]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/spa_misc.c
New upstream version 0.7.11
[mirror_zfs-debian.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zio_compress.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zap.h>
38 #include <sys/zil.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_file.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/fm/util.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include <sys/kstat.h>
57 #include "zfs_prop.h"
58 #include <sys/zfeature.h>
59 #include "qat_compress.h"
60
61 /*
62 * SPA locking
63 *
64 * There are four basic locks for managing spa_t structures:
65 *
66 * spa_namespace_lock (global mutex)
67 *
68 * This lock must be acquired to do any of the following:
69 *
70 * - Lookup a spa_t by name
71 * - Add or remove a spa_t from the namespace
72 * - Increase spa_refcount from non-zero
73 * - Check if spa_refcount is zero
74 * - Rename a spa_t
75 * - add/remove/attach/detach devices
76 * - Held for the duration of create/destroy/import/export
77 *
78 * It does not need to handle recursion. A create or destroy may
79 * reference objects (files or zvols) in other pools, but by
80 * definition they must have an existing reference, and will never need
81 * to lookup a spa_t by name.
82 *
83 * spa_refcount (per-spa refcount_t protected by mutex)
84 *
85 * This reference count keep track of any active users of the spa_t. The
86 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
87 * the refcount is never really 'zero' - opening a pool implicitly keeps
88 * some references in the DMU. Internally we check against spa_minref, but
89 * present the image of a zero/non-zero value to consumers.
90 *
91 * spa_config_lock[] (per-spa array of rwlocks)
92 *
93 * This protects the spa_t from config changes, and must be held in
94 * the following circumstances:
95 *
96 * - RW_READER to perform I/O to the spa
97 * - RW_WRITER to change the vdev config
98 *
99 * The locking order is fairly straightforward:
100 *
101 * spa_namespace_lock -> spa_refcount
102 *
103 * The namespace lock must be acquired to increase the refcount from 0
104 * or to check if it is zero.
105 *
106 * spa_refcount -> spa_config_lock[]
107 *
108 * There must be at least one valid reference on the spa_t to acquire
109 * the config lock.
110 *
111 * spa_namespace_lock -> spa_config_lock[]
112 *
113 * The namespace lock must always be taken before the config lock.
114 *
115 *
116 * The spa_namespace_lock can be acquired directly and is globally visible.
117 *
118 * The namespace is manipulated using the following functions, all of which
119 * require the spa_namespace_lock to be held.
120 *
121 * spa_lookup() Lookup a spa_t by name.
122 *
123 * spa_add() Create a new spa_t in the namespace.
124 *
125 * spa_remove() Remove a spa_t from the namespace. This also
126 * frees up any memory associated with the spa_t.
127 *
128 * spa_next() Returns the next spa_t in the system, or the
129 * first if NULL is passed.
130 *
131 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * the system.
133 *
134 * spa_guid_exists() Determine whether a pool/device guid exists.
135 *
136 * The spa_refcount is manipulated using the following functions:
137 *
138 * spa_open_ref() Adds a reference to the given spa_t. Must be
139 * called with spa_namespace_lock held if the
140 * refcount is currently zero.
141 *
142 * spa_close() Remove a reference from the spa_t. This will
143 * not free the spa_t or remove it from the
144 * namespace. No locking is required.
145 *
146 * spa_refcount_zero() Returns true if the refcount is currently
147 * zero. Must be called with spa_namespace_lock
148 * held.
149 *
150 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153 *
154 * To read the configuration, it suffices to hold one of these locks as reader.
155 * To modify the configuration, you must hold all locks as writer. To modify
156 * vdev state without altering the vdev tree's topology (e.g. online/offline),
157 * you must hold SCL_STATE and SCL_ZIO as writer.
158 *
159 * We use these distinct config locks to avoid recursive lock entry.
160 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161 * block allocations (SCL_ALLOC), which may require reading space maps
162 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163 *
164 * The spa config locks cannot be normal rwlocks because we need the
165 * ability to hand off ownership. For example, SCL_ZIO is acquired
166 * by the issuing thread and later released by an interrupt thread.
167 * They do, however, obey the usual write-wanted semantics to prevent
168 * writer (i.e. system administrator) starvation.
169 *
170 * The lock acquisition rules are as follows:
171 *
172 * SCL_CONFIG
173 * Protects changes to the vdev tree topology, such as vdev
174 * add/remove/attach/detach. Protects the dirty config list
175 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 *
177 * SCL_STATE
178 * Protects changes to pool state and vdev state, such as vdev
179 * online/offline/fault/degrade/clear. Protects the dirty state list
180 * (spa_state_dirty_list) and global pool state (spa_state).
181 *
182 * SCL_ALLOC
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_alloc() and metaslab_claim().
185 *
186 * SCL_ZIO
187 * Held by bp-level zios (those which have no io_vd upon entry)
188 * to prevent changes to the vdev tree. The bp-level zio implicitly
189 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 *
191 * SCL_FREE
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_free(). SCL_FREE is distinct from
194 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195 * blocks in zio_done() while another i/o that holds either
196 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 *
198 * SCL_VDEV
199 * Held as reader to prevent changes to the vdev tree during trivial
200 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
201 * other locks, and lower than all of them, to ensure that it's safe
202 * to acquire regardless of caller context.
203 *
204 * In addition, the following rules apply:
205 *
206 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
207 * The lock ordering is SCL_CONFIG > spa_props_lock.
208 *
209 * (b) I/O operations on leaf vdevs. For any zio operation that takes
210 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211 * or zio_write_phys() -- the caller must ensure that the config cannot
212 * cannot change in the interim, and that the vdev cannot be reopened.
213 * SCL_STATE as reader suffices for both.
214 *
215 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216 *
217 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * for writing.
219 *
220 * spa_vdev_exit() Release the config lock, wait for all I/O
221 * to complete, sync the updated configs to the
222 * cache, and release the namespace lock.
223 *
224 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 *
228 * spa_rename() is also implemented within this file since it requires
229 * manipulation of the namespace.
230 */
231
232 static avl_tree_t spa_namespace_avl;
233 kmutex_t spa_namespace_lock;
234 static kcondvar_t spa_namespace_cv;
235 int spa_max_replication_override = SPA_DVAS_PER_BP;
236
237 static kmutex_t spa_spare_lock;
238 static avl_tree_t spa_spare_avl;
239 static kmutex_t spa_l2cache_lock;
240 static avl_tree_t spa_l2cache_avl;
241
242 kmem_cache_t *spa_buffer_pool;
243 int spa_mode_global;
244
245 #ifdef ZFS_DEBUG
246 /* Everything except dprintf and spa is on by default in debug builds */
247 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
248 #else
249 int zfs_flags = 0;
250 #endif
251
252 /*
253 * zfs_recover can be set to nonzero to attempt to recover from
254 * otherwise-fatal errors, typically caused by on-disk corruption. When
255 * set, calls to zfs_panic_recover() will turn into warning messages.
256 * This should only be used as a last resort, as it typically results
257 * in leaked space, or worse.
258 */
259 int zfs_recover = B_FALSE;
260
261 /*
262 * If destroy encounters an EIO while reading metadata (e.g. indirect
263 * blocks), space referenced by the missing metadata can not be freed.
264 * Normally this causes the background destroy to become "stalled", as
265 * it is unable to make forward progress. While in this stalled state,
266 * all remaining space to free from the error-encountering filesystem is
267 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
268 * permanently leak the space from indirect blocks that can not be read,
269 * and continue to free everything else that it can.
270 *
271 * The default, "stalling" behavior is useful if the storage partially
272 * fails (i.e. some but not all i/os fail), and then later recovers. In
273 * this case, we will be able to continue pool operations while it is
274 * partially failed, and when it recovers, we can continue to free the
275 * space, with no leaks. However, note that this case is actually
276 * fairly rare.
277 *
278 * Typically pools either (a) fail completely (but perhaps temporarily,
279 * e.g. a top-level vdev going offline), or (b) have localized,
280 * permanent errors (e.g. disk returns the wrong data due to bit flip or
281 * firmware bug). In case (a), this setting does not matter because the
282 * pool will be suspended and the sync thread will not be able to make
283 * forward progress regardless. In case (b), because the error is
284 * permanent, the best we can do is leak the minimum amount of space,
285 * which is what setting this flag will do. Therefore, it is reasonable
286 * for this flag to normally be set, but we chose the more conservative
287 * approach of not setting it, so that there is no possibility of
288 * leaking space in the "partial temporary" failure case.
