]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_disk.c
Imported Upstream version 0.6.4.2
[mirror_zfs-debian.git] / module / zfs / vdev_disk.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/vdev_disk.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/fs/zfs.h>
34 #include <sys/zio.h>
35 #include <sys/sunldi.h>
36
37 char *zfs_vdev_scheduler = VDEV_SCHEDULER;
38 static void *zfs_vdev_holder = VDEV_HOLDER;
39
40 /*
41 * Virtual device vector for disks.
42 */
43 typedef struct dio_request {
44 struct completion dr_comp; /* Completion for sync IO */
45 atomic_t dr_ref; /* References */
46 zio_t *dr_zio; /* Parent ZIO */
47 int dr_rw; /* Read/Write */
48 int dr_error; /* Bio error */
49 int dr_bio_count; /* Count of bio's */
50 struct bio *dr_bio[0]; /* Attached bio's */
51 } dio_request_t;
52
53
54 #ifdef HAVE_OPEN_BDEV_EXCLUSIVE
55 static fmode_t
56 vdev_bdev_mode(int smode)
57 {
58 fmode_t mode = 0;
59
60 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
61
62 if (smode & FREAD)
63 mode |= FMODE_READ;
64
65 if (smode & FWRITE)
66 mode |= FMODE_WRITE;
67
68 return (mode);
69 }
70 #else
71 static int
72 vdev_bdev_mode(int smode)
73 {
74 int mode = 0;
75
76 ASSERT3S(smode & (FREAD | FWRITE), !=, 0);
77
78 if ((smode & FREAD) && !(smode & FWRITE))
79 mode = MS_RDONLY;
80
81 return (mode);
82 }
83 #endif /* HAVE_OPEN_BDEV_EXCLUSIVE */
84
85 static uint64_t
86 bdev_capacity(struct block_device *bdev)
87 {
88 struct hd_struct *part = bdev->bd_part;
89
90 /* The partition capacity referenced by the block device */
91 if (part)
92 return (part->nr_sects << 9);
93
94 /* Otherwise assume the full device capacity */
95 return (get_capacity(bdev->bd_disk) << 9);
96 }
97
98 static void
99 vdev_disk_error(zio_t *zio)
100 {
101 #ifdef ZFS_DEBUG
102 printk("ZFS: zio error=%d type=%d offset=%llu size=%llu "
103 "flags=%x delay=%llu\n", zio->io_error, zio->io_type,
104 (u_longlong_t)zio->io_offset, (u_longlong_t)zio->io_size,
105 zio->io_flags, (u_longlong_t)zio->io_delay);
106 #endif
107 }
108
109 /*
110 * Use the Linux 'noop' elevator for zfs managed block devices. This
111 * strikes the ideal balance by allowing the zfs elevator to do all
112 * request ordering and prioritization. While allowing the Linux
113 * elevator to do the maximum front/back merging allowed by the
114 * physical device. This yields the largest possible requests for
115 * the device with the lowest total overhead.
116 */
117 static int
118 vdev_elevator_switch(vdev_t *v, char *elevator)
119 {
120 vdev_disk_t *vd = v->vdev_tsd;
121 struct block_device *bdev = vd->vd_bdev;
122 struct request_queue *q = bdev_get_queue(bdev);
123 char *device = bdev->bd_disk->disk_name;
124 int error;
125
126 /*
127 * Skip devices which are not whole disks (partitions).
128 * Device-mapper devices are excepted since they may be whole
129 * disks despite the vdev_wholedisk flag, in which case we can
130 * and should switch the elevator. If the device-mapper device
131 * does not have an elevator (i.e. dm-raid, dm-crypt, etc.) the
132 * "Skip devices without schedulers" check below will fail.
133 */
134 if (!v->vdev_wholedisk && strncmp(device, "dm-", 3) != 0)
135 return (0);
136
137 /* Skip devices without schedulers (loop, ram, dm, etc) */
138 if (!q->elevator || !blk_queue_stackable(q))
139 return (0);
140
141 /* Leave existing scheduler when set to "none" */
142 if (strncmp(elevator, "none", 4) && (strlen(elevator) == 4) == 0)
143 return (0);
144
145 #ifdef HAVE_ELEVATOR_CHANGE
146 error = elevator_change(q, elevator);
147 #else
148 /*
149 * For pre-2.6.36 kernels elevator_change() is not available.
