]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/arc.c
Retire KM_NODEBUG
[mirror_zfs.git] / module / zfs / arc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
5dbd68a3 23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
3a17a7a9 24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
3bec585e 25 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
34dc7c2f
BB
26 */
27
34dc7c2f
BB
28/*
29 * DVA-based Adjustable Replacement Cache
30 *
31 * While much of the theory of operation used here is
32 * based on the self-tuning, low overhead replacement cache
33 * presented by Megiddo and Modha at FAST 2003, there are some
34 * significant differences:
35 *
36 * 1. The Megiddo and Modha model assumes any page is evictable.
37 * Pages in its cache cannot be "locked" into memory. This makes
38 * the eviction algorithm simple: evict the last page in the list.
39 * This also make the performance characteristics easy to reason
40 * about. Our cache is not so simple. At any given moment, some
41 * subset of the blocks in the cache are un-evictable because we
42 * have handed out a reference to them. Blocks are only evictable
43 * when there are no external references active. This makes
44 * eviction far more problematic: we choose to evict the evictable
45 * blocks that are the "lowest" in the list.
46 *
47 * There are times when it is not possible to evict the requested
48 * space. In these circumstances we are unable to adjust the cache
49 * size. To prevent the cache growing unbounded at these times we
50 * implement a "cache throttle" that slows the flow of new data
51 * into the cache until we can make space available.
52 *
53 * 2. The Megiddo and Modha model assumes a fixed cache size.
54 * Pages are evicted when the cache is full and there is a cache
55 * miss. Our model has a variable sized cache. It grows with
56 * high use, but also tries to react to memory pressure from the
57 * operating system: decreasing its size when system memory is
58 * tight.
59 *
60 * 3. The Megiddo and Modha model assumes a fixed page size. All
d3cc8b15 61 * elements of the cache are therefore exactly the same size. So
34dc7c2f
BB
62 * when adjusting the cache size following a cache miss, its simply
63 * a matter of choosing a single page to evict. In our model, we
64 * have variable sized cache blocks (rangeing from 512 bytes to
d3cc8b15 65 * 128K bytes). We therefore choose a set of blocks to evict to make
34dc7c2f
BB
66 * space for a cache miss that approximates as closely as possible
67 * the space used by the new block.
68 *
69 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
70 * by N. Megiddo & D. Modha, FAST 2003
71 */
72
73/*
74 * The locking model:
75 *
76 * A new reference to a cache buffer can be obtained in two
77 * ways: 1) via a hash table lookup using the DVA as a key,
78 * or 2) via one of the ARC lists. The arc_read() interface
79 * uses method 1, while the internal arc algorithms for
d3cc8b15 80 * adjusting the cache use method 2. We therefore provide two
34dc7c2f
BB
81 * types of locks: 1) the hash table lock array, and 2) the
82 * arc list locks.
83 *
5c839890
BC
84 * Buffers do not have their own mutexes, rather they rely on the
85 * hash table mutexes for the bulk of their protection (i.e. most
86 * fields in the arc_buf_hdr_t are protected by these mutexes).
34dc7c2f
BB
87 *
88 * buf_hash_find() returns the appropriate mutex (held) when it
89 * locates the requested buffer in the hash table. It returns
90 * NULL for the mutex if the buffer was not in the table.
91 *
92 * buf_hash_remove() expects the appropriate hash mutex to be
93 * already held before it is invoked.
94 *
95 * Each arc state also has a mutex which is used to protect the
96 * buffer list associated with the state. When attempting to
97 * obtain a hash table lock while holding an arc list lock you
98 * must use: mutex_tryenter() to avoid deadlock. Also note that
99 * the active state mutex must be held before the ghost state mutex.
100 *
101 * Arc buffers may have an associated eviction callback function.
102 * This function will be invoked prior to removing the buffer (e.g.
103 * in arc_do_user_evicts()). Note however that the data associated
104 * with the buffer may be evicted prior to the callback. The callback
105 * must be made with *no locks held* (to prevent deadlock). Additionally,
106 * the users of callbacks must ensure that their private data is
bd089c54 107 * protected from simultaneous callbacks from arc_clear_callback()
34dc7c2f
BB
108 * and arc_do_user_evicts().
109 *
ab26409d
BB
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
117 *
34dc7c2f
BB
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
120 *
121 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
122 *
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
128 */
129
130#include <sys/spa.h>
131#include <sys/zio.h>
3a17a7a9 132#include <sys/zio_compress.h>
34dc7c2f
BB
133#include <sys/zfs_context.h>
134#include <sys/arc.h>
b128c09f 135#include <sys/vdev.h>
9babb374 136#include <sys/vdev_impl.h>
e8b96c60 137#include <sys/dsl_pool.h>
34dc7c2f
BB
138#ifdef _KERNEL
139#include <sys/vmsystm.h>
140#include <vm/anon.h>
141#include <sys/fs/swapnode.h>
ab26409d 142#include <sys/zpl.h>
aaed7c40 143#include <linux/mm_compat.h>
34dc7c2f
BB
144#endif
145#include <sys/callb.h>
146#include <sys/kstat.h>
570827e1 147#include <sys/dmu_tx.h>
428870ff 148#include <zfs_fletcher.h>
59ec819a 149#include <sys/arc_impl.h>
49ee64e5 150#include <sys/trace_arc.h>
34dc7c2f 151
498877ba
MA
152#ifndef _KERNEL
153/* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
154boolean_t arc_watch = B_FALSE;
155#endif
156
34dc7c2f
BB
157static kmutex_t arc_reclaim_thr_lock;
158static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
159static uint8_t arc_thread_exit;
160
ab26409d 161/* number of bytes to prune from caches when at arc_meta_limit is reached */
bce45ec9 162int zfs_arc_meta_prune = 1048576;
34dc7c2f
BB
163
164typedef enum arc_reclaim_strategy {
165 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
166 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
167} arc_reclaim_strategy_t;
168
e8b96c60
MA
169/*
170 * The number of iterations through arc_evict_*() before we
171 * drop & reacquire the lock.
172 */
173int arc_evict_iterations = 100;
174
34dc7c2f 175/* number of seconds before growing cache again */
bce45ec9 176int zfs_arc_grow_retry = 5;
34dc7c2f 177
89c8cac4
PS
178/* disable anon data aggressively growing arc_p */
179int zfs_arc_p_aggressive_disable = 1;
180
62422785
PS
181/* disable arc_p adapt dampener in arc_adapt */
182int zfs_arc_p_dampener_disable = 1;
183
d164b209 184/* log2(fraction of arc to reclaim) */
bce45ec9 185int zfs_arc_shrink_shift = 5;
d164b209 186
34dc7c2f
BB
187/*
188 * minimum lifespan of a prefetch block in clock ticks
189 * (initialized in arc_init())
190 */
bce45ec9
BB
191int zfs_arc_min_prefetch_lifespan = HZ;
192
193/* disable arc proactive arc throttle due to low memory */
194int zfs_arc_memory_throttle_disable = 1;
195
196/* disable duplicate buffer eviction */
197int zfs_disable_dup_eviction = 0;
34dc7c2f 198
49ddb315
MA
199/* average block used to size buf_hash_table */
200int zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
201
e8b96c60
MA
202/*
203 * If this percent of memory is free, don't throttle.
204 */
205int arc_lotsfree_percent = 10;
206
34dc7c2f
BB
207static int arc_dead;
208
bce45ec9
BB
209/* expiration time for arc_no_grow */
210static clock_t arc_grow_time = 0;
211
b128c09f
BB
212/*
213 * The arc has filled available memory and has now warmed up.
214 */
215static boolean_t arc_warm;
216
34dc7c2f
BB
217/*
218 * These tunables are for performance analysis.
219 */
c28b2279
BB
220unsigned long zfs_arc_max = 0;
221unsigned long zfs_arc_min = 0;
222unsigned long zfs_arc_meta_limit = 0;
34dc7c2f 223
34dc7c2f
BB
224/* The 6 states: */
225static arc_state_t ARC_anon;
226static arc_state_t ARC_mru;
227static arc_state_t ARC_mru_ghost;
228static arc_state_t ARC_mfu;
229static arc_state_t ARC_mfu_ghost;
230static arc_state_t ARC_l2c_only;
231
232typedef struct arc_stats {
233 kstat_named_t arcstat_hits;
234 kstat_named_t arcstat_misses;
235 kstat_named_t arcstat_demand_data_hits;
236 kstat_named_t arcstat_demand_data_misses;
237 kstat_named_t arcstat_demand_metadata_hits;
238 kstat_named_t arcstat_demand_metadata_misses;
239 kstat_named_t arcstat_prefetch_data_hits;
240 kstat_named_t arcstat_prefetch_data_misses;
241 kstat_named_t arcstat_prefetch_metadata_hits;
242 kstat_named_t arcstat_prefetch_metadata_misses;
243 kstat_named_t arcstat_mru_hits;
244 kstat_named_t arcstat_mru_ghost_hits;
245 kstat_named_t arcstat_mfu_hits;
246 kstat_named_t arcstat_mfu_ghost_hits;
247 kstat_named_t arcstat_deleted;
248 kstat_named_t arcstat_recycle_miss;
e49f1e20
WA
249 /*
250 * Number of buffers that could not be evicted because the hash lock
251 * was held by another thread. The lock may not necessarily be held
252 * by something using the same buffer, since hash locks are shared
253 * by multiple buffers.
254 */
34dc7c2f 255 kstat_named_t arcstat_mutex_miss;
e49f1e20
WA
256 /*
257 * Number of buffers skipped because they have I/O in progress, are
258 * indrect prefetch buffers that have not lived long enough, or are
259 * not from the spa we're trying to evict from.