289 */
290 int zfs_free_leak_on_eio = B_FALSE;
291
292 /*
293 * Expiration time in milliseconds. This value has two meanings. First it is
294 * used to determine when the spa_deadman() logic should fire. By default the
295 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
296 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
297 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
298 * in a system panic.
299 */
300 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
301
302 /*
303 * Check time in milliseconds. This defines the frequency at which we check
304 * for hung I/O.
305 */
306 unsigned long zfs_deadman_checktime_ms = 5000ULL;
307
308 /*
309 * By default the deadman is enabled.
310 */
311 int zfs_deadman_enabled = 1;
312
313 /*
314 * The worst case is single-sector max-parity RAID-Z blocks, in which
315 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
316 * times the size; so just assume that. Add to this the fact that
317 * we can have up to 3 DVAs per bp, and one more factor of 2 because
318 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
319 * the worst case is:
320 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
321 */
322 int spa_asize_inflation = 24;
323
324 /*
325 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
326 * the pool to be consumed. This ensures that we don't run the pool
327 * completely out of space, due to unaccounted changes (e.g. to the MOS).
328 * It also limits the worst-case time to allocate space. If we have
329 * less than this amount of free space, most ZPL operations (e.g. write,
330 * create) will return ENOSPC.
331 *
332 * Certain operations (e.g. file removal, most administrative actions) can
333 * use half the slop space. They will only return ENOSPC if less than half
334 * the slop space is free. Typically, once the pool has less than the slop
335 * space free, the user will use these operations to free up space in the pool.
336 * These are the operations that call dsl_pool_adjustedsize() with the netfree
337 * argument set to TRUE.
338 *
339 * A very restricted set of operations are always permitted, regardless of
340 * the amount of free space. These are the operations that call
341 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
342 * operations result in a net increase in the amount of space used,
343 * it is possible to run the pool completely out of space, causing it to
344 * be permanently read-only.
345 *
346 * Note that on very small pools, the slop space will be larger than
347 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
348 * but we never allow it to be more than half the pool size.
349 *
350 * See also the comments in zfs_space_check_t.
351 */
352 int spa_slop_shift = 5;
353 uint64_t spa_min_slop = 128 * 1024 * 1024;
354
355 /*
356 * ==========================================================================
357 * SPA config locking
358 * ==========================================================================
359 */
360 static void
361 spa_config_lock_init(spa_t *spa)
362 {
363 int i;
364
365 for (i = 0; i < SCL_LOCKS; i++) {
366 spa_config_lock_t *scl = &spa->spa_config_lock[i];
367 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
368 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
369 refcount_create_untracked(&scl->scl_count);
370 scl->scl_writer = NULL;
371 scl->scl_write_wanted = 0;
372 }
373 }
374
375 static void
376 spa_config_lock_destroy(spa_t *spa)
377 {
378 int i;
379
380 for (i = 0; i < SCL_LOCKS; i++) {
381 spa_config_lock_t *scl = &spa->spa_config_lock[i];
382 mutex_destroy(&scl->scl_lock);
383 cv_destroy(&scl->scl_cv);
384 refcount_destroy(&scl->scl_count);
385 ASSERT(scl->scl_writer == NULL);
386 ASSERT(scl->scl_write_wanted == 0);
387 }
388 }
389
390 int
391 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
392 {
393 int i;
394
395 for (i = 0; i < SCL_LOCKS; i++) {
396 spa_config_lock_t *scl = &spa->spa_config_lock[i];
397 if (!(locks & (1 << i)))
398 continue;
399 mutex_enter(&scl->scl_lock);
400 if (rw == RW_READER) {
401 if (scl->scl_writer || scl->scl_write_wanted) {
402 mutex_exit(&scl->scl_lock);
403 spa_config_exit(spa, locks & ((1 << i) - 1),
404 tag);
405 return (0);
406 }
407 } else {
408 ASSERT(scl->scl_writer != curthread);
409 if (!refcount_is_zero(&scl->scl_count)) {
410 mutex_exit(&scl->scl_lock);
411 spa_config_exit(spa, locks & ((1 << i) - 1),
412 tag);
413 return (0);
414 }
415 scl->scl_writer = curthread;
416 }
417 (void) refcount_add(&scl->scl_count, tag);
418 mutex_exit(&scl->scl_lock);
419 }
420 return (1);
421 }
422
423 void
424 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
425 {
426 int wlocks_held = 0;
427 int i;
428
429 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
430
431 for (i = 0; i < SCL_LOCKS; i++) {
432 spa_config_lock_t *scl = &spa->spa_config_lock[i];
433 if (scl->scl_writer == curthread)
434 wlocks_held |= (1 << i);
435 if (!(locks & (1 << i)))
436 continue;
437 mutex_enter(&scl->scl_lock);
438 if (rw == RW_READER) {
439 while (scl->scl_writer || scl->scl_write_wanted) {
440 cv_wait(&scl->scl_cv, &scl->scl_lock);
441 }
442 } else {
443 ASSERT(scl->scl_writer != curthread);
444 while (!refcount_is_zero(&scl->scl_count)) {
445 scl->scl_write_wanted++;
446 cv_wait(&scl->scl_cv, &scl->scl_lock);
447 scl->scl_write_wanted--;
448 }
449 scl->scl_writer = curthread;
450 }
451 (void) refcount_add(&scl->scl_count, tag);
452 mutex_exit(&scl->scl_lock);
453 }
454 ASSERT(wlocks_held <= locks);
455 }
456
457 void
458 spa_config_exit(spa_t *spa, int locks, void *tag)
459 {
460 int i;
461
462 for (i = SCL_LOCKS - 1; i >= 0; i--) {
463 spa_config_lock_t *scl = &spa->spa_config_lock[i];
464 if (!(locks & (1 << i)))
465 continue;
466 mutex_enter(&scl->scl_lock);
467 ASSERT(!refcount_is_zero(&scl->scl_count));
468 if (refcount_remove(&scl->scl_count, tag) == 0) {
469 ASSERT(scl->scl_writer == NULL ||
470 scl->scl_writer == curthread);
471 scl->scl_writer = NULL; /* OK in either case */
472 cv_broadcast(&scl->scl_cv);
473 }
474 mutex_exit(&scl->scl_lock);
475 }
476 }
477
478 int
479 spa_config_held(spa_t *spa, int locks, krw_t rw)
480 {
481 int i, locks_held = 0;
482
483 for (i = 0; i < SCL_LOCKS; i++) {
484 spa_config_lock_t *scl = &spa->spa_config_lock[i];
485 if (!(locks & (1 << i)))
486 continue;
487 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
488 (rw == RW_WRITER && scl->scl_writer == curthread))
489 locks_held |= 1 << i;
490 }
491
492 return (locks_held);
493 }
494
495 /*
496 * ==========================================================================
497 * SPA namespace functions
498 * ==========================================================================
499 */
500
501 /*
502 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
503 * Returns NULL if no matching spa_t is found.
504 */
505 spa_t *
506 spa_lookup(const char *name)
507 {
508 static spa_t search; /* spa_t is large; don't allocate on stack */
509 spa_t *spa;
510 avl_index_t where;
511 char *cp;
512
513 ASSERT(MUTEX_HELD(&spa_namespace_lock));
514
515 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
516
517 /*
518 * If it's a full dataset name, figure out the pool name and
519 * just use that.
520 */
521 cp = strpbrk(search.spa_name, "/@#");
522 if (cp != NULL)
523 *cp = '\0';
524
525 spa = avl_find(&spa_namespace_avl, &search, &where);
526
527 return (spa);
528 }
529
530 /*
531 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
532 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
533 * looking for potentially hung I/Os.
534 */
535 void
536 spa_deadman(void *arg)
537 {
538 spa_t *spa = arg;
539
540 /* Disable the deadman if the pool is suspended. */
541 if (spa_suspended(spa))
542 return;
543
544 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
545 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
546 ++spa->spa_deadman_calls);
547 if (zfs_deadman_enabled)
548 vdev_deadman(spa->spa_root_vdev);
549
550 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
551 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
552 MSEC_TO_TICK(zfs_deadman_checktime_ms));
553 }
554
555 /*
556 * Create an uninitialized spa_t with the given name. Requires
557 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
558 * exist by calling spa_lookup() first.
