]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/vdev_label.c
New upstream version 0.7.9
[mirror_zfs-debian.git] / module / zfs / vdev_label.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 */
26
27 /*
28 * Virtual Device Labels
29 * ---------------------
30 *
31 * The vdev label serves several distinct purposes:
32 *
33 * 1. Uniquely identify this device as part of a ZFS pool and confirm its
34 * identity within the pool.
35 *
36 * 2. Verify that all the devices given in a configuration are present
37 * within the pool.
38 *
39 * 3. Determine the uberblock for the pool.
40 *
41 * 4. In case of an import operation, determine the configuration of the
42 * toplevel vdev of which it is a part.
43 *
44 * 5. If an import operation cannot find all the devices in the pool,
45 * provide enough information to the administrator to determine which
46 * devices are missing.
47 *
48 * It is important to note that while the kernel is responsible for writing the
49 * label, it only consumes the information in the first three cases. The
50 * latter information is only consumed in userland when determining the
51 * configuration to import a pool.
52 *
53 *
54 * Label Organization
55 * ------------------
56 *
57 * Before describing the contents of the label, it's important to understand how
58 * the labels are written and updated with respect to the uberblock.
59 *
60 * When the pool configuration is altered, either because it was newly created
61 * or a device was added, we want to update all the labels such that we can deal
62 * with fatal failure at any point. To this end, each disk has two labels which
63 * are updated before and after the uberblock is synced. Assuming we have
64 * labels and an uberblock with the following transaction groups:
65 *
66 * L1 UB L2
67 * +------+ +------+ +------+
68 * | | | | | |
69 * | t10 | | t10 | | t10 |
70 * | | | | | |
71 * +------+ +------+ +------+
72 *
73 * In this stable state, the labels and the uberblock were all updated within
74 * the same transaction group (10). Each label is mirrored and checksummed, so
75 * that we can detect when we fail partway through writing the label.
76 *
77 * In order to identify which labels are valid, the labels are written in the
78 * following manner:
79 *
80 * 1. For each vdev, update 'L1' to the new label
81 * 2. Update the uberblock
82 * 3. For each vdev, update 'L2' to the new label
83 *
84 * Given arbitrary failure, we can determine the correct label to use based on
85 * the transaction group. If we fail after updating L1 but before updating the
86 * UB, we will notice that L1's transaction group is greater than the uberblock,
87 * so L2 must be valid. If we fail after writing the uberblock but before
88 * writing L2, we will notice that L2's transaction group is less than L1, and
89 * therefore L1 is valid.
90 *
91 * Another added complexity is that not every label is updated when the config
92 * is synced. If we add a single device, we do not want to have to re-write
93 * every label for every device in the pool. This means that both L1 and L2 may
94 * be older than the pool uberblock, because the necessary information is stored
95 * on another vdev.
96 *
97 *
98 * On-disk Format
99 * --------------
100 *
101 * The vdev label consists of two distinct parts, and is wrapped within the
102 * vdev_label_t structure. The label includes 8k of padding to permit legacy
103 * VTOC disk labels, but is otherwise ignored.
104 *
105 * The first half of the label is a packed nvlist which contains pool wide
106 * properties, per-vdev properties, and configuration information. It is
107 * described in more detail below.
108 *
109 * The latter half of the label consists of a redundant array of uberblocks.
110 * These uberblocks are updated whenever a transaction group is committed,
111 * or when the configuration is updated. When a pool is loaded, we scan each
112 * vdev for the 'best' uberblock.
113 *
114 *
115 * Configuration Information
116 * -------------------------
117 *
118 * The nvlist describing the pool and vdev contains the following elements:
119 *
120 * version ZFS on-disk version
121 * name Pool name
122 * state Pool state
123 * txg Transaction group in which this label was written
124 * pool_guid Unique identifier for this pool
125 * vdev_tree An nvlist describing vdev tree.
126 * features_for_read
127 * An nvlist of the features necessary for reading the MOS.
128 *
129 * Each leaf device label also contains the following:
130 *
131 * top_guid Unique ID for top-level vdev in which this is contained
132 * guid Unique ID for the leaf vdev
133 *
134 * The 'vs' configuration follows the format described in 'spa_config.c'.
135 */
136
137 #include <sys/zfs_context.h>
138 #include <sys/spa.h>
139 #include <sys/spa_impl.h>
140 #include <sys/dmu.h>
141 #include <sys/zap.h>
142 #include <sys/vdev.h>
143 #include <sys/vdev_impl.h>
144 #include <sys/uberblock_impl.h>
145 #include <sys/metaslab.h>
146 #include <sys/zio.h>
147 #include <sys/dsl_scan.h>
148 #include <sys/abd.h>
149 #include <sys/fs/zfs.h>
150
151 /*
152 * Basic routines to read and write from a vdev label.
153 * Used throughout the rest of this file.
154 */
155 uint64_t
156 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
157 {
158 ASSERT(offset < sizeof (vdev_label_t));
159 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
160
161 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
162 0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
163 }
164
165 /*
166 * Returns back the vdev label associated with the passed in offset.