260 */
34dc7c2f 261 kstat_named_t arcstat_evict_skip;
428870ff
BB
262 kstat_named_t arcstat_evict_l2_cached;
263 kstat_named_t arcstat_evict_l2_eligible;
264 kstat_named_t arcstat_evict_l2_ineligible;
34dc7c2f
BB
265 kstat_named_t arcstat_hash_elements;
266 kstat_named_t arcstat_hash_elements_max;
267 kstat_named_t arcstat_hash_collisions;
268 kstat_named_t arcstat_hash_chains;
269 kstat_named_t arcstat_hash_chain_max;
270 kstat_named_t arcstat_p;
271 kstat_named_t arcstat_c;
272 kstat_named_t arcstat_c_min;
273 kstat_named_t arcstat_c_max;
274 kstat_named_t arcstat_size;
275 kstat_named_t arcstat_hdr_size;
d164b209 276 kstat_named_t arcstat_data_size;
cc7f677c 277 kstat_named_t arcstat_meta_size;
d164b209 278 kstat_named_t arcstat_other_size;
13be560d
BB
279 kstat_named_t arcstat_anon_size;
280 kstat_named_t arcstat_anon_evict_data;
281 kstat_named_t arcstat_anon_evict_metadata;
282 kstat_named_t arcstat_mru_size;
283 kstat_named_t arcstat_mru_evict_data;
284 kstat_named_t arcstat_mru_evict_metadata;
285 kstat_named_t arcstat_mru_ghost_size;
286 kstat_named_t arcstat_mru_ghost_evict_data;
287 kstat_named_t arcstat_mru_ghost_evict_metadata;
288 kstat_named_t arcstat_mfu_size;
289 kstat_named_t arcstat_mfu_evict_data;
290 kstat_named_t arcstat_mfu_evict_metadata;
291 kstat_named_t arcstat_mfu_ghost_size;
292 kstat_named_t arcstat_mfu_ghost_evict_data;
293 kstat_named_t arcstat_mfu_ghost_evict_metadata;
34dc7c2f
BB
294 kstat_named_t arcstat_l2_hits;
295 kstat_named_t arcstat_l2_misses;
296 kstat_named_t arcstat_l2_feeds;
297 kstat_named_t arcstat_l2_rw_clash;
d164b209
BB
298 kstat_named_t arcstat_l2_read_bytes;
299 kstat_named_t arcstat_l2_write_bytes;
34dc7c2f
BB
300 kstat_named_t arcstat_l2_writes_sent;
301 kstat_named_t arcstat_l2_writes_done;
302 kstat_named_t arcstat_l2_writes_error;
303 kstat_named_t arcstat_l2_writes_hdr_miss;
304 kstat_named_t arcstat_l2_evict_lock_retry;
305 kstat_named_t arcstat_l2_evict_reading;
306 kstat_named_t arcstat_l2_free_on_write;
307 kstat_named_t arcstat_l2_abort_lowmem;
308 kstat_named_t arcstat_l2_cksum_bad;
309 kstat_named_t arcstat_l2_io_error;
310 kstat_named_t arcstat_l2_size;
3a17a7a9 311 kstat_named_t arcstat_l2_asize;
34dc7c2f 312 kstat_named_t arcstat_l2_hdr_size;
3a17a7a9
SK
313 kstat_named_t arcstat_l2_compress_successes;
314 kstat_named_t arcstat_l2_compress_zeros;
315 kstat_named_t arcstat_l2_compress_failures;
34dc7c2f 316 kstat_named_t arcstat_memory_throttle_count;
1eb5bfa3
GW
317 kstat_named_t arcstat_duplicate_buffers;
318 kstat_named_t arcstat_duplicate_buffers_size;
319 kstat_named_t arcstat_duplicate_reads;
7cb67b45
BB
320 kstat_named_t arcstat_memory_direct_count;
321 kstat_named_t arcstat_memory_indirect_count;
1834f2d8
BB
322 kstat_named_t arcstat_no_grow;
323 kstat_named_t arcstat_tempreserve;
324 kstat_named_t arcstat_loaned_bytes;
ab26409d 325 kstat_named_t arcstat_prune;
1834f2d8
BB
326 kstat_named_t arcstat_meta_used;
327 kstat_named_t arcstat_meta_limit;
328 kstat_named_t arcstat_meta_max;
34dc7c2f
BB
329} arc_stats_t;
330
331static arc_stats_t arc_stats = {
332 { "hits", KSTAT_DATA_UINT64 },
333 { "misses", KSTAT_DATA_UINT64 },
334 { "demand_data_hits", KSTAT_DATA_UINT64 },
335 { "demand_data_misses", KSTAT_DATA_UINT64 },
336 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
337 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
338 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
339 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
340 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
341 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
342 { "mru_hits", KSTAT_DATA_UINT64 },
343 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
344 { "mfu_hits", KSTAT_DATA_UINT64 },
345 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
346 { "deleted", KSTAT_DATA_UINT64 },
347 { "recycle_miss", KSTAT_DATA_UINT64 },
348 { "mutex_miss", KSTAT_DATA_UINT64 },
349 { "evict_skip", KSTAT_DATA_UINT64 },
428870ff
BB
350 { "evict_l2_cached", KSTAT_DATA_UINT64 },
351 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
352 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
34dc7c2f
BB
353 { "hash_elements", KSTAT_DATA_UINT64 },
354 { "hash_elements_max", KSTAT_DATA_UINT64 },
355 { "hash_collisions", KSTAT_DATA_UINT64 },
356 { "hash_chains", KSTAT_DATA_UINT64 },
357 { "hash_chain_max", KSTAT_DATA_UINT64 },
358 { "p", KSTAT_DATA_UINT64 },
359 { "c", KSTAT_DATA_UINT64 },
360 { "c_min", KSTAT_DATA_UINT64 },
361 { "c_max", KSTAT_DATA_UINT64 },
362 { "size", KSTAT_DATA_UINT64 },
363 { "hdr_size", KSTAT_DATA_UINT64 },
d164b209 364 { "data_size", KSTAT_DATA_UINT64 },
cc7f677c 365 { "meta_size", KSTAT_DATA_UINT64 },
d164b209 366 { "other_size", KSTAT_DATA_UINT64 },
13be560d
BB
367 { "anon_size", KSTAT_DATA_UINT64 },
368 { "anon_evict_data", KSTAT_DATA_UINT64 },
369 { "anon_evict_metadata", KSTAT_DATA_UINT64 },
370 { "mru_size", KSTAT_DATA_UINT64 },
371 { "mru_evict_data", KSTAT_DATA_UINT64 },
372 { "mru_evict_metadata", KSTAT_DATA_UINT64 },
373 { "mru_ghost_size", KSTAT_DATA_UINT64 },
374 { "mru_ghost_evict_data", KSTAT_DATA_UINT64 },
375 { "mru_ghost_evict_metadata", KSTAT_DATA_UINT64 },
376 { "mfu_size", KSTAT_DATA_UINT64 },
377 { "mfu_evict_data", KSTAT_DATA_UINT64 },
378 { "mfu_evict_metadata", KSTAT_DATA_UINT64 },
379 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
380 { "mfu_ghost_evict_data", KSTAT_DATA_UINT64 },
381 { "mfu_ghost_evict_metadata", KSTAT_DATA_UINT64 },
34dc7c2f
BB
382 { "l2_hits", KSTAT_DATA_UINT64 },
383 { "l2_misses", KSTAT_DATA_UINT64 },
384 { "l2_feeds", KSTAT_DATA_UINT64 },
385 { "l2_rw_clash", KSTAT_DATA_UINT64 },
d164b209
BB
386 { "l2_read_bytes", KSTAT_DATA_UINT64 },
387 { "l2_write_bytes", KSTAT_DATA_UINT64 },
34dc7c2f
BB
388 { "l2_writes_sent", KSTAT_DATA_UINT64 },
389 { "l2_writes_done", KSTAT_DATA_UINT64 },
390 { "l2_writes_error", KSTAT_DATA_UINT64 },
391 { "l2_writes_hdr_miss", KSTAT_DATA_UINT64 },
392 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
393 { "l2_evict_reading", KSTAT_DATA_UINT64 },
394 { "l2_free_on_write", KSTAT_DATA_UINT64 },
395 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
396 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
397 { "l2_io_error", KSTAT_DATA_UINT64 },
398 { "l2_size", KSTAT_DATA_UINT64 },
3a17a7a9 399 { "l2_asize", KSTAT_DATA_UINT64 },
34dc7c2f 400 { "l2_hdr_size", KSTAT_DATA_UINT64 },
3a17a7a9
SK
401 { "l2_compress_successes", KSTAT_DATA_UINT64 },
402 { "l2_compress_zeros", KSTAT_DATA_UINT64 },
403 { "l2_compress_failures", KSTAT_DATA_UINT64 },
1834f2d8 404 { "memory_throttle_count", KSTAT_DATA_UINT64 },
1eb5bfa3
GW
405 { "duplicate_buffers", KSTAT_DATA_UINT64 },
406 { "duplicate_buffers_size", KSTAT_DATA_UINT64 },
407 { "duplicate_reads", KSTAT_DATA_UINT64 },
7cb67b45
BB
408 { "memory_direct_count", KSTAT_DATA_UINT64 },
409 { "memory_indirect_count", KSTAT_DATA_UINT64 },
1834f2d8
BB
410 { "arc_no_grow", KSTAT_DATA_UINT64 },
411 { "arc_tempreserve", KSTAT_DATA_UINT64 },
412 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
ab26409d 413 { "arc_prune", KSTAT_DATA_UINT64 },
1834f2d8
BB
414 { "arc_meta_used", KSTAT_DATA_UINT64 },
415 { "arc_meta_limit", KSTAT_DATA_UINT64 },
416 { "arc_meta_max", KSTAT_DATA_UINT64 },
34dc7c2f
BB
417};
418
419#define ARCSTAT(stat) (arc_stats.stat.value.ui64)
420
421#define ARCSTAT_INCR(stat, val) \
d3cc8b15 422 atomic_add_64(&arc_stats.stat.value.ui64, (val))
34dc7c2f 423
428870ff 424#define ARCSTAT_BUMP(stat) ARCSTAT_INCR(stat, 1)
34dc7c2f
BB
425#define ARCSTAT_BUMPDOWN(stat) ARCSTAT_INCR(stat, -1)
426
427#define ARCSTAT_MAX(stat, val) { \
428 uint64_t m; \
429 while ((val) > (m = arc_stats.stat.value.ui64) && \
430 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
431 continue; \
432}
433
434#define ARCSTAT_MAXSTAT(stat) \
435 ARCSTAT_MAX(stat##_max, arc_stats.stat.value.ui64)
436
437/*
438 * We define a macro to allow ARC hits/misses to be easily broken down by
439 * two separate conditions, giving a total of four different subtypes for
440 * each of hits and misses (so eight statistics total).