559 */
560 spa_t *
561 spa_add(const char *name, nvlist_t *config, const char *altroot)
562 {
563 spa_t *spa;
564 spa_config_dirent_t *dp;
565 int t;
566 int i;
567
568 ASSERT(MUTEX_HELD(&spa_namespace_lock));
569
570 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
571
572 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
573 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
574 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
575 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
576 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
577 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
578 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
579 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
580 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
581 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
582 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
583 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
584 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
585
586 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
587 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
588 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
589 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
590 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
591
592 for (t = 0; t < TXG_SIZE; t++)
593 bplist_create(&spa->spa_free_bplist[t]);
594
595 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
596 spa->spa_state = POOL_STATE_UNINITIALIZED;
597 spa->spa_freeze_txg = UINT64_MAX;
598 spa->spa_final_txg = UINT64_MAX;
599 spa->spa_load_max_txg = UINT64_MAX;
600 spa->spa_proc = &p0;
601 spa->spa_proc_state = SPA_PROC_NONE;
602
603 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
604
605 refcount_create(&spa->spa_refcount);
606 spa_config_lock_init(spa);
607 spa_stats_init(spa);
608
609 avl_add(&spa_namespace_avl, spa);
610
611 /*
612 * Set the alternate root, if there is one.
613 */
614 if (altroot)
615 spa->spa_root = spa_strdup(altroot);
616
617 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
618 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
619
620 /*
621 * Every pool starts with the default cachefile
622 */
623 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
624 offsetof(spa_config_dirent_t, scd_link));
625
626 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
627 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
628 list_insert_head(&spa->spa_config_list, dp);
629
630 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
631 KM_SLEEP) == 0);
632
633 if (config != NULL) {
634 nvlist_t *features;
635
636 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
637 &features) == 0) {
638 VERIFY(nvlist_dup(features, &spa->spa_label_features,
639 0) == 0);
640 }
641
642 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
643 }
644
645 if (spa->spa_label_features == NULL) {
646 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
647 KM_SLEEP) == 0);
648 }
649
650 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
651
652 spa->spa_min_ashift = INT_MAX;
653 spa->spa_max_ashift = 0;
654
655 /* Reset cached value */
656 spa->spa_dedup_dspace = ~0ULL;
657
658 /*
659 * As a pool is being created, treat all features as disabled by
660 * setting SPA_FEATURE_DISABLED for all entries in the feature
661 * refcount cache.
662 */
663 for (i = 0; i < SPA_FEATURES; i++) {
664 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
665 }
666
667 return (spa);
668 }
669
670 /*
671 * Removes a spa_t from the namespace, freeing up any memory used. Requires
672 * spa_namespace_lock. This is called only after the spa_t has been closed and
673 * deactivated.
674 */
675 void
676 spa_remove(spa_t *spa)
677 {
678 spa_config_dirent_t *dp;
679 int t;
680
681 ASSERT(MUTEX_HELD(&spa_namespace_lock));
682 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
683 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
684
685 nvlist_free(spa->spa_config_splitting);
686
687 avl_remove(&spa_namespace_avl, spa);
688 cv_broadcast(&spa_namespace_cv);
689
690 if (spa->spa_root)
691 spa_strfree(spa->spa_root);
692
693 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
694 list_remove(&spa->spa_config_list, dp);
695 if (dp->scd_path != NULL)
696 spa_strfree(dp->scd_path);
697 kmem_free(dp, sizeof (spa_config_dirent_t));
698 }
699
700 avl_destroy(&spa->spa_alloc_tree);
701 list_destroy(&spa->spa_config_list);
702
703 nvlist_free(spa->spa_label_features);
704 nvlist_free(spa->spa_load_info);
705 nvlist_free(spa->spa_feat_stats);
706 spa_config_set(spa, NULL);
707
708 refcount_destroy(&spa->spa_refcount);
709
710 spa_stats_destroy(spa);
711 spa_config_lock_destroy(spa);
712
713 for (t = 0; t < TXG_SIZE; t++)
714 bplist_destroy(&spa->spa_free_bplist[t]);
715
716 zio_checksum_templates_free(spa);
717
718 cv_destroy(&spa->spa_async_cv);
719 cv_destroy(&spa->spa_evicting_os_cv);
720 cv_destroy(&spa->spa_proc_cv);
721 cv_destroy(&spa->spa_scrub_io_cv);
722 cv_destroy(&spa->spa_suspend_cv);
723
724 mutex_destroy(&spa->spa_alloc_lock);
725 mutex_destroy(&spa->spa_async_lock);
726 mutex_destroy(&spa->spa_errlist_lock);
727 mutex_destroy(&spa->spa_errlog_lock);
728 mutex_destroy(&spa->spa_evicting_os_lock);
729 mutex_destroy(&spa->spa_history_lock);
730 mutex_destroy(&spa->spa_proc_lock);
731 mutex_destroy(&spa->spa_props_lock);
732 mutex_destroy(&spa->spa_cksum_tmpls_lock);
733 mutex_destroy(&spa->spa_scrub_lock);
734 mutex_destroy(&spa->spa_suspend_lock);
735 mutex_destroy(&spa->spa_vdev_top_lock);
736 mutex_destroy(&spa->spa_feat_stats_lock);
737
738 kmem_free(spa, sizeof (spa_t));
739 }
740
741 /*
742 * Given a pool, return the next pool in the namespace, or NULL if there is
743 * none. If 'prev' is NULL, return the first pool.
744 */
745 spa_t *
746 spa_next(spa_t *prev)
747 {
748 ASSERT(MUTEX_HELD(&spa_namespace_lock));
749
750 if (prev)
751 return (AVL_NEXT(&spa_namespace_avl, prev));
752 else
753 return (avl_first(&spa_namespace_avl));
754 }
755
756 /*
757 * ==========================================================================
758 * SPA refcount functions
759 * ==========================================================================
760 */
761
762 /*
763 * Add a reference to the given spa_t. Must have at least one reference, or
764 * have the namespace lock held.
765 */
766 void
767 spa_open_ref(spa_t *spa, void *tag)
768 {
769 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
770 MUTEX_HELD(&spa_namespace_lock));
771 (void) refcount_add(&spa->spa_refcount, tag);
772 }
773
774 /*
775 * Remove a reference to the given spa_t. Must have at least one reference, or
776 * have the namespace lock held.
777 */
778 void
779 spa_close(spa_t *spa, void *tag)
780 {
781 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
782 MUTEX_HELD(&spa_namespace_lock));
783 (void) refcount_remove(&spa->spa_refcount, tag);
784 }
785
786 /*
787 * Remove a reference to the given spa_t held by a dsl dir that is
788 * being asynchronously released. Async releases occur from a taskq
789 * performing eviction of dsl datasets and dirs. The namespace lock
790 * isn't held and the hold by the object being evicted may contribute to
791 * spa_minref (e.g. dataset or directory released during pool export),
792 * so the asserts in spa_close() do not apply.
793 */
794 void
795 spa_async_close(spa_t *spa, void *tag)
796 {
797 (void) refcount_remove(&spa->spa_refcount, tag);
798 }
799
800 /*
801 * Check to see if the spa refcount is zero. Must be called with
802 * spa_namespace_lock held. We really compare against spa_minref, which is the
803 * number of references acquired when opening a pool
804 */
805 boolean_t
806 spa_refcount_zero(spa_t *spa)
807 {
808 ASSERT(MUTEX_HELD(&spa_namespace_lock));
809
810 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
811 }
812
813 /*
814 * ==========================================================================
815 * SPA spare and l2cache tracking
816 * ==========================================================================
817 */
818
819 /*
820 * Hot spares and cache devices are tracked using the same code below,
821 * for 'auxiliary' devices.
