]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/mmp.c
New upstream version 0.7.9
[mirror_zfs-debian.git] / module / zfs / mmp.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2017 by Lawrence Livermore National Security, LLC.
23 */
24
25 #include <sys/abd.h>
26 #include <sys/mmp.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/time.h>
30 #include <sys/vdev.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zfs_context.h>
33 #include <sys/callb.h>
34
35 /*
36 * Multi-Modifier Protection (MMP) attempts to prevent a user from importing
37 * or opening a pool on more than one host at a time. In particular, it
38 * prevents "zpool import -f" on a host from succeeding while the pool is
39 * already imported on another host. There are many other ways in which a
40 * device could be used by two hosts for different purposes at the same time
41 * resulting in pool damage. This implementation does not attempt to detect
42 * those cases.
43 *
44 * MMP operates by ensuring there are frequent visible changes on disk (a
45 * "heartbeat") at all times. And by altering the import process to check
46 * for these changes and failing the import when they are detected. This
47 * functionality is enabled by setting the 'multihost' pool property to on.
48 *
49 * Uberblocks written by the txg_sync thread always go into the first
50 * (N-MMP_BLOCKS_PER_LABEL) slots, the remaining slots are reserved for MMP.
51 * They are used to hold uberblocks which are exactly the same as the last
52 * synced uberblock except that the ub_timestamp is frequently updated.
53 * Like all other uberblocks, the slot is written with an embedded checksum,
54 * and slots with invalid checksums are ignored. This provides the
55 * "heartbeat", with no risk of overwriting good uberblocks that must be
56 * preserved, e.g. previous txgs and associated block pointers.
57 *
58 * Two optional fields are added to uberblock structure: ub_mmp_magic and
59 * ub_mmp_delay. The magic field allows zfs to tell whether ub_mmp_delay is
60 * valid. The delay field is a decaying average of the amount of time between
61 * completion of successive MMP writes, in nanoseconds. It is used to predict
62 * how long the import must wait to detect activity in the pool, before
63 * concluding it is not in use.
64 *
65 * During import an activity test may now be performed to determine if
66 * the pool is in use. The activity test is typically required if the
67 * ZPOOL_CONFIG_HOSTID does not match the system hostid, the pool state is
68 * POOL_STATE_ACTIVE, and the pool is not a root pool.
69 *
70 * The activity test finds the "best" uberblock (highest txg & timestamp),
71 * waits some time, and then finds the "best" uberblock again. If the txg
72 * and timestamp in both "best" uberblocks do not match, the pool is in use
73 * by another host and the import fails. Since the granularity of the
74 * timestamp is in seconds this activity test must take a bare minimum of one
75 * second. In order to assure the accuracy of the activity test, the default
76 * values result in an activity test duration of 10x the mmp write interval.
77 *
78 * The "zpool import" activity test can be expected to take a minimum time of
79 * zfs_multihost_import_intervals * zfs_multihost_interval milliseconds. If the
80 * "best" uberblock has a valid ub_mmp_delay field, then the duration of the
81 * test may take longer if MMP writes were occurring less frequently than
82 * expected. Additionally, the duration is then extended by a random 25% to
83 * attempt to to detect simultaneous imports. For example, if both partner
84 * hosts are rebooted at the same time and automatically attempt to import the
85 * pool.
86 */
87
88 /*
89 * Used to control the frequency of mmp writes which are performed when the
90 * 'multihost' pool property is on. This is one factor used to determine the
91 * length of the activity check during import.
92 *
93 * The mmp write period is zfs_multihost_interval / leaf-vdevs milliseconds.
94 * This means that on average an mmp write will be issued for each leaf vdev
95 * every zfs_multihost_interval milliseconds. In practice, the observed period
96 * can vary with the I/O load and this observed value is the delay which is
97 * stored in the uberblock. The minimum allowed value is 100 ms.
98 */
99 ulong_t zfs_multihost_interval = MMP_DEFAULT_INTERVAL;
100
101 /*
102 * Used to control the duration of the activity test on import. Smaller values
103 * of zfs_multihost_import_intervals will reduce the import time but increase
104 * the risk of failing to detect an active pool. The total activity check time
105 * is never allowed to drop below one second. A value of 0 is ignored and
106 * treated as if it was set to 1.
