]> git.proxmox.com Git - mirror_zfs-debian.git/blob - module/zfs/zfs_vfsops.c
Imported Upstream version 0.6.5.8
[mirror_zfs-debian.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_vnops.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zpl.h>
69 #include "zfs_comutil.h"
70
71 /*ARGSUSED*/
72 int
73 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
74 {
75 zfs_sb_t *zsb = sb->s_fs_info;
76
77 /*
78 * Data integrity is job one. We don't want a compromised kernel
79 * writing to the storage pool, so we never sync during panic.
80 */
81 if (unlikely(oops_in_progress))
82 return (0);
83
84 /*
85 * Semantically, the only requirement is that the sync be initiated.
86 * The DMU syncs out txgs frequently, so there's nothing to do.
87 */
88 if (!wait)
89 return (0);
90
91 if (zsb != NULL) {
92 /*
93 * Sync a specific filesystem.
94 */
95 dsl_pool_t *dp;
96
97 ZFS_ENTER(zsb);
98 dp = dmu_objset_pool(zsb->z_os);
99
100 /*
101 * If the system is shutting down, then skip any
102 * filesystems which may exist on a suspended pool.
103 */
104 if (spa_suspended(dp->dp_spa)) {
105 ZFS_EXIT(zsb);
106 return (0);
107 }
108
109 if (zsb->z_log != NULL)
110 zil_commit(zsb->z_log, 0);
111
112 ZFS_EXIT(zsb);
113 } else {
114 /*
115 * Sync all ZFS filesystems. This is what happens when you
116 * run sync(1M). Unlike other filesystems, ZFS honors the
117 * request by waiting for all pools to commit all dirty data.
118 */
119 spa_sync_allpools();
120 }
121
122 return (0);
123 }
124 EXPORT_SYMBOL(zfs_sync);
125
126 boolean_t
127 zfs_is_readonly(zfs_sb_t *zsb)
128 {
129 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
130 }
131 EXPORT_SYMBOL(zfs_is_readonly);
132
133 static void
134 atime_changed_cb(void *arg, uint64_t newval)
135 {
136 ((zfs_sb_t *)arg)->z_atime = newval;
137 }
138
139 static void
140 relatime_changed_cb(void *arg, uint64_t newval)
141 {
142 ((zfs_sb_t *)arg)->z_relatime = newval;
143 }
144
145 static void
146 xattr_changed_cb(void *arg, uint64_t newval)
147 {
148 zfs_sb_t *zsb = arg;
149
150 if (newval == ZFS_XATTR_OFF) {
151 zsb->z_flags &= ~ZSB_XATTR;
152 } else {
153 zsb->z_flags |= ZSB_XATTR;
154
155 if (newval == ZFS_XATTR_SA)
156 zsb->z_xattr_sa = B_TRUE;
157 else
158 zsb->z_xattr_sa = B_FALSE;
159 }
160 }
161
162 static void
163 acltype_changed_cb(void *arg, uint64_t newval)
164 {
165 zfs_sb_t *zsb = arg;
166
167 switch (newval) {
168 case ZFS_ACLTYPE_OFF:
169 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
170 zsb->z_sb->s_flags &= ~MS_POSIXACL;
171 break;
172 case ZFS_ACLTYPE_POSIXACL:
173 #ifdef CONFIG_FS_POSIX_ACL
174 zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
175 zsb->z_sb->s_flags |= MS_POSIXACL;
176 #else
177 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
178 zsb->z_sb->s_flags &= ~MS_POSIXACL;
179 #endif /* CONFIG_FS_POSIX_ACL */
180 break;
181 default:
182 break;
183 }
184 }
185
186 static void
187 blksz_changed_cb(void *arg, uint64_t newval)
188 {
189 zfs_sb_t *zsb = arg;
190 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os)));
191 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
192 ASSERT(ISP2(newval));
193
194 zsb->z_max_blksz = newval;
195 }
196
197 static void
198 readonly_changed_cb(void *arg, uint64_t newval)
199 {
200 zfs_sb_t *zsb = arg;
201 struct super_block *sb = zsb->z_sb;
202
203 if (sb == NULL)
204 return;
205
206 if (newval)
207 sb->s_flags |= MS_RDONLY;
208 else
209 sb->s_flags &= ~MS_RDONLY;
210 }
211
212 static void
213 devices_changed_cb(void *arg, uint64_t newval)
214 {
215 }
216
217 static void
218 setuid_changed_cb(void *arg, uint64_t newval)
219 {
220 }
221
222 static void
223 exec_changed_cb(void *arg, uint64_t newval)
224 {
225 }
226
227 static void
228 nbmand_changed_cb(void *arg, uint64_t newval)
229 {
230 zfs_sb_t *zsb = arg;
231 struct super_block *sb = zsb->z_sb;
232
233 if (sb == NULL)
234 return;
235
236 if (newval == TRUE)
237 sb->s_flags |= MS_MANDLOCK;
238 else
239 sb->s_flags &= ~MS_MANDLOCK;
240 }
241
242 static void
243 snapdir_changed_cb(void *arg, uint64_t newval)
244 {
245 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
246 }
247
248 static void
249 vscan_changed_cb(void *arg, uint64_t newval)
250 {
251 ((zfs_sb_t *)arg)->z_vscan = newval;
252 }
253
254 static void
255 acl_inherit_changed_cb(void *arg, uint64_t newval)
256 {
257 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
258 }
259
260 int
261 zfs_register_callbacks(zfs_sb_t *zsb)
262 {
263 struct dsl_dataset *ds = NULL;
264 objset_t *os = zsb->z_os;
265 zfs_mntopts_t *zmo = zsb->z_mntopts;
266 int error = 0;
267
268 ASSERT(zsb);
269 ASSERT(zmo);
270
271 /*
272 * The act of registering our callbacks will destroy any mount
273 * options we may have. In order to enable temporary overrides
274 * of mount options, we stash away the current values and
275 * restore them after we register the callbacks.
276 */
277 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os))) {
278 zmo->z_do_readonly = B_TRUE;
279 zmo->z_readonly = B_TRUE;
280 }
281
282 /*
283 * Register property callbacks.
284 *
285 * It would probably be fine to just check for i/o error from
286 * the first prop_register(), but I guess I like to go
287 * overboard...
288 */
289 ds = dmu_objset_ds(os);
290 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
291 error = dsl_prop_register(ds,
292 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
293 error = error ? error : dsl_prop_register(ds,
294 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb);
295 error = error ? error : dsl_prop_register(ds,
296 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
297 error = error ? error : dsl_prop_register(ds,
298 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
299 error = error ? error : dsl_prop_register(ds,
300 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
301 error = error ? error : dsl_prop_register(ds,
302 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
303 error = error ? error : dsl_prop_register(ds,
304 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
305 error = error ? error : dsl_prop_register(ds,
306 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
307 error = error ? error : dsl_prop_register(ds,
308 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
309 error = error ? error : dsl_prop_register(ds,
310 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
311 error = error ? error : dsl_prop_register(ds,
312 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
313 error = error ? error : dsl_prop_register(ds,
314 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
315 error = error ? error : dsl_prop_register(ds,
316 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
317 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
318 if (error)
319 goto unregister;
320
321 /*
322 * Invoke our callbacks to restore temporary mount options.