150 * Therefore we fall back to using a usermodehelper to echo the
151 * elevator into sysfs; This requires /bin/echo and sysfs to be
152 * mounted which may not be true early in the boot process.
153 */
154 #define SET_SCHEDULER_CMD \
155 "exec 0</dev/null " \
156 " 1>/sys/block/%s/queue/scheduler " \
157 " 2>/dev/null; " \
158 "echo %s"
159
160 {
161 char *argv[] = { "/bin/sh", "-c", NULL, NULL };
162 char *envp[] = { NULL };
163
164 argv[2] = kmem_asprintf(SET_SCHEDULER_CMD, device, elevator);
165 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
166 strfree(argv[2]);
167 }
168 #endif /* HAVE_ELEVATOR_CHANGE */
169 if (error)
170 printk("ZFS: Unable to set \"%s\" scheduler for %s (%s): %d\n",
171 elevator, v->vdev_path, device, error);
172
173 return (error);
174 }
175
176 /*
177 * Expanding a whole disk vdev involves invoking BLKRRPART on the
178 * whole disk device. This poses a problem, because BLKRRPART will
179 * return EBUSY if one of the disk's partitions is open. That's why
180 * we have to do it here, just before opening the data partition.
181 * Unfortunately, BLKRRPART works by dropping all partitions and
182 * recreating them, which means that for a short time window, all
183 * /dev/sdxN device files disappear (until udev recreates them).
184 * This means two things:
185 * - When we open the data partition just after a BLKRRPART, we
186 * can't do it using the normal device file path because of the
187 * obvious race condition with udev. Instead, we use reliable
188 * kernel APIs to get a handle to the new partition device from
189 * the whole disk device.
190 * - Because vdev_disk_open() initially needs to find the device
191 * using its path, multiple vdev_disk_open() invocations in
192 * short succession on the same disk with BLKRRPARTs in the
193 * middle have a high probability of failure (because of the
194 * race condition with udev). A typical situation where this
195 * might happen is when the zpool userspace tool does a
196 * TRYIMPORT immediately followed by an IMPORT. For this
197 * reason, we only invoke BLKRRPART in the module when strictly
198 * necessary (zpool online -e case), and rely on userspace to
199 * do it when possible.
200 */
201 static struct block_device *
202 vdev_disk_rrpart(const char *path, int mode, vdev_disk_t *vd)
203 {
204 #if defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK)
205 struct block_device *bdev, *result = ERR_PTR(-ENXIO);
206 struct gendisk *disk;
207 int error, partno;
208
209 bdev = vdev_bdev_open(path, vdev_bdev_mode(mode), zfs_vdev_holder);
210 if (IS_ERR(bdev))
211 return (bdev);
212
213 disk = get_gendisk(bdev->bd_dev, &partno);
214 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
215
216 if (disk) {
217 bdev = bdget(disk_devt(disk));
218 if (bdev) {
219 error = blkdev_get(bdev, vdev_bdev_mode(mode), vd);
220 if (error == 0)
221 error = ioctl_by_bdev(bdev, BLKRRPART, 0);
222 vdev_bdev_close(bdev, vdev_bdev_mode(mode));
223 }
224
225 bdev = bdget_disk(disk, partno);
226 if (bdev) {
227 error = blkdev_get(bdev,
228 vdev_bdev_mode(mode) | FMODE_EXCL, vd);
229 if (error == 0)
230 result = bdev;
231 }
232 put_disk(disk);
233 }
234
235 return (result);
236 #else
237 return (ERR_PTR(-EOPNOTSUPP));
238 #endif /* defined(HAVE_3ARG_BLKDEV_GET) && defined(HAVE_GET_GENDISK) */
239 }
240
241 static int
242 vdev_disk_open(vdev_t *v, uint64_t *psize, uint64_t *max_psize,
243 uint64_t *ashift)
244 {
245 struct block_device *bdev = ERR_PTR(-ENXIO);
246 vdev_disk_t *vd;
247 int mode, block_size;
248
249 /* Must have a pathname and it must be absolute. */
250 if (v->vdev_path == NULL || v->vdev_path[0] != '/') {
251 v->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
252 return (EINVAL);
253 }
254
255 /*
256 * Reopen the device if it's not currently open. Otherwise,
257 * just update the physical size of the device.