822 */
823
824 typedef struct spa_aux {
825 uint64_t aux_guid;
826 uint64_t aux_pool;
827 avl_node_t aux_avl;
828 int aux_count;
829 } spa_aux_t;
830
831 static inline int
832 spa_aux_compare(const void *a, const void *b)
833 {
834 const spa_aux_t *sa = (const spa_aux_t *)a;
835 const spa_aux_t *sb = (const spa_aux_t *)b;
836
837 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
838 }
839
840 void
841 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
842 {
843 avl_index_t where;
844 spa_aux_t search;
845 spa_aux_t *aux;
846
847 search.aux_guid = vd->vdev_guid;
848 if ((aux = avl_find(avl, &search, &where)) != NULL) {
849 aux->aux_count++;
850 } else {
851 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
852 aux->aux_guid = vd->vdev_guid;
853 aux->aux_count = 1;
854 avl_insert(avl, aux, where);
855 }
856 }
857
858 void
859 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
860 {
861 spa_aux_t search;
862 spa_aux_t *aux;
863 avl_index_t where;
864
865 search.aux_guid = vd->vdev_guid;
866 aux = avl_find(avl, &search, &where);
867
868 ASSERT(aux != NULL);
869
870 if (--aux->aux_count == 0) {
871 avl_remove(avl, aux);
872 kmem_free(aux, sizeof (spa_aux_t));
873 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
874 aux->aux_pool = 0ULL;
875 }
876 }
877
878 boolean_t
879 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
880 {
881 spa_aux_t search, *found;
882
883 search.aux_guid = guid;
884 found = avl_find(avl, &search, NULL);
885
886 if (pool) {
887 if (found)
888 *pool = found->aux_pool;
889 else
890 *pool = 0ULL;
891 }
892
893 if (refcnt) {
894 if (found)
895 *refcnt = found->aux_count;
896 else
897 *refcnt = 0;
898 }
899
900 return (found != NULL);
901 }
902
903 void
904 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
905 {
906 spa_aux_t search, *found;
907 avl_index_t where;
908
909 search.aux_guid = vd->vdev_guid;
910 found = avl_find(avl, &search, &where);
911 ASSERT(found != NULL);
912 ASSERT(found->aux_pool == 0ULL);
913
914 found->aux_pool = spa_guid(vd->vdev_spa);
915 }
916
917 /*
918 * Spares are tracked globally due to the following constraints:
919 *
920 * - A spare may be part of multiple pools.
921 * - A spare may be added to a pool even if it's actively in use within
922 * another pool.
923 * - A spare in use in any pool can only be the source of a replacement if
924 * the target is a spare in the same pool.
925 *
926 * We keep track of all spares on the system through the use of a reference
927 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
928 * spare, then we bump the reference count in the AVL tree. In addition, we set
929 * the 'vdev_isspare' member to indicate that the device is a spare (active or
930 * inactive). When a spare is made active (used to replace a device in the
931 * pool), we also keep track of which pool its been made a part of.
932 *
933 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
934 * called under the spa_namespace lock as part of vdev reconfiguration. The
935 * separate spare lock exists for the status query path, which does not need to
936 * be completely consistent with respect to other vdev configuration changes.
937 */
938
939 static int
940 spa_spare_compare(const void *a, const void *b)
941 {
942 return (spa_aux_compare(a, b));
943 }
944
945 void
946 spa_spare_add(vdev_t *vd)
947 {
948 mutex_enter(&spa_spare_lock);
949 ASSERT(!vd->vdev_isspare);
950 spa_aux_add(vd, &spa_spare_avl);
951 vd->vdev_isspare = B_TRUE;
952 mutex_exit(&spa_spare_lock);
953 }
954
955 void
956 spa_spare_remove(vdev_t *vd)
957 {
958 mutex_enter(&spa_spare_lock);
959 ASSERT(vd->vdev_isspare);
960 spa_aux_remove(vd, &spa_spare_avl);
961 vd->vdev_isspare = B_FALSE;
962 mutex_exit(&spa_spare_lock);
963 }
964
965 boolean_t
966 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
967 {
968 boolean_t found;
969
970 mutex_enter(&spa_spare_lock);
971 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
972 mutex_exit(&spa_spare_lock);
973
974 return (found);
975 }
976
977 void
978 spa_spare_activate(vdev_t *vd)
979 {
980 mutex_enter(&spa_spare_lock);
981 ASSERT(vd->vdev_isspare);
982 spa_aux_activate(vd, &spa_spare_avl);
983 mutex_exit(&spa_spare_lock);
984 }
985
986 /*
987 * Level 2 ARC devices are tracked globally for the same reasons as spares.
988 * Cache devices currently only support one pool per cache device, and so
989 * for these devices the aux reference count is currently unused beyond 1.
990 */
991
992 static int
993 spa_l2cache_compare(const void *a, const void *b)
994 {
995 return (spa_aux_compare(a, b));
996 }
997
998 void
999 spa_l2cache_add(vdev_t *vd)
1000 {
1001 mutex_enter(&spa_l2cache_lock);
1002 ASSERT(!vd->vdev_isl2cache);
1003 spa_aux_add(vd, &spa_l2cache_avl);
1004 vd->vdev_isl2cache = B_TRUE;
1005 mutex_exit(&spa_l2cache_lock);
1006 }
1007
1008 void
1009 spa_l2cache_remove(vdev_t *vd)
1010 {
1011 mutex_enter(&spa_l2cache_lock);
1012 ASSERT(vd->vdev_isl2cache);
1013 spa_aux_remove(vd, &spa_l2cache_avl);
1014 vd->vdev_isl2cache = B_FALSE;
1015 mutex_exit(&spa_l2cache_lock);
1016 }
1017
1018 boolean_t
1019 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1020 {
1021 boolean_t found;
1022
1023 mutex_enter(&spa_l2cache_lock);
1024 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1025 mutex_exit(&spa_l2cache_lock);
1026
1027 return (found);
1028 }
1029
1030 void
1031 spa_l2cache_activate(vdev_t *vd)
1032 {
1033 mutex_enter(&spa_l2cache_lock);
1034 ASSERT(vd->vdev_isl2cache);
1035 spa_aux_activate(vd, &spa_l2cache_avl);
1036 mutex_exit(&spa_l2cache_lock);
1037 }
1038
1039 /*
1040 * ==========================================================================
1041 * SPA vdev locking
1042 * ==========================================================================
1043 */
1044
1045 /*
1046 * Lock the given spa_t for the purpose of adding or removing a vdev.
1047 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1048 * It returns the next transaction group for the spa_t.
1049 */
1050 uint64_t
1051 spa_vdev_enter(spa_t *spa)
1052 {
1053 mutex_enter(&spa->spa_vdev_top_lock);
1054 mutex_enter(&spa_namespace_lock);
1055 return (spa_vdev_config_enter(spa));
1056 }
1057
1058 /*
1059 * Internal implementation for spa_vdev_enter(). Used when a vdev
1060 * operation requires multiple syncs (i.e. removing a device) while
1061 * keeping the spa_namespace_lock held.
1062 */
1063 uint64_t
1064 spa_vdev_config_enter(spa_t *spa)
1065 {
1066 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1067
1068 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1069
1070 return (spa_last_synced_txg(spa) + 1);
1071 }
1072
1073 /*
1074 * Used in combination with spa_vdev_config_enter() to allow the syncing
1075 * of multiple transactions without releasing the spa_namespace_lock.
1076 */
1077 void
1078 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1079 {
1080 int config_changed = B_FALSE;
1081
1082 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1083 ASSERT(txg > spa_last_synced_txg(spa));
1084
1085 spa->spa_pending_vdev = NULL;
1086
1087 /*
1088 * Reassess the DTLs.
1089 */
1090 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1091
1092 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1093 config_changed = B_TRUE;
1094 spa->spa_config_generation++;
1095 }
1096
1097 /*
1098 * Verify the metaslab classes.
1099 */
1100 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1101 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1102
1103 spa_config_exit(spa, SCL_ALL, spa);
1104
1105 /*
1106 * Panic the system if the specified tag requires it. This
1107 * is useful for ensuring that configurations are updated
1108 * transactionally.
1109 */
1110 if (zio_injection_enabled)
1111 zio_handle_panic_injection(spa, tag, 0);
1112
1113 /*
1114 * Note: this txg_wait_synced() is important because it ensures
1115 * that there won't be more than one config change per txg.
1116 * This allows us to use the txg as the generation number.
1117 */
1118 if (error == 0)
1119 txg_wait_synced(spa->spa_dsl_pool, txg);
1120
1121 if (vd != NULL) {
1122 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1123 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1124 vdev_free(vd);
1125 spa_config_exit(spa, SCL_ALL, spa);
1126 }
1127
1128 /*
1129 * If the config changed, update the config cache.