323 */
324 if (zmo->z_do_readonly)
325 readonly_changed_cb(zsb, zmo->z_readonly);
326 if (zmo->z_do_setuid)
327 setuid_changed_cb(zsb, zmo->z_setuid);
328 if (zmo->z_do_exec)
329 exec_changed_cb(zsb, zmo->z_exec);
330 if (zmo->z_do_devices)
331 devices_changed_cb(zsb, zmo->z_devices);
332 if (zmo->z_do_xattr)
333 xattr_changed_cb(zsb, zmo->z_xattr);
334 if (zmo->z_do_atime)
335 atime_changed_cb(zsb, zmo->z_atime);
336 if (zmo->z_do_relatime)
337 relatime_changed_cb(zsb, zmo->z_relatime);
338 if (zmo->z_do_nbmand)
339 nbmand_changed_cb(zsb, zmo->z_nbmand);
340
341 return (0);
342
343 unregister:
344 /*
345 * We may attempt to unregister some callbacks that are not
346 * registered, but this is OK; it will simply return ENOMSG,
347 * which we will ignore.
348 */
349 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
350 atime_changed_cb, zsb);
351 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RELATIME),
352 relatime_changed_cb, zsb);
353 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
354 xattr_changed_cb, zsb);
355 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
356 blksz_changed_cb, zsb);
357 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
358 readonly_changed_cb, zsb);
359 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
360 devices_changed_cb, zsb);
361 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
362 setuid_changed_cb, zsb);
363 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
364 exec_changed_cb, zsb);
365 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
366 snapdir_changed_cb, zsb);
367 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE),
368 acltype_changed_cb, zsb);
369 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
370 acl_inherit_changed_cb, zsb);
371 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
372 vscan_changed_cb, zsb);
373 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND),
374 nbmand_changed_cb, zsb);
375
376 return (error);
377 }
378 EXPORT_SYMBOL(zfs_register_callbacks);
379
380 static int
381 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
382 uint64_t *userp, uint64_t *groupp)
383 {
384 /*
385 * Is it a valid type of object to track?
386 */
387 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
388 return (SET_ERROR(ENOENT));
389
390 /*
391 * If we have a NULL data pointer
392 * then assume the id's aren't changing and
393 * return EEXIST to the dmu to let it know to
394 * use the same ids
395 */
396 if (data == NULL)
397 return (SET_ERROR(EEXIST));
398
399 if (bonustype == DMU_OT_ZNODE) {
400 znode_phys_t *znp = data;
401 *userp = znp->zp_uid;
402 *groupp = znp->zp_gid;
403 } else {
404 int hdrsize;
405 sa_hdr_phys_t *sap = data;
406 sa_hdr_phys_t sa = *sap;
407 boolean_t swap = B_FALSE;
408
409 ASSERT(bonustype == DMU_OT_SA);
410
411 if (sa.sa_magic == 0) {
412 /*
413 * This should only happen for newly created
414 * files that haven't had the znode data filled
415 * in yet.
416 */
417 *userp = 0;
418 *groupp = 0;
419 return (0);
420 }
421 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
422 sa.sa_magic = SA_MAGIC;
423 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
424 swap = B_TRUE;
425 } else {
426 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
427 }
428
429 hdrsize = sa_hdrsize(&sa);
430 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
431 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
432 SA_UID_OFFSET));
433 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
434 SA_GID_OFFSET));
435 if (swap) {
436 *userp = BSWAP_64(*userp);
437 *groupp = BSWAP_64(*groupp);
438 }
439 }
440 return (0);
441 }
442
443 static void
444 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
445 char *domainbuf, int buflen, uid_t *ridp)
446 {
447 uint64_t fuid;
448 const char *domain;
449
450 fuid = strtonum(fuidstr, NULL);
451
452 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
453 if (domain)
454 (void) strlcpy(domainbuf, domain, buflen);
455 else
456 domainbuf[0] = '\0';
457 *ridp = FUID_RID(fuid);
458 }
459
460 static uint64_t
461 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
462 {
463 switch (type) {
464 case ZFS_PROP_USERUSED:
465 return (DMU_USERUSED_OBJECT);
466 case ZFS_PROP_GROUPUSED:
467 return (DMU_GROUPUSED_OBJECT);
468 case ZFS_PROP_USERQUOTA:
469 return (zsb->z_userquota_obj);
470 case ZFS_PROP_GROUPQUOTA:
471 return (zsb->z_groupquota_obj);
472 default:
473 return (SET_ERROR(ENOTSUP));
474 }
475 return (0);
476 }
477
478 int
479 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
480 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
481 {
482 int error;
483 zap_cursor_t zc;
484 zap_attribute_t za;
485 zfs_useracct_t *buf = vbuf;
486 uint64_t obj;
487
488 if (!dmu_objset_userspace_present(zsb->z_os))
489 return (SET_ERROR(ENOTSUP));
490
491 obj = zfs_userquota_prop_to_obj(zsb, type);
492 if (obj == 0) {
493 *bufsizep = 0;
494 return (0);
495 }
496
497 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
498 (error = zap_cursor_retrieve(&zc, &za)) == 0;
499 zap_cursor_advance(&zc)) {
500 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
501 *bufsizep)
502 break;
503
504 fuidstr_to_sid(zsb, za.za_name,
505 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
506
507 buf->zu_space = za.za_first_integer;
508 buf++;
509 }
510 if (error == ENOENT)
511 error = 0;
512
513 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
514 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
515 *cookiep = zap_cursor_serialize(&zc);
516 zap_cursor_fini(&zc);
517 return (error);
518 }
519 EXPORT_SYMBOL(zfs_userspace_many);
520
521 /*
522 * buf must be big enough (eg, 32 bytes)
523 */
524 static int
525 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
526 char *buf, boolean_t addok)
527 {
528 uint64_t fuid;
529 int domainid = 0;
530
531 if (domain && domain[0]) {
532 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
533 if (domainid == -1)
534 return (SET_ERROR(ENOENT));
535 }
536 fuid = FUID_ENCODE(domainid, rid);
537 (void) sprintf(buf, "%llx", (longlong_t)fuid);
538 return (0);
539 }
540
541 int
542 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