167 */
168 int
169 vdev_label_number(uint64_t psize, uint64_t offset)
170 {
171 int l;
172
173 if (offset >= psize - VDEV_LABEL_END_SIZE) {
174 offset -= psize - VDEV_LABEL_END_SIZE;
175 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
176 }
177 l = offset / sizeof (vdev_label_t);
178 return (l < VDEV_LABELS ? l : -1);
179 }
180
181 static void
182 vdev_label_read(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
183 uint64_t size, zio_done_func_t *done, void *private, int flags)
184 {
185 ASSERT(
186 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
187 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
188 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
189
190 zio_nowait(zio_read_phys(zio, vd,
191 vdev_label_offset(vd->vdev_psize, l, offset),
192 size, buf, ZIO_CHECKSUM_LABEL, done, private,
193 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
194 }
195
196 void
197 vdev_label_write(zio_t *zio, vdev_t *vd, int l, abd_t *buf, uint64_t offset,
198 uint64_t size, zio_done_func_t *done, void *private, int flags)
199 {
200 ASSERT(
201 spa_config_held(zio->io_spa, SCL_STATE, RW_READER) == SCL_STATE ||
202 spa_config_held(zio->io_spa, SCL_STATE, RW_WRITER) == SCL_STATE);
203 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
204
205 zio_nowait(zio_write_phys(zio, vd,
206 vdev_label_offset(vd->vdev_psize, l, offset),
207 size, buf, ZIO_CHECKSUM_LABEL, done, private,
208 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
209 }
210
211 /*
212 * Generate the nvlist representing this vdev's stats
213 */
214 void
215 vdev_config_generate_stats(vdev_t *vd, nvlist_t *nv)
216 {
217 nvlist_t *nvx;
218 vdev_stat_t *vs;
219 vdev_stat_ex_t *vsx;
220
221 vs = kmem_alloc(sizeof (*vs), KM_SLEEP);
222 vsx = kmem_alloc(sizeof (*vsx), KM_SLEEP);
223
224 vdev_get_stats_ex(vd, vs, vsx);
225 fnvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS,
226 (uint64_t *)vs, sizeof (*vs) / sizeof (uint64_t));
227
228 kmem_free(vs, sizeof (*vs));
229
230 /*
231 * Add extended stats into a special extended stats nvlist. This keeps
232 * all the extended stats nicely grouped together. The extended stats
233 * nvlist is then added to the main nvlist.
234 */
235 nvx = fnvlist_alloc();
236
237 /* ZIOs in flight to disk */
238 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_ACTIVE_QUEUE,
239 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_READ]);
240
241 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_ACTIVE_QUEUE,
242 vsx->vsx_active_queue[ZIO_PRIORITY_SYNC_WRITE]);
243
244 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_ACTIVE_QUEUE,
245 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_READ]);
246
247 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_ACTIVE_QUEUE,
248 vsx->vsx_active_queue[ZIO_PRIORITY_ASYNC_WRITE]);
249
250 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_ACTIVE_QUEUE,
251 vsx->vsx_active_queue[ZIO_PRIORITY_SCRUB]);
252
253 /* ZIOs pending */
254 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_PEND_QUEUE,
255 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_READ]);
256
257 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_PEND_QUEUE,
258 vsx->vsx_pend_queue[ZIO_PRIORITY_SYNC_WRITE]);
259
260 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_PEND_QUEUE,
261 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_READ]);
262
263 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_PEND_QUEUE,
264 vsx->vsx_pend_queue[ZIO_PRIORITY_ASYNC_WRITE]);
265
266 fnvlist_add_uint64(nvx, ZPOOL_CONFIG_VDEV_SCRUB_PEND_QUEUE,
267 vsx->vsx_pend_queue[ZIO_PRIORITY_SCRUB]);
268
269 /* Histograms */
270 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_R_LAT_HISTO,
271 vsx->vsx_total_histo[ZIO_TYPE_READ],
272 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_READ]));
273
274 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_TOT_W_LAT_HISTO,
275 vsx->vsx_total_histo[ZIO_TYPE_WRITE],
276 ARRAY_SIZE(vsx->vsx_total_histo[ZIO_TYPE_WRITE]));
277
278 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_R_LAT_HISTO,
279 vsx->vsx_disk_histo[ZIO_TYPE_READ],
280 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_READ]));
281
282 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_DISK_W_LAT_HISTO,
283 vsx->vsx_disk_histo[ZIO_TYPE_WRITE],
284 ARRAY_SIZE(vsx->vsx_disk_histo[ZIO_TYPE_WRITE]));
285
286 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_R_LAT_HISTO,
287 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ],
288 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_READ]));
289
290 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_W_LAT_HISTO,
291 vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE],
292 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SYNC_WRITE]));
293
294 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_R_LAT_HISTO,
295 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ],
296 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_READ]));
297
298 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_W_LAT_HISTO,
299 vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE],
300 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_ASYNC_WRITE]));
301
302 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SCRUB_LAT_HISTO,
303 vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB],
304 ARRAY_SIZE(vsx->vsx_queue_histo[ZIO_PRIORITY_SCRUB]));
305
306 /* Request sizes */
307 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_R_HISTO,
308 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ],
309 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_READ]));
310
311 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_IND_W_HISTO,
312 vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE],
313 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SYNC_WRITE]));
314
315 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_R_HISTO,
316 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ],
317 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_READ]));
318
319 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_IND_W_HISTO,
320 vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE],
321 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_ASYNC_WRITE]));
322
323 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_IND_SCRUB_HISTO,
324 vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB],
325 ARRAY_SIZE(vsx->vsx_ind_histo[ZIO_PRIORITY_SCRUB]));
326
327 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_R_HISTO,
328 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ],
329 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_READ]));
330
331 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_SYNC_AGG_W_HISTO,
332 vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE],
333 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SYNC_WRITE]));
334
335 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_R_HISTO,
336 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ],
337 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_READ]));
338
339 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_ASYNC_AGG_W_HISTO,
340 vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE],
341 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_ASYNC_WRITE]));
342
343 fnvlist_add_uint64_array(nvx, ZPOOL_CONFIG_VDEV_AGG_SCRUB_HISTO,
344 vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB],
345 ARRAY_SIZE(vsx->vsx_agg_histo[ZIO_PRIORITY_SCRUB]));
346
347 /* Add extended stats nvlist to main nvlist */
348 fnvlist_add_nvlist(nv, ZPOOL_CONFIG_VDEV_STATS_EX, nvx);
349
350 fnvlist_free(nvx);
351 kmem_free(vsx, sizeof (*vsx));
352 }
353
354 /*
355 * Generate the nvlist representing this vdev's config.