258 */
259 if (v->vdev_tsd != NULL) {
260 ASSERT(v->vdev_reopening);
261 vd = v->vdev_tsd;
262 goto skip_open;
263 }
264
265 vd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
266 if (vd == NULL)
267 return (ENOMEM);
268
269 /*
270 * Devices are always opened by the path provided at configuration
271 * time. This means that if the provided path is a udev by-id path
272 * then drives may be recabled without an issue. If the provided
273 * path is a udev by-path path, then the physical location information
274 * will be preserved. This can be critical for more complicated
275 * configurations where drives are located in specific physical
276 * locations to maximize the systems tolerence to component failure.
277 * Alternatively, you can provide your own udev rule to flexibly map
278 * the drives as you see fit. It is not advised that you use the
279 * /dev/[hd]d devices which may be reordered due to probing order.
280 * Devices in the wrong locations will be detected by the higher
281 * level vdev validation.
282 */
283 mode = spa_mode(v->vdev_spa);
284 if (v->vdev_wholedisk && v->vdev_expanding)
285 bdev = vdev_disk_rrpart(v->vdev_path, mode, vd);
286 if (IS_ERR(bdev))
287 bdev = vdev_bdev_open(v->vdev_path,
288 vdev_bdev_mode(mode), zfs_vdev_holder);
289 if (IS_ERR(bdev)) {
290 kmem_free(vd, sizeof (vdev_disk_t));
291 return (-PTR_ERR(bdev));
292 }
293
294 v->vdev_tsd = vd;
295 vd->vd_bdev = bdev;
296
297 skip_open:
298 /* Determine the physical block size */
299 block_size = vdev_bdev_block_size(vd->vd_bdev);
300
301 /* Clear the nowritecache bit, causes vdev_reopen() to try again. */
302 v->vdev_nowritecache = B_FALSE;
303
304 /* Physical volume size in bytes */
305 *psize = bdev_capacity(vd->vd_bdev);
306
307 /* TODO: report possible expansion size */
308 *max_psize = *psize;
309
310 /* Based on the minimum sector size set the block size */
311 *ashift = highbit64(MAX(block_size, SPA_MINBLOCKSIZE)) - 1;
312
313 /* Try to set the io scheduler elevator algorithm */
314 (void) vdev_elevator_switch(v, zfs_vdev_scheduler);
315
316 return (0);
317 }
318
319 static void
320 vdev_disk_close(vdev_t *v)
321 {
322 vdev_disk_t *vd = v->vdev_tsd;
323
324 if (v->vdev_reopening || vd == NULL)
325 return;
326
327 if (vd->vd_bdev != NULL)
328 vdev_bdev_close(vd->vd_bdev,
329 vdev_bdev_mode(spa_mode(v->vdev_spa)));
330
331 kmem_free(vd, sizeof (vdev_disk_t));
332 v->vdev_tsd = NULL;
333 }
334
335 static dio_request_t *
336 vdev_disk_dio_alloc(int bio_count)
337 {
338 dio_request_t *dr;
339 int i;
340
341 dr = kmem_zalloc(sizeof (dio_request_t) +
342 sizeof (struct bio *) * bio_count, KM_SLEEP);
343 if (dr) {
344 init_completion(&dr->dr_comp);
345 atomic_set(&dr->dr_ref, 0);
346 dr->dr_bio_count = bio_count;
347 dr->dr_error = 0;
348
349 for (i = 0; i < dr->dr_bio_count; i++)
350 dr->dr_bio[i] = NULL;
351 }
352
353 return (dr);
354 }
355
356 static void
357 vdev_disk_dio_free(dio_request_t *dr)
358 {
359 int i;
360
361 for (i = 0; i < dr->dr_bio_count; i++)
362 if (dr->dr_bio[i])
363 bio_put(dr->dr_bio[i]);
364
365 kmem_free(dr, sizeof (dio_request_t) +
366 sizeof (struct bio *) * dr->dr_bio_count);
367 }
368
369 static int
370 vdev_disk_dio_is_sync(dio_request_t *dr)
371 {
372 #ifdef HAVE_BIO_RW_SYNC