543 const char *domain, uint64_t rid, uint64_t *valp)
544 {
545 char buf[32];
546 int err;
547 uint64_t obj;
548
549 *valp = 0;
550
551 if (!dmu_objset_userspace_present(zsb->z_os))
552 return (SET_ERROR(ENOTSUP));
553
554 obj = zfs_userquota_prop_to_obj(zsb, type);
555 if (obj == 0)
556 return (0);
557
558 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
559 if (err)
560 return (err);
561
562 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
563 if (err == ENOENT)
564 err = 0;
565 return (err);
566 }
567 EXPORT_SYMBOL(zfs_userspace_one);
568
569 int
570 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
571 const char *domain, uint64_t rid, uint64_t quota)
572 {
573 char buf[32];
574 int err;
575 dmu_tx_t *tx;
576 uint64_t *objp;
577 boolean_t fuid_dirtied;
578
579 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
580 return (SET_ERROR(EINVAL));
581
582 if (zsb->z_version < ZPL_VERSION_USERSPACE)
583 return (SET_ERROR(ENOTSUP));
584
585 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
586 &zsb->z_groupquota_obj;
587
588 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
589 if (err)
590 return (err);
591 fuid_dirtied = zsb->z_fuid_dirty;
592
593 tx = dmu_tx_create(zsb->z_os);
594 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
595 if (*objp == 0) {
596 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
597 zfs_userquota_prop_prefixes[type]);
598 }
599 if (fuid_dirtied)
600 zfs_fuid_txhold(zsb, tx);
601 err = dmu_tx_assign(tx, TXG_WAIT);
602 if (err) {
603 dmu_tx_abort(tx);
604 return (err);
605 }
606
607 mutex_enter(&zsb->z_lock);
608 if (*objp == 0) {
609 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
610 DMU_OT_NONE, 0, tx);
611 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
612 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
613 }
614 mutex_exit(&zsb->z_lock);
615
616 if (quota == 0) {
617 err = zap_remove(zsb->z_os, *objp, buf, tx);
618 if (err == ENOENT)
619 err = 0;
620 } else {
621 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
622 }
623 ASSERT(err == 0);
624 if (fuid_dirtied)
625 zfs_fuid_sync(zsb, tx);
626 dmu_tx_commit(tx);
627 return (err);
628 }
629 EXPORT_SYMBOL(zfs_set_userquota);
630
631 boolean_t
632 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
633 {
634 char buf[32];
635 uint64_t used, quota, usedobj, quotaobj;
636 int err;
637
638 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
639 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
640
641 if (quotaobj == 0 || zsb->z_replay)
642 return (B_FALSE);
643
644 (void) sprintf(buf, "%llx", (longlong_t)fuid);
645 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
646 if (err != 0)
647 return (B_FALSE);
648
649 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
650 if (err != 0)
651 return (B_FALSE);
652 return (used >= quota);
653 }
654 EXPORT_SYMBOL(zfs_fuid_overquota);
655
656 boolean_t
657 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
658 {
659 uint64_t fuid;
660 uint64_t quotaobj;
661
662 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
663
664 fuid = isgroup ? zp->z_gid : zp->z_uid;
665
666 if (quotaobj == 0 || zsb->z_replay)
667 return (B_FALSE);
668
669 return (zfs_fuid_overquota(zsb, isgroup, fuid));
670 }
671 EXPORT_SYMBOL(zfs_owner_overquota);
672
673 zfs_mntopts_t *
674 zfs_mntopts_alloc(void)
675 {
676 return (kmem_zalloc(sizeof (zfs_mntopts_t), KM_SLEEP));
677 }
678
679 void
680 zfs_mntopts_free(zfs_mntopts_t *zmo)
681 {
682 if (zmo->z_osname)
683 strfree(zmo->z_osname);
684
685 if (zmo->z_mntpoint)
686 strfree(zmo->z_mntpoint);
687
688 kmem_free(zmo, sizeof (zfs_mntopts_t));
689 }
690
691 int
692 zfs_sb_create(const char *osname, zfs_mntopts_t *zmo, zfs_sb_t **zsbp)
693 {
694 objset_t *os;
695 zfs_sb_t *zsb;
696 uint64_t zval;
697 int i, size, error;
698 uint64_t sa_obj;
699
700 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
701
702 /*
703 * We claim to always be readonly so we can open snapshots;
704 * other ZPL code will prevent us from writing to snapshots.
705 */
706 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
707 if (error) {
708 kmem_free(zsb, sizeof (zfs_sb_t));
709 return (error);
710 }
711
712 /*
713 * Optional temporary mount options, free'd in zfs_sb_free().
714 */
715 zsb->z_mntopts = (zmo ? zmo : zfs_mntopts_alloc());
716
717 /*
718 * Initialize the zfs-specific filesystem structure.
719 * Should probably make this a kmem cache, shuffle fields.
720 */
721 zsb->z_sb = NULL;
722 zsb->z_parent = zsb;
723 zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
724 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
725 zsb->z_os = os;
726
727 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
728 if (error) {
729 goto out;
730 } else if (zsb->z_version > ZPL_VERSION) {
731 error = SET_ERROR(ENOTSUP);
732 goto out;
733 }
734 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
735 goto out;
736 zsb->z_norm = (int)zval;
737
738 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
739 goto out;
740 zsb->z_utf8 = (zval != 0);
741
742 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
743 goto out;
744 zsb->z_case = (uint_t)zval;
745
746 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
747 goto out;
748 zsb->z_acl_type = (uint_t)zval;
749
750 /*
751 * Fold case on file systems that are always or sometimes case
752 * insensitive.
753 */
754 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
755 zsb->z_case == ZFS_CASE_MIXED)
756 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
757
758 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
759 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
760
761 if (zsb->z_use_sa) {
762 /* should either have both of these objects or none */
763 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
764 &sa_obj);
765 if (error)
766 goto out;
767
768 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
769 if ((error == 0) && (zval == ZFS_XATTR_SA))
770 zsb->z_xattr_sa = B_TRUE;
771 } else {
772 /*
773 * Pre SA versions file systems should never touch
774 * either the attribute registration or layout objects.