107 */
108 uint_t zfs_multihost_import_intervals = MMP_DEFAULT_IMPORT_INTERVALS;
109
110 /*
111 * Controls the behavior of the pool when mmp write failures are detected.
112 *
113 * When zfs_multihost_fail_intervals = 0 then mmp write failures are ignored.
114 * The failures will still be reported to the ZED which depending on its
115 * configuration may take action such as suspending the pool or taking a
116 * device offline.
117 *
118 * When zfs_multihost_fail_intervals > 0 then sequential mmp write failures will
119 * cause the pool to be suspended. This occurs when
120 * zfs_multihost_fail_intervals * zfs_multihost_interval milliseconds have
121 * passed since the last successful mmp write. This guarantees the activity
122 * test will see mmp writes if the
123 * pool is imported.
124 */
125 uint_t zfs_multihost_fail_intervals = MMP_DEFAULT_FAIL_INTERVALS;
126
127 static void mmp_thread(spa_t *spa);
128 char *mmp_tag = "mmp_write_uberblock";
129
130 void
131 mmp_init(spa_t *spa)
132 {
133 mmp_thread_t *mmp = &spa->spa_mmp;
134
135 mutex_init(&mmp->mmp_thread_lock, NULL, MUTEX_DEFAULT, NULL);
136 cv_init(&mmp->mmp_thread_cv, NULL, CV_DEFAULT, NULL);
137 mutex_init(&mmp->mmp_io_lock, NULL, MUTEX_DEFAULT, NULL);
138 mmp->mmp_kstat_id = 1;
139 }
140
141 void
142 mmp_fini(spa_t *spa)
143 {
144 mmp_thread_t *mmp = &spa->spa_mmp;
145
146 mutex_destroy(&mmp->mmp_thread_lock);
147 cv_destroy(&mmp->mmp_thread_cv);
148 mutex_destroy(&mmp->mmp_io_lock);
149 }
150
151 static void
152 mmp_thread_enter(mmp_thread_t *mmp, callb_cpr_t *cpr)
153 {
154 CALLB_CPR_INIT(cpr, &mmp->mmp_thread_lock, callb_generic_cpr, FTAG);
155 mutex_enter(&mmp->mmp_thread_lock);
156 }
157
158 static void
159 mmp_thread_exit(mmp_thread_t *mmp, kthread_t **mpp, callb_cpr_t *cpr)
160 {
161 ASSERT(*mpp != NULL);
162 *mpp = NULL;
163 cv_broadcast(&mmp->mmp_thread_cv);
164 CALLB_CPR_EXIT(cpr); /* drops &mmp->mmp_thread_lock */
165 thread_exit();
166 }
167
168 void
169 mmp_thread_start(spa_t *spa)
170 {
171 mmp_thread_t *mmp = &spa->spa_mmp;
172
173 if (spa_writeable(spa)) {
174 mutex_enter(&mmp->mmp_thread_lock);
175 if (!mmp->mmp_thread) {
176 dprintf("mmp_thread_start pool %s\n",
177 spa->spa_name);
178 mmp->mmp_thread = thread_create(NULL, 0, mmp_thread,
179 spa, 0, &p0, TS_RUN, defclsyspri);
180 }
181 mutex_exit(&mmp->mmp_thread_lock);
182 }
183 }
184
185 void
186 mmp_thread_stop(spa_t *spa)
187 {
188 mmp_thread_t *mmp = &spa->spa_mmp;
189
190 mutex_enter(&mmp->mmp_thread_lock);
191 mmp->mmp_thread_exiting = 1;
192 cv_broadcast(&mmp->mmp_thread_cv);
193
194 while (mmp->mmp_thread) {
195 cv_wait(&mmp->mmp_thread_cv, &mmp->mmp_thread_lock);
196 }
197 mutex_exit(&mmp->mmp_thread_lock);
198
199 ASSERT(mmp->mmp_thread == NULL);
200 mmp->mmp_thread_exiting = 0;
201 }
202
203 typedef enum mmp_vdev_state_flag {
204 MMP_FAIL_NOT_WRITABLE = (1 << 0),
205 MMP_FAIL_WRITE_PENDING = (1 << 1),
206 } mmp_vdev_state_flag_t;
207
208 static vdev_t *
209 mmp_random_leaf_impl(vdev_t *vd, int *fail_mask)
210 {
211 int child_idx;
212
213 if (!vdev_writeable(vd)) {
214 *fail_mask |= MMP_FAIL_NOT_WRITABLE;
215 return (NULL);
216 }
217
218 if (vd->vdev_ops->vdev_op_leaf) {
219 vdev_t *ret;
220
221 if (vd->vdev_mmp_pending != 0) {
222 *fail_mask |= MMP_FAIL_WRITE_PENDING;
223 ret = NULL;
224 } else {
225 ret = vd;
226 }
227
228 return (ret);
229 }
230