373 /* BIO_RW_SYNC preferred interface from 2.6.12-2.6.29 */
374 return (dr->dr_rw & (1 << BIO_RW_SYNC));
375 #else
376 #ifdef HAVE_BIO_RW_SYNCIO
377 /* BIO_RW_SYNCIO preferred interface from 2.6.30-2.6.35 */
378 return (dr->dr_rw & (1 << BIO_RW_SYNCIO));
379 #else
380 #ifdef HAVE_REQ_SYNC
381 /* REQ_SYNC preferred interface from 2.6.36-2.6.xx */
382 return (dr->dr_rw & REQ_SYNC);
383 #else
384 #error "Unable to determine bio sync flag"
385 #endif /* HAVE_REQ_SYNC */
386 #endif /* HAVE_BIO_RW_SYNC */
387 #endif /* HAVE_BIO_RW_SYNCIO */
388 }
389
390 static void
391 vdev_disk_dio_get(dio_request_t *dr)
392 {
393 atomic_inc(&dr->dr_ref);
394 }
395
396 static int
397 vdev_disk_dio_put(dio_request_t *dr)
398 {
399 int rc = atomic_dec_return(&dr->dr_ref);
400
401 /*
402 * Free the dio_request when the last reference is dropped and
403 * ensure zio_interpret is called only once with the correct zio
404 */
405 if (rc == 0) {
406 zio_t *zio = dr->dr_zio;
407 int error = dr->dr_error;
408
409 vdev_disk_dio_free(dr);
410
411 if (zio) {
412 zio->io_delay = jiffies_64 - zio->io_delay;
413 zio->io_error = error;
414 ASSERT3S(zio->io_error, >=, 0);
415 if (zio->io_error)
416 vdev_disk_error(zio);
417 zio_interrupt(zio);
418 }
419 }
420
421 return (rc);
422 }
423
424 BIO_END_IO_PROTO(vdev_disk_physio_completion, bio, size, error)
425 {
426 dio_request_t *dr = bio->bi_private;
427 int rc;
428
429 /* Fatal error but print some useful debugging before asserting */
430 if (dr == NULL)
431 PANIC("dr == NULL, bio->bi_private == NULL\n"
432 "bi_next: %p, bi_flags: %lx, bi_rw: %lu, bi_vcnt: %d\n"
433 "bi_idx: %d, bi_size: %d, bi_end_io: %p, bi_cnt: %d\n",
434 bio->bi_next, bio->bi_flags, bio->bi_rw, bio->bi_vcnt,
435 BIO_BI_IDX(bio), BIO_BI_SIZE(bio), bio->bi_end_io,
436 atomic_read(&bio->bi_cnt));
437
438 #ifndef HAVE_2ARGS_BIO_END_IO_T
439 if (BIO_BI_SIZE(bio))
440 return (1);
441 #endif /* HAVE_2ARGS_BIO_END_IO_T */
442
443 if (error == 0 && !test_bit(BIO_UPTODATE, &bio->bi_flags))
444 error = (-EIO);
445
446 if (dr->dr_error == 0)
447 dr->dr_error = -error;
448
449 /* Drop reference aquired by __vdev_disk_physio */
450 rc = vdev_disk_dio_put(dr);
451
452 /* Wake up synchronous waiter this is the last outstanding bio */
453 if ((rc == 1) && vdev_disk_dio_is_sync(dr))
454 complete(&dr->dr_comp);
455
456 BIO_END_IO_RETURN(0);
457 }
458
459 static inline unsigned long
460 bio_nr_pages(void *bio_ptr, unsigned int bio_size)
461 {
462 return ((((unsigned long)bio_ptr + bio_size + PAGE_SIZE - 1) >>
463 PAGE_SHIFT) - ((unsigned long)bio_ptr >> PAGE_SHIFT));
464 }
465
466 static unsigned int
467 bio_map(struct bio *bio, void *bio_ptr, unsigned int bio_size)
468 {
469 unsigned int offset, size, i;
470 struct page *page;
471
472 offset = offset_in_page(bio_ptr);
473 for (i = 0; i < bio->bi_max_vecs; i++) {
474 size = PAGE_SIZE - offset;
475
476 if (bio_size <= 0)
477 break;
478
479 if (size > bio_size)
480 size = bio_size;
481
482 if (is_vmalloc_addr(bio_ptr))
483 page = vmalloc_to_page(bio_ptr);
484 else
485 page = virt_to_page(bio_ptr);
486
487 /*
488 * Some network related block device uses tcp_sendpage, which
489 * doesn't behave well when using 0-count page, this is a
490 * safety net to catch them.