356 */
357 nvlist_t *
358 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
359 vdev_config_flag_t flags)
360 {
361 nvlist_t *nv = NULL;
362 nv = fnvlist_alloc();
363
364 fnvlist_add_string(nv, ZPOOL_CONFIG_TYPE, vd->vdev_ops->vdev_op_type);
365 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)))
366 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id);
367 fnvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid);
368
369 if (vd->vdev_path != NULL)
370 fnvlist_add_string(nv, ZPOOL_CONFIG_PATH, vd->vdev_path);
371
372 if (vd->vdev_devid != NULL)
373 fnvlist_add_string(nv, ZPOOL_CONFIG_DEVID, vd->vdev_devid);
374
375 if (vd->vdev_physpath != NULL)
376 fnvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
377 vd->vdev_physpath);
378
379 if (vd->vdev_enc_sysfs_path != NULL)
380 fnvlist_add_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
381 vd->vdev_enc_sysfs_path);
382
383 if (vd->vdev_fru != NULL)
384 fnvlist_add_string(nv, ZPOOL_CONFIG_FRU, vd->vdev_fru);
385
386 if (vd->vdev_nparity != 0) {
387 ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
388 VDEV_TYPE_RAIDZ) == 0);
389
390 /*
391 * Make sure someone hasn't managed to sneak a fancy new vdev
392 * into a crufty old storage pool.
393 */
394 ASSERT(vd->vdev_nparity == 1 ||
395 (vd->vdev_nparity <= 2 &&
396 spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
397 (vd->vdev_nparity <= 3 &&
398 spa_version(spa) >= SPA_VERSION_RAIDZ3));
399
400 /*
401 * Note that we'll add the nparity tag even on storage pools
402 * that only support a single parity device -- older software
403 * will just ignore it.
404 */
405 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, vd->vdev_nparity);
406 }
407
408 if (vd->vdev_wholedisk != -1ULL)
409 fnvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
410 vd->vdev_wholedisk);
411
412 if (vd->vdev_not_present)
413 fnvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1);
414
415 if (vd->vdev_isspare)
416 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1);
417
418 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) &&
419 vd == vd->vdev_top) {
420 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
421 vd->vdev_ms_array);
422 fnvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
423 vd->vdev_ms_shift);
424 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, vd->vdev_ashift);
425 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
426 vd->vdev_asize);
427 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, vd->vdev_islog);
428 if (vd->vdev_removing)
429 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING,
430 vd->vdev_removing);
431 }
432
433 if (vd->vdev_dtl_sm != NULL) {
434 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
435 space_map_object(vd->vdev_dtl_sm));
436 }
437
438 if (vd->vdev_crtxg)
439 fnvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, vd->vdev_crtxg);
440
441 if (flags & VDEV_CONFIG_MOS) {
442 if (vd->vdev_leaf_zap != 0) {
443 ASSERT(vd->vdev_ops->vdev_op_leaf);
444 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_LEAF_ZAP,
445 vd->vdev_leaf_zap);
446 }
447
448 if (vd->vdev_top_zap != 0) {
449 ASSERT(vd == vd->vdev_top);
450 fnvlist_add_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
451 vd->vdev_top_zap);
452 }
453 }
454
455 if (getstats) {
456 pool_scan_stat_t ps;
457
458 vdev_config_generate_stats(vd, nv);
459
460 /* provide either current or previous scan information */
461 if (spa_scan_get_stats(spa, &ps) == 0) {
462 fnvlist_add_uint64_array(nv,
463 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps,
464 sizeof (pool_scan_stat_t) / sizeof (uint64_t));
465 }
466 }
467
468 if (!vd->vdev_ops->vdev_op_leaf) {
469 nvlist_t **child;
470 int c, idx;
471
472 ASSERT(!vd->vdev_ishole);
473
474 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
475 KM_SLEEP);
476
477 for (c = 0, idx = 0; c < vd->vdev_children; c++) {
478 vdev_t *cvd = vd->vdev_child[c];
479
480 /*
481 * If we're generating an nvlist of removing
482 * vdevs then skip over any device which is
483 * not being removed.
484 */
485 if ((flags & VDEV_CONFIG_REMOVING) &&
486 !cvd->vdev_removing)
487 continue;
488
489 child[idx++] = vdev_config_generate(spa, cvd,
490 getstats, flags);
491 }
492
493 if (idx) {
494 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
495 child, idx);
496 }
497
498 for (c = 0; c < idx; c++)
499 nvlist_free(child[c]);
500
501 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
502
503 } else {
504 const char *aux = NULL;
505
506 if (vd->vdev_offline && !vd->vdev_tmpoffline)
507 fnvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, B_TRUE);
508 if (vd->vdev_resilver_txg != 0)
509 fnvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
510 vd->vdev_resilver_txg);
511 if (vd->vdev_faulted)
512 fnvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, B_TRUE);
513 if (vd->vdev_degraded)
514 fnvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, B_TRUE);
515 if (vd->vdev_removed)
516 fnvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, B_TRUE);
517 if (vd->vdev_unspare)
518 fnvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, B_TRUE);
519 if (vd->vdev_ishole)
520 fnvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, B_TRUE);
521
522 /* Set the reason why we're FAULTED/DEGRADED. */
523 switch (vd->vdev_stat.vs_aux) {
524 case VDEV_AUX_ERR_EXCEEDED:
525 aux = "err_exceeded";
526 break;
527
528 case VDEV_AUX_EXTERNAL:
529 aux = "external";
530 break;
531 }
532
533 if (aux != NULL && !vd->vdev_tmpoffline) {
534 fnvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, aux);
535 } else {
536 /*
537 * We're healthy - clear any previous AUX_STATE values.
538 */
539 if (nvlist_exists(nv, ZPOOL_CONFIG_AUX_STATE))
540 nvlist_remove_all(nv, ZPOOL_CONFIG_AUX_STATE);
541 }
542
543 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
544 fnvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
545 vd->vdev_orig_guid);
546 }
547 }
548
549 return (nv);
550 }
551
552 /*
553 * Generate a view of the top-level vdevs. If we currently have holes
554 * in the namespace, then generate an array which contains a list of holey
555 * vdevs. Additionally, add the number of top-level children that currently
556 * exist.
557 */
558 void
559 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
560 {
561 vdev_t *rvd = spa->spa_root_vdev;
562 uint64_t *array;
563 uint_t c, idx;
564
565 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
566
567 for (c = 0, idx = 0; c < rvd->vdev_children; c++) {
568 vdev_t *tvd = rvd->vdev_child[c];
569
570 if (tvd->vdev_ishole)
571 array[idx++] = c;
572 }
573
574 if (idx) {
575 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
576 array, idx) == 0);
577 }
578
579 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
580 rvd->vdev_children) == 0);
581
582 kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
583 }
584
585 /*
586 * Returns the configuration from the label of the given vdev. For vdevs
587 * which don't have a txg value stored on their label (i.e. spares/cache)
588 * or have not been completely initialized (txg = 0) just return
589 * the configuration from the first valid label we find. Otherwise,
590 * find the most up-to-date label that does not exceed the specified
591 * 'txg' value.