775 */
776 sa_obj = 0;
777 }
778
779 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
780 &zsb->z_attr_table);
781 if (error)
782 goto out;
783
784 if (zsb->z_version >= ZPL_VERSION_SA)
785 sa_register_update_callback(os, zfs_sa_upgrade);
786
787 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
788 &zsb->z_root);
789 if (error)
790 goto out;
791 ASSERT(zsb->z_root != 0);
792
793 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
794 &zsb->z_unlinkedobj);
795 if (error)
796 goto out;
797
798 error = zap_lookup(os, MASTER_NODE_OBJ,
799 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
800 8, 1, &zsb->z_userquota_obj);
801 if (error && error != ENOENT)
802 goto out;
803
804 error = zap_lookup(os, MASTER_NODE_OBJ,
805 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
806 8, 1, &zsb->z_groupquota_obj);
807 if (error && error != ENOENT)
808 goto out;
809
810 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
811 &zsb->z_fuid_obj);
812 if (error && error != ENOENT)
813 goto out;
814
815 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
816 &zsb->z_shares_dir);
817 if (error && error != ENOENT)
818 goto out;
819
820 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
821 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
822 list_create(&zsb->z_all_znodes, sizeof (znode_t),
823 offsetof(znode_t, z_link_node));
824 rrm_init(&zsb->z_teardown_lock, B_FALSE);
825 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
826 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
827
828 size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
829 zsb->z_hold_size = size;
830 zsb->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP);
831 zsb->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
832 for (i = 0; i != size; i++) {
833 avl_create(&zsb->z_hold_trees[i], zfs_znode_hold_compare,
834 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
835 mutex_init(&zsb->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
836 }
837
838 *zsbp = zsb;
839 return (0);
840
841 out:
842 dmu_objset_disown(os, zsb);
843 *zsbp = NULL;
844
845 kmem_free(zsb, sizeof (zfs_sb_t));
846 return (error);
847 }
848 EXPORT_SYMBOL(zfs_sb_create);
849
850 int
851 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
852 {
853 int error;
854
855 error = zfs_register_callbacks(zsb);
856 if (error)
857 return (error);
858
859 /*
860 * Set the objset user_ptr to track its zsb.
861 */
862 mutex_enter(&zsb->z_os->os_user_ptr_lock);
863 dmu_objset_set_user(zsb->z_os, zsb);
864 mutex_exit(&zsb->z_os->os_user_ptr_lock);
865
866 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
867
868 /*
869 * If we are not mounting (ie: online recv), then we don't
870 * have to worry about replaying the log as we blocked all
871 * operations out since we closed the ZIL.
872 */
873 if (mounting) {
874 boolean_t readonly;
875
876 /*
877 * During replay we remove the read only flag to
878 * allow replays to succeed.
879 */
880 readonly = zfs_is_readonly(zsb);
881 if (readonly != 0)
882 readonly_changed_cb(zsb, B_FALSE);
883 else
884 zfs_unlinked_drain(zsb);
885
886 /*
887 * Parse and replay the intent log.
888 *
889 * Because of ziltest, this must be done after
890 * zfs_unlinked_drain(). (Further note: ziltest
891 * doesn't use readonly mounts, where
892 * zfs_unlinked_drain() isn't called.) This is because
893 * ziltest causes spa_sync() to think it's committed,
894 * but actually it is not, so the intent log contains
895 * many txg's worth of changes.
896 *
897 * In particular, if object N is in the unlinked set in
898 * the last txg to actually sync, then it could be
899 * actually freed in a later txg and then reallocated
900 * in a yet later txg. This would write a "create
901 * object N" record to the intent log. Normally, this
902 * would be fine because the spa_sync() would have
903 * written out the fact that object N is free, before
904 * we could write the "create object N" intent log
905 * record.
906 *
907 * But when we are in ziltest mode, we advance the "open
908 * txg" without actually spa_sync()-ing the changes to
909 * disk. So we would see that object N is still
910 * allocated and in the unlinked set, and there is an
911 * intent log record saying to allocate it.
912 */
913 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
914 if (zil_replay_disable) {
915 zil_destroy(zsb->z_log, B_FALSE);
916 } else {
917 zsb->z_replay = B_TRUE;
918 zil_replay(zsb->z_os, zsb,
919 zfs_replay_vector);
920 zsb->z_replay = B_FALSE;
921 }
922 }
923
924 /* restore readonly bit */
925 if (readonly != 0)
926 readonly_changed_cb(zsb, B_TRUE);
927 }
928
929 return (0);
930 }
931 EXPORT_SYMBOL(zfs_sb_setup);
932
933 void
934 zfs_sb_free(zfs_sb_t *zsb)
935 {
936 int i, size = zsb->z_hold_size;
937
938 zfs_fuid_destroy(zsb);
939
940 mutex_destroy(&zsb->z_znodes_lock);
941 mutex_destroy(&zsb->z_lock);
942 list_destroy(&zsb->z_all_znodes);
943 rrm_destroy(&zsb->z_teardown_lock);
944 rw_destroy(&zsb->z_teardown_inactive_lock);
945 rw_destroy(&zsb->z_fuid_lock);
946 for (i = 0; i != size; i++) {
947 avl_destroy(&zsb->z_hold_trees[i]);
948 mutex_destroy(&zsb->z_hold_locks[i]);
949 }
950 vmem_free(zsb->z_hold_trees, sizeof (avl_tree_t) * size);
951 vmem_free(zsb->z_hold_locks, sizeof (kmutex_t) * size);
952 zfs_mntopts_free(zsb->z_mntopts);
953 kmem_free(zsb, sizeof (zfs_sb_t));
954 }
955 EXPORT_SYMBOL(zfs_sb_free);
956
957 static void
958 zfs_set_fuid_feature(zfs_sb_t *zsb)
959 {
960 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
961 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
962 }
963
964 void
965 zfs_unregister_callbacks(zfs_sb_t *zsb)
966 {
967 objset_t *os = zsb->z_os;
968 struct dsl_dataset *ds;
969
970 /*
971 * Unregister properties.
972 */
973 if (!dmu_objset_is_snapshot(os)) {
974 ds = dmu_objset_ds(os);
975 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
976 zsb) == 0);
977
978 VERIFY(dsl_prop_unregister(ds, "relatime", relatime_changed_cb,
979 zsb) == 0);
980
981 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
982 zsb) == 0);
983
984 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
985 zsb) == 0);
986
987 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
988 zsb) == 0);
989
990 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
991 zsb) == 0);
992
993 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
994 zsb) == 0);
995
996 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
997 zsb) == 0);
998
999 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1000 zsb) == 0);
1001
1002 VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb,
1003 zsb) == 0);
1004
1005 VERIFY(dsl_prop_unregister(ds, "aclinherit",
1006 acl_inherit_changed_cb, zsb) == 0);
1007
1008 VERIFY(dsl_prop_unregister(ds, "vscan",
1009 vscan_changed_cb, zsb) == 0);
1010
1011 VERIFY(dsl_prop_unregister(ds, "nbmand",
1012 nbmand_changed_cb, zsb) == 0);
1013 }
1014 }
1015 EXPORT_SYMBOL(zfs_unregister_callbacks);
1016
1017 #ifdef HAVE_MLSLABEL
1018 /*
1019 * Check that the hex label string is appropriate for the dataset being
1020 * mounted into the global_zone proper.
1021 *
1022 * Return an error if the hex label string is not default or
1023 * admin_low/admin_high. For admin_low labels, the corresponding
1024 * dataset must be readonly.