441 */
442#define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
443 if (cond1) { \
444 if (cond2) { \
445 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
446 } else { \
447 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
448 } \
449 } else { \
450 if (cond2) { \
451 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
452 } else { \
453 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
454 } \
455 }
456
457kstat_t *arc_ksp;
428870ff 458static arc_state_t *arc_anon;
34dc7c2f
BB
459static arc_state_t *arc_mru;
460static arc_state_t *arc_mru_ghost;
461static arc_state_t *arc_mfu;
462static arc_state_t *arc_mfu_ghost;
463static arc_state_t *arc_l2c_only;
464
465/*
466 * There are several ARC variables that are critical to export as kstats --
467 * but we don't want to have to grovel around in the kstat whenever we wish to
468 * manipulate them. For these variables, we therefore define them to be in
469 * terms of the statistic variable. This assures that we are not introducing
470 * the possibility of inconsistency by having shadow copies of the variables,
471 * while still allowing the code to be readable.
472 */
473#define arc_size ARCSTAT(arcstat_size) /* actual total arc size */
474#define arc_p ARCSTAT(arcstat_p) /* target size of MRU */
475#define arc_c ARCSTAT(arcstat_c) /* target size of cache */
476#define arc_c_min ARCSTAT(arcstat_c_min) /* min target cache size */
477#define arc_c_max ARCSTAT(arcstat_c_max) /* max target cache size */
1834f2d8
BB
478#define arc_no_grow ARCSTAT(arcstat_no_grow)
479#define arc_tempreserve ARCSTAT(arcstat_tempreserve)
480#define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
23c0a133
GW
481#define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
482#define arc_meta_used ARCSTAT(arcstat_meta_used) /* size of metadata */
483#define arc_meta_max ARCSTAT(arcstat_meta_max) /* max size of metadata */
34dc7c2f 484
3a17a7a9
SK
485#define L2ARC_IS_VALID_COMPRESS(_c_) \
486 ((_c_) == ZIO_COMPRESS_LZ4 || (_c_) == ZIO_COMPRESS_EMPTY)
487
ab26409d
BB
488static list_t arc_prune_list;
489static kmutex_t arc_prune_mtx;
34dc7c2f
BB
490static arc_buf_t *arc_eviction_list;
491static kmutex_t arc_eviction_mtx;
492static arc_buf_hdr_t arc_eviction_hdr;
493static void arc_get_data_buf(arc_buf_t *buf);
494static void arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock);
495static int arc_evict_needed(arc_buf_contents_t type);
68121a03
BB
496static void arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
497 arc_buf_contents_t type);
498877ba 498static void arc_buf_watch(arc_buf_t *buf);
34dc7c2f 499
428870ff
BB
500static boolean_t l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab);
501
34dc7c2f
BB
502#define GHOST_STATE(state) \
503 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
504 (state) == arc_l2c_only)
505
506/*
507 * Private ARC flags. These flags are private ARC only flags that will show up
508 * in b_flags in the arc_hdr_buf_t. Some flags are publicly declared, and can
509 * be passed in as arc_flags in things like arc_read. However, these flags
510 * should never be passed and should only be set by ARC code. When adding new
511 * public flags, make sure not to smash the private ones.
512 */
513
514#define ARC_IN_HASH_TABLE (1 << 9) /* this buffer is hashed */
515#define ARC_IO_IN_PROGRESS (1 << 10) /* I/O in progress for buf */
516#define ARC_IO_ERROR (1 << 11) /* I/O failed for buf */
517#define ARC_FREED_IN_READ (1 << 12) /* buf freed while in read */
518#define ARC_BUF_AVAILABLE (1 << 13) /* block not in active use */
519#define ARC_INDIRECT (1 << 14) /* this is an indirect block */
520#define ARC_FREE_IN_PROGRESS (1 << 15) /* hdr about to be freed */
b128c09f
BB
521#define ARC_L2_WRITING (1 << 16) /* L2ARC write in progress */
522#define ARC_L2_EVICTED (1 << 17) /* evicted during I/O */
523#define ARC_L2_WRITE_HEAD (1 << 18) /* head of write list */
34dc7c2f
BB
524
525#define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_IN_HASH_TABLE)
526#define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS)
527#define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_IO_ERROR)
d164b209 528#define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_PREFETCH)
34dc7c2f
BB
529#define HDR_FREED_IN_READ(hdr) ((hdr)->b_flags & ARC_FREED_IN_READ)
530#define HDR_BUF_AVAILABLE(hdr) ((hdr)->b_flags & ARC_BUF_AVAILABLE)
531#define HDR_FREE_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FREE_IN_PROGRESS)
b128c09f
BB
532#define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_L2CACHE)
533#define HDR_L2_READING(hdr) ((hdr)->b_flags & ARC_IO_IN_PROGRESS && \
534 (hdr)->b_l2hdr != NULL)
34dc7c2f
BB
535#define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_L2_WRITING)
536#define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_L2_EVICTED)
537#define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_L2_WRITE_HEAD)
538
539/*
540 * Other sizes
541 */
542
543#define HDR_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
544#define L2HDR_SIZE ((int64_t)sizeof (l2arc_buf_hdr_t))
545
546/*
547 * Hash table routines
548 */
549
00b46022
BB
550#define HT_LOCK_ALIGN 64
551#define HT_LOCK_PAD (P2NPHASE(sizeof (kmutex_t), (HT_LOCK_ALIGN)))
34dc7c2f
BB
552
553struct ht_lock {
554 kmutex_t ht_lock;
555#ifdef _KERNEL
00b46022 556 unsigned char pad[HT_LOCK_PAD];
34dc7c2f
BB
557#endif
558};
559
b31d8ea7 560#define BUF_LOCKS 8192
34dc7c2f
BB
561typedef struct buf_hash_table {
562 uint64_t ht_mask;
563 arc_buf_hdr_t **ht_table;
564 struct ht_lock ht_locks[BUF_LOCKS];
565} buf_hash_table_t;
566
567static buf_hash_table_t buf_hash_table;
568
569#define BUF_HASH_INDEX(spa, dva, birth) \
570 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
571#define BUF_HASH_LOCK_NTRY(idx) (buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
572#define BUF_HASH_LOCK(idx) (&(BUF_HASH_LOCK_NTRY(idx).ht_lock))
428870ff
BB
573#define HDR_LOCK(hdr) \
574 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
34dc7c2f
BB
575
576uint64_t zfs_crc64_table[256];
577
578/*
579 * Level 2 ARC
580 */
581
582#define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
3a17a7a9
SK
583#define L2ARC_HEADROOM 2 /* num of writes */
584/*
585 * If we discover during ARC scan any buffers to be compressed, we boost
586 * our headroom for the next scanning cycle by this percentage multiple.