592 */
593 nvlist_t *
594 vdev_label_read_config(vdev_t *vd, uint64_t txg)
595 {
596 spa_t *spa = vd->vdev_spa;
597 nvlist_t *config = NULL;
598 vdev_phys_t *vp;
599 abd_t *vp_abd;
600 zio_t *zio;
601 uint64_t best_txg = 0;
602 int error = 0;
603 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
604 ZIO_FLAG_SPECULATIVE;
605 int l;
606
607 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
608
609 if (!vdev_readable(vd))
610 return (NULL);
611
612 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
613 vp = abd_to_buf(vp_abd);
614
615 retry:
616 for (l = 0; l < VDEV_LABELS; l++) {
617 nvlist_t *label = NULL;
618
619 zio = zio_root(spa, NULL, NULL, flags);
620
621 vdev_label_read(zio, vd, l, vp_abd,
622 offsetof(vdev_label_t, vl_vdev_phys),
623 sizeof (vdev_phys_t), NULL, NULL, flags);
624
625 if (zio_wait(zio) == 0 &&
626 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
627 &label, 0) == 0) {
628 uint64_t label_txg = 0;
629
630 /*
631 * Auxiliary vdevs won't have txg values in their
632 * labels and newly added vdevs may not have been
633 * completely initialized so just return the
634 * configuration from the first valid label we
635 * encounter.
636 */
637 error = nvlist_lookup_uint64(label,
638 ZPOOL_CONFIG_POOL_TXG, &label_txg);
639 if ((error || label_txg == 0) && !config) {
640 config = label;
641 break;
642 } else if (label_txg <= txg && label_txg > best_txg) {
643 best_txg = label_txg;
644 nvlist_free(config);
645 config = fnvlist_dup(label);
646 }
647 }
648
649 if (label != NULL) {
650 nvlist_free(label);
651 label = NULL;
652 }
653 }
654
655 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
656 flags |= ZIO_FLAG_TRYHARD;
657 goto retry;
658 }
659
660 abd_free(vp_abd);
661
662 return (config);
663 }
664
665 /*
666 * Determine if a device is in use. The 'spare_guid' parameter will be filled
667 * in with the device guid if this spare is active elsewhere on the system.
668 */
669 static boolean_t
670 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
671 uint64_t *spare_guid, uint64_t *l2cache_guid)
672 {
673 spa_t *spa = vd->vdev_spa;
674 uint64_t state, pool_guid, device_guid, txg, spare_pool;
675 uint64_t vdtxg = 0;
676 nvlist_t *label;
677
678 if (spare_guid)
679 *spare_guid = 0ULL;
680 if (l2cache_guid)
681 *l2cache_guid = 0ULL;
682
683 /*
684 * Read the label, if any, and perform some basic sanity checks.
685 */
686 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL)
687 return (B_FALSE);
688
689 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
690 &vdtxg);
691
692 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
693 &state) != 0 ||
694 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
695 &device_guid) != 0) {
696 nvlist_free(label);
697 return (B_FALSE);
698 }
699
700 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
701 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
702 &pool_guid) != 0 ||
703 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
704 &txg) != 0)) {
705 nvlist_free(label);
706 return (B_FALSE);
707 }
708
709 nvlist_free(label);
710
711 /*
712 * Check to see if this device indeed belongs to the pool it claims to
713 * be a part of. The only way this is allowed is if the device is a hot
714 * spare (which we check for later on).
715 */
716 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
717 !spa_guid_exists(pool_guid, device_guid) &&
718 !spa_spare_exists(device_guid, NULL, NULL) &&
719 !spa_l2cache_exists(device_guid, NULL))
720 return (B_FALSE);
721
722 /*
723 * If the transaction group is zero, then this an initialized (but
724 * unused) label. This is only an error if the create transaction
725 * on-disk is the same as the one we're using now, in which case the
726 * user has attempted to add the same vdev multiple times in the same
727 * transaction.
728 */
729 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
730 txg == 0 && vdtxg == crtxg)
731 return (B_TRUE);
732
733 /*
734 * Check to see if this is a spare device. We do an explicit check for
735 * spa_has_spare() here because it may be on our pending list of spares
736 * to add. We also check if it is an l2cache device.
737 */
738 if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
739 spa_has_spare(spa, device_guid)) {
740 if (spare_guid)
741 *spare_guid = device_guid;
742
743 switch (reason) {
744 case VDEV_LABEL_CREATE:
745 case VDEV_LABEL_L2CACHE:
746 return (B_TRUE);
747
748 case VDEV_LABEL_REPLACE:
749 return (!spa_has_spare(spa, device_guid) ||
750 spare_pool != 0ULL);
751
752 case VDEV_LABEL_SPARE:
753 return (spa_has_spare(spa, device_guid));
754 default:
755 break;
756 }
757 }
758
759 /*
760 * Check to see if this is an l2cache device.
761 */
762 if (spa_l2cache_exists(device_guid, NULL))
763 return (B_TRUE);
764
765 /*
766 * We can't rely on a pool's state if it's been imported
767 * read-only. Instead we look to see if the pools is marked
768 * read-only in the namespace and set the state to active.
769 */
770 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
771 (spa = spa_by_guid(pool_guid, device_guid)) != NULL &&
772 spa_mode(spa) == FREAD)
773 state = POOL_STATE_ACTIVE;
774
775 /*
776 * If the device is marked ACTIVE, then this device is in use by another
777 * pool on the system.
778 */
779 return (state == POOL_STATE_ACTIVE);
780 }
781
782 /*
783 * Initialize a vdev label. We check to make sure each leaf device is not in
784 * use, and writable. We put down an initial label which we will later
785 * overwrite with a complete label. Note that it's important to do this
786 * sequentially, not in parallel, so that we catch cases of multiple use of the
787 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
788 * itself.
