]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa_misc.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_file.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fm/util.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/arc.h>
51 #include <sys/ddt.h>
52 #include <sys/kstat.h>
53 #include "zfs_prop.h"
54 #include "zfeature_common.h"
55
56 /*
57 * SPA locking
58 *
59 * There are four basic locks for managing spa_t structures:
60 *
61 * spa_namespace_lock (global mutex)
62 *
63 * This lock must be acquired to do any of the following:
64 *
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
69 * - Rename a spa_t
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
72 *
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
77 *
78 * spa_refcount (per-spa refcount_t protected by mutex)
79 *
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
83 * some references in the DMU. Internally we check against spa_minref, but
84 * present the image of a zero/non-zero value to consumers.
85 *
86 * spa_config_lock[] (per-spa array of rwlocks)
87 *
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
90 *
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
93 *
94 * The locking order is fairly straightforward:
95 *
96 * spa_namespace_lock -> spa_refcount
97 *
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
100 *
101 * spa_refcount -> spa_config_lock[]
102 *
103 * There must be at least one valid reference on the spa_t to acquire
104 * the config lock.
105 *
106 * spa_namespace_lock -> spa_config_lock[]
107 *
108 * The namespace lock must always be taken before the config lock.
109 *
110 *
111 * The spa_namespace_lock can be acquired directly and is globally visible.
112 *
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
115 *
116 * spa_lookup() Lookup a spa_t by name.
117 *
118 * spa_add() Create a new spa_t in the namespace.
119 *
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
122 *
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
125 *
126 * spa_evict_all() Shutdown and remove all spa_t structures in
127 * the system.
128 *
129 * spa_guid_exists() Determine whether a pool/device guid exists.
130 *
131 * The spa_refcount is manipulated using the following functions:
132 *
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
136 *
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
140 *
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
143 * held.
144 *
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 *
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
153 *
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 *
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
164 *
165 * The lock acquisition rules are as follows:
166 *
167 * SCL_CONFIG
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
171 *
172 * SCL_STATE
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
176 *
177 * SCL_ALLOC
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
180 *
181 * SCL_ZIO
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
185 *
186 * SCL_FREE
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192 *
193 * SCL_VDEV
194 * Held as reader to prevent changes to the vdev tree during trivial
195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
198 *
199 * In addition, the following rules apply:
200 *
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 *
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
209 *
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 *
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
213 * for writing.
214 *
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
218 *
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 *
223 * spa_rename() is also implemented within this file since it requires
224 * manipulation of the namespace.
225 */
226
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240
241 #ifdef ZFS_DEBUG
242 /* Everything except dprintf and spa is on by default in debug builds */
243 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
244 #else
245 int zfs_flags = 0;
246 #endif
247
248 /*
249 * zfs_recover can be set to nonzero to attempt to recover from
250 * otherwise-fatal errors, typically caused by on-disk corruption. When
251 * set, calls to zfs_panic_recover() will turn into warning messages.
252 * This should only be used as a last resort, as it typically results
253 * in leaked space, or worse.
254 */
255 int zfs_recover = B_FALSE;
256
257 /*
258 * If destroy encounters an EIO while reading metadata (e.g. indirect
259 * blocks), space referenced by the missing metadata can not be freed.
260 * Normally this causes the background destroy to become "stalled", as
261 * it is unable to make forward progress. While in this stalled state,
262 * all remaining space to free from the error-encountering filesystem is
263 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
264 * permanently leak the space from indirect blocks that can not be read,
265 * and continue to free everything else that it can.
266 *
267 * The default, "stalling" behavior is useful if the storage partially
268 * fails (i.e. some but not all i/os fail), and then later recovers. In
269 * this case, we will be able to continue pool operations while it is
270 * partially failed, and when it recovers, we can continue to free the
271 * space, with no leaks. However, note that this case is actually
272 * fairly rare.
273 *
274 * Typically pools either (a) fail completely (but perhaps temporarily,
275 * e.g. a top-level vdev going offline), or (b) have localized,
276 * permanent errors (e.g. disk returns the wrong data due to bit flip or
277 * firmware bug). In case (a), this setting does not matter because the
278 * pool will be suspended and the sync thread will not be able to make
279 * forward progress regardless. In case (b), because the error is
280 * permanent, the best we can do is leak the minimum amount of space,
281 * which is what setting this flag will do. Therefore, it is reasonable
282 * for this flag to normally be set, but we chose the more conservative
283 * approach of not setting it, so that there is no possibility of
284 * leaking space in the "partial temporary" failure case.
285 */
286 int zfs_free_leak_on_eio = B_FALSE;
287
288 /*
289 * Expiration time in milliseconds. This value has two meanings. First it is
290 * used to determine when the spa_deadman() logic should fire. By default the
291 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
292 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
293 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
294 * in a system panic.
295 */
296 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
297
298 /*
299 * By default the deadman is enabled.