231 child_idx = spa_get_random(vd->vdev_children);
232 for (int offset = vd->vdev_children; offset > 0; offset--) {
233 vdev_t *leaf;
234 vdev_t *child = vd->vdev_child[(child_idx + offset) %
235 vd->vdev_children];
236
237 leaf = mmp_random_leaf_impl(child, fail_mask);
238 if (leaf)
239 return (leaf);
240 }
241
242 return (NULL);
243 }
244
245 /*
246 * Find a leaf vdev to write an MMP block to. It must not have an outstanding
247 * mmp write (if so a new write will also likely block). If there is no usable
248 * leaf in the tree rooted at in_vd, a nonzero error value is returned, and
249 * *out_vd is unchanged.
250 *
251 * The error value returned is a bit field.
252 *
253 * MMP_FAIL_WRITE_PENDING
254 * If set, one or more leaf vdevs are writeable, but have an MMP write which has
255 * not yet completed.
256 *
257 * MMP_FAIL_NOT_WRITABLE
258 * If set, one or more vdevs are not writeable. The children of those vdevs
259 * were not examined.
260 *
261 * Assuming in_vd points to a tree, a random subtree will be chosen to start.
262 * That subtree, and successive ones, will be walked until a usable leaf has
263 * been found, or all subtrees have been examined (except that the children of
264 * un-writeable vdevs are not examined).
265 *
266 * If the leaf vdevs in the tree are healthy, the distribution of returned leaf
267 * vdevs will be even. If there are unhealthy leaves, the following leaves
268 * (child_index % index_children) will be chosen more often.
269 */
270
271 static int
272 mmp_random_leaf(vdev_t *in_vd, vdev_t **out_vd)
273 {
274 int error_mask = 0;
275 vdev_t *vd = mmp_random_leaf_impl(in_vd, &error_mask);
276
277 if (error_mask == 0)
278 *out_vd = vd;
279
280 return (error_mask);
281 }
282
283 /*
284 * MMP writes are issued on a fixed schedule, but may complete at variable,
285 * much longer, intervals. The mmp_delay captures long periods between
286 * successful writes for any reason, including disk latency, scheduling delays,
287 * etc.
288 *
289 * The mmp_delay is usually calculated as a decaying average, but if the latest
290 * delay is higher we do not average it, so that we do not hide sudden spikes
291 * which the importing host must wait for.
292 *
293 * If writes are occurring frequently, such as due to a high rate of txg syncs,
294 * the mmp_delay could become very small. Since those short delays depend on
295 * activity we cannot count on, we never allow mmp_delay to get lower than rate
296 * expected if only mmp_thread writes occur.
297 *
298 * If an mmp write was skipped or fails, and we have already waited longer than
299 * mmp_delay, we need to update it so the next write reflects the longer delay.
300 *
301 * Do not set mmp_delay if the multihost property is not on, so as not to
302 * trigger an activity check on import.
303 */
304 static void
305 mmp_delay_update(spa_t *spa, boolean_t write_completed)
306 {
307 mmp_thread_t *mts = &spa->spa_mmp;
308 hrtime_t delay = gethrtime() - mts->mmp_last_write;
309
310 ASSERT(MUTEX_HELD(&mts->mmp_io_lock));
311
312 if (spa_multihost(spa) == B_FALSE) {
313 mts->mmp_delay = 0;
314 return;
315 }
316
317 if (delay > mts->mmp_delay)
318 mts->mmp_delay = delay;
319
320 if (write_completed == B_FALSE)
321 return;
322
323 mts->mmp_last_write = gethrtime();
324
325 /*
326 * strictly less than, in case delay was changed above.
