG_HAS_L2HDR);
7537
7538 mutex_enter(&dev->l2ad_mtx);
7539 list_insert_head(&dev->l2ad_buflist, hdr);
7540 mutex_exit(&dev->l2ad_mtx);
7541
7542 (void) refcount_add_many(&dev->l2ad_alloc, psize, hdr);
7543
7544 /*
7545 * Normally the L2ARC can use the hdr's data, but if
7546 * we're sharing data between the hdr and one of its
7547 * bufs, L2ARC needs its own copy of the data so that
7548 * the ZIO below can't race with the buf consumer.
7549 * Another case where we need to create a copy of the
7550 * data is when the buffer size is not device-aligned
7551 * and we need to pad the block to make it such.
7552 * That also keeps the clock hand suitably aligned.
7553 *
7554 * To ensure that the copy will be available for the
7555 * lifetime of the ZIO and be cleaned up afterwards, we
7556 * add it to the l2arc_free_on_write queue.
7557 */
7558 abd_t *to_write;
7559 if (!HDR_SHARED_DATA(hdr) && psize == asize) {
7560 to_write = hdr->b_l1hdr.b_pabd;
7561 } else {
7562 to_write = abd_alloc_for_io(asize,
7563 HDR_ISTYPE_METADATA(hdr));
7564 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
7565 if (asize != psize) {
7566 abd_zero_off(to_write, psize,
7567 asize - psize);
7568 }
7569 l2arc_free_abd_on_write(to_write, asize,
7570 arc_buf_type(hdr));
7571 }
7572 wzio = zio_write_phys(pio, dev->l2ad_vdev,
7573 hdr->b_l2hdr.b_daddr, asize, to_write,
7574 ZIO_CHECKSUM_OFF, NULL, hdr,
7575 ZIO_PRIORITY_ASYNC_WRITE,
7576 ZIO_FLAG_CANFAIL, B_FALSE);
7577
7578 write_lsize += HDR_GET_LSIZE(hdr);
7579 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
7580 zio_t *, wzio);
7581
7582 write_psize += psize;
7583 write_asize += asize;
7584 dev->l2ad_hand += asize;
7585
7586 mutex_exit(hash_lock);
7587
7588 (void) zio_nowait(wzio);
7589 }
7590
7591 multilist_sublist_unlock(mls);
7592
7593 if (full == B_TRUE)
7594 break;
7595 }
7596
7597 /* No buffers selected for writing? */
7598 if (pio == NULL) {
7599 ASSERT0(write_lsize);
7600 ASSERT(!HDR_HAS_L1HDR(head));
7601 kmem_cache_free(hdr_l2only_cache, head);
7602 return (0);
7603 }
7604
7605 ASSERT3U(write_asize, <=, target_sz);
7606 ARCSTAT_BUMP(arcstat_l2_writes_sent);
7607 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
7608 ARCSTAT_INCR(arcstat_l2_lsize, write_lsize);
7609 ARCSTAT_INCR(arcstat_l2_psize, write_psize);
7610 vdev_space_update(dev->l2ad_vdev, write_psize, 0, 0);
7611
7612 /*
7613 * Bump device hand to the device start if it is approaching the end.
7614 * l2arc_evict() will already have evicted ahead for this case.
7615 */
7616 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
7617 dev->l2ad_hand = dev->l2ad_start;
7618 dev->l2ad_first = B_FALSE;
7619 }
7620
7621 dev->l2ad_writing = B_TRUE;
7622 (void) zio_wait(pio);
7623 dev->l2ad_writing = B_FALSE;
7624
7625 return (write_asize);
7626 }
7627
7628 /*
7629 * This thread feeds the L2ARC at regular intervals. This is the beating
7630 * heart of the L2ARC.
7631 */
7632 static void
7633 l2arc_feed_thread(void)
7634 {
7635 callb_cpr_t cpr;
7636 l2arc_dev_t *dev;
7637 spa_t *spa;
7638 uint64_t size, wrote;
7639 clock_t begin, next = ddi_get_lbolt();
7640 fstrans_cookie_t cookie;
7641
7642 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
7643
7644 mutex_enter(&l2arc_feed_thr_lock);
7645
7646 cookie = spl_fstrans_mark();
7647 while (l2arc_thread_exit == 0) {
7648 CALLB_CPR_SAFE_BEGIN(&cpr);
7649 (void) cv_timedwait_sig(&l2arc_feed_thr_cv,
7650 &l2arc_feed_thr_lock, next);
7651 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
7652 next = ddi_get_lbolt() + hz;
7653
7654 /*
7655 * Quick check for L2ARC devices.