587 */
588#define L2ARC_HEADROOM_BOOST 200
d164b209
BB
589#define L2ARC_FEED_SECS 1 /* caching interval secs */
590#define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
34dc7c2f
BB
591
592#define l2arc_writes_sent ARCSTAT(arcstat_l2_writes_sent)
593#define l2arc_writes_done ARCSTAT(arcstat_l2_writes_done)
594
d3cc8b15 595/* L2ARC Performance Tunables */
abd8610c
BB
596unsigned long l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
597unsigned long l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
598unsigned long l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
3a17a7a9 599unsigned long l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
abd8610c
BB
600unsigned long l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
601unsigned long l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
602int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
3a17a7a9 603int l2arc_nocompress = B_FALSE; /* don't compress bufs */
abd8610c 604int l2arc_feed_again = B_TRUE; /* turbo warmup */
c93504f0 605int l2arc_norw = B_FALSE; /* no reads during writes */
34dc7c2f
BB
606
607/*
608 * L2ARC Internals
609 */
34dc7c2f
BB
610static list_t L2ARC_dev_list; /* device list */
611static list_t *l2arc_dev_list; /* device list pointer */
612static kmutex_t l2arc_dev_mtx; /* device list mutex */
613static l2arc_dev_t *l2arc_dev_last; /* last device used */
614static kmutex_t l2arc_buflist_mtx; /* mutex for all buflists */
615static list_t L2ARC_free_on_write; /* free after write buf list */
616static list_t *l2arc_free_on_write; /* free after write list ptr */
617static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
618static uint64_t l2arc_ndev; /* number of devices */
619
620typedef struct l2arc_read_callback {
3a17a7a9
SK
621 arc_buf_t *l2rcb_buf; /* read buffer */
622 spa_t *l2rcb_spa; /* spa */
623 blkptr_t l2rcb_bp; /* original blkptr */
5dbd68a3 624 zbookmark_phys_t l2rcb_zb; /* original bookmark */
3a17a7a9
SK
625 int l2rcb_flags; /* original flags */
626 enum zio_compress l2rcb_compress; /* applied compress */
34dc7c2f
BB
627} l2arc_read_callback_t;
628
34dc7c2f
BB
629struct l2arc_buf_hdr {
630 /* protected by arc_buf_hdr mutex */
3a17a7a9
SK
631 l2arc_dev_t *b_dev; /* L2ARC device */
632 uint64_t b_daddr; /* disk address, offset byte */
633 /* compression applied to buffer data */
634 enum zio_compress b_compress;
635 /* real alloc'd buffer size depending on b_compress applied */
e0b0ca98 636 uint32_t b_hits;
c5cb66ad 637 uint64_t b_asize;
3a17a7a9
SK
638 /* temporary buffer holder for in-flight compressed data */
639 void *b_tmp_cdata;
34dc7c2f
BB
640};
641
642typedef struct l2arc_data_free {
643 /* protected by l2arc_free_on_write_mtx */
644 void *l2df_data;
645 size_t l2df_size;
646 void (*l2df_func)(void *, size_t);
647 list_node_t l2df_list_node;
648} l2arc_data_free_t;
649
650static kmutex_t l2arc_feed_thr_lock;
651static kcondvar_t l2arc_feed_thr_cv;
652static uint8_t l2arc_thread_exit;
653
654static void l2arc_read_done(zio_t *zio);
655static void l2arc_hdr_stat_add(void);
656static void l2arc_hdr_stat_remove(void);
657
3a17a7a9
SK
658static boolean_t l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr);
659static void l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr,
660 enum zio_compress c);
661static void l2arc_release_cdata_buf(arc_buf_hdr_t *ab);
662
34dc7c2f 663static uint64_t
d164b209 664buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
34dc7c2f 665{
34dc7c2f
BB
666 uint8_t *vdva = (uint8_t *)dva;
667 uint64_t crc = -1ULL;
668 int i;
669
670 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
671
672 for (i = 0; i < sizeof (dva_t); i++)
673 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ vdva[i]) & 0xFF];
674
d164b209 675 crc ^= (spa>>8) ^ birth;
34dc7c2f
BB
676
677 return (crc);
678}
679
680#define BUF_EMPTY(buf) \
681 ((buf)->b_dva.dva_word[0] == 0 && \
682 (buf)->b_dva.dva_word[1] == 0 && \
b0bc7a84 683 (buf)->b_cksum0 == 0)
34dc7c2f
BB
684
685#define BUF_EQUAL(spa, dva, birth, buf) \
686 ((buf)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
687 ((buf)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
688 ((buf)->b_birth == birth) && ((buf)->b_spa == spa)
689
428870ff
BB
690static void
691buf_discard_identity(arc_buf_hdr_t *hdr)
692{
693 hdr->b_dva.dva_word[0] = 0;
694 hdr->b_dva.dva_word[1] = 0;
695 hdr->b_birth = 0;
696 hdr->b_cksum0 = 0;
697}
698
34dc7c2f 699static arc_buf_hdr_t *
9b67f605 700buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
34dc7c2f 701{
9b67f605
MA
702 const dva_t *dva = BP_IDENTITY(bp);
703 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
34dc7c2f
BB
704 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
705 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
706 arc_buf_hdr_t *buf;
707
708 mutex_enter(hash_lock);
709 for (buf = buf_hash_table.ht_table[idx]; buf != NULL;
710 buf = buf->b_hash_next) {
711 if (BUF_EQUAL(spa, dva, birth, buf)) {
712 *lockp = hash_lock;
713 return (buf);
714 }
715 }
716 mutex_exit(hash_lock);
717 *lockp = NULL;
718 return (NULL);
719}
720
721/*
722 * Insert an entry into the hash table. If there is already an element
723 * equal to elem in the hash table, then the already existing element
724 * will be returned and the new element will not be inserted.
725 * Otherwise returns NULL.
726 */
727static arc_buf_hdr_t *
728buf_hash_insert(arc_buf_hdr_t *buf, kmutex_t **lockp)
729{
730 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
731 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
732 arc_buf_hdr_t *fbuf;
733 uint32_t i;
734
9b67f605
MA
735 ASSERT(!DVA_IS_EMPTY(&buf->b_dva));
736 ASSERT(buf->b_birth != 0);
34dc7c2f
BB
737 ASSERT(!HDR_IN_HASH_TABLE(buf));
738 *lockp = hash_lock;
739 mutex_enter(hash_lock);
740 for (fbuf = buf_hash_table.ht_table[idx], i = 0; fbuf != NULL;
741 fbuf = fbuf->b_hash_next, i++) {
742 if (BUF_EQUAL(buf->b_spa, &buf->b_dva, buf->b_birth, fbuf))
743 return (fbuf);
744 }
745
746 buf->b_hash_next = buf_hash_table.ht_table[idx];
747 buf_hash_table.ht_table[idx] = buf;
748 buf->b_flags |= ARC_IN_HASH_TABLE;
749
750 /* collect some hash table performance data */
751 if (i > 0) {
752 ARCSTAT_BUMP(arcstat_hash_collisions);
753 if (i == 1)
754 ARCSTAT_BUMP(arcstat_hash_chains);
755
756 ARCSTAT_MAX(arcstat_hash_chain_max, i);
757 }
758
759 ARCSTAT_BUMP(arcstat_hash_elements);
760 ARCSTAT_MAXSTAT(arcstat_hash_elements);
761
762 return (NULL);
763}
764
765static void
766buf_hash_remove(arc_buf_hdr_t *buf)
767{
768 arc_buf_hdr_t *fbuf, **bufp;
769 uint64_t idx = BUF_HASH_INDEX(buf->b_spa, &buf->b_dva, buf->b_birth);
770
771 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
772 ASSERT(HDR_IN_HASH_TABLE(buf));
773
774 bufp = &buf_hash_table.ht_table[idx];
775 while ((fbuf = *bufp) != buf) {
776 ASSERT(fbuf != NULL);
777 bufp = &fbuf->b_hash_next;
778 }
779 *bufp = buf->b_hash_next;
780 buf->b_hash_next = NULL;
781 buf->b_flags &= ~ARC_IN_HASH_TABLE;
782
783 /* collect some hash table performance data */
784 ARCSTAT_BUMPDOWN(arcstat_hash_elements);
785
786 if (buf_hash_table.ht_table[idx] &&
787 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
788 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
789}
790
791/*
792 * Global data structures and functions for the buf kmem cache.
793 */
794static kmem_cache_t *hdr_cache;
795static kmem_cache_t *buf_cache;
ecf3d9b8 796static kmem_cache_t *l2arc_hdr_cache;
34dc7c2f
BB
797
798static void
799buf_fini(void)
800{
801 int i;
802
00b46022 803#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
804 /*
805 * Large allocations which do not require contiguous pages
806 * should be using vmem_free() in the linux kernel\
807 */
00b46022
BB
808 vmem_free(buf_hash_table.ht_table,
809 (buf_hash_table.ht_mask + 1) * sizeof (void *));
810#else
34dc7c2f
BB
811 kmem_free(buf_hash_table.ht_table,
812 (buf_hash_table.ht_mask + 1) * sizeof (void *));
00b46022 813#endif
34dc7c2f
BB
814 for (i = 0; i < BUF_LOCKS; i++)
815 mutex_destroy(&buf_hash_table.ht_locks[i].ht_lock);
816 kmem_cache_destroy(hdr_cache);
817 kmem_cache_destroy(buf_cache);
ecf3d9b8 818 kmem_cache_destroy(l2arc_hdr_cache);
34dc7c2f
BB
819}
820
821/*
822 * Constructor callback - called when the cache is empty
823 * and a new buf is requested.
824 */
825/* ARGSUSED */
826static int
827hdr_cons(void *vbuf, void *unused, int kmflag)
828{
829 arc_buf_hdr_t *buf = vbuf;
830
831 bzero(buf, sizeof (arc_buf_hdr_t));
832 refcount_create(&buf->b_refcnt);
833 cv_init(&buf->b_cv, NULL, CV_DEFAULT, NULL);
834 mutex_init(&buf->b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
98f72a53
BB
835 list_link_init(&buf->b_arc_node);
836 list_link_init(&buf->b_l2node);
d164b209 837 arc_space_consume(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f 838
34dc7c2f
BB
839 return (0);
840}
841
b128c09f
BB
842/* ARGSUSED */
843static int
844buf_cons(void *vbuf, void *unused, int kmflag)
845{
846 arc_buf_t *buf = vbuf;
847
848 bzero(buf, sizeof (arc_buf_t));
428870ff 849 mutex_init(&buf->b_evict_lock, NULL, MUTEX_DEFAULT, NULL);
d164b209
BB
850 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
851
b128c09f
BB
852 return (0);
853}
854
34dc7c2f
BB
855/*
856 * Destructor callback - called when a cached buf is
857 * no longer required.