789 */
790 int
791 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
792 {
793 spa_t *spa = vd->vdev_spa;
794 nvlist_t *label;
795 vdev_phys_t *vp;
796 abd_t *vp_abd;
797 abd_t *pad2;
798 uberblock_t *ub;
799 abd_t *ub_abd;
800 zio_t *zio;
801 char *buf;
802 size_t buflen;
803 int error;
804 uint64_t spare_guid = 0, l2cache_guid = 0;
805 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
806 int c, l;
807 vdev_t *pvd;
808
809 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
810
811 for (c = 0; c < vd->vdev_children; c++)
812 if ((error = vdev_label_init(vd->vdev_child[c],
813 crtxg, reason)) != 0)
814 return (error);
815
816 /* Track the creation time for this vdev */
817 vd->vdev_crtxg = crtxg;
818
819 if (!vd->vdev_ops->vdev_op_leaf || !spa_writeable(spa))
820 return (0);
821
822 /*
823 * Dead vdevs cannot be initialized.
824 */
825 if (vdev_is_dead(vd))
826 return (SET_ERROR(EIO));
827
828 /*
829 * Determine if the vdev is in use.
830 */
831 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
832 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
833 return (SET_ERROR(EBUSY));
834
835 /*
836 * If this is a request to add or replace a spare or l2cache device
837 * that is in use elsewhere on the system, then we must update the
838 * guid (which was initialized to a random value) to reflect the
839 * actual GUID (which is shared between multiple pools).
840 */
841 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
842 spare_guid != 0ULL) {
843 uint64_t guid_delta = spare_guid - vd->vdev_guid;
844
845 vd->vdev_guid += guid_delta;
846
847 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
848 pvd->vdev_guid_sum += guid_delta;
849
850 /*
851 * If this is a replacement, then we want to fallthrough to the
852 * rest of the code. If we're adding a spare, then it's already
853 * labeled appropriately and we can just return.
854 */
855 if (reason == VDEV_LABEL_SPARE)
856 return (0);
857 ASSERT(reason == VDEV_LABEL_REPLACE ||
858 reason == VDEV_LABEL_SPLIT);
859 }
860
861 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
862 l2cache_guid != 0ULL) {
863 uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
864
865 vd->vdev_guid += guid_delta;
866
867 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
868 pvd->vdev_guid_sum += guid_delta;
869
870 /*
871 * If this is a replacement, then we want to fallthrough to the
872 * rest of the code. If we're adding an l2cache, then it's
873 * already labeled appropriately and we can just return.
874 */
875 if (reason == VDEV_LABEL_L2CACHE)
876 return (0);
877 ASSERT(reason == VDEV_LABEL_REPLACE);
878 }
879
880 /*
881 * Initialize its label.
882 */
883 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
884 abd_zero(vp_abd, sizeof (vdev_phys_t));
885 vp = abd_to_buf(vp_abd);
886
887 /*
888 * Generate a label describing the pool and our top-level vdev.
889 * We mark it as being from txg 0 to indicate that it's not
890 * really part of an active pool just yet. The labels will
891 * be written again with a meaningful txg by spa_sync().
892 */
893 if (reason == VDEV_LABEL_SPARE ||
894 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
895 /*
896 * For inactive hot spares, we generate a special label that
897 * identifies as a mutually shared hot spare. We write the
898 * label if we are adding a hot spare, or if we are removing an
899 * active hot spare (in which case we want to revert the
900 * labels).
901 */
902 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
903
904 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
905 spa_version(spa)) == 0);
906 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
907 POOL_STATE_SPARE) == 0);
908 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
909 vd->vdev_guid) == 0);
910 } else if (reason == VDEV_LABEL_L2CACHE ||
911 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
912 /*
913 * For level 2 ARC devices, add a special label.
914 */
915 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
916
917 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
918 spa_version(spa)) == 0);
919 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
920 POOL_STATE_L2CACHE) == 0);
921 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
922 vd->vdev_guid) == 0);
923 } else {
924 uint64_t txg = 0ULL;
925
926 if (reason == VDEV_LABEL_SPLIT)
927 txg = spa->spa_uberblock.ub_txg;
928 label = spa_config_generate(spa, vd, txg, B_FALSE);
929
930 /*
931 * Add our creation time. This allows us to detect multiple
932 * vdev uses as described above, and automatically expires if we
933 * fail.
934 */
935 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
936 crtxg) == 0);
937 }
938
939 buf = vp->vp_nvlist;
940 buflen = sizeof (vp->vp_nvlist);
941
942 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
943 if (error != 0) {
944 nvlist_free(label);
945 abd_free(vp_abd);
946 /* EFAULT means nvlist_pack ran out of room */
947 return (error == EFAULT ? ENAMETOOLONG : EINVAL);
948 }
949
950 /*
951 * Initialize uberblock template.
952 */
953 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_RING, B_TRUE);
954 abd_zero(ub_abd, VDEV_UBERBLOCK_RING);
955 abd_copy_from_buf(ub_abd, &spa->spa_uberblock, sizeof (uberblock_t));
956 ub = abd_to_buf(ub_abd);
957 ub->ub_txg = 0;
958
959 /* Initialize the 2nd padding area. */
960 pad2 = abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE);
961 abd_zero(pad2, VDEV_PAD_SIZE);
962
963 /*
964 * Write everything in parallel.
965 */
966 retry:
967 zio = zio_root(spa, NULL, NULL, flags);
968
969 for (l = 0; l < VDEV_LABELS; l++) {
970
971 vdev_label_write(zio, vd, l, vp_abd,
972 offsetof(vdev_label_t, vl_vdev_phys),
973 sizeof (vdev_phys_t), NULL, NULL, flags);
974
975 /*
976 * Skip the 1st padding area.
977 * Zero out the 2nd padding area where it might have
978 * left over data from previous filesystem format.