491 */
492 ASSERT3S(page_count(page), >, 0);
493
494 if (bio_add_page(bio, page, size, offset) != size)
495 break;
496
497 bio_ptr += size;
498 bio_size -= size;
499 offset = 0;
500 }
501
502 return (bio_size);
503 }
504
505 static int
506 __vdev_disk_physio(struct block_device *bdev, zio_t *zio, caddr_t kbuf_ptr,
507 size_t kbuf_size, uint64_t kbuf_offset, int flags)
508 {
509 dio_request_t *dr;
510 caddr_t bio_ptr;
511 uint64_t bio_offset;
512 int bio_size, bio_count = 16;
513 int i = 0, error = 0;
514
515 ASSERT3U(kbuf_offset + kbuf_size, <=, bdev->bd_inode->i_size);
516
517 retry:
518 dr = vdev_disk_dio_alloc(bio_count);
519 if (dr == NULL)
520 return (ENOMEM);
521
522 if (zio && !(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
523 bio_set_flags_failfast(bdev, &flags);
524
525 dr->dr_zio = zio;
526 dr->dr_rw = flags;
527
528 /*
529 * When the IO size exceeds the maximum bio size for the request
530 * queue we are forced to break the IO in multiple bio's and wait
531 * for them all to complete. Ideally, all pool users will set
532 * their volume block size to match the maximum request size and
533 * the common case will be one bio per vdev IO request.
534 */
535 bio_ptr = kbuf_ptr;
536 bio_offset = kbuf_offset;
537 bio_size = kbuf_size;
538 for (i = 0; i <= dr->dr_bio_count; i++) {
539
540 /* Finished constructing bio's for given buffer */
541 if (bio_size <= 0)
542 break;
543
544 /*
545 * By default only 'bio_count' bio's per dio are allowed.
546 * However, if we find ourselves in a situation where more
547 * are needed we allocate a larger dio and warn the user.
548 */
549 if (dr->dr_bio_count == i) {
550 vdev_disk_dio_free(dr);
551 bio_count *= 2;
552 goto retry;
553 }
554
555 dr->dr_bio[i] = bio_alloc(GFP_NOIO,
556 bio_nr_pages(bio_ptr, bio_size));
557 /* bio_alloc() with __GFP_WAIT never returns NULL */
558 if (unlikely(dr->dr_bio[i] == NULL)) {
559 vdev_disk_dio_free(dr);
560 return (ENOMEM);
561 }
562
563 /* Matching put called by vdev_disk_physio_completion */
564 vdev_disk_dio_get(dr);
565
566 dr->dr_bio[i]->bi_bdev = bdev;
567 BIO_BI_SECTOR(dr->dr_bio[i]) = bio_offset >> 9;
568 dr->dr_bio[i]->bi_rw = dr->dr_rw;
569 dr->dr_bio[i]->bi_end_io = vdev_disk_physio_completion;
570 dr->dr_bio[i]->bi_private = dr;
571
572 /* Remaining size is returned to become the new size */
573 bio_size = bio_map(dr->dr_bio[i], bio_ptr, bio_size);
574
575 /* Advance in buffer and construct another bio if needed */
576 bio_ptr += BIO_BI_SIZE(dr->dr_bio[i]);
577 bio_offset += BIO_BI_SIZE(dr->dr_bio[i]);
578 }
579
580 /* Extra reference to protect dio_request during submit_bio */
581 vdev_disk_dio_get(dr);
582 if (zio)
583 zio->io_delay = jiffies_64;
584
585 /* Submit all bio's associated with this dio */
586 for (i = 0; i < dr->dr_bio_count; i++)
587 if (dr->dr_bio[i])
588 submit_bio(dr->dr_rw, dr->dr_bio[i]);
589
590 /*
591 * On synchronous blocking requests we wait for all bio the completion
592 * callbacks to run. We will be woken when the last callback runs
593 * for this dio. We are responsible for putting the last dio_request
594 * reference will in turn put back the last bio references. The
595 * only synchronous consumer is vdev_disk_read_rootlabel() all other
596 * IO originating from vdev_disk_io_start() is asynchronous.