858 */
859/* ARGSUSED */
860static void
861hdr_dest(void *vbuf, void *unused)
862{
863 arc_buf_hdr_t *buf = vbuf;
864
428870ff 865 ASSERT(BUF_EMPTY(buf));
34dc7c2f
BB
866 refcount_destroy(&buf->b_refcnt);
867 cv_destroy(&buf->b_cv);
868 mutex_destroy(&buf->b_freeze_lock);
d164b209 869 arc_space_return(sizeof (arc_buf_hdr_t), ARC_SPACE_HDRS);
34dc7c2f
BB
870}
871
b128c09f
BB
872/* ARGSUSED */
873static void
874buf_dest(void *vbuf, void *unused)
875{
876 arc_buf_t *buf = vbuf;
877
428870ff 878 mutex_destroy(&buf->b_evict_lock);
d164b209 879 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
b128c09f
BB
880}
881
34dc7c2f
BB
882static void
883buf_init(void)
884{
885 uint64_t *ct;
886 uint64_t hsize = 1ULL << 12;
887 int i, j;
888
889 /*
890 * The hash table is big enough to fill all of physical memory
49ddb315
MA
891 * with an average block size of zfs_arc_average_blocksize (default 8K).
892 * By default, the table will take up
893 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
34dc7c2f 894 */
49ddb315 895 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
34dc7c2f
BB
896 hsize <<= 1;
897retry:
898 buf_hash_table.ht_mask = hsize - 1;
00b46022 899#if defined(_KERNEL) && defined(HAVE_SPL)
d1d7e268
MK
900 /*
901 * Large allocations which do not require contiguous pages
902 * should be using vmem_alloc() in the linux kernel
903 */
00b46022
BB
904 buf_hash_table.ht_table =
905 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
906#else
34dc7c2f
BB
907 buf_hash_table.ht_table =
908 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
00b46022 909#endif
34dc7c2f
BB
910 if (buf_hash_table.ht_table == NULL) {
911 ASSERT(hsize > (1ULL << 8));
912 hsize >>= 1;
913 goto retry;
914 }
915
916 hdr_cache = kmem_cache_create("arc_buf_hdr_t", sizeof (arc_buf_hdr_t),
302f753f 917 0, hdr_cons, hdr_dest, NULL, NULL, NULL, 0);
34dc7c2f 918 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
b128c09f 919 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
ecf3d9b8
JL
920 l2arc_hdr_cache = kmem_cache_create("l2arc_buf_hdr_t", L2HDR_SIZE,
921 0, NULL, NULL, NULL, NULL, NULL, 0);
34dc7c2f
BB
922
923 for (i = 0; i < 256; i++)
924 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
925 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
926
927 for (i = 0; i < BUF_LOCKS; i++) {
928 mutex_init(&buf_hash_table.ht_locks[i].ht_lock,
929 NULL, MUTEX_DEFAULT, NULL);
930 }
931}
932
933#define ARC_MINTIME (hz>>4) /* 62 ms */
934
935static void
936arc_cksum_verify(arc_buf_t *buf)
937{
938 zio_cksum_t zc;
939
940 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
941 return;
942
943 mutex_enter(&buf->b_hdr->b_freeze_lock);
944 if (buf->b_hdr->b_freeze_cksum == NULL ||
945 (buf->b_hdr->b_flags & ARC_IO_ERROR)) {
946 mutex_exit(&buf->b_hdr->b_freeze_lock);
947 return;
948 }
949 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
950 if (!ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc))
951 panic("buffer modified while frozen!");
952 mutex_exit(&buf->b_hdr->b_freeze_lock);
953}
954
955static int
956arc_cksum_equal(arc_buf_t *buf)
957{
958 zio_cksum_t zc;
959 int equal;
960
961 mutex_enter(&buf->b_hdr->b_freeze_lock);
962 fletcher_2_native(buf->b_data, buf->b_hdr->b_size, &zc);
963 equal = ZIO_CHECKSUM_EQUAL(*buf->b_hdr->b_freeze_cksum, zc);
964 mutex_exit(&buf->b_hdr->b_freeze_lock);
965
966 return (equal);
967}
968
969static void
970arc_cksum_compute(arc_buf_t *buf, boolean_t force)
971{
972 if (!force && !(zfs_flags & ZFS_DEBUG_MODIFY))
973 return;
974
975 mutex_enter(&buf->b_hdr->b_freeze_lock);
976 if (buf->b_hdr->b_freeze_cksum != NULL) {
977 mutex_exit(&buf->b_hdr->b_freeze_lock);
978 return;
979 }
409dc1a5 980 buf->b_hdr->b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
d1d7e268 981 KM_PUSHPAGE);
34dc7c2f
BB
982 fletcher_2_native(buf->b_data, buf->b_hdr->b_size,
983 buf->b_hdr->b_freeze_cksum);
984 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
985 arc_buf_watch(buf);
986}
987
988#ifndef _KERNEL
989void
990arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
991{
992 panic("Got SIGSEGV at address: 0x%lx\n", (long) si->si_addr);
993}
994#endif
995
996/* ARGSUSED */
997static void
998arc_buf_unwatch(arc_buf_t *buf)
999{
1000#ifndef _KERNEL
1001 if (arc_watch) {
1002 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size,
1003 PROT_READ | PROT_WRITE));
1004 }
1005#endif
1006}
1007
1008/* ARGSUSED */
1009static void
1010arc_buf_watch(arc_buf_t *buf)
1011{
1012#ifndef _KERNEL
1013 if (arc_watch)
1014 ASSERT0(mprotect(buf->b_data, buf->b_hdr->b_size, PROT_READ));
1015#endif
34dc7c2f
BB
1016}
1017
1018void
1019arc_buf_thaw(arc_buf_t *buf)
1020{
1021 if (zfs_flags & ZFS_DEBUG_MODIFY) {
1022 if (buf->b_hdr->b_state != arc_anon)
1023 panic("modifying non-anon buffer!");
1024 if (buf->b_hdr->b_flags & ARC_IO_IN_PROGRESS)
1025 panic("modifying buffer while i/o in progress!");
1026 arc_cksum_verify(buf);
1027 }
1028
1029 mutex_enter(&buf->b_hdr->b_freeze_lock);
1030 if (buf->b_hdr->b_freeze_cksum != NULL) {
1031 kmem_free(buf->b_hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1032 buf->b_hdr->b_freeze_cksum = NULL;
1033 }
428870ff 1034
34dc7c2f 1035 mutex_exit(&buf->b_hdr->b_freeze_lock);
498877ba
MA
1036
1037 arc_buf_unwatch(buf);
34dc7c2f
BB
1038}
1039
1040void
1041arc_buf_freeze(arc_buf_t *buf)
1042{
428870ff
BB
1043 kmutex_t *hash_lock;
1044
34dc7c2f
BB
1045 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1046 return;
1047
428870ff
BB
1048 hash_lock = HDR_LOCK(buf->b_hdr);
1049 mutex_enter(hash_lock);
1050
34dc7c2f
BB
1051 ASSERT(buf->b_hdr->b_freeze_cksum != NULL ||
1052 buf->b_hdr->b_state == arc_anon);
1053 arc_cksum_compute(buf, B_FALSE);
428870ff 1054 mutex_exit(hash_lock);
498877ba 1055
34dc7c2f
BB
1056}
1057
1058static void
1059add_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1060{
1061 ASSERT(MUTEX_HELD(hash_lock));
1062
1063 if ((refcount_add(&ab->b_refcnt, tag) == 1) &&
1064 (ab->b_state != arc_anon)) {
1065 uint64_t delta = ab->b_size * ab->b_datacnt;
1066 list_t *list = &ab->b_state->arcs_list[ab->b_type];
1067 uint64_t *size = &ab->b_state->arcs_lsize[ab->b_type];
1068
1069 ASSERT(!MUTEX_HELD(&ab->b_state->arcs_mtx));
1070 mutex_enter(&ab->b_state->arcs_mtx);
1071 ASSERT(list_link_active(&ab->b_arc_node));
1072 list_remove(list, ab);
1073 if (GHOST_STATE(ab->b_state)) {
c99c9001 1074 ASSERT0(ab->b_datacnt);
34dc7c2f
BB
1075 ASSERT3P(ab->b_buf, ==, NULL);
1076 delta = ab->b_size;
1077 }
1078 ASSERT(delta > 0);
1079 ASSERT3U(*size, >=, delta);
1080 atomic_add_64(size, -delta);
1081 mutex_exit(&ab->b_state->arcs_mtx);
b128c09f 1082 /* remove the prefetch flag if we get a reference */
34dc7c2f
BB
1083 if (ab->b_flags & ARC_PREFETCH)
1084 ab->b_flags &= ~ARC_PREFETCH;
1085 }
1086}
1087
1088static int
1089remove_reference(arc_buf_hdr_t *ab, kmutex_t *hash_lock, void *tag)
1090{
1091 int cnt;
1092 arc_state_t *state = ab->b_state;
1093
1094 ASSERT(state == arc_anon || MUTEX_HELD(hash_lock));
1095 ASSERT(!GHOST_STATE(state));
1096
1097 if (((cnt = refcount_remove(&ab->b_refcnt, tag)) == 0) &&
1098 (state != arc_anon)) {
1099 uint64_t *size = &state->arcs_lsize[ab->b_type];
1100
1101 ASSERT(!MUTEX_HELD(&state->arcs_mtx));
1102 mutex_enter(&state->arcs_mtx);
1103 ASSERT(!list_link_active(&ab->b_arc_node));
1104 list_insert_head(&state->arcs_list[ab->b_type], ab);
1105 ASSERT(ab->b_datacnt > 0);
1106 atomic_add_64(size, ab->b_size * ab->b_datacnt);
1107 mutex_exit(&state->arcs_mtx);
1108 }
1109 return (cnt);
1110}
1111
e0b0ca98
BB
1112/*
1113 * Returns detailed information about a specific arc buffer. When the
1114 * state_index argument is set the function will calculate the arc header
1115 * list position for its arc state. Since this requires a linear traversal
1116 * callers are strongly encourage not to do this. However, it can be helpful
1117 * for targeted analysis so the functionality is provided.