1130 */
1131 if (config_changed)
1132 spa_config_sync(spa, B_FALSE, B_TRUE);
1133 }
1134
1135 /*
1136 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1137 * locking of spa_vdev_enter(), we also want make sure the transactions have
1138 * synced to disk, and then update the global configuration cache with the new
1139 * information.
1140 */
1141 int
1142 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1143 {
1144 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1145 mutex_exit(&spa_namespace_lock);
1146 mutex_exit(&spa->spa_vdev_top_lock);
1147
1148 return (error);
1149 }
1150
1151 /*
1152 * Lock the given spa_t for the purpose of changing vdev state.
1153 */
1154 void
1155 spa_vdev_state_enter(spa_t *spa, int oplocks)
1156 {
1157 int locks = SCL_STATE_ALL | oplocks;
1158
1159 /*
1160 * Root pools may need to read of the underlying devfs filesystem
1161 * when opening up a vdev. Unfortunately if we're holding the
1162 * SCL_ZIO lock it will result in a deadlock when we try to issue
1163 * the read from the root filesystem. Instead we "prefetch"
1164 * the associated vnodes that we need prior to opening the
1165 * underlying devices and cache them so that we can prevent
1166 * any I/O when we are doing the actual open.
1167 */
1168 if (spa_is_root(spa)) {
1169 int low = locks & ~(SCL_ZIO - 1);
1170 int high = locks & ~low;
1171
1172 spa_config_enter(spa, high, spa, RW_WRITER);
1173 vdev_hold(spa->spa_root_vdev);
1174 spa_config_enter(spa, low, spa, RW_WRITER);
1175 } else {
1176 spa_config_enter(spa, locks, spa, RW_WRITER);
1177 }
1178 spa->spa_vdev_locks = locks;
1179 }
1180
1181 int
1182 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1183 {
1184 boolean_t config_changed = B_FALSE;
1185 vdev_t *vdev_top;
1186
1187 if (vd == NULL || vd == spa->spa_root_vdev) {
1188 vdev_top = spa->spa_root_vdev;
1189 } else {
1190 vdev_top = vd->vdev_top;
1191 }
1192
1193 if (vd != NULL || error == 0)
1194 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
1195
1196 if (vd != NULL) {
1197 if (vd != spa->spa_root_vdev)
1198 vdev_state_dirty(vdev_top);
1199
1200 config_changed = B_TRUE;
1201 spa->spa_config_generation++;
1202 }
1203
1204 if (spa_is_root(spa))
1205 vdev_rele(spa->spa_root_vdev);
1206
1207 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1208 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1209
1210 /*
1211 * If anything changed, wait for it to sync. This ensures that,
1212 * from the system administrator's perspective, zpool(1M) commands
1213 * are synchronous. This is important for things like zpool offline:
1214 * when the command completes, you expect no further I/O from ZFS.
1215 */
1216 if (vd != NULL)
1217 txg_wait_synced(spa->spa_dsl_pool, 0);
1218
1219 /*
1220 * If the config changed, update the config cache.
1221 */
1222 if (config_changed) {
1223 mutex_enter(&spa_namespace_lock);
1224 spa_config_sync(spa, B_FALSE, B_TRUE);
1225 mutex_exit(&spa_namespace_lock);
1226 }
1227
1228 return (error);
1229 }
1230
1231 /*
1232 * ==========================================================================
1233 * Miscellaneous functions
1234 * ==========================================================================
1235 */
1236
1237 void
1238 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1239 {
1240 if (!nvlist_exists(spa->spa_label_features, feature)) {
1241 fnvlist_add_boolean(spa->spa_label_features, feature);
1242 /*
1243 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1244 * dirty the vdev config because lock SCL_CONFIG is not held.
1245 * Thankfully, in this case we don't need to dirty the config
1246 * because it will be written out anyway when we finish
1247 * creating the pool.
1248 */
1249 if (tx->tx_txg != TXG_INITIAL)
1250 vdev_config_dirty(spa->spa_root_vdev);
1251 }
1252 }
1253
1254 void
1255 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1256 {
1257 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1258 vdev_config_dirty(spa->spa_root_vdev);
1259 }
1260
1261 /*
1262 * Rename a spa_t.
1263 */
1264 int
1265 spa_rename(const char *name, const char *newname)
1266 {
1267 spa_t *spa;
1268 int err;
1269
1270 /*
1271 * Lookup the spa_t and grab the config lock for writing. We need to
1272 * actually open the pool so that we can sync out the necessary labels.
1273 * It's OK to call spa_open() with the namespace lock held because we
1274 * allow recursive calls for other reasons.
1275 */
1276 mutex_enter(&spa_namespace_lock);
1277 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1278 mutex_exit(&spa_namespace_lock);
1279 return (err);
1280 }
1281
1282 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1283
1284 avl_remove(&spa_namespace_avl, spa);
1285 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1286 avl_add(&spa_namespace_avl, spa);
1287
1288 /*
1289 * Sync all labels to disk with the new names by marking the root vdev
1290 * dirty and waiting for it to sync. It will pick up the new pool name
1291 * during the sync.
1292 */
1293 vdev_config_dirty(spa->spa_root_vdev);
1294
1295 spa_config_exit(spa, SCL_ALL, FTAG);
1296
1297 txg_wait_synced(spa->spa_dsl_pool, 0);
1298
1299 /*
1300 * Sync the updated config cache.
1301 */
1302 spa_config_sync(spa, B_FALSE, B_TRUE);
1303
1304 spa_close(spa, FTAG);
1305
1306 mutex_exit(&spa_namespace_lock);
1307
1308 return (0);
1309 }
1310
1311 /*
1312 * Return the spa_t associated with given pool_guid, if it exists. If
1313 * device_guid is non-zero, determine whether the pool exists *and* contains
1314 * a device with the specified device_guid.
1315 */
1316 spa_t *
1317 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1318 {
1319 spa_t *spa;
1320 avl_tree_t *t = &spa_namespace_avl;
1321
1322 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1323
1324 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1325 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1326 continue;
1327 if (spa->spa_root_vdev == NULL)
1328 continue;
1329 if (spa_guid(spa) == pool_guid) {
1330 if (device_guid == 0)
1331 break;
1332
1333 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1334 device_guid) != NULL)
1335 break;
1336
1337 /*
1338 * Check any devices we may be in the process of adding.
1339 */
1340 if (spa->spa_pending_vdev) {
1341 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1342 device_guid) != NULL)
1343 break;
1344 }
1345 }
1346 }
1347
1348 return (spa);
1349 }
1350
1351 /*
1352 * Determine whether a pool with the given pool_guid exists.
1353 */
1354 boolean_t
1355 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1356 {
1357 return (spa_by_guid(pool_guid, device_guid) != NULL);
1358 }
1359
1360 char *
1361 spa_strdup(const char *s)
1362 {
1363 size_t len;
1364 char *new;
1365
1366 len = strlen(s);
1367 new = kmem_alloc(len + 1, KM_SLEEP);
1368 bcopy(s, new, len);
1369 new[len] = '\0';
1370
1371 return (new);
1372 }
1373
1374 void
1375 spa_strfree(char *s)
1376 {
1377 kmem_free(s, strlen(s) + 1);
1378 }
1379
1380 uint64_t
1381 spa_get_random(uint64_t range)
1382 {
1383 uint64_t r;
1384
1385 ASSERT(range != 0);
1386
1387 if (range == 1)
1388 return (0);
1389
1390 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1391
1392 return (r % range);
1393 }
1394
1395 uint64_t
1396 spa_generate_guid(spa_t *spa)
1397 {
1398 uint64_t guid = spa_get_random(-1ULL);
1399
1400 if (spa != NULL) {
1401 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1402 guid = spa_get_random(-1ULL);
1403 } else {
1404 while (guid == 0 || spa_guid_exists(guid, 0))
1405 guid = spa_get_random(-1ULL);
1406 }
1407
1408 return (guid);
1409 }
1410
1411 void
1412 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1413 {
1414 char type[256];
1415 char *checksum = NULL;
1416 char *compress = NULL;
1417
1418 if (bp != NULL) {
1419 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1420 dmu_object_byteswap_t bswap =
1421 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1422 (void) snprintf(type, sizeof (type), "bswap %s %s",
1423 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1424 "metadata" : "data",
1425 dmu_ot_byteswap[bswap].ob_name);
1426 } else {
1427 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1428 sizeof (type));
1429 }
1430 if (!BP_IS_EMBEDDED(bp)) {
1431 checksum =
1432 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1433 }
1434 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1435 }
1436
1437 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1438 compress);
1439 }
1440
1441 void
1442 spa_freeze(spa_t *spa)
1443 {
1444 uint64_t freeze_txg = 0;
1445
1446 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1447 if (spa->spa_freeze_txg == UINT64_MAX) {
1448 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1449 spa->spa_freeze_txg = freeze_txg;
1450 }
1451 spa_config_exit(spa, SCL_ALL, FTAG);
1452 if (freeze_txg != 0)
1453 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1454 }
1455
1456 void
1457 zfs_panic_recover(const char *fmt, ...)