300 */
301 int zfs_deadman_enabled = 1;
302
303 /*
304 * The worst case is single-sector max-parity RAID-Z blocks, in which
305 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
306 * times the size; so just assume that. Add to this the fact that
307 * we can have up to 3 DVAs per bp, and one more factor of 2 because
308 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
309 * the worst case is:
310 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
311 */
312 int spa_asize_inflation = 24;
313
314 /*
315 * ==========================================================================
316 * SPA config locking
317 * ==========================================================================
318 */
319 static void
320 spa_config_lock_init(spa_t *spa)
321 {
322 int i;
323
324 for (i = 0; i < SCL_LOCKS; i++) {
325 spa_config_lock_t *scl = &spa->spa_config_lock[i];
326 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
327 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
328 refcount_create_untracked(&scl->scl_count);
329 scl->scl_writer = NULL;
330 scl->scl_write_wanted = 0;
331 }
332 }
333
334 static void
335 spa_config_lock_destroy(spa_t *spa)
336 {
337 int i;
338
339 for (i = 0; i < SCL_LOCKS; i++) {
340 spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 mutex_destroy(&scl->scl_lock);
342 cv_destroy(&scl->scl_cv);
343 refcount_destroy(&scl->scl_count);
344 ASSERT(scl->scl_writer == NULL);
345 ASSERT(scl->scl_write_wanted == 0);
346 }
347 }
348
349 int
350 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
351 {
352 int i;
353
354 for (i = 0; i < SCL_LOCKS; i++) {
355 spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 if (!(locks & (1 << i)))
357 continue;
358 mutex_enter(&scl->scl_lock);
359 if (rw == RW_READER) {
360 if (scl->scl_writer || scl->scl_write_wanted) {
361 mutex_exit(&scl->scl_lock);
362 spa_config_exit(spa, locks ^ (1 << i), tag);
363 return (0);
364 }
365 } else {
366 ASSERT(scl->scl_writer != curthread);
367 if (!refcount_is_zero(&scl->scl_count)) {
368 mutex_exit(&scl->scl_lock);
369 spa_config_exit(spa, locks ^ (1 << i), tag);
370 return (0);
371 }
372 scl->scl_writer = curthread;
373 }
374 (void) refcount_add(&scl->scl_count, tag);
375 mutex_exit(&scl->scl_lock);
376 }
377 return (1);
378 }
379
380 void
381 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
382 {
383 int wlocks_held = 0;
384 int i;
385
386 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
387
388 for (i = 0; i < SCL_LOCKS; i++) {
389 spa_config_lock_t *scl = &spa->spa_config_lock[i];
390 if (scl->scl_writer == curthread)
391 wlocks_held |= (1 << i);
392 if (!(locks & (1 << i)))
393 continue;
394 mutex_enter(&scl->scl_lock);
395 if (rw == RW_READER) {
396 while (scl->scl_writer || scl->scl_write_wanted) {
397 cv_wait(&scl->scl_cv, &scl->scl_lock);
398 }
399 } else {
400 ASSERT(scl->scl_writer != curthread);
401 while (!refcount_is_zero(&scl->scl_count)) {
402 scl->scl_write_wanted++;
403 cv_wait(&scl->scl_cv, &scl->scl_lock);
404 scl->scl_write_wanted--;
405 }
406 scl->scl_writer = curthread;
407 }
408 (void) refcount_add(&scl->scl_count, tag);
409 mutex_exit(&scl->scl_lock);
410 }
411 ASSERT(wlocks_held <= locks);
412 }
413
414 void
415 spa_config_exit(spa_t *spa, int locks, void *tag)
416 {
417 int i;
418
419 for (i = SCL_LOCKS - 1; i >= 0; i--) {
420 spa_config_lock_t *scl = &spa->spa_config_lock[i];
421 if (!(locks & (1 << i)))
422 continue;
423 mutex_enter(&scl->scl_lock);
424 ASSERT(!refcount_is_zero(&scl->scl_count));
425 if (refcount_remove(&scl->scl_count, tag) == 0) {
426 ASSERT(scl->scl_writer == NULL ||
427 scl->scl_writer == curthread);
428 scl->scl_writer = NULL; /* OK in either case */
429 cv_broadcast(&scl->scl_cv);
430 }
431 mutex_exit(&scl->scl_lock);
432 }
433 }
434
435 int
436 spa_config_held(spa_t *spa, int locks, krw_t rw)
437 {
438 int i, locks_held = 0;
439
440 for (i = 0; i < SCL_LOCKS; i++) {
441 spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 if (!(locks & (1 << i)))
443 continue;
444 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
445 (rw == RW_WRITER && scl->scl_writer == curthread))
446 locks_held |= 1 << i;
447 }
448
449 return (locks_held);
450 }
451
452 /*
453 * ==========================================================================
454 * SPA namespace functions
455 * ==========================================================================
456 */
457
458 /*
459 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
460 * Returns NULL if no matching spa_t is found.
461 */
462 spa_t *
463 spa_lookup(const char *name)
464 {
465 static spa_t search; /* spa_t is large; don't allocate on stack */
466 spa_t *spa;
467 avl_index_t where;
468 char *cp;
469
470 ASSERT(MUTEX_HELD(&spa_namespace_lock));
471
472 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
473
474 /*
475 * If it's a full dataset name, figure out the pool name and
476 * just use that.
477 */
478 cp = strpbrk(search.spa_name, "/@#");
479 if (cp != NULL)
480 *cp = '\0';
481
482 spa = avl_find(&spa_namespace_avl, &search, &where);
483
484 return (spa);
485 }
486
487 /*
488 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
489 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
490 * looking for potentially hung I/Os.
491 */
492 void
493 spa_deadman(void *arg)
494 {
495 spa_t *spa = arg;
496
497 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
498 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
499 ++spa->spa_deadman_calls);
500 if (zfs_deadman_enabled)
501 vdev_deadman(spa->spa_root_vdev);
502
503 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
504 spa_deadman, spa, KM_SLEEP, ddi_get_lbolt() +
505 NSEC_TO_TICK(spa->spa_deadman_synctime));
506 }
507
508 /*
509 * Create an uninitialized spa_t with the given name. Requires
510 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
511 * exist by calling spa_lookup() first.
512 */
513 spa_t *
514 spa_add(const char *name, nvlist_t *config, const char *altroot)
515 {
516 spa_t *spa;
517 spa_config_dirent_t *dp;
518 int t;
519 int i;
520
521 ASSERT(MUTEX_HELD(&spa_namespace_lock));
522
523 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
524
525 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
526 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
527 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
528 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
529 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
530 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
531 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
532 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
533 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
534 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
535
536 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
537 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
538 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
539 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
540
541 for (t = 0; t < TXG_SIZE; t++)
542 bplist_create(&spa->spa_free_bplist[t]);
543
544 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
545 spa->spa_state = POOL_STATE_UNINITIALIZED;
546 spa->spa_freeze_txg = UINT64_MAX;
547 spa->spa_final_txg = UINT64_MAX;
548 spa->spa_load_max_txg = UINT64_MAX;
549 spa->spa_proc = &p0;
550 spa->spa_proc_state = SPA_PROC_NONE;
551
552 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
553
554 refcount_create(&spa->spa_refcount);
555 spa_config_lock_init(spa);
556 spa_stats_init(spa);
557
558 avl_add(&spa_namespace_avl, spa);
559
560 /*
561 * Set the alternate root, if there is one.
562 */
563 if (altroot) {
564 spa->spa_root = spa_strdup(altroot);
565 spa_active_count++;
566 }
567
568 /*
569 * Every pool starts with the default cachefile
570 */
571 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
572 offsetof(spa_config_dirent_t, scd_link));
573
574 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
575 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
576 list_insert_head(&spa->spa_config_list, dp);
577
578 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
579 KM_SLEEP) == 0);
580
581 if (config != NULL) {
582 nvlist_t *features;
583
584 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
585 &features) == 0) {
586 VERIFY(nvlist_dup(features, &spa->spa_label_features,
587 0) == 0);
588 }
589
590 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
591 }
592
593 if (spa->spa_label_features == NULL) {
594 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
595 KM_SLEEP) == 0);
596 }
597
598 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
599
600 /*
601 * As a pool is being created, treat all features as disabled by
602 * setting SPA_FEATURE_DISABLED for all entries in the feature
603 * refcount cache.
604 */
605 for (i = 0; i < SPA_FEATURES; i++) {
606 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
607 }
608
609 return (spa);
610 }
611
612 /*
613 * Removes a spa_t from the namespace, freeing up any memory used. Requires
614 * spa_namespace_lock. This is called only after the spa_t has been closed and
615 * deactivated.