1118 */
1119void
1120arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
1121{
1122 arc_buf_hdr_t *hdr = ab->b_hdr;
1123 arc_state_t *state = hdr->b_state;
1124
d1d7e268 1125 memset(abi, 0, sizeof (arc_buf_info_t));
e0b0ca98
BB
1126 abi->abi_flags = hdr->b_flags;
1127 abi->abi_datacnt = hdr->b_datacnt;
1128 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
1129 abi->abi_state_contents = hdr->b_type;
1130 abi->abi_state_index = -1;
1131 abi->abi_size = hdr->b_size;
1132 abi->abi_access = hdr->b_arc_access;
1133 abi->abi_mru_hits = hdr->b_mru_hits;
1134 abi->abi_mru_ghost_hits = hdr->b_mru_ghost_hits;
1135 abi->abi_mfu_hits = hdr->b_mfu_hits;
1136 abi->abi_mfu_ghost_hits = hdr->b_mfu_ghost_hits;
1137 abi->abi_holds = refcount_count(&hdr->b_refcnt);
1138
1139 if (hdr->b_l2hdr) {
1140 abi->abi_l2arc_dattr = hdr->b_l2hdr->b_daddr;
1141 abi->abi_l2arc_asize = hdr->b_l2hdr->b_asize;
1142 abi->abi_l2arc_compress = hdr->b_l2hdr->b_compress;
1143 abi->abi_l2arc_hits = hdr->b_l2hdr->b_hits;
1144 }
1145
1146 if (state && state_index && list_link_active(&hdr->b_arc_node)) {
1147 list_t *list = &state->arcs_list[hdr->b_type];
1148 arc_buf_hdr_t *h;
1149
1150 mutex_enter(&state->arcs_mtx);
1151 for (h = list_head(list); h != NULL; h = list_next(list, h)) {
1152 abi->abi_state_index++;
1153 if (h == hdr)
1154 break;
1155 }
1156 mutex_exit(&state->arcs_mtx);
1157 }
1158}
1159
34dc7c2f
BB
1160/*
1161 * Move the supplied buffer to the indicated state. The mutex
1162 * for the buffer must be held by the caller.
1163 */
1164static void
1165arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *ab, kmutex_t *hash_lock)
1166{
1167 arc_state_t *old_state = ab->b_state;
1168 int64_t refcnt = refcount_count(&ab->b_refcnt);
1169 uint64_t from_delta, to_delta;
1170
1171 ASSERT(MUTEX_HELD(hash_lock));
e8b96c60 1172 ASSERT3P(new_state, !=, old_state);
34dc7c2f
BB
1173 ASSERT(refcnt == 0 || ab->b_datacnt > 0);
1174 ASSERT(ab->b_datacnt == 0 || !GHOST_STATE(new_state));
428870ff 1175 ASSERT(ab->b_datacnt <= 1 || old_state != arc_anon);
34dc7c2f
BB
1176
1177 from_delta = to_delta = ab->b_datacnt * ab->b_size;
1178
1179 /*
1180 * If this buffer is evictable, transfer it from the
1181 * old state list to the new state list.
1182 */
1183 if (refcnt == 0) {
1184 if (old_state != arc_anon) {
1185 int use_mutex = !MUTEX_HELD(&old_state->arcs_mtx);
1186 uint64_t *size = &old_state->arcs_lsize[ab->b_type];
1187
1188 if (use_mutex)
1189 mutex_enter(&old_state->arcs_mtx);
1190
1191 ASSERT(list_link_active(&ab->b_arc_node));
1192 list_remove(&old_state->arcs_list[ab->b_type], ab);
1193
1194 /*
1195 * If prefetching out of the ghost cache,
428870ff 1196 * we will have a non-zero datacnt.
34dc7c2f
BB
1197 */
1198 if (GHOST_STATE(old_state) && ab->b_datacnt == 0) {
1199 /* ghost elements have a ghost size */
1200 ASSERT(ab->b_buf == NULL);
1201 from_delta = ab->b_size;
1202 }
1203 ASSERT3U(*size, >=, from_delta);
1204 atomic_add_64(size, -from_delta);
1205
1206 if (use_mutex)
1207 mutex_exit(&old_state->arcs_mtx);
1208 }
1209 if (new_state != arc_anon) {
1210 int use_mutex = !MUTEX_HELD(&new_state->arcs_mtx);
1211 uint64_t *size = &new_state->arcs_lsize[ab->b_type];
1212
1213 if (use_mutex)
1214 mutex_enter(&new_state->arcs_mtx);
1215
1216 list_insert_head(&new_state->arcs_list[ab->b_type], ab);
1217
1218 /* ghost elements have a ghost size */
1219 if (GHOST_STATE(new_state)) {
1220 ASSERT(ab->b_datacnt == 0);
1221 ASSERT(ab->b_buf == NULL);
1222 to_delta = ab->b_size;
1223 }
1224 atomic_add_64(size, to_delta);
1225
1226 if (use_mutex)
1227 mutex_exit(&new_state->arcs_mtx);
1228 }
1229 }
1230
1231 ASSERT(!BUF_EMPTY(ab));
428870ff 1232 if (new_state == arc_anon && HDR_IN_HASH_TABLE(ab))
34dc7c2f 1233 buf_hash_remove(ab);
34dc7c2f
BB
1234
1235 /* adjust state sizes */
1236 if (to_delta)
1237 atomic_add_64(&new_state->arcs_size, to_delta);
1238 if (from_delta) {
1239 ASSERT3U(old_state->arcs_size, >=, from_delta);
1240 atomic_add_64(&old_state->arcs_size, -from_delta);
1241 }
1242 ab->b_state = new_state;
1243
1244 /* adjust l2arc hdr stats */
1245 if (new_state == arc_l2c_only)
1246 l2arc_hdr_stat_add();
1247 else if (old_state == arc_l2c_only)
1248 l2arc_hdr_stat_remove();
1249}
1250
1251void
d164b209 1252arc_space_consume(uint64_t space, arc_space_type_t type)
34dc7c2f 1253{
d164b209
BB
1254 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1255
1256 switch (type) {
e75c13c3
BB
1257 default:
1258 break;
d164b209
BB
1259 case ARC_SPACE_DATA:
1260 ARCSTAT_INCR(arcstat_data_size, space);
1261 break;
cc7f677c
PS
1262 case ARC_SPACE_META:
1263 ARCSTAT_INCR(arcstat_meta_size, space);
1264 break;
d164b209
BB
1265 case ARC_SPACE_OTHER:
1266 ARCSTAT_INCR(arcstat_other_size, space);
1267 break;
1268 case ARC_SPACE_HDRS:
1269 ARCSTAT_INCR(arcstat_hdr_size, space);
1270 break;
1271 case ARC_SPACE_L2HDRS:
1272 ARCSTAT_INCR(arcstat_l2_hdr_size, space);
1273 break;
1274 }
1275
cc7f677c
PS
1276 if (type != ARC_SPACE_DATA)
1277 ARCSTAT_INCR(arcstat_meta_used, space);
1278
34dc7c2f
BB
1279 atomic_add_64(&arc_size, space);
1280}
1281
1282void
d164b209 1283arc_space_return(uint64_t space, arc_space_type_t type)
34dc7c2f 1284{
d164b209
BB
1285 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
1286
1287 switch (type) {
e75c13c3
BB
1288 default:
1289 break;
d164b209
BB
1290 case ARC_SPACE_DATA:
1291 ARCSTAT_INCR(arcstat_data_size, -space);
1292 break;
cc7f677c
PS
1293 case ARC_SPACE_META:
1294 ARCSTAT_INCR(arcstat_meta_size, -space);
1295 break;
d164b209
BB
1296 case ARC_SPACE_OTHER:
1297 ARCSTAT_INCR(arcstat_other_size, -space);
1298 break;
1299 case ARC_SPACE_HDRS:
1300 ARCSTAT_INCR(arcstat_hdr_size, -space);
1301 break;
1302 case ARC_SPACE_L2HDRS:
1303 ARCSTAT_INCR(arcstat_l2_hdr_size, -space);
1304 break;
1305 }
1306
cc7f677c
PS
1307 if (type != ARC_SPACE_DATA) {
1308 ASSERT(arc_meta_used >= space);
1309 if (arc_meta_max < arc_meta_used)
1310 arc_meta_max = arc_meta_used;
1311 ARCSTAT_INCR(arcstat_meta_used, -space);
1312 }
1313
34dc7c2f
BB
1314 ASSERT(arc_size >= space);
1315 atomic_add_64(&arc_size, -space);
1316}
1317
34dc7c2f 1318arc_buf_t *
5f6d0b6f 1319arc_buf_alloc(spa_t *spa, uint64_t size, void *tag, arc_buf_contents_t type)
34dc7c2f
BB
1320{
1321 arc_buf_hdr_t *hdr;
1322 arc_buf_t *buf;
1323
5f6d0b6f 1324 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
34dc7c2f
BB
1325 hdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
1326 ASSERT(BUF_EMPTY(hdr));
1327 hdr->b_size = size;
1328 hdr->b_type = type;
3541dc6d 1329 hdr->b_spa = spa_load_guid(spa);
34dc7c2f
BB
1330 hdr->b_state = arc_anon;
1331 hdr->b_arc_access = 0;
e0b0ca98
BB
1332 hdr->b_mru_hits = 0;
1333 hdr->b_mru_ghost_hits = 0;
1334 hdr->b_mfu_hits = 0;
1335 hdr->b_mfu_ghost_hits = 0;
1336 hdr->b_l2_hits = 0;
34dc7c2f
BB
1337 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1338 buf->b_hdr = hdr;
1339 buf->b_data = NULL;
1340 buf->b_efunc = NULL;
1341 buf->b_private = NULL;
1342 buf->b_next = NULL;
1343 hdr->b_buf = buf;
1344 arc_get_data_buf(buf);
1345 hdr->b_datacnt = 1;
1346 hdr->b_flags = 0;
1347 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1348 (void) refcount_add(&hdr->b_refcnt, tag);
1349
1350 return (buf);
1351}
1352
9babb374
BB
1353static char *arc_onloan_tag = "onloan";
1354
1355/*
1356 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
1357 * flight data by arc_tempreserve_space() until they are "returned". Loaned
1358 * buffers must be returned to the arc before they can be used by the DMU or
1359 * freed.