7656 */
7657 mutex_enter(&l2arc_dev_mtx);
7658 if (l2arc_ndev == 0) {
7659 mutex_exit(&l2arc_dev_mtx);
7660 continue;
7661 }
7662 mutex_exit(&l2arc_dev_mtx);
7663 begin = ddi_get_lbolt();
7664
7665 /*
7666 * This selects the next l2arc device to write to, and in
7667 * doing so the next spa to feed from: dev->l2ad_spa. This
7668 * will return NULL if there are now no l2arc devices or if
7669 * they are all faulted.
7670 *
7671 * If a device is returned, its spa's config lock is also
7672 * held to prevent device removal. l2arc_dev_get_next()
7673 * will grab and release l2arc_dev_mtx.
7674 */
7675 if ((dev = l2arc_dev_get_next()) == NULL)
7676 continue;
7677
7678 spa = dev->l2ad_spa;
7679 ASSERT3P(spa, !=, NULL);
7680
7681 /*
7682 * If the pool is read-only then force the feed thread to
7683 * sleep a little longer.
7684 */
7685 if (!spa_writeable(spa)) {
7686 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
7687 spa_config_exit(spa, SCL_L2ARC, dev);
7688 continue;
7689 }
7690
7691 /*
7692 * Avoid contributing to memory pressure.
7693 */
7694 if (arc_reclaim_needed()) {
7695 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
7696 spa_config_exit(spa, SCL_L2ARC, dev);
7697 continue;
7698 }
7699
7700 ARCSTAT_BUMP(arcstat_l2_feeds);
7701
7702 size = l2arc_write_size();
7703
7704 /*
7705 * Evict L2ARC buffers that will be overwritten.
7706 */
7707 l2arc_evict(dev, size, B_FALSE);
7708
7709 /*
7710 * Write ARC buffers.
7711 */
7712 wrote = l2arc_write_buffers(spa, dev, size);
7713
7714 /*
7715 * Calculate interval between writes.
7716 */
7717 next = l2arc_write_interval(begin, size, wrote);
7718 spa_config_exit(spa, SCL_L2ARC, dev);
7719 }
7720 spl_fstrans_unmark(cookie);
7721
7722 l2arc_thread_exit = 0;
7723 cv_broadcast(&l2arc_feed_thr_cv);
7724 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
7725 thread_exit();
7726 }
7727
7728 boolean_t
7729 l2arc_vdev_present(vdev_t *vd)
7730 {
7731 l2arc_dev_t *dev;
7732
7733 mutex_enter(&l2arc_dev_mtx);
7734 for (dev = list_head(l2arc_dev_list); dev != NULL;
7735 dev = list_next(l2arc_dev_list, dev)) {
7736 if (dev->l2ad_vdev == vd)
7737 break;
7738 }
7739 mutex_exit(&l2arc_dev_mtx);
7740
7741 return (dev != NULL);
7742 }
7743
7744 /*
7745 * Add a vdev for use by the L2ARC. By this point the spa has already
7746 * validated the vdev and opened it.
7747 */
7748 void
7749 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
7750 {
7751 l2arc_dev_t *adddev;
7752
7753 ASSERT(!l2arc_vdev_present(vd));
7754
7755 /*
7756 * Create a new l2arc device entry.
7757 */
7758 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
7759 adddev->l2ad_spa = spa;
7760 adddev->l2ad_vdev = vd;
7761 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
7762 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
7763 adddev->l2ad_hand = adddev->l2ad_start;
7764 adddev->l2ad_first = B_TRUE;
7765 adddev->l2ad_writing = B_FALSE;
7766 list_link_init(&adddev->l2ad_node);
7767
7768 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
7769 /*
7770 * This is a list of all ARC buffers that are still valid on the
7771 * device.