327 */
328 if (delay < mts->mmp_delay) {
329 hrtime_t min_delay = MSEC2NSEC(zfs_multihost_interval) /
330 vdev_count_leaves(spa);
331 mts->mmp_delay = MAX(((delay + mts->mmp_delay * 127) / 128),
332 min_delay);
333 }
334 }
335
336 static void
337 mmp_write_done(zio_t *zio)
338 {
339 spa_t *spa = zio->io_spa;
340 vdev_t *vd = zio->io_vd;
341 mmp_thread_t *mts = zio->io_private;
342
343 mutex_enter(&mts->mmp_io_lock);
344 uint64_t mmp_kstat_id = vd->vdev_mmp_kstat_id;
345 hrtime_t mmp_write_duration = gethrtime() - vd->vdev_mmp_pending;
346
347 mmp_delay_update(spa, (zio->io_error == 0));
348
349 vd->vdev_mmp_pending = 0;
350 vd->vdev_mmp_kstat_id = 0;
351
352 mutex_exit(&mts->mmp_io_lock);
353 spa_config_exit(spa, SCL_STATE, mmp_tag);
354
355 spa_mmp_history_set(spa, mmp_kstat_id, zio->io_error,
356 mmp_write_duration);
357
358 abd_free(zio->io_abd);
359 }
360
361 /*
362 * When the uberblock on-disk is updated by a spa_sync,
363 * creating a new "best" uberblock, update the one stored
364 * in the mmp thread state, used for mmp writes.
365 */
366 void
367 mmp_update_uberblock(spa_t *spa, uberblock_t *ub)
368 {
369 mmp_thread_t *mmp = &spa->spa_mmp;
370
371 mutex_enter(&mmp->mmp_io_lock);
372 mmp->mmp_ub = *ub;
373 mmp->mmp_ub.ub_timestamp = gethrestime_sec();
374 mmp_delay_update(spa, B_TRUE);
375 mutex_exit(&mmp->mmp_io_lock);
376 }
377
378 /*
379 * Choose a random vdev, label, and MMP block, and write over it
380 * with a copy of the last-synced uberblock, whose timestamp
381 * has been updated to reflect that the pool is in use.
382 */
383 static void
384 mmp_write_uberblock(spa_t *spa)
385 {
386 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
387 mmp_thread_t *mmp = &spa->spa_mmp;
388 uberblock_t *ub;
389 vdev_t *vd = NULL;
390 int label, error;
391 uint64_t offset;
392
393 hrtime_t lock_acquire_time = gethrtime();
394 spa_config_enter(spa, SCL_STATE, mmp_tag, RW_READER);
395 lock_acquire_time = gethrtime() - lock_acquire_time;
396 if (lock_acquire_time > (MSEC2NSEC(MMP_MIN_INTERVAL) / 10))
397 zfs_dbgmsg("SCL_STATE acquisition took %llu ns\n",
398 (u_longlong_t)lock_acquire_time);
399
400 error = mmp_random_leaf(spa->spa_root_vdev, &vd);
401
402 mutex_enter(&mmp->mmp_io_lock);
403
404 /*
405 * spa_mmp_history has two types of entries:
406 * Issued MMP write: records time issued, error status, etc.
407 * Skipped MMP write: an MMP write could not be issued because no
408 * suitable leaf vdev was available. See comment above struct
409 * spa_mmp_history for details.