616 */
617 void
618 spa_remove(spa_t *spa)
619 {
620 spa_config_dirent_t *dp;
621 int t;
622
623 ASSERT(MUTEX_HELD(&spa_namespace_lock));
624 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
625
626 nvlist_free(spa->spa_config_splitting);
627
628 avl_remove(&spa_namespace_avl, spa);
629 cv_broadcast(&spa_namespace_cv);
630
631 if (spa->spa_root) {
632 spa_strfree(spa->spa_root);
633 spa_active_count--;
634 }
635
636 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
637 list_remove(&spa->spa_config_list, dp);
638 if (dp->scd_path != NULL)
639 spa_strfree(dp->scd_path);
640 kmem_free(dp, sizeof (spa_config_dirent_t));
641 }
642
643 list_destroy(&spa->spa_config_list);
644
645 nvlist_free(spa->spa_label_features);
646 nvlist_free(spa->spa_load_info);
647 nvlist_free(spa->spa_feat_stats);
648 spa_config_set(spa, NULL);
649
650 refcount_destroy(&spa->spa_refcount);
651
652 spa_stats_destroy(spa);
653 spa_config_lock_destroy(spa);
654
655 for (t = 0; t < TXG_SIZE; t++)
656 bplist_destroy(&spa->spa_free_bplist[t]);
657
658 cv_destroy(&spa->spa_async_cv);
659 cv_destroy(&spa->spa_proc_cv);
660 cv_destroy(&spa->spa_scrub_io_cv);
661 cv_destroy(&spa->spa_suspend_cv);
662
663 mutex_destroy(&spa->spa_async_lock);
664 mutex_destroy(&spa->spa_errlist_lock);
665 mutex_destroy(&spa->spa_errlog_lock);
666 mutex_destroy(&spa->spa_history_lock);
667 mutex_destroy(&spa->spa_proc_lock);
668 mutex_destroy(&spa->spa_props_lock);
669 mutex_destroy(&spa->spa_scrub_lock);
670 mutex_destroy(&spa->spa_suspend_lock);
671 mutex_destroy(&spa->spa_vdev_top_lock);
672 mutex_destroy(&spa->spa_feat_stats_lock);
673
674 kmem_free(spa, sizeof (spa_t));
675 }
676
677 /*
678 * Given a pool, return the next pool in the namespace, or NULL if there is
679 * none. If 'prev' is NULL, return the first pool.
680 */
681 spa_t *
682 spa_next(spa_t *prev)
683 {
684 ASSERT(MUTEX_HELD(&spa_namespace_lock));
685
686 if (prev)
687 return (AVL_NEXT(&spa_namespace_avl, prev));
688 else
689 return (avl_first(&spa_namespace_avl));
690 }
691
692 /*
693 * ==========================================================================
694 * SPA refcount functions
695 * ==========================================================================
696 */
697
698 /*
699 * Add a reference to the given spa_t. Must have at least one reference, or
700 * have the namespace lock held.
701 */
702 void
703 spa_open_ref(spa_t *spa, void *tag)
704 {
705 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
706 MUTEX_HELD(&spa_namespace_lock));
707 (void) refcount_add(&spa->spa_refcount, tag);
708 }
709
710 /*
711 * Remove a reference to the given spa_t. Must have at least one reference, or
712 * have the namespace lock held.
713 */
714 void
715 spa_close(spa_t *spa, void *tag)
716 {
717 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
718 MUTEX_HELD(&spa_namespace_lock));
719 (void) refcount_remove(&spa->spa_refcount, tag);
720 }
721
722 /*
723 * Check to see if the spa refcount is zero. Must be called with
724 * spa_namespace_lock held. We really compare against spa_minref, which is the
725 * number of references acquired when opening a pool
726 */
727 boolean_t
728 spa_refcount_zero(spa_t *spa)
729 {
730 ASSERT(MUTEX_HELD(&spa_namespace_lock));
731
732 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
733 }
734
735 /*
736 * ==========================================================================
737 * SPA spare and l2cache tracking
738 * ==========================================================================
739 */
740
741 /*
742 * Hot spares and cache devices are tracked using the same code below,
743 * for 'auxiliary' devices.
744 */
745
746 typedef struct spa_aux {
747 uint64_t aux_guid;
748 uint64_t aux_pool;
749 avl_node_t aux_avl;
750 int aux_count;
751 } spa_aux_t;
752
753 static int
754 spa_aux_compare(const void *a, const void *b)
755 {
756 const spa_aux_t *sa = a;
757 const spa_aux_t *sb = b;
758
759 if (sa->aux_guid < sb->aux_guid)
760 return (-1);
761 else if (sa->aux_guid > sb->aux_guid)
762 return (1);
763 else
764 return (0);
765 }
766
767 void
768 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
769 {
770 avl_index_t where;
771 spa_aux_t search;
772 spa_aux_t *aux;
773
774 search.aux_guid = vd->vdev_guid;
775 if ((aux = avl_find(avl, &search, &where)) != NULL) {
776 aux->aux_count++;
777 } else {
778 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
779 aux->aux_guid = vd->vdev_guid;
780 aux->aux_count = 1;
781 avl_insert(avl, aux, where);
782 }
783 }
784
785 void
786 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
787 {
788 spa_aux_t search;
789 spa_aux_t *aux;
790 avl_index_t where;
791
792 search.aux_guid = vd->vdev_guid;
793 aux = avl_find(avl, &search, &where);
794
795 ASSERT(aux != NULL);
796
797 if (--aux->aux_count == 0) {
798 avl_remove(avl, aux);
799 kmem_free(aux, sizeof (spa_aux_t));
800 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
801 aux->aux_pool = 0ULL;
802 }
803 }
804
805 boolean_t
806 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
807 {
808 spa_aux_t search, *found;
809
810 search.aux_guid = guid;
811 found = avl_find(avl, &search, NULL);
812
813 if (pool) {
814 if (found)
815 *pool = found->aux_pool;
816 else
817 *pool = 0ULL;
818 }
819
820 if (refcnt) {
821 if (found)
822 *refcnt = found->aux_count;
823 else
824 *refcnt = 0;
825 }
826
827 return (found != NULL);
828 }
829
830 void
831 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
832 {
833 spa_aux_t search, *found;
834 avl_index_t where;
835
836 search.aux_guid = vd->vdev_guid;
837 found = avl_find(avl, &search, &where);
838 ASSERT(found != NULL);
839 ASSERT(found->aux_pool == 0ULL);
840
841 found->aux_pool = spa_guid(vd->vdev_spa);
842 }
843
844 /*
845 * Spares are tracked globally due to the following constraints:
846 *
847 * - A spare may be part of multiple pools.
848 * - A spare may be added to a pool even if it's actively in use within
849 * another pool.