1025 */
1026 int
1027 zfs_check_global_label(const char *dsname, const char *hexsl)
1028 {
1029 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1030 return (0);
1031 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1032 return (0);
1033 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1034 /* must be readonly */
1035 uint64_t rdonly;
1036
1037 if (dsl_prop_get_integer(dsname,
1038 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1039 return (SET_ERROR(EACCES));
1040 return (rdonly ? 0 : EACCES);
1041 }
1042 return (SET_ERROR(EACCES));
1043 }
1044 EXPORT_SYMBOL(zfs_check_global_label);
1045 #endif /* HAVE_MLSLABEL */
1046
1047 int
1048 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
1049 {
1050 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
1051 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1052 uint64_t fsid;
1053 uint32_t bshift;
1054
1055 ZFS_ENTER(zsb);
1056
1057 dmu_objset_space(zsb->z_os,
1058 &refdbytes, &availbytes, &usedobjs, &availobjs);
1059
1060 fsid = dmu_objset_fsid_guid(zsb->z_os);
1061 /*
1062 * The underlying storage pool actually uses multiple block
1063 * size. Under Solaris frsize (fragment size) is reported as
1064 * the smallest block size we support, and bsize (block size)
1065 * as the filesystem's maximum block size. Unfortunately,
1066 * under Linux the fragment size and block size are often used
1067 * interchangeably. Thus we are forced to report both of them
1068 * as the filesystem's maximum block size.
1069 */
1070 statp->f_frsize = zsb->z_max_blksz;
1071 statp->f_bsize = zsb->z_max_blksz;
1072 bshift = fls(statp->f_bsize) - 1;
1073
1074 /*
1075 * The following report "total" blocks of various kinds in
1076 * the file system, but reported in terms of f_bsize - the
1077 * "preferred" size.
1078 */
1079
1080 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1081 statp->f_bfree = availbytes >> bshift;
1082 statp->f_bavail = statp->f_bfree; /* no root reservation */
1083
1084 /*
1085 * statvfs() should really be called statufs(), because it assumes
1086 * static metadata. ZFS doesn't preallocate files, so the best
1087 * we can do is report the max that could possibly fit in f_files,
1088 * and that minus the number actually used in f_ffree.
1089 * For f_ffree, report the smaller of the number of object available
1090 * and the number of blocks (each object will take at least a block).
1091 */
1092 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1093 statp->f_files = statp->f_ffree + usedobjs;
1094 statp->f_fsid.val[0] = (uint32_t)fsid;
1095 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1096 statp->f_type = ZFS_SUPER_MAGIC;
1097 statp->f_namelen = ZFS_MAXNAMELEN;
1098
1099 /*
1100 * We have all of 40 characters to stuff a string here.
1101 * Is there anything useful we could/should provide?
1102 */
1103 bzero(statp->f_spare, sizeof (statp->f_spare));
1104
1105 ZFS_EXIT(zsb);
1106 return (0);
1107 }
1108 EXPORT_SYMBOL(zfs_statvfs);
1109
1110 int
1111 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1112 {
1113 znode_t *rootzp;
1114 int error;
1115
1116 ZFS_ENTER(zsb);
1117
1118 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1119 if (error == 0)
1120 *ipp = ZTOI(rootzp);
1121
1122 ZFS_EXIT(zsb);
1123 return (error);
1124 }
1125 EXPORT_SYMBOL(zfs_root);
1126
1127 #ifdef HAVE_D_PRUNE_ALIASES
1128 /*
1129 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1130 * To accommodate this we must improvise and manually walk the list of znodes
1131 * attempting to prune dentries in order to be able to drop the inodes.
1132 *
1133 * To avoid scanning the same znodes multiple times they are always rotated
1134 * to the end of the z_all_znodes list. New znodes are inserted at the
1135 * end of the list so we're always scanning the oldest znodes first.
1136 */
1137 static int
1138 zfs_sb_prune_aliases(zfs_sb_t *zsb, unsigned long nr_to_scan)
1139 {
1140 znode_t **zp_array, *zp;
1141 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1142 int objects = 0;
1143 int i = 0, j = 0;
1144
1145 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1146
1147 mutex_enter(&zsb->z_znodes_lock);
1148 while ((zp = list_head(&zsb->z_all_znodes)) != NULL) {
1149
1150 if ((i++ > nr_to_scan) || (j >= max_array))
1151 break;
1152
1153 ASSERT(list_link_active(&zp->z_link_node));
1154 list_remove(&zsb->z_all_znodes, zp);
1155 list_insert_tail(&zsb->z_all_znodes, zp);
1156
1157 /* Skip active znodes and .zfs entries */
1158 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1159 continue;
1160
1161 if (igrab(ZTOI(zp)) == NULL)
1162 continue;
1163
1164 zp_array[j] = zp;
1165 j++;
1166 }
1167 mutex_exit(&zsb->z_znodes_lock);
1168
1169 for (i = 0; i < j; i++) {
1170 zp = zp_array[i];
1171
1172 ASSERT3P(zp, !=, NULL);
1173 d_prune_aliases(ZTOI(zp));
1174
1175 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1176 objects++;
1177
1178 iput(ZTOI(zp));
1179 }
1180
1181 kmem_free(zp_array, max_array * sizeof (znode_t *));
1182
1183 return (objects);
1184 }
1185 #endif /* HAVE_D_PRUNE_ALIASES */
1186
1187 /*
1188 * The ARC has requested that the filesystem drop entries from the dentry
1189 * and inode caches. This can occur when the ARC needs to free meta data
1190 * blocks but can't because they are all pinned by entries in these caches.
1191 */
1192 int
1193 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1194 {
1195 zfs_sb_t *zsb = sb->s_fs_info;
1196 int error = 0;
1197 #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1198 struct shrinker *shrinker = &sb->s_shrink;
1199 struct shrink_control sc = {
1200 .nr_to_scan = nr_to_scan,
1201 .gfp_mask = GFP_KERNEL,
1202 };
1203 #endif
1204
1205 ZFS_ENTER(zsb);
1206
1207 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1208 defined(SHRINK_CONTROL_HAS_NID) && \
1209 defined(SHRINKER_NUMA_AWARE)
1210 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1211 *objects = 0;
1212 for_each_online_node(sc.nid)
1213 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1214 } else {
1215 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1216 }
1217
1218 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1219 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1220 #elif defined(HAVE_SHRINK)
1221 *objects = (*shrinker->shrink)(shrinker, &sc);
1222 #elif defined(HAVE_D_PRUNE_ALIASES)
1223 #define D_PRUNE_ALIASES_IS_DEFAULT
1224 *objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
1225 #else
1226 #error "No available dentry and inode cache pruning mechanism."