597 */
598 if (vdev_disk_dio_is_sync(dr)) {
599 wait_for_completion(&dr->dr_comp);
600 error = dr->dr_error;
601 ASSERT3S(atomic_read(&dr->dr_ref), ==, 1);
602 }
603
604 (void) vdev_disk_dio_put(dr);
605
606 return (error);
607 }
608
609 int
610 vdev_disk_physio(struct block_device *bdev, caddr_t kbuf,
611 size_t size, uint64_t offset, int flags)
612 {
613 bio_set_flags_failfast(bdev, &flags);
614 return (__vdev_disk_physio(bdev, NULL, kbuf, size, offset, flags));
615 }
616
617 BIO_END_IO_PROTO(vdev_disk_io_flush_completion, bio, size, rc)
618 {
619 zio_t *zio = bio->bi_private;
620
621 zio->io_delay = jiffies_64 - zio->io_delay;
622 zio->io_error = -rc;
623 if (rc && (rc == -EOPNOTSUPP))
624 zio->io_vd->vdev_nowritecache = B_TRUE;
625
626 bio_put(bio);
627 ASSERT3S(zio->io_error, >=, 0);
628 if (zio->io_error)
629 vdev_disk_error(zio);
630 zio_interrupt(zio);
631
632 BIO_END_IO_RETURN(0);
633 }
634
635 static int
636 vdev_disk_io_flush(struct block_device *bdev, zio_t *zio)
637 {
638 struct request_queue *q;
639 struct bio *bio;
640
641 q = bdev_get_queue(bdev);
642 if (!q)
643 return (ENXIO);
644
645 bio = bio_alloc(GFP_NOIO, 0);
646 /* bio_alloc() with __GFP_WAIT never returns NULL */
647 if (unlikely(bio == NULL))
648 return (ENOMEM);
649
650 bio->bi_end_io = vdev_disk_io_flush_completion;
651 bio->bi_private = zio;
652 bio->bi_bdev = bdev;
653 zio->io_delay = jiffies_64;
654 submit_bio(VDEV_WRITE_FLUSH_FUA, bio);
655 invalidate_bdev(bdev);
656
657 return (0);
658 }
659
660 static int
661 vdev_disk_io_start(zio_t *zio)
662 {
663 vdev_t *v = zio->io_vd;
664 vdev_disk_t *vd = v->vdev_tsd;
665 int flags, error;
666
667 switch (zio->io_type) {
668 case ZIO_TYPE_IOCTL:
669
670 if (!vdev_readable(v)) {
671 zio->io_error = SET_ERROR(ENXIO);
672 return (ZIO_PIPELINE_CONTINUE);
673 }
674
675 switch (zio->io_cmd) {
676 case DKIOCFLUSHWRITECACHE:
677
678 if (zfs_nocacheflush)
679 break;
680
681 if (v->vdev_nowritecache) {
682 zio->io_error = SET_ERROR(ENOTSUP);
683 break;
684 }
685
686 error = vdev_disk_io_flush(vd->vd_bdev, zio);
687 if (error == 0)
688 return (ZIO_PIPELINE_STOP);
689
690 zio->io_error = error;
691 if (error == ENOTSUP)
692 v->vdev_nowritecache = B_TRUE;
693
694 break;
695
696 default:
697 zio->io_error = SET_ERROR(ENOTSUP);
698 }
699
700 return (ZIO_PIPELINE_CONTINUE);
701
702 case ZIO_TYPE_WRITE:
703 flags = WRITE;
704 break;
705
706 case ZIO_TYPE_READ:
707 flags = READ;
708 break;
709
710 default:
711 zio->io_error = SET_ERROR(ENOTSUP);
712 return (ZIO_PIPELINE_CONTINUE);
713 }
714
715 error = __vdev_disk_physio(vd->vd_bdev, zio, zio->io_data,
716 zio->io_size, zio->io_offset, flags);
717 if (error) {
718 zio->io_error = error;
719 return (ZIO_PIPELINE_CONTINUE);
720 }
721
722 return (ZIO_PIPELINE_STOP);
723 }
724
725 static void
726 vdev_disk_io_done(zio_t *zio)
727 {
728 /*
729 * If the device returned EIO, we revalidate the media. If it is
730 * determined the media has changed this triggers the asynchronous
731 * removal of the device from the configuration.