850 * - A spare in use in any pool can only be the source of a replacement if
851 * the target is a spare in the same pool.
852 *
853 * We keep track of all spares on the system through the use of a reference
854 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
855 * spare, then we bump the reference count in the AVL tree. In addition, we set
856 * the 'vdev_isspare' member to indicate that the device is a spare (active or
857 * inactive). When a spare is made active (used to replace a device in the
858 * pool), we also keep track of which pool its been made a part of.
859 *
860 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
861 * called under the spa_namespace lock as part of vdev reconfiguration. The
862 * separate spare lock exists for the status query path, which does not need to
863 * be completely consistent with respect to other vdev configuration changes.
864 */
865
866 static int
867 spa_spare_compare(const void *a, const void *b)
868 {
869 return (spa_aux_compare(a, b));
870 }
871
872 void
873 spa_spare_add(vdev_t *vd)
874 {
875 mutex_enter(&spa_spare_lock);
876 ASSERT(!vd->vdev_isspare);
877 spa_aux_add(vd, &spa_spare_avl);
878 vd->vdev_isspare = B_TRUE;
879 mutex_exit(&spa_spare_lock);
880 }
881
882 void
883 spa_spare_remove(vdev_t *vd)
884 {
885 mutex_enter(&spa_spare_lock);
886 ASSERT(vd->vdev_isspare);
887 spa_aux_remove(vd, &spa_spare_avl);
888 vd->vdev_isspare = B_FALSE;
889 mutex_exit(&spa_spare_lock);
890 }
891
892 boolean_t
893 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
894 {
895 boolean_t found;
896
897 mutex_enter(&spa_spare_lock);
898 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
899 mutex_exit(&spa_spare_lock);
900
901 return (found);
902 }
903
904 void
905 spa_spare_activate(vdev_t *vd)
906 {
907 mutex_enter(&spa_spare_lock);
908 ASSERT(vd->vdev_isspare);
909 spa_aux_activate(vd, &spa_spare_avl);
910 mutex_exit(&spa_spare_lock);
911 }
912
913 /*
914 * Level 2 ARC devices are tracked globally for the same reasons as spares.
915 * Cache devices currently only support one pool per cache device, and so
916 * for these devices the aux reference count is currently unused beyond 1.
917 */
918
919 static int
920 spa_l2cache_compare(const void *a, const void *b)
921 {
922 return (spa_aux_compare(a, b));
923 }
924
925 void
926 spa_l2cache_add(vdev_t *vd)
927 {
928 mutex_enter(&spa_l2cache_lock);
929 ASSERT(!vd->vdev_isl2cache);
930 spa_aux_add(vd, &spa_l2cache_avl);
931 vd->vdev_isl2cache = B_TRUE;
932 mutex_exit(&spa_l2cache_lock);
933 }
934
935 void
936 spa_l2cache_remove(vdev_t *vd)
937 {
938 mutex_enter(&spa_l2cache_lock);
939 ASSERT(vd->vdev_isl2cache);
940 spa_aux_remove(vd, &spa_l2cache_avl);
941 vd->vdev_isl2cache = B_FALSE;
942 mutex_exit(&spa_l2cache_lock);
943 }
944
945 boolean_t
946 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
947 {
948 boolean_t found;
949
950 mutex_enter(&spa_l2cache_lock);
951 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
952 mutex_exit(&spa_l2cache_lock);
953
954 return (found);
955 }
956
957 void
958 spa_l2cache_activate(vdev_t *vd)
959 {
960 mutex_enter(&spa_l2cache_lock);
961 ASSERT(vd->vdev_isl2cache);
962 spa_aux_activate(vd, &spa_l2cache_avl);
963 mutex_exit(&spa_l2cache_lock);
964 }
965
966 /*
967 * ==========================================================================
968 * SPA vdev locking
969 * ==========================================================================
970 */
971
972 /*
973 * Lock the given spa_t for the purpose of adding or removing a vdev.
974 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
975 * It returns the next transaction group for the spa_t.
976 */
977 uint64_t
978 spa_vdev_enter(spa_t *spa)
979 {
980 mutex_enter(&spa->spa_vdev_top_lock);
981 mutex_enter(&spa_namespace_lock);
982 return (spa_vdev_config_enter(spa));
983 }
984
985 /*
986 * Internal implementation for spa_vdev_enter(). Used when a vdev
987 * operation requires multiple syncs (i.e. removing a device) while
988 * keeping the spa_namespace_lock held.
989 */
990 uint64_t
991 spa_vdev_config_enter(spa_t *spa)
992 {
993 ASSERT(MUTEX_HELD(&spa_namespace_lock));
994
995 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
996
997 return (spa_last_synced_txg(spa) + 1);
998 }
999
1000 /*
1001 * Used in combination with spa_vdev_config_enter() to allow the syncing
1002 * of multiple transactions without releasing the spa_namespace_lock.
1003 */
1004 void
1005 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1006 {
1007 int config_changed = B_FALSE;
1008
1009 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1010 ASSERT(txg > spa_last_synced_txg(spa));
1011
1012 spa->spa_pending_vdev = NULL;
1013
1014 /*
1015 * Reassess the DTLs.
1016 */
1017 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1018
1019 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1020 config_changed = B_TRUE;
1021 spa->spa_config_generation++;
1022 }
1023
1024 /*
1025 * Verify the metaslab classes.
1026 */
1027 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1028 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1029
1030 spa_config_exit(spa, SCL_ALL, spa);
1031
1032 /*
1033 * Panic the system if the specified tag requires it. This
1034 * is useful for ensuring that configurations are updated
1035 * transactionally.
1036 */
1037 if (zio_injection_enabled)
1038 zio_handle_panic_injection(spa, tag, 0);
1039
1040 /*
1041 * Note: this txg_wait_synced() is important because it ensures
1042 * that there won't be more than one config change per txg.
1043 * This allows us to use the txg as the generation number.
1044 */
1045 if (error == 0)
1046 txg_wait_synced(spa->spa_dsl_pool, txg);
1047
1048 if (vd != NULL) {
1049 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1050 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1051 vdev_free(vd);
1052 spa_config_exit(spa, SCL_ALL, spa);
1053 }
1054
1055 /*
1056 * If the config changed, update the config cache.
1057 */
1058 if (config_changed)
1059 spa_config_sync(spa, B_FALSE, B_TRUE);
1060 }
1061
1062 /*
1063 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1064 * locking of spa_vdev_enter(), we also want make sure the transactions have
1065 * synced to disk, and then update the global configuration cache with the new
1066 * information.
1067 */
1068 int
1069 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1070 {
1071 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1072 mutex_exit(&spa_namespace_lock);
1073 mutex_exit(&spa->spa_vdev_top_lock);
1074
1075 return (error);
1076 }
1077
1078 /*
1079 * Lock the given spa_t for the purpose of changing vdev state.