1360 */
1361arc_buf_t *
5f6d0b6f 1362arc_loan_buf(spa_t *spa, uint64_t size)
9babb374
BB
1363{
1364 arc_buf_t *buf;
1365
1366 buf = arc_buf_alloc(spa, size, arc_onloan_tag, ARC_BUFC_DATA);
1367
1368 atomic_add_64(&arc_loaned_bytes, size);
1369 return (buf);
1370}
1371
1372/*
1373 * Return a loaned arc buffer to the arc.
1374 */
1375void
1376arc_return_buf(arc_buf_t *buf, void *tag)
1377{
1378 arc_buf_hdr_t *hdr = buf->b_hdr;
1379
9babb374 1380 ASSERT(buf->b_data != NULL);
428870ff
BB
1381 (void) refcount_add(&hdr->b_refcnt, tag);
1382 (void) refcount_remove(&hdr->b_refcnt, arc_onloan_tag);
9babb374
BB
1383
1384 atomic_add_64(&arc_loaned_bytes, -hdr->b_size);
1385}
1386
428870ff
BB
1387/* Detach an arc_buf from a dbuf (tag) */
1388void
1389arc_loan_inuse_buf(arc_buf_t *buf, void *tag)
1390{
1391 arc_buf_hdr_t *hdr;
1392
1393 ASSERT(buf->b_data != NULL);
1394 hdr = buf->b_hdr;
1395 (void) refcount_add(&hdr->b_refcnt, arc_onloan_tag);
1396 (void) refcount_remove(&hdr->b_refcnt, tag);
1397 buf->b_efunc = NULL;
1398 buf->b_private = NULL;
1399
1400 atomic_add_64(&arc_loaned_bytes, hdr->b_size);
1401}
1402
34dc7c2f
BB
1403static arc_buf_t *
1404arc_buf_clone(arc_buf_t *from)
1405{
1406 arc_buf_t *buf;
1407 arc_buf_hdr_t *hdr = from->b_hdr;
1408 uint64_t size = hdr->b_size;
1409
428870ff
BB
1410 ASSERT(hdr->b_state != arc_anon);
1411
34dc7c2f
BB
1412 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
1413 buf->b_hdr = hdr;
1414 buf->b_data = NULL;
1415 buf->b_efunc = NULL;
1416 buf->b_private = NULL;
1417 buf->b_next = hdr->b_buf;
1418 hdr->b_buf = buf;
1419 arc_get_data_buf(buf);
1420 bcopy(from->b_data, buf->b_data, size);
1eb5bfa3
GW
1421
1422 /*
1423 * This buffer already exists in the arc so create a duplicate
1424 * copy for the caller. If the buffer is associated with user data
1425 * then track the size and number of duplicates. These stats will be
1426 * updated as duplicate buffers are created and destroyed.
1427 */
1428 if (hdr->b_type == ARC_BUFC_DATA) {
1429 ARCSTAT_BUMP(arcstat_duplicate_buffers);
1430 ARCSTAT_INCR(arcstat_duplicate_buffers_size, size);
1431 }
34dc7c2f
BB
1432 hdr->b_datacnt += 1;
1433 return (buf);
1434}
1435
1436void
1437arc_buf_add_ref(arc_buf_t *buf, void* tag)
1438{
1439 arc_buf_hdr_t *hdr;
1440 kmutex_t *hash_lock;
1441
1442 /*
b128c09f
BB
1443 * Check to see if this buffer is evicted. Callers
1444 * must verify b_data != NULL to know if the add_ref
1445 * was successful.
34dc7c2f 1446 */
428870ff 1447 mutex_enter(&buf->b_evict_lock);
b128c09f 1448 if (buf->b_data == NULL) {
428870ff 1449 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1450 return;
1451 }
428870ff 1452 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 1453 mutex_enter(hash_lock);
428870ff
BB
1454 hdr = buf->b_hdr;
1455 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1456 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1457
34dc7c2f
BB
1458 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
1459 add_reference(hdr, hash_lock, tag);
d164b209 1460 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
34dc7c2f
BB
1461 arc_access(hdr, hash_lock);
1462 mutex_exit(hash_lock);
1463 ARCSTAT_BUMP(arcstat_hits);
1464 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
1465 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
1466 data, metadata, hits);
1467}
1468
1469/*
1470 * Free the arc data buffer. If it is an l2arc write in progress,
1471 * the buffer is placed on l2arc_free_on_write to be freed later.
1472 */
1473static void
498877ba 1474arc_buf_data_free(arc_buf_t *buf, void (*free_func)(void *, size_t))
34dc7c2f 1475{
498877ba
MA
1476 arc_buf_hdr_t *hdr = buf->b_hdr;
1477
34dc7c2f
BB
1478 if (HDR_L2_WRITING(hdr)) {
1479 l2arc_data_free_t *df;
594b4dd8 1480 df = kmem_alloc(sizeof (l2arc_data_free_t), KM_PUSHPAGE);
498877ba
MA
1481 df->l2df_data = buf->b_data;
1482 df->l2df_size = hdr->b_size;
34dc7c2f
BB
1483 df->l2df_func = free_func;
1484 mutex_enter(&l2arc_free_on_write_mtx);
1485 list_insert_head(l2arc_free_on_write, df);
1486 mutex_exit(&l2arc_free_on_write_mtx);
1487 ARCSTAT_BUMP(arcstat_l2_free_on_write);
1488 } else {
498877ba 1489 free_func(buf->b_data, hdr->b_size);
34dc7c2f
BB
1490 }
1491}
1492
bd089c54
MA
1493/*
1494 * Free up buf->b_data and if 'remove' is set, then pull the
1495 * arc_buf_t off of the the arc_buf_hdr_t's list and free it.
1496 */
34dc7c2f 1497static void
bd089c54 1498arc_buf_destroy(arc_buf_t *buf, boolean_t recycle, boolean_t remove)
34dc7c2f
BB
1499{
1500 arc_buf_t **bufp;
1501
1502 /* free up data associated with the buf */
1503 if (buf->b_data) {
1504 arc_state_t *state = buf->b_hdr->b_state;
1505 uint64_t size = buf->b_hdr->b_size;
1506 arc_buf_contents_t type = buf->b_hdr->b_type;
1507
1508 arc_cksum_verify(buf);
498877ba 1509 arc_buf_unwatch(buf);
428870ff 1510
34dc7c2f
BB
1511 if (!recycle) {
1512 if (type == ARC_BUFC_METADATA) {
498877ba 1513 arc_buf_data_free(buf, zio_buf_free);
cc7f677c 1514 arc_space_return(size, ARC_SPACE_META);
34dc7c2f
BB
1515 } else {
1516 ASSERT(type == ARC_BUFC_DATA);
498877ba 1517 arc_buf_data_free(buf, zio_data_buf_free);
cc7f677c 1518 arc_space_return(size, ARC_SPACE_DATA);
34dc7c2f
BB
1519 }
1520 }
1521 if (list_link_active(&buf->b_hdr->b_arc_node)) {
1522 uint64_t *cnt = &state->arcs_lsize[type];
1523
1524 ASSERT(refcount_is_zero(&buf->b_hdr->b_refcnt));
1525 ASSERT(state != arc_anon);
1526
1527 ASSERT3U(*cnt, >=, size);
1528 atomic_add_64(cnt, -size);
1529 }
1530 ASSERT3U(state->arcs_size, >=, size);
1531 atomic_add_64(&state->arcs_size, -size);
1532 buf->b_data = NULL;
1eb5bfa3
GW
1533
1534 /*
1535 * If we're destroying a duplicate buffer make sure
1536 * that the appropriate statistics are updated.
1537 */
1538 if (buf->b_hdr->b_datacnt > 1 &&
1539 buf->b_hdr->b_type == ARC_BUFC_DATA) {
1540 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
1541 ARCSTAT_INCR(arcstat_duplicate_buffers_size, -size);
1542 }
34dc7c2f
BB
1543 ASSERT(buf->b_hdr->b_datacnt > 0);
1544 buf->b_hdr->b_datacnt -= 1;
1545 }
1546
1547 /* only remove the buf if requested */
bd089c54 1548 if (!remove)
34dc7c2f
BB
1549 return;
1550
1551 /* remove the buf from the hdr list */
1552 for (bufp = &buf->b_hdr->b_buf; *bufp != buf; bufp = &(*bufp)->b_next)
1553 continue;
1554 *bufp = buf->b_next;
428870ff 1555 buf->b_next = NULL;
34dc7c2f
BB
1556
1557 ASSERT(buf->b_efunc == NULL);
1558
1559 /* clean up the buf */
1560 buf->b_hdr = NULL;
1561 kmem_cache_free(buf_cache, buf);
1562}
1563
1564static void
1565arc_hdr_destroy(arc_buf_hdr_t *hdr)
1566{
d6320ddb
BB
1567 l2arc_buf_hdr_t *l2hdr = hdr->b_l2hdr;
1568
34dc7c2f
BB
1569 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1570 ASSERT3P(hdr->b_state, ==, arc_anon);
1571 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1572
428870ff
BB
1573 if (l2hdr != NULL) {
1574 boolean_t buflist_held = MUTEX_HELD(&l2arc_buflist_mtx);
1575 /*
1576 * To prevent arc_free() and l2arc_evict() from
1577 * attempting to free the same buffer at the same time,
1578 * a FREE_IN_PROGRESS flag is given to arc_free() to
1579 * give it priority. l2arc_evict() can't destroy this
1580 * header while we are waiting on l2arc_buflist_mtx.