1458 {
1459 va_list adx;
1460
1461 va_start(adx, fmt);
1462 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1463 va_end(adx);
1464 }
1465
1466 /*
1467 * This is a stripped-down version of strtoull, suitable only for converting
1468 * lowercase hexadecimal numbers that don't overflow.
1469 */
1470 uint64_t
1471 zfs_strtonum(const char *str, char **nptr)
1472 {
1473 uint64_t val = 0;
1474 char c;
1475 int digit;
1476
1477 while ((c = *str) != '\0') {
1478 if (c >= '0' && c <= '9')
1479 digit = c - '0';
1480 else if (c >= 'a' && c <= 'f')
1481 digit = 10 + c - 'a';
1482 else
1483 break;
1484
1485 val *= 16;
1486 val += digit;
1487
1488 str++;
1489 }
1490
1491 if (nptr)
1492 *nptr = (char *)str;
1493
1494 return (val);
1495 }
1496
1497 /*
1498 * ==========================================================================
1499 * Accessor functions
1500 * ==========================================================================
1501 */
1502
1503 boolean_t
1504 spa_shutting_down(spa_t *spa)
1505 {
1506 return (spa->spa_async_suspended);
1507 }
1508
1509 dsl_pool_t *
1510 spa_get_dsl(spa_t *spa)
1511 {
1512 return (spa->spa_dsl_pool);
1513 }
1514
1515 boolean_t
1516 spa_is_initializing(spa_t *spa)
1517 {
1518 return (spa->spa_is_initializing);
1519 }
1520
1521 blkptr_t *
1522 spa_get_rootblkptr(spa_t *spa)
1523 {
1524 return (&spa->spa_ubsync.ub_rootbp);
1525 }
1526
1527 void
1528 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1529 {
1530 spa->spa_uberblock.ub_rootbp = *bp;
1531 }
1532
1533 void
1534 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1535 {
1536 if (spa->spa_root == NULL)
1537 buf[0] = '\0';
1538 else
1539 (void) strncpy(buf, spa->spa_root, buflen);
1540 }
1541
1542 int
1543 spa_sync_pass(spa_t *spa)
1544 {
1545 return (spa->spa_sync_pass);
1546 }
1547
1548 char *
1549 spa_name(spa_t *spa)
1550 {
1551 return (spa->spa_name);
1552 }
1553
1554 uint64_t
1555 spa_guid(spa_t *spa)
1556 {
1557 dsl_pool_t *dp = spa_get_dsl(spa);
1558 uint64_t guid;
1559
1560 /*
1561 * If we fail to parse the config during spa_load(), we can go through
1562 * the error path (which posts an ereport) and end up here with no root
1563 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1564 * this case.
1565 */
1566 if (spa->spa_root_vdev == NULL)
1567 return (spa->spa_config_guid);
1568
1569 guid = spa->spa_last_synced_guid != 0 ?
1570 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1571
1572 /*
1573 * Return the most recently synced out guid unless we're
1574 * in syncing context.
1575 */
1576 if (dp && dsl_pool_sync_context(dp))
1577 return (spa->spa_root_vdev->vdev_guid);
1578 else
1579 return (guid);
1580 }
1581
1582 uint64_t
1583 spa_load_guid(spa_t *spa)
1584 {
1585 /*
1586 * This is a GUID that exists solely as a reference for the
1587 * purposes of the arc. It is generated at load time, and
1588 * is never written to persistent storage.
1589 */
1590 return (spa->spa_load_guid);
1591 }
1592
1593 uint64_t
1594 spa_last_synced_txg(spa_t *spa)
1595 {
1596 return (spa->spa_ubsync.ub_txg);
1597 }
1598
1599 uint64_t
1600 spa_first_txg(spa_t *spa)
1601 {
1602 return (spa->spa_first_txg);
1603 }
1604
1605 uint64_t
1606 spa_syncing_txg(spa_t *spa)
1607 {
1608 return (spa->spa_syncing_txg);
1609 }
1610
1611 /*
1612 * Return the last txg where data can be dirtied. The final txgs
1613 * will be used to just clear out any deferred frees that remain.
1614 */
1615 uint64_t
1616 spa_final_dirty_txg(spa_t *spa)
1617 {
1618 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1619 }
1620
1621 pool_state_t
1622 spa_state(spa_t *spa)
1623 {
1624 return (spa->spa_state);
1625 }
1626
1627 spa_load_state_t
1628 spa_load_state(spa_t *spa)
1629 {
1630 return (spa->spa_load_state);
1631 }
1632
1633 uint64_t
1634 spa_freeze_txg(spa_t *spa)
1635 {
1636 return (spa->spa_freeze_txg);
1637 }
1638
1639 /*
1640 * Return the inflated asize for a logical write in bytes. This is used by the
1641 * DMU to calculate the space a logical write will require on disk.
1642 * If lsize is smaller than the largest physical block size allocatable on this
1643 * pool we use its value instead, since the write will end up using the whole
1644 * block anyway.
1645 */
1646 uint64_t
1647 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1648 {
1649 if (lsize == 0)
1650 return (0); /* No inflation needed */
1651 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1652 }
1653
1654 /*
1655 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1656 * or at least 128MB, unless that would cause it to be more than half the
1657 * pool size.
1658 *
1659 * See the comment above spa_slop_shift for details.
1660 */
1661 uint64_t
1662 spa_get_slop_space(spa_t *spa)
1663 {
1664 uint64_t space = spa_get_dspace(spa);
1665 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1666 }
1667
1668 uint64_t
1669 spa_get_dspace(spa_t *spa)
1670 {
1671 return (spa->spa_dspace);
1672 }
1673
1674 void
1675 spa_update_dspace(spa_t *spa)
1676 {
1677 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1678 ddt_get_dedup_dspace(spa);
1679 }
1680
1681 /*
1682 * Return the failure mode that has been set to this pool. The default
1683 * behavior will be to block all I/Os when a complete failure occurs.
1684 */
1685 uint8_t
1686 spa_get_failmode(spa_t *spa)
1687 {
1688 return (spa->spa_failmode);
1689 }
1690
1691 boolean_t
1692 spa_suspended(spa_t *spa)
1693 {
1694 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1695 }
1696
1697 uint64_t
1698 spa_version(spa_t *spa)
1699 {
1700 return (spa->spa_ubsync.ub_version);
1701 }
1702
1703 boolean_t
1704 spa_deflate(spa_t *spa)
1705 {
1706 return (spa->spa_deflate);
1707 }
1708
1709 metaslab_class_t *
1710 spa_normal_class(spa_t *spa)
1711 {
1712 return (spa->spa_normal_class);
1713 }
1714
1715 metaslab_class_t *
1716 spa_log_class(spa_t *spa)
1717 {
1718 return (spa->spa_log_class);
1719 }
1720
1721 void
1722 spa_evicting_os_register(spa_t *spa, objset_t *os)
1723 {
1724 mutex_enter(&spa->spa_evicting_os_lock);
1725 list_insert_head(&spa->spa_evicting_os_list, os);
1726 mutex_exit(&spa->spa_evicting_os_lock);
1727 }
1728
1729 void
1730 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1731 {
1732 mutex_enter(&spa->spa_evicting_os_lock);
1733 list_remove(&spa->spa_evicting_os_list, os);
1734 cv_broadcast(&spa->spa_evicting_os_cv);
1735 mutex_exit(&spa->spa_evicting_os_lock);
1736 }
1737
1738 void
1739 spa_evicting_os_wait(spa_t *spa)
1740 {
1741 mutex_enter(&spa->spa_evicting_os_lock);
1742 while (!list_is_empty(&spa->spa_evicting_os_list))
1743 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1744 mutex_exit(&spa->spa_evicting_os_lock);
1745
1746 dmu_buf_user_evict_wait();
1747 }
1748
1749 int
1750 spa_max_replication(spa_t *spa)
1751 {
1752 /*
1753 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1754 * handle BPs with more than one DVA allocated. Set our max
1755 * replication level accordingly.