410 */
411
412 if (error) {
413 mmp_delay_update(spa, B_FALSE);
414 if (mmp->mmp_skip_error == error) {
415 spa_mmp_history_set_skip(spa, mmp->mmp_kstat_id - 1);
416 } else {
417 mmp->mmp_skip_error = error;
418 spa_mmp_history_add(spa, mmp->mmp_ub.ub_txg,
419 gethrestime_sec(), mmp->mmp_delay, NULL, 0,
420 mmp->mmp_kstat_id++, error);
421 }
422 mutex_exit(&mmp->mmp_io_lock);
423 spa_config_exit(spa, SCL_STATE, FTAG);
424 return;
425 }
426
427 mmp->mmp_skip_error = 0;
428
429 if (mmp->mmp_zio_root == NULL)
430 mmp->mmp_zio_root = zio_root(spa, NULL, NULL,
431 flags | ZIO_FLAG_GODFATHER);
432
433 ub = &mmp->mmp_ub;
434 ub->ub_timestamp = gethrestime_sec();
435 ub->ub_mmp_magic = MMP_MAGIC;
436 ub->ub_mmp_delay = mmp->mmp_delay;
437 vd->vdev_mmp_pending = gethrtime();
438 vd->vdev_mmp_kstat_id = mmp->mmp_kstat_id;
439
440 zio_t *zio = zio_null(mmp->mmp_zio_root, spa, NULL, NULL, NULL, flags);
441 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
442 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
443 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
444
445 mmp->mmp_kstat_id++;
446 mutex_exit(&mmp->mmp_io_lock);
447
448 offset = VDEV_UBERBLOCK_OFFSET(vd, VDEV_UBERBLOCK_COUNT(vd) -
449 MMP_BLOCKS_PER_LABEL + spa_get_random(MMP_BLOCKS_PER_LABEL));
450
451 label = spa_get_random(VDEV_LABELS);
452 vdev_label_write(zio, vd, label, ub_abd, offset,
453 VDEV_UBERBLOCK_SIZE(vd), mmp_write_done, mmp,
454 flags | ZIO_FLAG_DONT_PROPAGATE);
455
456 (void) spa_mmp_history_add(spa, ub->ub_txg, ub->ub_timestamp,
457 ub->ub_mmp_delay, vd, label, vd->vdev_mmp_kstat_id, 0);
458
459 zio_nowait(zio);
460 }
461
462 static void
463 mmp_thread(spa_t *spa)
464 {
465 mmp_thread_t *mmp = &spa->spa_mmp;
466 boolean_t last_spa_suspended = spa_suspended(spa);
467 boolean_t last_spa_multihost = spa_multihost(spa);
468 callb_cpr_t cpr;
469 hrtime_t max_fail_ns = zfs_multihost_fail_intervals *
470 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL));
471
472 mmp_thread_enter(mmp, &cpr);
473
474 /*
475 * The mmp_write_done() function calculates mmp_delay based on the
476 * prior value of mmp_delay and the elapsed time since the last write.
477 * For the first mmp write, there is no "last write", so we start
478 * with fake, but reasonable, default non-zero values.
479 */
480 mmp->mmp_delay = MSEC2NSEC(MAX(zfs_multihost_interval,
481 MMP_MIN_INTERVAL)) / MAX(vdev_count_leaves(spa), 1);
482 mmp->mmp_last_write = gethrtime() - mmp->mmp_delay;
483
484 while (!mmp->mmp_thread_exiting) {
485 uint64_t mmp_fail_intervals = zfs_multihost_fail_intervals;
486 uint64_t mmp_interval = MSEC2NSEC(
487 MAX(zfs_multihost_interval, MMP_MIN_INTERVAL));
488 boolean_t suspended = spa_suspended(spa);
489 boolean_t multihost = spa_multihost(spa);
490 hrtime_t next_time;
491
492 if (multihost)
493 next_time = gethrtime() + mmp_interval /
494 MAX(vdev_count_leaves(spa), 1);
495 else
496 next_time = gethrtime() +
497 MSEC2NSEC(MMP_DEFAULT_INTERVAL);
498
499 /*
500 * MMP off => on, or suspended => !suspended:
501 * No writes occurred recently. Update mmp_last_write to give
502 * us some time to try.
503 */
504 if ((!last_spa_multihost && multihost) ||
505 (last_spa_suspended && !suspended)) {
506 mutex_enter(&mmp->mmp_io_lock);
507 mmp->mmp_last_write = gethrtime();
508 mutex_exit(&mmp->mmp_io_lock);
509 }
510
511 /*
512 * MMP on => off:
513 * mmp_delay == 0 tells importing node to skip activity check.
514 */
515 if (last_spa_multihost && !multihost) {
516 mutex_enter(&mmp->mmp_io_lock);
517 mmp->mmp_delay = 0;
518 mutex_exit(&mmp->mmp_io_lock);
519 }
520 last_spa_multihost = multihost;
521 last_spa_suspended = suspended;
522
523 /*
524 * Smooth max_fail_ns when its factors are decreased, because
525 * making (max_fail_ns < mmp_interval) results in the pool being
526 * immediately suspended before writes can occur at the new
527 * higher frequency.