979 */
980 vdev_label_write(zio, vd, l, pad2,
981 offsetof(vdev_label_t, vl_pad2),
982 VDEV_PAD_SIZE, NULL, NULL, flags);
983
984 vdev_label_write(zio, vd, l, ub_abd,
985 offsetof(vdev_label_t, vl_uberblock),
986 VDEV_UBERBLOCK_RING, NULL, NULL, flags);
987 }
988
989 error = zio_wait(zio);
990
991 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
992 flags |= ZIO_FLAG_TRYHARD;
993 goto retry;
994 }
995
996 nvlist_free(label);
997 abd_free(pad2);
998 abd_free(ub_abd);
999 abd_free(vp_abd);
1000
1001 /*
1002 * If this vdev hasn't been previously identified as a spare, then we
1003 * mark it as such only if a) we are labeling it as a spare, or b) it
1004 * exists as a spare elsewhere in the system. Do the same for
1005 * level 2 ARC devices.
1006 */
1007 if (error == 0 && !vd->vdev_isspare &&
1008 (reason == VDEV_LABEL_SPARE ||
1009 spa_spare_exists(vd->vdev_guid, NULL, NULL)))
1010 spa_spare_add(vd);
1011
1012 if (error == 0 && !vd->vdev_isl2cache &&
1013 (reason == VDEV_LABEL_L2CACHE ||
1014 spa_l2cache_exists(vd->vdev_guid, NULL)))
1015 spa_l2cache_add(vd);
1016
1017 return (error);
1018 }
1019
1020 /*
1021 * ==========================================================================
1022 * uberblock load/sync
1023 * ==========================================================================
1024 */
1025
1026 /*
1027 * Consider the following situation: txg is safely synced to disk. We've
1028 * written the first uberblock for txg + 1, and then we lose power. When we
1029 * come back up, we fail to see the uberblock for txg + 1 because, say,
1030 * it was on a mirrored device and the replica to which we wrote txg + 1
1031 * is now offline. If we then make some changes and sync txg + 1, and then
1032 * the missing replica comes back, then for a few seconds we'll have two
1033 * conflicting uberblocks on disk with the same txg. The solution is simple:
1034 * among uberblocks with equal txg, choose the one with the latest timestamp.
1035 */
1036 static int
1037 vdev_uberblock_compare(const uberblock_t *ub1, const uberblock_t *ub2)
1038 {
1039 int cmp = AVL_CMP(ub1->ub_txg, ub2->ub_txg);
1040 if (likely(cmp))
1041 return (cmp);
1042
1043 return (AVL_CMP(ub1->ub_timestamp, ub2->ub_timestamp));
1044 }
1045
1046 struct ubl_cbdata {
1047 uberblock_t *ubl_ubbest; /* Best uberblock */
1048 vdev_t *ubl_vd; /* vdev associated with the above */
1049 };
1050
1051 static void
1052 vdev_uberblock_load_done(zio_t *zio)
1053 {
1054 vdev_t *vd = zio->io_vd;
1055 spa_t *spa = zio->io_spa;
1056 zio_t *rio = zio->io_private;
1057 uberblock_t *ub = abd_to_buf(zio->io_abd);
1058 struct ubl_cbdata *cbp = rio->io_private;
1059
1060 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd));
1061
1062 if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
1063 mutex_enter(&rio->io_lock);
1064 if (ub->ub_txg <= spa->spa_load_max_txg &&
1065 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) {
1066 /*
1067 * Keep track of the vdev in which this uberblock
1068 * was found. We will use this information later
1069 * to obtain the config nvlist associated with
1070 * this uberblock.
1071 */
1072 *cbp->ubl_ubbest = *ub;
1073 cbp->ubl_vd = vd;
1074 }
1075 mutex_exit(&rio->io_lock);
1076 }
1077
1078 abd_free(zio->io_abd);
1079 }
1080
1081 static void
1082 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags,
1083 struct ubl_cbdata *cbp)
1084 {
1085 for (int c = 0; c < vd->vdev_children; c++)
1086 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp);
1087
1088 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1089 for (int l = 0; l < VDEV_LABELS; l++) {
1090 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1091 vdev_label_read(zio, vd, l,
1092 abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd),
1093 B_TRUE), VDEV_UBERBLOCK_OFFSET(vd, n),
1094 VDEV_UBERBLOCK_SIZE(vd),
1095 vdev_uberblock_load_done, zio, flags);
1096 }
1097 }
1098 }
1099 }
1100
1101 /*
1102 * Reads the 'best' uberblock from disk along with its associated
1103 * configuration. First, we read the uberblock array of each label of each
1104 * vdev, keeping track of the uberblock with the highest txg in each array.
1105 * Then, we read the configuration from the same vdev as the best uberblock.
1106 */
1107 void
1108 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config)
1109 {
1110 zio_t *zio;
1111 spa_t *spa = rvd->vdev_spa;
1112 struct ubl_cbdata cb;
1113 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1114 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
1115
1116 ASSERT(ub);
1117 ASSERT(config);
1118
1119 bzero(ub, sizeof (uberblock_t));
1120 *config = NULL;
1121
1122 cb.ubl_ubbest = ub;
1123 cb.ubl_vd = NULL;
1124
1125 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1126 zio = zio_root(spa, NULL, &cb, flags);
1127 vdev_uberblock_load_impl(zio, rvd, flags, &cb);
1128 (void) zio_wait(zio);
1129
1130 /*
1131 * It's possible that the best uberblock was discovered on a label
1132 * that has a configuration which was written in a future txg.
1133 * Search all labels on this vdev to find the configuration that
1134 * matches the txg for our uberblock.
1135 */
1136 if (cb.ubl_vd != NULL)
1137 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg);
1138 spa_config_exit(spa, SCL_ALL, FTAG);
1139 }
1140
1141 /*
1142 * For use when a leaf vdev is expanded.
1143 * The location of labels 2 and 3 changed, and at the new location the
1144 * uberblock rings are either empty or contain garbage. The sync will write
1145 * new configs there because the vdev is dirty, but expansion also needs the
1146 * uberblock rings copied. Read them from label 0 which did not move.
1147 *
1148 * Since the point is to populate labels {2,3} with valid uberblocks,
1149 * we zero uberblocks we fail to read or which are not valid.