1756 */
1757 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1758 return (1);
1759 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1760 }
1761
1762 int
1763 spa_prev_software_version(spa_t *spa)
1764 {
1765 return (spa->spa_prev_software_version);
1766 }
1767
1768 uint64_t
1769 spa_deadman_synctime(spa_t *spa)
1770 {
1771 return (spa->spa_deadman_synctime);
1772 }
1773
1774 uint64_t
1775 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1776 {
1777 uint64_t asize = DVA_GET_ASIZE(dva);
1778 uint64_t dsize = asize;
1779
1780 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1781
1782 if (asize != 0 && spa->spa_deflate) {
1783 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1784 if (vd != NULL)
1785 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1786 vd->vdev_deflate_ratio;
1787 }
1788
1789 return (dsize);
1790 }
1791
1792 uint64_t
1793 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1794 {
1795 uint64_t dsize = 0;
1796 int d;
1797
1798 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1799 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1800
1801 return (dsize);
1802 }
1803
1804 uint64_t
1805 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1806 {
1807 uint64_t dsize = 0;
1808 int d;
1809
1810 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1811
1812 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1813 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1814
1815 spa_config_exit(spa, SCL_VDEV, FTAG);
1816
1817 return (dsize);
1818 }
1819
1820 /*
1821 * ==========================================================================
1822 * Initialization and Termination
1823 * ==========================================================================
1824 */
1825
1826 static int
1827 spa_name_compare(const void *a1, const void *a2)
1828 {
1829 const spa_t *s1 = a1;
1830 const spa_t *s2 = a2;
1831 int s;
1832
1833 s = strcmp(s1->spa_name, s2->spa_name);
1834
1835 return (AVL_ISIGN(s));
1836 }
1837
1838 void
1839 spa_boot_init(void)
1840 {
1841 spa_config_load();
1842 }
1843
1844 void
1845 spa_init(int mode)
1846 {
1847 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1848 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1849 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1850 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1851
1852 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1853 offsetof(spa_t, spa_avl));
1854
1855 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1856 offsetof(spa_aux_t, aux_avl));
1857
1858 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1859 offsetof(spa_aux_t, aux_avl));
1860
1861 spa_mode_global = mode;
1862
1863 #ifndef _KERNEL
1864 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1865 struct sigaction sa;
1866
1867 sa.sa_flags = SA_SIGINFO;
1868 sigemptyset(&sa.sa_mask);
1869 sa.sa_sigaction = arc_buf_sigsegv;
1870
1871 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1872 perror("could not enable watchpoints: "
1873 "sigaction(SIGSEGV, ...) = ");
1874 } else {
1875 arc_watch = B_TRUE;
1876 }
1877 }
1878 #endif
1879
1880 fm_init();
1881 refcount_init();
1882 unique_init();
1883 range_tree_init();
1884 metaslab_alloc_trace_init();
1885 ddt_init();
1886 zio_init();
1887 dmu_init();
1888 zil_init();
1889 vdev_cache_stat_init();
1890 vdev_raidz_math_init();
1891 vdev_file_init();
1892 zfs_prop_init();
1893 zpool_prop_init();
1894 zpool_feature_init();
1895 spa_config_load();
1896 l2arc_start();
1897 qat_init();
1898 }
1899
1900 void
1901 spa_fini(void)
1902 {
1903 l2arc_stop();
1904
1905 spa_evict_all();
1906
1907 vdev_file_fini();
1908 vdev_cache_stat_fini();
1909 vdev_raidz_math_fini();
1910 zil_fini();
1911 dmu_fini();
1912 zio_fini();
1913 ddt_fini();
1914 metaslab_alloc_trace_fini();
1915 range_tree_fini();
1916 unique_fini();
1917 refcount_fini();
1918 fm_fini();
1919 qat_fini();
1920
1921 avl_destroy(&spa_namespace_avl);
1922 avl_destroy(&spa_spare_avl);
1923 avl_destroy(&spa_l2cache_avl);
1924
1925 cv_destroy(&spa_namespace_cv);
1926 mutex_destroy(&spa_namespace_lock);
1927 mutex_destroy(&spa_spare_lock);
1928 mutex_destroy(&spa_l2cache_lock);
1929 }
1930
1931 /*
1932 * Return whether this pool has slogs. No locking needed.
1933 * It's not a problem if the wrong answer is returned as it's only for
1934 * performance and not correctness
1935 */
1936 boolean_t
1937 spa_has_slogs(spa_t *spa)
1938 {
1939 return (spa->spa_log_class->mc_rotor != NULL);
1940 }
1941
1942 spa_log_state_t
1943 spa_get_log_state(spa_t *spa)
1944 {
1945 return (spa->spa_log_state);
1946 }
1947
1948 void
1949 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1950 {
1951 spa->spa_log_state = state;
1952 }
1953
1954 boolean_t
1955 spa_is_root(spa_t *spa)
1956 {
1957 return (spa->spa_is_root);
1958 }
1959
1960 boolean_t
1961 spa_writeable(spa_t *spa)
1962 {
1963 return (!!(spa->spa_mode & FWRITE));
1964 }
1965
1966 /*
1967 * Returns true if there is a pending sync task in any of the current
1968 * syncing txg, the current quiescing txg, or the current open txg.
1969 */
1970 boolean_t
1971 spa_has_pending_synctask(spa_t *spa)
1972 {
1973 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1974 }
1975
1976 int
1977 spa_mode(spa_t *spa)
1978 {
1979 return (spa->spa_mode);
1980 }
1981
1982 uint64_t
1983 spa_bootfs(spa_t *spa)
1984 {
1985 return (spa->spa_bootfs);
1986 }
1987
1988 uint64_t
1989 spa_delegation(spa_t *spa)
1990 {
1991 return (spa->spa_delegation);
1992 }
1993
1994 objset_t *
1995 spa_meta_objset(spa_t *spa)
1996 {
1997 return (spa->spa_meta_objset);
1998 }
1999
2000 enum zio_checksum
2001 spa_dedup_checksum(spa_t *spa)
2002 {
2003 return (spa->spa_dedup_checksum);
2004 }
2005
2006 /*
2007 * Reset pool scan stat per scan pass (or reboot).
2008 */
2009 void
2010 spa_scan_stat_init(spa_t *spa)
2011 {
2012 /* data not stored on disk */
2013 spa->spa_scan_pass_start = gethrestime_sec();
2014 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2015 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2016 else
2017 spa->spa_scan_pass_scrub_pause = 0;
2018 spa->spa_scan_pass_scrub_spent_paused = 0;
2019 spa->spa_scan_pass_exam = 0;
2020 vdev_scan_stat_init(spa->spa_root_vdev);
2021 }
2022
2023 /*
2024 * Get scan stats for zpool status reports
2025 */
2026 int
2027 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2028 {
2029 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2030
2031 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2032 return (SET_ERROR(ENOENT));
2033 bzero(ps, sizeof (pool_scan_stat_t));
2034
2035 /* data stored on disk */
2036 ps->pss_func = scn->scn_phys.scn_func;
2037 ps->pss_start_time = scn->scn_phys.scn_start_time;
2038 ps->pss_end_time = scn->scn_phys.scn_end_time;
2039 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2040 ps->pss_examined = scn->scn_phys.scn_examined;
2041 ps->pss_to_process = scn->scn_phys.scn_to_process;
2042 ps->pss_processed = scn->scn_phys.scn_processed;
2043 ps->pss_errors = scn->scn_phys.scn_errors;
2044 ps->pss_state = scn->scn_phys.scn_state;
2045
2046 /* data not stored on disk */
2047 ps->pss_pass_start = spa->spa_scan_pass_start;
2048 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2049 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2050 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2051
2052 return (0);
2053 }
2054
2055 boolean_t
2056 spa_debug_enabled(spa_t *spa)
2057 {
2058 return (spa->spa_debug);
2059 }
2060
2061 int
2062 spa_maxblocksize(spa_t *spa)
2063 {
2064 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2065 return (SPA_MAXBLOCKSIZE);
2066 else
2067 return (SPA_OLD_MAXBLOCKSIZE);
2068 }
2069
2070 int
2071 spa_maxdnodesize(spa_t *spa)
2072 {
2073 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2074 return (DNODE_MAX_SIZE);
2075 else
2076 return (DNODE_MIN_SIZE);
2077 }
2078
2079 boolean_t
2080 spa_multihost(spa_t *spa)
2081 {
2082 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2083 }
2084
2085 unsigned long
2086 spa_get_hostid(void)
2087 {
2088 unsigned long myhostid;
2089
2090 #ifdef _KERNEL
2091 myhostid = zone_get_hostid(NULL);
2092 #else /* _KERNEL */
2093 /*
2094 * We're emulating the system's hostid in userland, so
2095 * we can't use zone_get_hostid().