7772 */
7773 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
7774 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
7775
7776 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
7777 refcount_create(&adddev->l2ad_alloc);
7778
7779 /*
7780 * Add device to global list
7781 */
7782 mutex_enter(&l2arc_dev_mtx);
7783 list_insert_head(l2arc_dev_list, adddev);
7784 atomic_inc_64(&l2arc_ndev);
7785 mutex_exit(&l2arc_dev_mtx);
7786 }
7787
7788 /*
7789 * Remove a vdev from the L2ARC.
7790 */
7791 void
7792 l2arc_remove_vdev(vdev_t *vd)
7793 {
7794 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
7795
7796 /*
7797 * Find the device by vdev
7798 */
7799 mutex_enter(&l2arc_dev_mtx);
7800 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
7801 nextdev = list_next(l2arc_dev_list, dev);
7802 if (vd == dev->l2ad_vdev) {
7803 remdev = dev;
7804 break;
7805 }
7806 }
7807 ASSERT3P(remdev, !=, NULL);
7808
7809 /*
7810 * Remove device from global list
7811 */
7812 list_remove(l2arc_dev_list, remdev);
7813 l2arc_dev_last = NULL; /* may have been invalidated */
7814 atomic_dec_64(&l2arc_ndev);
7815 mutex_exit(&l2arc_dev_mtx);
7816
7817 /*
7818 * Clear all buflists and ARC references. L2ARC device flush.
7819 */
7820 l2arc_evict(remdev, 0, B_TRUE);
7821 list_destroy(&remdev->l2ad_buflist);
7822 mutex_destroy(&remdev->l2ad_mtx);
7823 refcount_destroy(&remdev->l2ad_alloc);
7824 kmem_free(remdev, sizeof (l2arc_dev_t));
7825 }
7826
7827 void
7828 l2arc_init(void)
7829 {
7830 l2arc_thread_exit = 0;
7831 l2arc_ndev = 0;
7832 l2arc_writes_sent = 0;
7833 l2arc_writes_done = 0;
7834
7835 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
7836 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
7837 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
7838 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
7839
7840 l2arc_dev_list = &L2ARC_dev_list;
7841 l2arc_free_on_write = &L2ARC_free_on_write;
7842 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
7843 offsetof(l2arc_dev_t, l2ad_node));
7844 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
7845 offsetof(l2arc_data_free_t, l2df_list_node));
7846 }
7847
7848 void
7849 l2arc_fini(void)
7850 {
7851 /*
7852 * This is called from dmu_fini(), which is called from spa_fini();
7853 * Because of this, we can assume that all l2arc devices have
7854 * already been removed when the pools themselves were removed.
7855 */
7856
7857 l2arc_do_free_on_write();
7858
7859 mutex_destroy(&l2arc_feed_thr_lock);
7860 cv_destroy(&l2arc_feed_thr_cv);
7861 mutex_destroy(&l2arc_dev_mtx);
7862 mutex_destroy(&l2arc_free_on_write_mtx);
7863
7864 list_destroy(l2arc_dev_list);
7865 list_destroy(l2arc_free_on_write);
7866 }
7867
7868 void
7869 l2arc_start(void)
7870 {
7871 if (!(spa_mode_global & FWRITE))
7872 return;
7873
7874 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
7875 TS_RUN, defclsyspri);
7876 }
7877
7878 void
7879 l2arc_stop(void)
7880 {
7881 if (!(spa_mode_global & FWRITE))
7882 return;
7883
7884 mutex_enter(&l2arc_feed_thr_lock);
7885 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
7886 l2arc_thread_exit = 1;
7887 while (l2arc_thread_exit != 0)
7888 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
7889 mutex_exit(&l2arc_feed_thr_lock);
7890 }
7891
7892 #if defined(_KERNEL) && defined(HAVE_SPL)
7893 EXPORT_SYMBOL(arc_buf_size);
7894 EXPORT_SYMBOL(arc_write);
7895 EXPORT_SYMBOL(arc_read);
7896 EXPORT_SYMBOL(arc_buf_info);
7897 EXPORT_SYMBOL(arc_getbuf_func);
7898 EXPORT_SYMBOL(arc_add_prune_callback);
7899 EXPORT_SYMBOL(arc_remove_prune_callback);
7900
7901 /* BEGIN CSTYLED */
7902 module_param(zfs_arc_min, ulong, 0644);
7903 MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
7904
7905 module_param(zfs_arc_max, ulong, 0644);
7906 MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
7907