1080 */
1081 void
1082 spa_vdev_state_enter(spa_t *spa, int oplocks)
1083 {
1084 int locks = SCL_STATE_ALL | oplocks;
1085
1086 /*
1087 * Root pools may need to read of the underlying devfs filesystem
1088 * when opening up a vdev. Unfortunately if we're holding the
1089 * SCL_ZIO lock it will result in a deadlock when we try to issue
1090 * the read from the root filesystem. Instead we "prefetch"
1091 * the associated vnodes that we need prior to opening the
1092 * underlying devices and cache them so that we can prevent
1093 * any I/O when we are doing the actual open.
1094 */
1095 if (spa_is_root(spa)) {
1096 int low = locks & ~(SCL_ZIO - 1);
1097 int high = locks & ~low;
1098
1099 spa_config_enter(spa, high, spa, RW_WRITER);
1100 vdev_hold(spa->spa_root_vdev);
1101 spa_config_enter(spa, low, spa, RW_WRITER);
1102 } else {
1103 spa_config_enter(spa, locks, spa, RW_WRITER);
1104 }
1105 spa->spa_vdev_locks = locks;
1106 }
1107
1108 int
1109 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1110 {
1111 boolean_t config_changed = B_FALSE;
1112
1113 if (vd != NULL || error == 0)
1114 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1115 0, 0, B_FALSE);
1116
1117 if (vd != NULL) {
1118 vdev_state_dirty(vd->vdev_top);
1119 config_changed = B_TRUE;
1120 spa->spa_config_generation++;
1121 }
1122
1123 if (spa_is_root(spa))
1124 vdev_rele(spa->spa_root_vdev);
1125
1126 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1127 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1128
1129 /*
1130 * If anything changed, wait for it to sync. This ensures that,
1131 * from the system administrator's perspective, zpool(1M) commands
1132 * are synchronous. This is important for things like zpool offline:
1133 * when the command completes, you expect no further I/O from ZFS.
1134 */
1135 if (vd != NULL)
1136 txg_wait_synced(spa->spa_dsl_pool, 0);
1137
1138 /*
1139 * If the config changed, update the config cache.
1140 */
1141 if (config_changed) {
1142 mutex_enter(&spa_namespace_lock);
1143 spa_config_sync(spa, B_FALSE, B_TRUE);
1144 mutex_exit(&spa_namespace_lock);
1145 }
1146
1147 return (error);
1148 }
1149
1150 /*
1151 * ==========================================================================
1152 * Miscellaneous functions
1153 * ==========================================================================
1154 */
1155
1156 void
1157 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1158 {
1159 if (!nvlist_exists(spa->spa_label_features, feature)) {
1160 fnvlist_add_boolean(spa->spa_label_features, feature);
1161 /*
1162 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1163 * dirty the vdev config because lock SCL_CONFIG is not held.
1164 * Thankfully, in this case we don't need to dirty the config
1165 * because it will be written out anyway when we finish
1166 * creating the pool.
1167 */
1168 if (tx->tx_txg != TXG_INITIAL)
1169 vdev_config_dirty(spa->spa_root_vdev);
1170 }
1171 }
1172
1173 void
1174 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1175 {
1176 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1177 vdev_config_dirty(spa->spa_root_vdev);
1178 }
1179
1180 /*
1181 * Rename a spa_t.
1182 */
1183 int
1184 spa_rename(const char *name, const char *newname)
1185 {
1186 spa_t *spa;
1187 int err;
1188
1189 /*
1190 * Lookup the spa_t and grab the config lock for writing. We need to
1191 * actually open the pool so that we can sync out the necessary labels.
1192 * It's OK to call spa_open() with the namespace lock held because we
1193 * allow recursive calls for other reasons.
1194 */
1195 mutex_enter(&spa_namespace_lock);
1196 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1197 mutex_exit(&spa_namespace_lock);
1198 return (err);
1199 }
1200
1201 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1202
1203 avl_remove(&spa_namespace_avl, spa);
1204 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1205 avl_add(&spa_namespace_avl, spa);
1206
1207 /*
1208 * Sync all labels to disk with the new names by marking the root vdev
1209 * dirty and waiting for it to sync. It will pick up the new pool name
1210 * during the sync.
1211 */
1212 vdev_config_dirty(spa->spa_root_vdev);
1213
1214 spa_config_exit(spa, SCL_ALL, FTAG);
1215
1216 txg_wait_synced(spa->spa_dsl_pool, 0);
1217
1218 /*
1219 * Sync the updated config cache.
1220 */
1221 spa_config_sync(spa, B_FALSE, B_TRUE);
1222
1223 spa_close(spa, FTAG);
1224
1225 mutex_exit(&spa_namespace_lock);
1226
1227 return (0);
1228 }
1229
1230 /*
1231 * Return the spa_t associated with given pool_guid, if it exists. If
1232 * device_guid is non-zero, determine whether the pool exists *and* contains
1233 * a device with the specified device_guid.
1234 */
1235 spa_t *
1236 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1237 {
1238 spa_t *spa;
1239 avl_tree_t *t = &spa_namespace_avl;
1240
1241 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1242
1243 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1244 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1245 continue;
1246 if (spa->spa_root_vdev == NULL)
1247 continue;
1248 if (spa_guid(spa) == pool_guid) {
1249 if (device_guid == 0)
1250 break;
1251
1252 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1253 device_guid) != NULL)
1254 break;
1255
1256 /*
1257 * Check any devices we may be in the process of adding.
1258 */
1259 if (spa->spa_pending_vdev) {
1260 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1261 device_guid) != NULL)
1262 break;
1263 }
1264 }
1265 }
1266
1267 return (spa);
1268 }
1269
1270 /*
1271 * Determine whether a pool with the given pool_guid exists.