2096 */
2097 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2098 #endif /* _KERNEL */
2099
2100 return (myhostid);
2101 }
2102
2103 /*
2104 * Return the pool state string ("ONLINE", "DEGRADED", "SUSPENDED", etc).
2105 */
2106 const char *
2107 spa_state_to_name(spa_t *spa)
2108 {
2109 vdev_state_t state = spa->spa_root_vdev->vdev_state;
2110 vdev_aux_t aux = spa->spa_root_vdev->vdev_stat.vs_aux;
2111
2112 if (spa_suspended(spa) &&
2113 (spa_get_failmode(spa) != ZIO_FAILURE_MODE_CONTINUE))
2114 return ("SUSPENDED");
2115
2116 switch (state) {
2117 case VDEV_STATE_CLOSED:
2118 case VDEV_STATE_OFFLINE:
2119 return ("OFFLINE");
2120 case VDEV_STATE_REMOVED:
2121 return ("REMOVED");
2122 case VDEV_STATE_CANT_OPEN:
2123 if (aux == VDEV_AUX_CORRUPT_DATA || aux == VDEV_AUX_BAD_LOG)
2124 return ("FAULTED");
2125 else if (aux == VDEV_AUX_SPLIT_POOL)
2126 return ("SPLIT");
2127 else
2128 return ("UNAVAIL");
2129 case VDEV_STATE_FAULTED:
2130 return ("FAULTED");
2131 case VDEV_STATE_DEGRADED:
2132 return ("DEGRADED");
2133 case VDEV_STATE_HEALTHY:
2134 return ("ONLINE");
2135 default:
2136 break;
2137 }
2138
2139 return ("UNKNOWN");
2140 }
2141
2142 #if defined(_KERNEL) && defined(HAVE_SPL)
2143 /* Namespace manipulation */
2144 EXPORT_SYMBOL(spa_lookup);
2145 EXPORT_SYMBOL(spa_add);
2146 EXPORT_SYMBOL(spa_remove);
2147 EXPORT_SYMBOL(spa_next);
2148
2149 /* Refcount functions */
2150 EXPORT_SYMBOL(spa_open_ref);
2151 EXPORT_SYMBOL(spa_close);
2152 EXPORT_SYMBOL(spa_refcount_zero);
2153
2154 /* Pool configuration lock */
2155 EXPORT_SYMBOL(spa_config_tryenter);
2156 EXPORT_SYMBOL(spa_config_enter);
2157 EXPORT_SYMBOL(spa_config_exit);
2158 EXPORT_SYMBOL(spa_config_held);
2159
2160 /* Pool vdev add/remove lock */
2161 EXPORT_SYMBOL(spa_vdev_enter);
2162 EXPORT_SYMBOL(spa_vdev_exit);
2163
2164 /* Pool vdev state change lock */
2165 EXPORT_SYMBOL(spa_vdev_state_enter);
2166 EXPORT_SYMBOL(spa_vdev_state_exit);
2167
2168 /* Accessor functions */
2169 EXPORT_SYMBOL(spa_shutting_down);
2170 EXPORT_SYMBOL(spa_get_dsl);
2171 EXPORT_SYMBOL(spa_get_rootblkptr);
2172 EXPORT_SYMBOL(spa_set_rootblkptr);
2173 EXPORT_SYMBOL(spa_altroot);
2174 EXPORT_SYMBOL(spa_sync_pass);
2175 EXPORT_SYMBOL(spa_name);
2176 EXPORT_SYMBOL(spa_guid);
2177 EXPORT_SYMBOL(spa_last_synced_txg);
2178 EXPORT_SYMBOL(spa_first_txg);
2179 EXPORT_SYMBOL(spa_syncing_txg);
2180 EXPORT_SYMBOL(spa_version);
2181 EXPORT_SYMBOL(spa_state);
2182 EXPORT_SYMBOL(spa_load_state);
2183 EXPORT_SYMBOL(spa_freeze_txg);
2184 EXPORT_SYMBOL(spa_get_dspace);
2185 EXPORT_SYMBOL(spa_update_dspace);
2186 EXPORT_SYMBOL(spa_deflate);
2187 EXPORT_SYMBOL(spa_normal_class);
2188 EXPORT_SYMBOL(spa_log_class);
2189 EXPORT_SYMBOL(spa_max_replication);
2190 EXPORT_SYMBOL(spa_prev_software_version);
2191 EXPORT_SYMBOL(spa_get_failmode);
2192 EXPORT_SYMBOL(spa_suspended);
2193 EXPORT_SYMBOL(spa_bootfs);
2194 EXPORT_SYMBOL(spa_delegation);
2195 EXPORT_SYMBOL(spa_meta_objset);
2196 EXPORT_SYMBOL(spa_maxblocksize);
2197 EXPORT_SYMBOL(spa_maxdnodesize);
2198
2199 /* Miscellaneous support routines */
2200 EXPORT_SYMBOL(spa_rename);
2201 EXPORT_SYMBOL(spa_guid_exists);
2202 EXPORT_SYMBOL(spa_strdup);
2203 EXPORT_SYMBOL(spa_strfree);
2204 EXPORT_SYMBOL(spa_get_random);
2205 EXPORT_SYMBOL(spa_generate_guid);
2206 EXPORT_SYMBOL(snprintf_blkptr);
2207 EXPORT_SYMBOL(spa_freeze);
2208 EXPORT_SYMBOL(spa_upgrade);
2209 EXPORT_SYMBOL(spa_evict_all);
2210 EXPORT_SYMBOL(spa_lookup_by_guid);
2211 EXPORT_SYMBOL(spa_has_spare);
2212 EXPORT_SYMBOL(dva_get_dsize_sync);
2213 EXPORT_SYMBOL(bp_get_dsize_sync);
2214 EXPORT_SYMBOL(bp_get_dsize);
2215 EXPORT_SYMBOL(spa_has_slogs);
2216 EXPORT_SYMBOL(spa_is_root);
2217 EXPORT_SYMBOL(spa_writeable);
2218 EXPORT_SYMBOL(spa_mode);
2219 EXPORT_SYMBOL(spa_namespace_lock);
2220 EXPORT_SYMBOL(spa_state_to_name);
2221
2222 /* BEGIN CSTYLED */
2223 module_param(zfs_flags, uint, 0644);
2224 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2225
2226 module_param(zfs_recover, int, 0644);
2227 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2228
2229 module_param(zfs_free_leak_on_eio, int, 0644);
2230 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2231 "Set to ignore IO errors during free and permanently leak the space");
2232
2233 module_param(zfs_deadman_synctime_ms, ulong, 0644);
2234 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
2235
2236 module_param(zfs_deadman_checktime_ms, ulong, 0644);
2237 MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2238 "Dead I/O check interval in milliseconds");
2239
2240 module_param(zfs_deadman_enabled, int, 0644);
2241 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2242
2243 module_param(spa_asize_inflation, int, 0644);
2244 MODULE_PARM_DESC(spa_asize_inflation,
2245 "SPA size estimate multiplication factor");
2246
2247 module_param(spa_slop_shift, int, 0644);
2248 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2249 /* END CSTYLED */
2250 #endif