7908 module_param(zfs_arc_meta_limit, ulong, 0644);
7909 MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
7910
7911 module_param(zfs_arc_meta_limit_percent, ulong, 0644);
7912 MODULE_PARM_DESC(zfs_arc_meta_limit_percent,
7913 "Percent of arc size for arc meta limit");
7914
7915 module_param(zfs_arc_meta_min, ulong, 0644);
7916 MODULE_PARM_DESC(zfs_arc_meta_min, "Min arc metadata");
7917
7918 module_param(zfs_arc_meta_prune, int, 0644);
7919 MODULE_PARM_DESC(zfs_arc_meta_prune, "Meta objects to scan for prune");
7920
7921 module_param(zfs_arc_meta_adjust_restarts, int, 0644);
7922 MODULE_PARM_DESC(zfs_arc_meta_adjust_restarts,
7923 "Limit number of restarts in arc_adjust_meta");
7924
7925 module_param(zfs_arc_meta_strategy, int, 0644);
7926 MODULE_PARM_DESC(zfs_arc_meta_strategy, "Meta reclaim strategy");
7927
7928 module_param(zfs_arc_grow_retry, int, 0644);
7929 MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
7930
7931 module_param(zfs_arc_p_aggressive_disable, int, 0644);
7932 MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
7933
7934 module_param(zfs_arc_p_dampener_disable, int, 0644);
7935 MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
7936
7937 module_param(zfs_arc_shrink_shift, int, 0644);
7938 MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
7939
7940 module_param(zfs_arc_pc_percent, uint, 0644);
7941 MODULE_PARM_DESC(zfs_arc_pc_percent,
7942 "Percent of pagecache to reclaim arc to");
7943
7944 module_param(zfs_arc_p_min_shift, int, 0644);
7945 MODULE_PARM_DESC(zfs_arc_p_min_shift, "arc_c shift to calc min/max arc_p");
7946
7947 module_param(zfs_arc_average_blocksize, int, 0444);
7948 MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
7949
7950 module_param(zfs_compressed_arc_enabled, int, 0644);
7951 MODULE_PARM_DESC(zfs_compressed_arc_enabled, "Disable compressed arc buffers");
7952
7953 module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
7954 MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
7955
7956 module_param(l2arc_write_max, ulong, 0644);
7957 MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
7958
7959 module_param(l2arc_write_boost, ulong, 0644);
7960 MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
7961
7962 module_param(l2arc_headroom, ulong, 0644);
7963 MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
7964
7965 module_param(l2arc_headroom_boost, ulong, 0644);
7966 MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
7967
7968 module_param(l2arc_feed_secs, ulong, 0644);
7969 MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
7970
7971 module_param(l2arc_feed_min_ms, ulong, 0644);
7972 MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
7973
7974 module_param(l2arc_noprefetch, int, 0644);
7975 MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
7976
7977 module_param(l2arc_feed_again, int, 0644);
7978 MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
7979
7980 module_param(l2arc_norw, int, 0644);
7981 MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
7982
7983 module_param(zfs_arc_lotsfree_percent, int, 0644);
7984 MODULE_PARM_DESC(zfs_arc_lotsfree_percent,
7985 "System free memory I/O throttle in bytes");
7986
7987 module_param(zfs_arc_sys_free, ulong, 0644);
7988 MODULE_PARM_DESC(zfs_arc_sys_free, "System free memory target size in bytes");
7989
7990 module_param(zfs_arc_dnode_limit, ulong, 0644);
7991 MODULE_PARM_DESC(zfs_arc_dnode_limit, "Minimum bytes of dnodes in arc");
7992
7993 module_param(zfs_arc_dnode_limit_percent, ulong, 0644);
7994 MODULE_PARM_DESC(zfs_arc_dnode_limit_percent,
7995 "Percent of ARC meta buffers for dnodes");
7996
7997 module_param(zfs_arc_dnode_reduce_percent, ulong, 0644);
7998 MODULE_PARM_DESC(zfs_arc_dnode_reduce_percent,
7999 "Percentage of excess dnodes to try to unpin");
8000 /* END CSTYLED */
8001 #endif