1272 */
1273 boolean_t
1274 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1275 {
1276 return (spa_by_guid(pool_guid, device_guid) != NULL);
1277 }
1278
1279 char *
1280 spa_strdup(const char *s)
1281 {
1282 size_t len;
1283 char *new;
1284
1285 len = strlen(s);
1286 new = kmem_alloc(len + 1, KM_SLEEP);
1287 bcopy(s, new, len);
1288 new[len] = '\0';
1289
1290 return (new);
1291 }
1292
1293 void
1294 spa_strfree(char *s)
1295 {
1296 kmem_free(s, strlen(s) + 1);
1297 }
1298
1299 uint64_t
1300 spa_get_random(uint64_t range)
1301 {
1302 uint64_t r;
1303
1304 ASSERT(range != 0);
1305
1306 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1307
1308 return (r % range);
1309 }
1310
1311 uint64_t
1312 spa_generate_guid(spa_t *spa)
1313 {
1314 uint64_t guid = spa_get_random(-1ULL);
1315
1316 if (spa != NULL) {
1317 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1318 guid = spa_get_random(-1ULL);
1319 } else {
1320 while (guid == 0 || spa_guid_exists(guid, 0))
1321 guid = spa_get_random(-1ULL);
1322 }
1323
1324 return (guid);
1325 }
1326
1327 void
1328 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1329 {
1330 char type[256];
1331 char *checksum = NULL;
1332 char *compress = NULL;
1333
1334 if (bp != NULL) {
1335 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1336 dmu_object_byteswap_t bswap =
1337 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1338 (void) snprintf(type, sizeof (type), "bswap %s %s",
1339 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1340 "metadata" : "data",
1341 dmu_ot_byteswap[bswap].ob_name);
1342 } else {
1343 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1344 sizeof (type));
1345 }
1346 if (!BP_IS_EMBEDDED(bp)) {
1347 checksum =
1348 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1349 }
1350 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1351 }
1352
1353 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1354 compress);
1355 }
1356
1357 void
1358 spa_freeze(spa_t *spa)
1359 {
1360 uint64_t freeze_txg = 0;
1361
1362 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1363 if (spa->spa_freeze_txg == UINT64_MAX) {
1364 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1365 spa->spa_freeze_txg = freeze_txg;
1366 }
1367 spa_config_exit(spa, SCL_ALL, FTAG);
1368 if (freeze_txg != 0)
1369 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1370 }
1371
1372 void
1373 zfs_panic_recover(const char *fmt, ...)
1374 {
1375 va_list adx;
1376
1377 va_start(adx, fmt);
1378 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1379 va_end(adx);
1380 }
1381
1382 /*
1383 * This is a stripped-down version of strtoull, suitable only for converting
1384 * lowercase hexadecimal numbers that don't overflow.
1385 */
1386 uint64_t
1387 strtonum(const char *str, char **nptr)
1388 {
1389 uint64_t val = 0;
1390 char c;
1391 int digit;
1392
1393 while ((c = *str) != '\0') {
1394 if (c >= '0' && c <= '9')
1395 digit = c - '0';
1396 else if (c >= 'a' && c <= 'f')
1397 digit = 10 + c - 'a';
1398 else
1399 break;
1400
1401 val *= 16;
1402 val += digit;
1403
1404 str++;
1405 }
1406
1407 if (nptr)
1408 *nptr = (char *)str;
1409
1410 return (val);
1411 }
1412
1413 /*
1414 * ==========================================================================
1415 * Accessor functions
1416 * ==========================================================================
1417 */
1418
1419 boolean_t
1420 spa_shutting_down(spa_t *spa)
1421 {
1422 return (spa->spa_async_suspended);
1423 }
1424
1425 dsl_pool_t *
1426 spa_get_dsl(spa_t *spa)
1427 {
1428 return (spa->spa_dsl_pool);
1429 }
1430
1431 boolean_t
1432 spa_is_initializing(spa_t *spa)
1433 {
1434 return (spa->spa_is_initializing);
1435 }
1436
1437 blkptr_t *
1438 spa_get_rootblkptr(spa_t *spa)
1439 {
1440 return (&spa->spa_ubsync.ub_rootbp);
1441 }
1442
1443 void
1444 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1445 {
1446 spa->spa_uberblock.ub_rootbp = *bp;
1447 }
1448
1449 void
1450 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1451 {
1452 if (spa->spa_root == NULL)
1453 buf[0] = '\0';
1454 else
1455 (void) strncpy(buf, spa->spa_root, buflen);
1456 }
1457
1458 int
1459 spa_sync_pass(spa_t *spa)
1460 {
1461 return (spa->spa_sync_pass);
1462 }
1463
1464 char *
1465 spa_name(spa_t *spa)
1466 {
1467 return (spa->spa_name);
1468 }
1469
1470 uint64_t
1471 spa_guid(spa_t *spa)
1472 {
1473 dsl_pool_t *dp = spa_get_dsl(spa);
1474 uint64_t guid;
1475
1476 /*
1477 * If we fail to parse the config during spa_load(), we can go through
1478 * the error path (which posts an ereport) and end up here with no root
1479 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1480 * this case.
1481 */
1482 if (spa->spa_root_vdev == NULL)
1483 return (spa->spa_config_guid);
1484
1485 guid = spa->spa_last_synced_guid != 0 ?
1486 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1487
1488 /*
1489 * Return the most recently synced out guid unless we're
1490 * in syncing context.
1491 */
1492 if (dp && dsl_pool_sync_context(dp))
1493 return (spa->spa_root_vdev->vdev_guid);
1494 else
1495 return (guid);
1496 }
1497
1498 uint64_t
1499 spa_load_guid(spa_t *spa)
1500 {
1501 /*
1502 * This is a GUID that exists solely as a reference for the
1503 * purposes of the arc. It is generated at load time, and
1504 * is never written to persistent storage.
1505 */
1506 return (spa->spa_load_guid);
1507 }
1508
1509 uint64_t
1510 spa_last_synced_txg(spa_t *spa)
1511 {
1512 return (spa->spa_ubsync.ub_txg);
1513 }
1514
1515 uint64_t
1516 spa_first_txg(spa_t *spa)
1517 {
1518 return (spa->spa_first_txg);
1519 }
1520
1521 uint64_t
1522 spa_syncing_txg(spa_t *spa)
1523 {
1524 return (spa->spa_syncing_txg);
1525 }
1526
1527 pool_state_t
1528 spa_state(spa_t *spa)
1529 {
1530 return (spa->spa_state);
1531 }
1532
1533 spa_load_state_t
1534 spa_load_state(spa_t *spa)
1535 {
1536 return (spa->spa_load_state);
1537 }
1538
1539 uint64_t
1540 spa_freeze_txg(spa_t *spa)
1541 {
1542 return (spa->spa_freeze_txg);
1543 }
1544
1545 /* ARGSUSED */
1546 uint64_t
1547 spa_get_asize(spa_t *spa, uint64_t lsize)
1548 {
1549 return (lsize * spa_asize_inflation);
1550 }
1551
1552 uint64_t
1553 spa_get_dspace(spa_t *spa)
1554 {
1555 return (spa->spa_dspace);
1556 }
1557
1558 void
1559 spa_update_dspace(spa_t *spa)
1560 {
1561 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1562 ddt_get_dedup_dspace(spa);
1563 }
1564
1565 /*
1566 * Return the failure mode that has been set to this pool. The default
1567 * behavior will be to block all I/Os when a complete failure occurs.