1150 */
1151
1152 static void
1153 vdev_copy_uberblocks(vdev_t *vd)
1154 {
1155 abd_t *ub_abd;
1156 zio_t *write_zio;
1157 int locks = (SCL_L2ARC | SCL_ZIO);
1158 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
1159 ZIO_FLAG_SPECULATIVE;
1160
1161 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_READER) ==
1162 SCL_STATE);
1163 ASSERT(vd->vdev_ops->vdev_op_leaf);
1164
1165 spa_config_enter(vd->vdev_spa, locks, FTAG, RW_READER);
1166
1167 ub_abd = abd_alloc_linear(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1168
1169 write_zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1170 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
1171 const int src_label = 0;
1172 zio_t *zio;
1173
1174 zio = zio_root(vd->vdev_spa, NULL, NULL, flags);
1175 vdev_label_read(zio, vd, src_label, ub_abd,
1176 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1177 NULL, NULL, flags);
1178
1179 if (zio_wait(zio) || uberblock_verify(abd_to_buf(ub_abd)))
1180 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1181
1182 for (int l = 2; l < VDEV_LABELS; l++)
1183 vdev_label_write(write_zio, vd, l, ub_abd,
1184 VDEV_UBERBLOCK_OFFSET(vd, n),
1185 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL,
1186 flags | ZIO_FLAG_DONT_PROPAGATE);
1187 }
1188 (void) zio_wait(write_zio);
1189
1190 spa_config_exit(vd->vdev_spa, locks, FTAG);
1191
1192 abd_free(ub_abd);
1193 }
1194
1195 /*
1196 * On success, increment root zio's count of good writes.
1197 * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
1198 */
1199 static void
1200 vdev_uberblock_sync_done(zio_t *zio)
1201 {
1202 uint64_t *good_writes = zio->io_private;
1203
1204 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
1205 atomic_inc_64(good_writes);
1206 }
1207
1208 /*
1209 * Write the uberblock to all labels of all leaves of the specified vdev.
1210 */
1211 static void
1212 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
1213 {
1214 for (int c = 0; c < vd->vdev_children; c++)
1215 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
1216
1217 if (!vd->vdev_ops->vdev_op_leaf)
1218 return;
1219
1220 if (!vdev_writeable(vd))
1221 return;
1222
1223 /* If the vdev was expanded, need to copy uberblock rings. */
1224 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1225 vd->vdev_copy_uberblocks == B_TRUE) {
1226 vdev_copy_uberblocks(vd);
1227 vd->vdev_copy_uberblocks = B_FALSE;
1228 }
1229
1230 int m = spa_multihost(vd->vdev_spa) ? MMP_BLOCKS_PER_LABEL : 0;
1231 int n = ub->ub_txg % (VDEV_UBERBLOCK_COUNT(vd) - m);
1232
1233 /* Copy the uberblock_t into the ABD */
1234 abd_t *ub_abd = abd_alloc_for_io(VDEV_UBERBLOCK_SIZE(vd), B_TRUE);
1235 abd_zero(ub_abd, VDEV_UBERBLOCK_SIZE(vd));
1236 abd_copy_from_buf(ub_abd, ub, sizeof (uberblock_t));
1237
1238 for (int l = 0; l < VDEV_LABELS; l++)
1239 vdev_label_write(zio, vd, l, ub_abd,
1240 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
1241 vdev_uberblock_sync_done, zio->io_private,
1242 flags | ZIO_FLAG_DONT_PROPAGATE);
1243
1244 abd_free(ub_abd);
1245 }
1246
1247 /* Sync the uberblocks to all vdevs in svd[] */
1248 int
1249 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
1250 {
1251 spa_t *spa = svd[0]->vdev_spa;
1252 zio_t *zio;
1253 uint64_t good_writes = 0;
1254 int v;
1255
1256 zio = zio_root(spa, NULL, &good_writes, flags);
1257
1258 for (v = 0; v < svdcount; v++)
1259 vdev_uberblock_sync(zio, ub, svd[v], flags);
1260
1261 (void) zio_wait(zio);
1262
1263 /*
1264 * Flush the uberblocks to disk. This ensures that the odd labels
1265 * are no longer needed (because the new uberblocks and the even
1266 * labels are safely on disk), so it is safe to overwrite them.
1267 */
1268 zio = zio_root(spa, NULL, NULL, flags);
1269
1270 for (v = 0; v < svdcount; v++)
1271 zio_flush(zio, svd[v]);
1272
1273 (void) zio_wait(zio);
1274
1275 return (good_writes >= 1 ? 0 : EIO);
1276 }
1277
1278 /*
1279 * On success, increment the count of good writes for our top-level vdev.
1280 */
1281 static void
1282 vdev_label_sync_done(zio_t *zio)
1283 {
1284 uint64_t *good_writes = zio->io_private;
1285
1286 if (zio->io_error == 0)
1287 atomic_inc_64(good_writes);
1288 }
1289
1290 /*
1291 * If there weren't enough good writes, indicate failure to the parent.
1292 */
1293 static void
1294 vdev_label_sync_top_done(zio_t *zio)
1295 {
1296 uint64_t *good_writes = zio->io_private;
1297
1298 if (*good_writes == 0)
1299 zio->io_error = SET_ERROR(EIO);
1300
1301 kmem_free(good_writes, sizeof (uint64_t));
1302 }
1303
1304 /*
1305 * We ignore errors for log and cache devices, simply free the private data.
1306 */
1307 static void
1308 vdev_label_sync_ignore_done(zio_t *zio)
1309 {
1310 kmem_free(zio->io_private, sizeof (uint64_t));
1311 }
1312
1313 /*
1314 * Write all even or odd labels to all leaves of the specified vdev.
1315 */
1316 static void
1317 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
1318 {
1319 nvlist_t *label;
1320 vdev_phys_t *vp;
1321 abd_t *vp_abd;
1322 char *buf;
1323 size_t buflen;
1324 int c;
1325
1326 for (c = 0; c < vd->vdev_children; c++)
1327 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
1328
1329 if (!vd->vdev_ops->vdev_op_leaf)
1330 return;
1331
1332 if (!vdev_writeable(vd))
1333 return;
1334
1335 /*
1336 * Generate a label describing the top-level config to which we belong.