732 */
733 if (zio->io_error == EIO) {
734 vdev_t *v = zio->io_vd;
735 vdev_disk_t *vd = v->vdev_tsd;
736
737 if (check_disk_change(vd->vd_bdev)) {
738 vdev_bdev_invalidate(vd->vd_bdev);
739 v->vdev_remove_wanted = B_TRUE;
740 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
741 }
742 }
743 }
744
745 static void
746 vdev_disk_hold(vdev_t *vd)
747 {
748 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
749
750 /* We must have a pathname, and it must be absolute. */
751 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/')
752 return;
753
754 /*
755 * Only prefetch path and devid info if the device has
756 * never been opened.
757 */
758 if (vd->vdev_tsd != NULL)
759 return;
760
761 /* XXX: Implement me as a vnode lookup for the device */
762 vd->vdev_name_vp = NULL;
763 vd->vdev_devid_vp = NULL;
764 }
765
766 static void
767 vdev_disk_rele(vdev_t *vd)
768 {
769 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER));
770
771 /* XXX: Implement me as a vnode rele for the device */
772 }
773
774 vdev_ops_t vdev_disk_ops = {
775 vdev_disk_open,
776 vdev_disk_close,
777 vdev_default_asize,
778 vdev_disk_io_start,
779 vdev_disk_io_done,
780 NULL,
781 vdev_disk_hold,
782 vdev_disk_rele,
783 VDEV_TYPE_DISK, /* name of this vdev type */
784 B_TRUE /* leaf vdev */
785 };
786
787 /*
788 * Given the root disk device devid or pathname, read the label from
789 * the device, and construct a configuration nvlist.
790 */
791 int
792 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
793 {
794 struct block_device *bdev;
795 vdev_label_t *label;
796 uint64_t s, size;
797 int i;
798
799 bdev = vdev_bdev_open(devpath, vdev_bdev_mode(FREAD), zfs_vdev_holder);
800 if (IS_ERR(bdev))
801 return (-PTR_ERR(bdev));
802
803 s = bdev_capacity(bdev);
804 if (s == 0) {
805 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
806 return (EIO);
807 }
808
809 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
810 label = vmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
811
812 for (i = 0; i < VDEV_LABELS; i++) {
813 uint64_t offset, state, txg = 0;
814
815 /* read vdev label */
816 offset = vdev_label_offset(size, i, 0);
817 if (vdev_disk_physio(bdev, (caddr_t)label,
818 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, READ_SYNC) != 0)
819 continue;
820
821 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
822 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
823 *config = NULL;
824 continue;
825 }
826
827 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
828 &state) != 0 || state >= POOL_STATE_DESTROYED) {
829 nvlist_free(*config);
830 *config = NULL;
831 continue;
832 }
833
834 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
835 &txg) != 0 || txg == 0) {
836 nvlist_free(*config);
837 *config = NULL;
838 continue;
839 }
840
841 break;
842 }
843
844 vmem_free(label, sizeof (vdev_label_t));
845 vdev_bdev_close(bdev, vdev_bdev_mode(FREAD));
846
847 return (0);
848 }
849
850 module_param(zfs_vdev_scheduler, charp, 0644);
851 MODULE_PARM_DESC(zfs_vdev_scheduler, "I/O scheduler");