1568 */
1569 uint8_t
1570 spa_get_failmode(spa_t *spa)
1571 {
1572 return (spa->spa_failmode);
1573 }
1574
1575 boolean_t
1576 spa_suspended(spa_t *spa)
1577 {
1578 return (spa->spa_suspended);
1579 }
1580
1581 uint64_t
1582 spa_version(spa_t *spa)
1583 {
1584 return (spa->spa_ubsync.ub_version);
1585 }
1586
1587 boolean_t
1588 spa_deflate(spa_t *spa)
1589 {
1590 return (spa->spa_deflate);
1591 }
1592
1593 metaslab_class_t *
1594 spa_normal_class(spa_t *spa)
1595 {
1596 return (spa->spa_normal_class);
1597 }
1598
1599 metaslab_class_t *
1600 spa_log_class(spa_t *spa)
1601 {
1602 return (spa->spa_log_class);
1603 }
1604
1605 int
1606 spa_max_replication(spa_t *spa)
1607 {
1608 /*
1609 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1610 * handle BPs with more than one DVA allocated. Set our max
1611 * replication level accordingly.
1612 */
1613 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1614 return (1);
1615 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1616 }
1617
1618 int
1619 spa_prev_software_version(spa_t *spa)
1620 {
1621 return (spa->spa_prev_software_version);
1622 }
1623
1624 uint64_t
1625 spa_deadman_synctime(spa_t *spa)
1626 {
1627 return (spa->spa_deadman_synctime);
1628 }
1629
1630 uint64_t
1631 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1632 {
1633 uint64_t asize = DVA_GET_ASIZE(dva);
1634 uint64_t dsize = asize;
1635
1636 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1637
1638 if (asize != 0 && spa->spa_deflate) {
1639 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1640 if (vd != NULL)
1641 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1642 vd->vdev_deflate_ratio;
1643 }
1644
1645 return (dsize);
1646 }
1647
1648 uint64_t
1649 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1650 {
1651 uint64_t dsize = 0;
1652 int d;
1653
1654 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1655 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1656
1657 return (dsize);
1658 }
1659
1660 uint64_t
1661 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1662 {
1663 uint64_t dsize = 0;
1664 int d;
1665
1666 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1667
1668 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1669 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1670
1671 spa_config_exit(spa, SCL_VDEV, FTAG);
1672
1673 return (dsize);
1674 }
1675
1676 /*
1677 * ==========================================================================
1678 * Initialization and Termination
1679 * ==========================================================================
1680 */
1681
1682 static int
1683 spa_name_compare(const void *a1, const void *a2)
1684 {
1685 const spa_t *s1 = a1;
1686 const spa_t *s2 = a2;
1687 int s;
1688
1689 s = strcmp(s1->spa_name, s2->spa_name);
1690 if (s > 0)
1691 return (1);
1692 if (s < 0)
1693 return (-1);
1694 return (0);
1695 }
1696
1697 void
1698 spa_boot_init(void)
1699 {
1700 spa_config_load();
1701 }
1702
1703 void
1704 spa_init(int mode)
1705 {
1706 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1707 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1708 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1709 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1710
1711 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1712 offsetof(spa_t, spa_avl));
1713
1714 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1715 offsetof(spa_aux_t, aux_avl));
1716
1717 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1718 offsetof(spa_aux_t, aux_avl));
1719
1720 spa_mode_global = mode;
1721
1722 #ifndef _KERNEL
1723 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1724 struct sigaction sa;
1725
1726 sa.sa_flags = SA_SIGINFO;
1727 sigemptyset(&sa.sa_mask);
1728 sa.sa_sigaction = arc_buf_sigsegv;
1729
1730 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1731 perror("could not enable watchpoints: "
1732 "sigaction(SIGSEGV, ...) = ");
1733 } else {
1734 arc_watch = B_TRUE;
1735 }
1736 }
1737 #endif
1738
1739 fm_init();
1740 refcount_init();
1741 unique_init();
1742 range_tree_init();
1743 ddt_init();
1744 zio_init();
1745 dmu_init();
1746 zil_init();
1747 vdev_cache_stat_init();
1748 vdev_file_init();
1749 zfs_prop_init();
1750 zpool_prop_init();
1751 zpool_feature_init();
1752 spa_config_load();
1753 l2arc_start();
1754 }
1755
1756 void
1757 spa_fini(void)
1758 {
1759 l2arc_stop();
1760
1761 spa_evict_all();
1762
1763 vdev_file_fini();
1764 vdev_cache_stat_fini();
1765 zil_fini();
1766 dmu_fini();
1767 zio_fini();
1768 ddt_fini();
1769 range_tree_fini();
1770 unique_fini();
1771 refcount_fini();
1772 fm_fini();
1773
1774 avl_destroy(&spa_namespace_avl);
1775 avl_destroy(&spa_spare_avl);
1776 avl_destroy(&spa_l2cache_avl);
1777
1778 cv_destroy(&spa_namespace_cv);
1779 mutex_destroy(&spa_namespace_lock);
1780 mutex_destroy(&spa_spare_lock);
1781 mutex_destroy(&spa_l2cache_lock);
1782 }
1783
1784 /*
1785 * Return whether this pool has slogs. No locking needed.
1786 * It's not a problem if the wrong answer is returned as it's only for
1787 * performance and not correctness
1788 */
1789 boolean_t
1790 spa_has_slogs(spa_t *spa)
1791 {
1792 return (spa->spa_log_class->mc_rotor != NULL);
1793 }
1794
1795 spa_log_state_t
1796 spa_get_log_state(spa_t *spa)
1797 {
1798 return (spa->spa_log_state);
1799 }
1800
1801 void
1802 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1803 {
1804 spa->spa_log_state = state;
1805 }
1806
1807 boolean_t
1808 spa_is_root(spa_t *spa)
1809 {
1810 return (spa->spa_is_root);
1811 }
1812
1813 boolean_t
1814 spa_writeable(spa_t *spa)
1815 {
1816 return (!!(spa->spa_mode & FWRITE));
1817 }
1818
1819 /*
1820 * Returns true if there is a pending sync task in any of the current
1821 * syncing txg, the current quiescing txg, or the current open txg.
1822 */
1823 boolean_t
1824 spa_has_pending_synctask(spa_t *spa)
1825 {
1826 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1827 }
1828
1829 int
1830 spa_mode(spa_t *spa)
1831 {
1832 return (spa->spa_mode);
1833 }
1834
1835 uint64_t
1836 spa_bootfs(spa_t *spa)
1837 {
1838 return (spa->spa_bootfs);
1839 }
1840
1841 uint64_t
1842 spa_delegation(spa_t *spa)
1843 {
1844 return (spa->spa_delegation);
1845 }
1846
1847 objset_t *
1848 spa_meta_objset(spa_t *spa)
1849 {
1850 return (spa->spa_meta_objset);
1851 }
1852
1853 enum zio_checksum
1854 spa_dedup_checksum(spa_t *spa)
1855 {
1856 return (spa->spa_dedup_checksum);
1857 }
1858
1859 /*
1860 * Reset pool scan stat per scan pass (or reboot).