1227 #endif
1228
1229 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1230 #undef D_PRUNE_ALIASES_IS_DEFAULT
1231 /*
1232 * Fall back to zfs_sb_prune_aliases if the kernel's per-superblock
1233 * shrinker couldn't free anything, possibly due to the inodes being
1234 * allocated in a different memcg.
1235 */
1236 if (*objects == 0)
1237 *objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
1238 #endif
1239
1240 ZFS_EXIT(zsb);
1241
1242 dprintf_ds(zsb->z_os->os_dsl_dataset,
1243 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1244 nr_to_scan, *objects, error);
1245
1246 return (error);
1247 }
1248 EXPORT_SYMBOL(zfs_sb_prune);
1249
1250 /*
1251 * Teardown the zfs_sb_t.
1252 *
1253 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1254 * and 'z_teardown_inactive_lock' held.
1255 */
1256 int
1257 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1258 {
1259 znode_t *zp;
1260
1261 /*
1262 * If someone has not already unmounted this file system,
1263 * drain the iput_taskq to ensure all active references to the
1264 * zfs_sb_t have been handled only then can it be safely destroyed.
1265 */
1266 if (zsb->z_os) {
1267 /*
1268 * If we're unmounting we have to wait for the list to
1269 * drain completely.
1270 *
1271 * If we're not unmounting there's no guarantee the list
1272 * will drain completely, but iputs run from the taskq
1273 * may add the parents of dir-based xattrs to the taskq
1274 * so we want to wait for these.
1275 *
1276 * We can safely read z_nr_znodes without locking because the
1277 * VFS has already blocked operations which add to the
1278 * z_all_znodes list and thus increment z_nr_znodes.
1279 */
1280 int round = 0;
1281 while (zsb->z_nr_znodes > 0) {
1282 taskq_wait_outstanding(dsl_pool_iput_taskq(
1283 dmu_objset_pool(zsb->z_os)), 0);
1284 if (++round > 1 && !unmounting)
1285 break;
1286 }
1287 }
1288
1289 rrm_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1290
1291 if (!unmounting) {
1292 /*
1293 * We purge the parent filesystem's super block as the
1294 * parent filesystem and all of its snapshots have their
1295 * inode's super block set to the parent's filesystem's
1296 * super block. Note, 'z_parent' is self referential
1297 * for non-snapshots.
1298 */
1299 shrink_dcache_sb(zsb->z_parent->z_sb);
1300 }
1301
1302 /*
1303 * Close the zil. NB: Can't close the zil while zfs_inactive
1304 * threads are blocked as zil_close can call zfs_inactive.
1305 */
1306 if (zsb->z_log) {
1307 zil_close(zsb->z_log);
1308 zsb->z_log = NULL;
1309 }
1310
1311 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1312
1313 /*
1314 * If we are not unmounting (ie: online recv) and someone already
1315 * unmounted this file system while we were doing the switcheroo,
1316 * or a reopen of z_os failed then just bail out now.
1317 */
1318 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1319 rw_exit(&zsb->z_teardown_inactive_lock);
1320 rrm_exit(&zsb->z_teardown_lock, FTAG);
1321 return (SET_ERROR(EIO));
1322 }
1323
1324 /*
1325 * At this point there are no VFS ops active, and any new VFS ops
1326 * will fail with EIO since we have z_teardown_lock for writer (only
1327 * relevant for forced unmount).
1328 *
1329 * Release all holds on dbufs.
1330 */
1331 if (!unmounting) {
1332 mutex_enter(&zsb->z_znodes_lock);
1333 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1334 zp = list_next(&zsb->z_all_znodes, zp)) {
1335 if (zp->z_sa_hdl)
1336 zfs_znode_dmu_fini(zp);
1337 }
1338 mutex_exit(&zsb->z_znodes_lock);
1339 }
1340
1341 /*
1342 * If we are unmounting, set the unmounted flag and let new VFS ops
1343 * unblock. zfs_inactive will have the unmounted behavior, and all
1344 * other VFS ops will fail with EIO.
1345 */
1346 if (unmounting) {
1347 zsb->z_unmounted = B_TRUE;
1348 rrm_exit(&zsb->z_teardown_lock, FTAG);
1349 rw_exit(&zsb->z_teardown_inactive_lock);
1350 }
1351
1352 /*
1353 * z_os will be NULL if there was an error in attempting to reopen
1354 * zsb, so just return as the properties had already been
1355 *
1356 * unregistered and cached data had been evicted before.
1357 */
1358 if (zsb->z_os == NULL)
1359 return (0);
1360
1361 /*
1362 * Unregister properties.
1363 */
1364 zfs_unregister_callbacks(zsb);
1365
1366 /*
1367 * Evict cached data
1368 */
1369 if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
1370 !zfs_is_readonly(zsb))
1371 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1372 dmu_objset_evict_dbufs(zsb->z_os);
1373
1374 return (0);
1375 }
1376 EXPORT_SYMBOL(zfs_sb_teardown);
1377
1378 #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
1379 !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
1380 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1381 #endif
1382
1383 int
1384 zfs_domount(struct super_block *sb, zfs_mntopts_t *zmo, int silent)
1385 {
1386 const char *osname = zmo->z_osname;
1387 zfs_sb_t *zsb;
1388 struct inode *root_inode;
1389 uint64_t recordsize;
1390 int error;
1391
1392 error = zfs_sb_create(osname, zmo, &zsb);
1393 if (error)
1394 return (error);
1395
1396 if ((error = dsl_prop_get_integer(osname, "recordsize",
1397 &recordsize, NULL)))
1398 goto out;
1399
1400 zsb->z_sb = sb;
1401 sb->s_fs_info = zsb;
1402 sb->s_magic = ZFS_SUPER_MAGIC;
1403 sb->s_maxbytes = MAX_LFS_FILESIZE;
1404 sb->s_time_gran = 1;
1405 sb->s_blocksize = recordsize;
1406 sb->s_blocksize_bits = ilog2(recordsize);
1407 zsb->z_bdi.ra_pages = 0;
1408 sb->s_bdi = &zsb->z_bdi;
1409
1410 error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
1411 if (error)
1412 goto out;
1413
1414 /* Set callback operations for the file system. */
1415 sb->s_op = &zpl_super_operations;
1416 sb->s_xattr = zpl_xattr_handlers;
1417 sb->s_export_op = &zpl_export_operations;
1418 #ifdef HAVE_S_D_OP
1419 sb->s_d_op = &zpl_dentry_operations;
1420 #endif /* HAVE_S_D_OP */
1421
1422 /* Set features for file system. */
1423 zfs_set_fuid_feature(zsb);
1424
1425 if (dmu_objset_is_snapshot(zsb->z_os)) {
1426 uint64_t pval;
1427
1428 atime_changed_cb(zsb, B_FALSE);
1429 readonly_changed_cb(zsb, B_TRUE);
1430 if ((error = dsl_prop_get_integer(osname,
1431 "xattr", &pval, NULL)))
1432 goto out;
1433 xattr_changed_cb(zsb, pval);
1434 if ((error = dsl_prop_get_integer(osname,
1435 "acltype", &pval, NULL)))
1436 goto out;
1437 acltype_changed_cb(zsb, pval);
1438 zsb->z_issnap = B_TRUE;
1439 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1440 zsb->z_snap_defer_time = jiffies;
1441
1442 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1443 dmu_objset_set_user(zsb->z_os, zsb);
1444 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1445 } else {
1446 error = zfs_sb_setup(zsb, B_TRUE);
1447 }
1448
1449 /* Allocate a root inode for the filesystem. */
1450 error = zfs_root(zsb, &root_inode);
1451 if (error) {
1452 (void) zfs_umount(sb);
1453 goto out;
1454 }
1455
1456 /* Allocate a root dentry for the filesystem */
1457 sb->s_root = d_make_root(root_inode);
1458 if (sb->s_root == NULL) {
1459 (void) zfs_umount(sb);
1460 error = SET_ERROR(ENOMEM);
1461 goto out;
1462 }
1463
1464 if (!zsb->z_issnap)
1465 zfsctl_create(zsb);
1466
1467 zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1468 out:
1469 if (error) {
1470 dmu_objset_disown(zsb->z_os, zsb);
1471 zfs_sb_free(zsb);
1472 }
1473
1474 return (error);
1475 }
1476 EXPORT_SYMBOL(zfs_domount);
1477
1478 /*
1479 * Called when an unmount is requested and certain sanity checks have
1480 * already passed. At this point no dentries or inodes have been reclaimed
1481 * from their respective caches. We drop the extra reference on the .zfs
1482 * control directory to allow everything to be reclaimed. All snapshots
1483 * must already have been unmounted to reach this point.