1337 */
1338 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1339
1340 vp_abd = abd_alloc_linear(sizeof (vdev_phys_t), B_TRUE);
1341 abd_zero(vp_abd, sizeof (vdev_phys_t));
1342 vp = abd_to_buf(vp_abd);
1343
1344 buf = vp->vp_nvlist;
1345 buflen = sizeof (vp->vp_nvlist);
1346
1347 if (!nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP)) {
1348 for (; l < VDEV_LABELS; l += 2) {
1349 vdev_label_write(zio, vd, l, vp_abd,
1350 offsetof(vdev_label_t, vl_vdev_phys),
1351 sizeof (vdev_phys_t),
1352 vdev_label_sync_done, zio->io_private,
1353 flags | ZIO_FLAG_DONT_PROPAGATE);
1354 }
1355 }
1356
1357 abd_free(vp_abd);
1358 nvlist_free(label);
1359 }
1360
1361 int
1362 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1363 {
1364 list_t *dl = &spa->spa_config_dirty_list;
1365 vdev_t *vd;
1366 zio_t *zio;
1367 int error;
1368
1369 /*
1370 * Write the new labels to disk.
1371 */
1372 zio = zio_root(spa, NULL, NULL, flags);
1373
1374 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1375 uint64_t *good_writes;
1376 zio_t *vio;
1377
1378 ASSERT(!vd->vdev_ishole);
1379
1380 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
1381 vio = zio_null(zio, spa, NULL,
1382 (vd->vdev_islog || vd->vdev_aux != NULL) ?
1383 vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1384 good_writes, flags);
1385 vdev_label_sync(vio, vd, l, txg, flags);
1386 zio_nowait(vio);
1387 }
1388
1389 error = zio_wait(zio);
1390
1391 /*
1392 * Flush the new labels to disk.
1393 */
1394 zio = zio_root(spa, NULL, NULL, flags);
1395
1396 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1397 zio_flush(zio, vd);
1398
1399 (void) zio_wait(zio);
1400
1401 return (error);
1402 }
1403
1404 /*
1405 * Sync the uberblock and any changes to the vdev configuration.
1406 *
1407 * The order of operations is carefully crafted to ensure that
1408 * if the system panics or loses power at any time, the state on disk
1409 * is still transactionally consistent. The in-line comments below
1410 * describe the failure semantics at each stage.
1411 *
1412 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1413 * at any time, you can just call it again, and it will resume its work.
1414 */
1415 int
1416 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg)
1417 {
1418 spa_t *spa = svd[0]->vdev_spa;
1419 uberblock_t *ub = &spa->spa_uberblock;
1420 vdev_t *vd;
1421 zio_t *zio;
1422 int error = 0;
1423 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1424
1425 retry:
1426 /*
1427 * Normally, we don't want to try too hard to write every label and
1428 * uberblock. If there is a flaky disk, we don't want the rest of the
1429 * sync process to block while we retry. But if we can't write a
1430 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1431 * bailing out and declaring the pool faulted.
1432 */
1433 if (error != 0) {
1434 if ((flags & ZIO_FLAG_TRYHARD) != 0)
1435 return (error);
1436 flags |= ZIO_FLAG_TRYHARD;
1437 }
1438
1439 ASSERT(ub->ub_txg <= txg);
1440
1441 /*
1442 * If this isn't a resync due to I/O errors,
1443 * and nothing changed in this transaction group,
1444 * and the vdev configuration hasn't changed,
1445 * then there's nothing to do.
1446 */
1447 if (ub->ub_txg < txg) {
1448 boolean_t changed = uberblock_update(ub, spa->spa_root_vdev,
1449 txg, spa->spa_mmp.mmp_delay);
1450
1451 if (!changed && list_is_empty(&spa->spa_config_dirty_list))
1452 return (0);
1453 }
1454
1455 if (txg > spa_freeze_txg(spa))
1456 return (0);
1457
1458 ASSERT(txg <= spa->spa_final_txg);
1459
1460 /*
1461 * Flush the write cache of every disk that's been written to
1462 * in this transaction group. This ensures that all blocks
1463 * written in this txg will be committed to stable storage
1464 * before any uberblock that references them.
1465 */
1466 zio = zio_root(spa, NULL, NULL, flags);
1467
1468 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1469 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1470 zio_flush(zio, vd);
1471
1472 (void) zio_wait(zio);
1473
1474 /*
1475 * Sync out the even labels (L0, L2) for every dirty vdev. If the
1476 * system dies in the middle of this process, that's OK: all of the
1477 * even labels that made it to disk will be newer than any uberblock,
1478 * and will therefore be considered invalid. The odd labels (L1, L3),
1479 * which have not yet been touched, will still be valid. We flush
1480 * the new labels to disk to ensure that all even-label updates
1481 * are committed to stable storage before the uberblock update.
1482 */
1483 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1484 goto retry;
1485
1486 /*
1487 * Sync the uberblocks to all vdevs in svd[].
1488 * If the system dies in the middle of this step, there are two cases
1489 * to consider, and the on-disk state is consistent either way:
1490 *
1491 * (1) If none of the new uberblocks made it to disk, then the
1492 * previous uberblock will be the newest, and the odd labels
1493 * (which had not yet been touched) will be valid with respect
1494 * to that uberblock.
1495 *
1496 * (2) If one or more new uberblocks made it to disk, then they
1497 * will be the newest, and the even labels (which had all
1498 * been successfully committed) will be valid with respect
1499 * to the new uberblocks.
1500 */
1501 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1502 goto retry;
1503
1504 if (spa_multihost(spa))
1505 mmp_update_uberblock(spa, ub);
1506
1507 /*
1508 * Sync out odd labels for every dirty vdev. If the system dies
1509 * in the middle of this process, the even labels and the new
1510 * uberblocks will suffice to open the pool. The next time
1511 * the pool is opened, the first thing we'll do -- before any
1512 * user data is modified -- is mark every vdev dirty so that
1513 * all labels will be brought up to date. We flush the new labels
1514 * to disk to ensure that all odd-label updates are committed to
1515 * stable storage before the next transaction group begins.
1516 */
1517 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0)
1518 goto retry;
1519
1520 return (0);
1521 }