1861 */
1862 void
1863 spa_scan_stat_init(spa_t *spa)
1864 {
1865 /* data not stored on disk */
1866 spa->spa_scan_pass_start = gethrestime_sec();
1867 spa->spa_scan_pass_exam = 0;
1868 vdev_scan_stat_init(spa->spa_root_vdev);
1869 }
1870
1871 /*
1872 * Get scan stats for zpool status reports
1873 */
1874 int
1875 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1876 {
1877 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1878
1879 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1880 return (SET_ERROR(ENOENT));
1881 bzero(ps, sizeof (pool_scan_stat_t));
1882
1883 /* data stored on disk */
1884 ps->pss_func = scn->scn_phys.scn_func;
1885 ps->pss_start_time = scn->scn_phys.scn_start_time;
1886 ps->pss_end_time = scn->scn_phys.scn_end_time;
1887 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1888 ps->pss_examined = scn->scn_phys.scn_examined;
1889 ps->pss_to_process = scn->scn_phys.scn_to_process;
1890 ps->pss_processed = scn->scn_phys.scn_processed;
1891 ps->pss_errors = scn->scn_phys.scn_errors;
1892 ps->pss_state = scn->scn_phys.scn_state;
1893
1894 /* data not stored on disk */
1895 ps->pss_pass_start = spa->spa_scan_pass_start;
1896 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1897
1898 return (0);
1899 }
1900
1901 boolean_t
1902 spa_debug_enabled(spa_t *spa)
1903 {
1904 return (spa->spa_debug);
1905 }
1906
1907 #if defined(_KERNEL) && defined(HAVE_SPL)
1908 /* Namespace manipulation */
1909 EXPORT_SYMBOL(spa_lookup);
1910 EXPORT_SYMBOL(spa_add);
1911 EXPORT_SYMBOL(spa_remove);
1912 EXPORT_SYMBOL(spa_next);
1913
1914 /* Refcount functions */
1915 EXPORT_SYMBOL(spa_open_ref);
1916 EXPORT_SYMBOL(spa_close);
1917 EXPORT_SYMBOL(spa_refcount_zero);
1918
1919 /* Pool configuration lock */
1920 EXPORT_SYMBOL(spa_config_tryenter);
1921 EXPORT_SYMBOL(spa_config_enter);
1922 EXPORT_SYMBOL(spa_config_exit);
1923 EXPORT_SYMBOL(spa_config_held);
1924
1925 /* Pool vdev add/remove lock */
1926 EXPORT_SYMBOL(spa_vdev_enter);
1927 EXPORT_SYMBOL(spa_vdev_exit);
1928
1929 /* Pool vdev state change lock */
1930 EXPORT_SYMBOL(spa_vdev_state_enter);
1931 EXPORT_SYMBOL(spa_vdev_state_exit);
1932
1933 /* Accessor functions */
1934 EXPORT_SYMBOL(spa_shutting_down);
1935 EXPORT_SYMBOL(spa_get_dsl);
1936 EXPORT_SYMBOL(spa_get_rootblkptr);
1937 EXPORT_SYMBOL(spa_set_rootblkptr);
1938 EXPORT_SYMBOL(spa_altroot);
1939 EXPORT_SYMBOL(spa_sync_pass);
1940 EXPORT_SYMBOL(spa_name);
1941 EXPORT_SYMBOL(spa_guid);
1942 EXPORT_SYMBOL(spa_last_synced_txg);
1943 EXPORT_SYMBOL(spa_first_txg);
1944 EXPORT_SYMBOL(spa_syncing_txg);
1945 EXPORT_SYMBOL(spa_version);
1946 EXPORT_SYMBOL(spa_state);
1947 EXPORT_SYMBOL(spa_load_state);
1948 EXPORT_SYMBOL(spa_freeze_txg);
1949 EXPORT_SYMBOL(spa_get_asize);
1950 EXPORT_SYMBOL(spa_get_dspace);
1951 EXPORT_SYMBOL(spa_update_dspace);
1952 EXPORT_SYMBOL(spa_deflate);
1953 EXPORT_SYMBOL(spa_normal_class);
1954 EXPORT_SYMBOL(spa_log_class);
1955 EXPORT_SYMBOL(spa_max_replication);
1956 EXPORT_SYMBOL(spa_prev_software_version);
1957 EXPORT_SYMBOL(spa_get_failmode);
1958 EXPORT_SYMBOL(spa_suspended);
1959 EXPORT_SYMBOL(spa_bootfs);
1960 EXPORT_SYMBOL(spa_delegation);
1961 EXPORT_SYMBOL(spa_meta_objset);
1962
1963 /* Miscellaneous support routines */
1964 EXPORT_SYMBOL(spa_rename);
1965 EXPORT_SYMBOL(spa_guid_exists);
1966 EXPORT_SYMBOL(spa_strdup);
1967 EXPORT_SYMBOL(spa_strfree);
1968 EXPORT_SYMBOL(spa_get_random);
1969 EXPORT_SYMBOL(spa_generate_guid);
1970 EXPORT_SYMBOL(snprintf_blkptr);
1971 EXPORT_SYMBOL(spa_freeze);
1972 EXPORT_SYMBOL(spa_upgrade);
1973 EXPORT_SYMBOL(spa_evict_all);
1974 EXPORT_SYMBOL(spa_lookup_by_guid);
1975 EXPORT_SYMBOL(spa_has_spare);
1976 EXPORT_SYMBOL(dva_get_dsize_sync);
1977 EXPORT_SYMBOL(bp_get_dsize_sync);
1978 EXPORT_SYMBOL(bp_get_dsize);
1979 EXPORT_SYMBOL(spa_has_slogs);
1980 EXPORT_SYMBOL(spa_is_root);
1981 EXPORT_SYMBOL(spa_writeable);
1982 EXPORT_SYMBOL(spa_mode);
1983
1984 EXPORT_SYMBOL(spa_namespace_lock);
1985
1986 module_param(zfs_flags, uint, 0644);
1987 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
1988
1989 module_param(zfs_recover, int, 0644);
1990 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
1991
1992 module_param(zfs_free_leak_on_eio, int, 0644);
1993 MODULE_PARM_DESC(zfs_free_leak_on_eio,
1994 "Set to ignore IO errors during free and permanently leak the space");
1995
1996 module_param(zfs_deadman_synctime_ms, ulong, 0644);
1997 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
1998
1999 module_param(zfs_deadman_enabled, int, 0644);
2000 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2001
2002 module_param(spa_asize_inflation, int, 0644);
2003 MODULE_PARM_DESC(spa_asize_inflation,
2004 "SPA size estimate multiplication factor");
2005 #endif