1484 */
1485 void
1486 zfs_preumount(struct super_block *sb)
1487 {
1488 zfs_sb_t *zsb = sb->s_fs_info;
1489
1490 if (zsb)
1491 zfsctl_destroy(sb->s_fs_info);
1492 }
1493 EXPORT_SYMBOL(zfs_preumount);
1494
1495 /*
1496 * Called once all other unmount released tear down has occurred.
1497 * It is our responsibility to release any remaining infrastructure.
1498 */
1499 /*ARGSUSED*/
1500 int
1501 zfs_umount(struct super_block *sb)
1502 {
1503 zfs_sb_t *zsb = sb->s_fs_info;
1504 objset_t *os;
1505
1506 arc_remove_prune_callback(zsb->z_arc_prune);
1507 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1508 os = zsb->z_os;
1509 bdi_destroy(sb->s_bdi);
1510
1511 /*
1512 * z_os will be NULL if there was an error in
1513 * attempting to reopen zsb.
1514 */
1515 if (os != NULL) {
1516 /*
1517 * Unset the objset user_ptr.
1518 */
1519 mutex_enter(&os->os_user_ptr_lock);
1520 dmu_objset_set_user(os, NULL);
1521 mutex_exit(&os->os_user_ptr_lock);
1522
1523 /*
1524 * Finally release the objset
1525 */
1526 dmu_objset_disown(os, zsb);
1527 }
1528
1529 zfs_sb_free(zsb);
1530 return (0);
1531 }
1532 EXPORT_SYMBOL(zfs_umount);
1533
1534 int
1535 zfs_remount(struct super_block *sb, int *flags, zfs_mntopts_t *zmo)
1536 {
1537 zfs_sb_t *zsb = sb->s_fs_info;
1538 int error;
1539
1540 zfs_unregister_callbacks(zsb);
1541 error = zfs_register_callbacks(zsb);
1542
1543 return (error);
1544 }
1545 EXPORT_SYMBOL(zfs_remount);
1546
1547 int
1548 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1549 {
1550 zfs_sb_t *zsb = sb->s_fs_info;
1551 znode_t *zp;
1552 uint64_t object = 0;
1553 uint64_t fid_gen = 0;
1554 uint64_t gen_mask;
1555 uint64_t zp_gen;
1556 int i, err;
1557
1558 *ipp = NULL;
1559
1560 ZFS_ENTER(zsb);
1561
1562 if (fidp->fid_len == LONG_FID_LEN) {
1563 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1564 uint64_t objsetid = 0;
1565 uint64_t setgen = 0;
1566
1567 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1568 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1569
1570 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1571 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1572
1573 ZFS_EXIT(zsb);
1574
1575 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1576 if (err)
1577 return (SET_ERROR(EINVAL));
1578
1579 ZFS_ENTER(zsb);
1580 }
1581
1582 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1583 zfid_short_t *zfid = (zfid_short_t *)fidp;
1584
1585 for (i = 0; i < sizeof (zfid->zf_object); i++)
1586 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1587
1588 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1589 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1590 } else {
1591 ZFS_EXIT(zsb);
1592 return (SET_ERROR(EINVAL));
1593 }
1594
1595 /* A zero fid_gen means we are in the .zfs control directories */
1596 if (fid_gen == 0 &&
1597 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1598 *ipp = zsb->z_ctldir;
1599 ASSERT(*ipp != NULL);
1600 if (object == ZFSCTL_INO_SNAPDIR) {
1601 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1602 0, kcred, NULL, NULL) == 0);
1603 } else {
1604 igrab(*ipp);
1605 }
1606 ZFS_EXIT(zsb);
1607 return (0);
1608 }
1609
1610 gen_mask = -1ULL >> (64 - 8 * i);
1611
1612 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1613 if ((err = zfs_zget(zsb, object, &zp))) {
1614 ZFS_EXIT(zsb);
1615 return (err);
1616 }
1617
1618 /* Don't export xattr stuff */
1619 if (zp->z_pflags & ZFS_XATTR) {
1620 iput(ZTOI(zp));
1621 ZFS_EXIT(zsb);
1622 return (SET_ERROR(ENOENT));
1623 }
1624
1625 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1626 sizeof (uint64_t));
1627 zp_gen = zp_gen & gen_mask;
1628 if (zp_gen == 0)
1629 zp_gen = 1;
1630 if ((fid_gen == 0) && (zsb->z_root == object))
1631 fid_gen = zp_gen;
1632 if (zp->z_unlinked || zp_gen != fid_gen) {
1633 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1634 fid_gen);
1635 iput(ZTOI(zp));
1636 ZFS_EXIT(zsb);
1637 return (SET_ERROR(ENOENT));
1638 }
1639
1640 *ipp = ZTOI(zp);
1641 if (*ipp)
1642 zfs_inode_update(ITOZ(*ipp));
1643
1644 ZFS_EXIT(zsb);
1645 return (0);
1646 }
1647 EXPORT_SYMBOL(zfs_vget);
1648
1649 /*
1650 * Block out VFS ops and close zfs_sb_t
1651 *
1652 * Note, if successful, then we return with the 'z_teardown_lock' and
1653 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1654 * dataset and objset intact so that they can be atomically handed off during
1655 * a subsequent rollback or recv operation and the resume thereafter.