528 */
529 if ((mmp_interval * mmp_fail_intervals) < max_fail_ns) {
530 max_fail_ns = ((31 * max_fail_ns) + (mmp_interval *
531 mmp_fail_intervals)) / 32;
532 } else {
533 max_fail_ns = mmp_interval * mmp_fail_intervals;
534 }
535
536 /*
537 * Suspend the pool if no MMP write has succeeded in over
538 * mmp_interval * mmp_fail_intervals nanoseconds.
539 */
540 if (!suspended && mmp_fail_intervals && multihost &&
541 (gethrtime() - mmp->mmp_last_write) > max_fail_ns) {
542 cmn_err(CE_WARN, "MMP writes to pool '%s' have not "
543 "succeeded in over %llus; suspending pool",
544 spa_name(spa),
545 NSEC2SEC(gethrtime() - mmp->mmp_last_write));
546 zio_suspend(spa, NULL, ZIO_SUSPEND_MMP);
547 }
548
549 if (multihost && !suspended)
550 mmp_write_uberblock(spa);
551
552 CALLB_CPR_SAFE_BEGIN(&cpr);
553 (void) cv_timedwait_sig_hires(&mmp->mmp_thread_cv,
554 &mmp->mmp_thread_lock, next_time, USEC2NSEC(1),
555 CALLOUT_FLAG_ABSOLUTE);
556 CALLB_CPR_SAFE_END(&cpr, &mmp->mmp_thread_lock);
557 }
558
559 /* Outstanding writes are allowed to complete. */
560 if (mmp->mmp_zio_root)
561 zio_wait(mmp->mmp_zio_root);
562
563 mmp->mmp_zio_root = NULL;
564 mmp_thread_exit(mmp, &mmp->mmp_thread, &cpr);
565 }
566
567 /*
568 * Signal the MMP thread to wake it, when it is sleeping on
569 * its cv. Used when some module parameter has changed and
570 * we want the thread to know about it.
571 * Only signal if the pool is active and mmp thread is
572 * running, otherwise there is no thread to wake.
573 */
574 static void
575 mmp_signal_thread(spa_t *spa)
576 {
577 mmp_thread_t *mmp = &spa->spa_mmp;
578
579 mutex_enter(&mmp->mmp_thread_lock);
580 if (mmp->mmp_thread)
581 cv_broadcast(&mmp->mmp_thread_cv);
582 mutex_exit(&mmp->mmp_thread_lock);
583 }
584
585 void
586 mmp_signal_all_threads(void)
587 {
588 spa_t *spa = NULL;
589
590 mutex_enter(&spa_namespace_lock);
591 while ((spa = spa_next(spa))) {
592 if (spa->spa_state == POOL_STATE_ACTIVE)
593 mmp_signal_thread(spa);
594 }
595 mutex_exit(&spa_namespace_lock);
596 }
597
598 #if defined(_KERNEL) && defined(HAVE_SPL)
599 #include <linux/mod_compat.h>
600
601 static int
602 param_set_multihost_interval(const char *val, zfs_kernel_param_t *kp)
603 {
604 int ret;
605
606 ret = param_set_ulong(val, kp);
607 if (ret < 0)
608 return (ret);
609
610 mmp_signal_all_threads();
611
612 return (ret);
613 }
614
615 /* BEGIN CSTYLED */
616 module_param(zfs_multihost_fail_intervals, uint, 0644);
617 MODULE_PARM_DESC(zfs_multihost_fail_intervals,
618 "Max allowed period without a successful mmp write");
619
620 module_param_call(zfs_multihost_interval, param_set_multihost_interval,
621 param_get_ulong, &zfs_multihost_interval, 0644);
622 MODULE_PARM_DESC(zfs_multihost_interval,
623 "Milliseconds between mmp writes to each leaf");
624
625 module_param(zfs_multihost_import_intervals, uint, 0644);
626 MODULE_PARM_DESC(zfs_multihost_import_intervals,
627 "Number of zfs_multihost_interval periods to wait for activity");
628 /* END CSTYLED */
629 #endif