1656 */
1657 int
1658 zfs_suspend_fs(zfs_sb_t *zsb)
1659 {
1660 int error;
1661
1662 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1663 return (error);
1664
1665 return (0);
1666 }
1667 EXPORT_SYMBOL(zfs_suspend_fs);
1668
1669 /*
1670 * Reopen zfs_sb_t and release VFS ops.
1671 */
1672 int
1673 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1674 {
1675 int err, err2;
1676 znode_t *zp;
1677 uint64_t sa_obj = 0;
1678
1679 ASSERT(RRM_WRITE_HELD(&zsb->z_teardown_lock));
1680 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1681
1682 /*
1683 * We already own this, so just hold and rele it to update the
1684 * objset_t, as the one we had before may have been evicted.
1685 */
1686 VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
1687 VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
1688 VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
1689 dmu_objset_rele(zsb->z_os, zsb);
1690
1691 /*
1692 * Make sure version hasn't changed
1693 */
1694
1695 err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
1696 &zsb->z_version);
1697
1698 if (err)
1699 goto bail;
1700
1701 err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1702 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1703
1704 if (err && zsb->z_version >= ZPL_VERSION_SA)
1705 goto bail;
1706
1707 if ((err = sa_setup(zsb->z_os, sa_obj,
1708 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1709 goto bail;
1710
1711 if (zsb->z_version >= ZPL_VERSION_SA)
1712 sa_register_update_callback(zsb->z_os,
1713 zfs_sa_upgrade);
1714
1715 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1716
1717 zfs_set_fuid_feature(zsb);
1718 zsb->z_rollback_time = jiffies;
1719
1720 /*
1721 * Attempt to re-establish all the active inodes with their
1722 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1723 * and mark it stale. This prevents a collision if a new
1724 * inode/object is created which must use the same inode
1725 * number. The stale inode will be be released when the
1726 * VFS prunes the dentry holding the remaining references
1727 * on the stale inode.
1728 */
1729 mutex_enter(&zsb->z_znodes_lock);
1730 for (zp = list_head(&zsb->z_all_znodes); zp;
1731 zp = list_next(&zsb->z_all_znodes, zp)) {
1732 err2 = zfs_rezget(zp);
1733 if (err2) {
1734 remove_inode_hash(ZTOI(zp));
1735 zp->z_is_stale = B_TRUE;
1736 }
1737 }
1738 mutex_exit(&zsb->z_znodes_lock);
1739
1740 bail:
1741 /* release the VFS ops */
1742 rw_exit(&zsb->z_teardown_inactive_lock);
1743 rrm_exit(&zsb->z_teardown_lock, FTAG);
1744
1745 if (err) {
1746 /*
1747 * Since we couldn't setup the sa framework, try to force
1748 * unmount this file system.
1749 */
1750 if (zsb->z_os)
1751 (void) zfs_umount(zsb->z_sb);
1752 }
1753 return (err);
1754 }
1755 EXPORT_SYMBOL(zfs_resume_fs);
1756
1757 int
1758 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1759 {
1760 int error;
1761 objset_t *os = zsb->z_os;
1762 dmu_tx_t *tx;
1763
1764 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1765 return (SET_ERROR(EINVAL));
1766
1767 if (newvers < zsb->z_version)
1768 return (SET_ERROR(EINVAL));
1769
1770 if (zfs_spa_version_map(newvers) >
1771 spa_version(dmu_objset_spa(zsb->z_os)))
1772 return (SET_ERROR(ENOTSUP));
1773
1774 tx = dmu_tx_create(os);
1775 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1776 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1777 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1778 ZFS_SA_ATTRS);
1779 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1780 }
1781 error = dmu_tx_assign(tx, TXG_WAIT);
1782 if (error) {
1783 dmu_tx_abort(tx);
1784 return (error);
1785 }
1786
1787 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1788 8, 1, &newvers, tx);
1789
1790 if (error) {
1791 dmu_tx_commit(tx);
1792 return (error);
1793 }
1794
1795 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1796 uint64_t sa_obj;
1797
1798 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1799 SPA_VERSION_SA);
1800 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1801 DMU_OT_NONE, 0, tx);
1802
1803 error = zap_add(os, MASTER_NODE_OBJ,
1804 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1805 ASSERT0(error);
1806
1807 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1808 sa_register_update_callback(os, zfs_sa_upgrade);
1809 }
1810
1811 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1812 "from %llu to %llu", zsb->z_version, newvers);
1813
1814 dmu_tx_commit(tx);
1815
1816 zsb->z_version = newvers;
1817
1818 zfs_set_fuid_feature(zsb);
1819
1820 return (0);
1821 }
1822 EXPORT_SYMBOL(zfs_set_version);
1823
1824 /*
1825 * Read a property stored within the master node.
1826 */
1827 int
1828 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1829 {
1830 const char *pname;
1831 int error = SET_ERROR(ENOENT);
1832
1833 /*
1834 * Look up the file system's value for the property. For the
1835 * version property, we look up a slightly different string.
1836 */
1837 if (prop == ZFS_PROP_VERSION)
1838 pname = ZPL_VERSION_STR;
1839 else
1840 pname = zfs_prop_to_name(prop);
1841
1842 if (os != NULL)
1843 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1844
1845 if (error == ENOENT) {
1846 /* No value set, use the default value */
1847 switch (prop) {
1848 case ZFS_PROP_VERSION:
1849 *value = ZPL_VERSION;
1850 break;
1851 case ZFS_PROP_NORMALIZE:
1852 case ZFS_PROP_UTF8ONLY:
1853 *value = 0;
1854 break;
1855 case ZFS_PROP_CASE:
1856 *value = ZFS_CASE_SENSITIVE;
1857 break;
1858 case ZFS_PROP_ACLTYPE:
1859 *value = ZFS_ACLTYPE_OFF;
1860 break;
1861 default:
1862 return (error);
1863 }
1864 error = 0;
1865 }
1866 return (error);
1867 }
1868 EXPORT_SYMBOL(zfs_get_zplprop);
1869
1870 void
1871 zfs_init(void)
1872 {
1873 zfsctl_init();
1874 zfs_znode_init();
1875 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1876 register_filesystem(&zpl_fs_type);
1877 }
1878
1879 void
1880 zfs_fini(void)
1881 {
1882 taskq_wait_outstanding(system_taskq, 0);
1883 unregister_filesystem(&zpl_fs_type);
1884 zfs_znode_fini();
1885 zfsctl_fini();
1886 }