1581 *
1582 * The hdr may be removed from l2ad_buflist before we
1583 * grab l2arc_buflist_mtx, so b_l2hdr is rechecked.
1584 */
1585 if (!buflist_held) {
34dc7c2f 1586 mutex_enter(&l2arc_buflist_mtx);
428870ff 1587 l2hdr = hdr->b_l2hdr;
34dc7c2f 1588 }
428870ff
BB
1589
1590 if (l2hdr != NULL) {
1591 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
1592 ARCSTAT_INCR(arcstat_l2_size, -hdr->b_size);
3a17a7a9 1593 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3bec585e
SK
1594 vdev_space_update(l2hdr->b_dev->l2ad_vdev,
1595 -l2hdr->b_asize, 0, 0);
ecf3d9b8 1596 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 1597 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
428870ff
BB
1598 if (hdr->b_state == arc_l2c_only)
1599 l2arc_hdr_stat_remove();
1600 hdr->b_l2hdr = NULL;
1601 }
1602
1603 if (!buflist_held)
1604 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f
BB
1605 }
1606
1607 if (!BUF_EMPTY(hdr)) {
1608 ASSERT(!HDR_IN_HASH_TABLE(hdr));
428870ff 1609 buf_discard_identity(hdr);
34dc7c2f
BB
1610 }
1611 while (hdr->b_buf) {
1612 arc_buf_t *buf = hdr->b_buf;
1613
1614 if (buf->b_efunc) {
1615 mutex_enter(&arc_eviction_mtx);
428870ff 1616 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
1617 ASSERT(buf->b_hdr != NULL);
1618 arc_buf_destroy(hdr->b_buf, FALSE, FALSE);
1619 hdr->b_buf = buf->b_next;
1620 buf->b_hdr = &arc_eviction_hdr;
1621 buf->b_next = arc_eviction_list;
1622 arc_eviction_list = buf;
428870ff 1623 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1624 mutex_exit(&arc_eviction_mtx);
1625 } else {
1626 arc_buf_destroy(hdr->b_buf, FALSE, TRUE);
1627 }
1628 }
1629 if (hdr->b_freeze_cksum != NULL) {
1630 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
1631 hdr->b_freeze_cksum = NULL;
1632 }
1633
1634 ASSERT(!list_link_active(&hdr->b_arc_node));
1635 ASSERT3P(hdr->b_hash_next, ==, NULL);
1636 ASSERT3P(hdr->b_acb, ==, NULL);
1637 kmem_cache_free(hdr_cache, hdr);
1638}
1639
1640void
1641arc_buf_free(arc_buf_t *buf, void *tag)
1642{
1643 arc_buf_hdr_t *hdr = buf->b_hdr;
1644 int hashed = hdr->b_state != arc_anon;
1645
1646 ASSERT(buf->b_efunc == NULL);
1647 ASSERT(buf->b_data != NULL);
1648
1649 if (hashed) {
1650 kmutex_t *hash_lock = HDR_LOCK(hdr);
1651
1652 mutex_enter(hash_lock);
428870ff
BB
1653 hdr = buf->b_hdr;
1654 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
1655
34dc7c2f 1656 (void) remove_reference(hdr, hash_lock, tag);
428870ff 1657 if (hdr->b_datacnt > 1) {
34dc7c2f 1658 arc_buf_destroy(buf, FALSE, TRUE);
428870ff
BB
1659 } else {
1660 ASSERT(buf == hdr->b_buf);
1661 ASSERT(buf->b_efunc == NULL);
34dc7c2f 1662 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 1663 }
34dc7c2f
BB
1664 mutex_exit(hash_lock);
1665 } else if (HDR_IO_IN_PROGRESS(hdr)) {
1666 int destroy_hdr;
1667 /*
1668 * We are in the middle of an async write. Don't destroy
1669 * this buffer unless the write completes before we finish
1670 * decrementing the reference count.
1671 */
1672 mutex_enter(&arc_eviction_mtx);
1673 (void) remove_reference(hdr, NULL, tag);
1674 ASSERT(refcount_is_zero(&hdr->b_refcnt));
1675 destroy_hdr = !HDR_IO_IN_PROGRESS(hdr);
1676 mutex_exit(&arc_eviction_mtx);
1677 if (destroy_hdr)
1678 arc_hdr_destroy(hdr);
1679 } else {
428870ff 1680 if (remove_reference(hdr, NULL, tag) > 0)
34dc7c2f 1681 arc_buf_destroy(buf, FALSE, TRUE);
428870ff 1682 else
34dc7c2f 1683 arc_hdr_destroy(hdr);
34dc7c2f
BB
1684 }
1685}
1686
13fe0198 1687boolean_t
34dc7c2f
BB
1688arc_buf_remove_ref(arc_buf_t *buf, void* tag)
1689{
1690 arc_buf_hdr_t *hdr = buf->b_hdr;
b4f7f105 1691 kmutex_t *hash_lock = NULL;
13fe0198 1692 boolean_t no_callback = (buf->b_efunc == NULL);
34dc7c2f
BB
1693
1694 if (hdr->b_state == arc_anon) {
428870ff 1695 ASSERT(hdr->b_datacnt == 1);
34dc7c2f
BB
1696 arc_buf_free(buf, tag);
1697 return (no_callback);
1698 }
1699
b4f7f105 1700 hash_lock = HDR_LOCK(hdr);
34dc7c2f 1701 mutex_enter(hash_lock);
428870ff
BB
1702 hdr = buf->b_hdr;
1703 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
1704 ASSERT(hdr->b_state != arc_anon);
1705 ASSERT(buf->b_data != NULL);
1706
1707 (void) remove_reference(hdr, hash_lock, tag);
1708 if (hdr->b_datacnt > 1) {
1709 if (no_callback)
1710 arc_buf_destroy(buf, FALSE, TRUE);
1711 } else if (no_callback) {
1712 ASSERT(hdr->b_buf == buf && buf->b_next == NULL);
428870ff 1713 ASSERT(buf->b_efunc == NULL);
34dc7c2f
BB
1714 hdr->b_flags |= ARC_BUF_AVAILABLE;
1715 }
1716 ASSERT(no_callback || hdr->b_datacnt > 1 ||
1717 refcount_is_zero(&hdr->b_refcnt));
1718 mutex_exit(hash_lock);
1719 return (no_callback);
1720}
1721
5f6d0b6f 1722uint64_t
34dc7c2f
BB
1723arc_buf_size(arc_buf_t *buf)
1724{
1725 return (buf->b_hdr->b_size);
1726}
1727
1eb5bfa3
GW
1728/*
1729 * Called from the DMU to determine if the current buffer should be
1730 * evicted. In order to ensure proper locking, the eviction must be initiated
1731 * from the DMU. Return true if the buffer is associated with user data and
1732 * duplicate buffers still exist.
1733 */
1734boolean_t
1735arc_buf_eviction_needed(arc_buf_t *buf)
1736{
1737 arc_buf_hdr_t *hdr;
1738 boolean_t evict_needed = B_FALSE;
1739
1740 if (zfs_disable_dup_eviction)
1741 return (B_FALSE);
1742
1743 mutex_enter(&buf->b_evict_lock);
1744 hdr = buf->b_hdr;
1745 if (hdr == NULL) {
1746 /*
1747 * We are in arc_do_user_evicts(); let that function
1748 * perform the eviction.
1749 */
1750 ASSERT(buf->b_data == NULL);
1751 mutex_exit(&buf->b_evict_lock);
1752 return (B_FALSE);
1753 } else if (buf->b_data == NULL) {
1754 /*
1755 * We have already been added to the arc eviction list;
1756 * recommend eviction.
1757 */
1758 ASSERT3P(hdr, ==, &arc_eviction_hdr);
1759 mutex_exit(&buf->b_evict_lock);
1760 return (B_TRUE);
1761 }
1762
1763 if (hdr->b_datacnt > 1 && hdr->b_type == ARC_BUFC_DATA)
1764 evict_needed = B_TRUE;
1765
1766 mutex_exit(&buf->b_evict_lock);
1767 return (evict_needed);
1768}
1769
34dc7c2f
BB
1770/*
1771 * Evict buffers from list until we've removed the specified number of
1772 * bytes. Move the removed buffers to the appropriate evict state.
1773 * If the recycle flag is set, then attempt to "recycle" a buffer:
1774 * - look for a buffer to evict that is `bytes' long.
1775 * - return the data block from this buffer rather than freeing it.
1776 * This flag is used by callers that are trying to make space for a
1777 * new buffer in a full arc cache.
1778 *
1779 * This function makes a "best effort". It skips over any buffers
1780 * it can't get a hash_lock on, and so may not catch all candidates.
1781 * It may also return without evicting as much space as requested.
1782 */
1783static void *
d164b209 1784arc_evict(arc_state_t *state, uint64_t spa, int64_t bytes, boolean_t recycle,
34dc7c2f
BB
1785 arc_buf_contents_t type)
1786{
1787 arc_state_t *evicted_state;
1788 uint64_t bytes_evicted = 0, skipped = 0, missed = 0;
1789 arc_buf_hdr_t *ab, *ab_prev = NULL;
1790 list_t *list = &state->arcs_list[type];
1791 kmutex_t *hash_lock;
1792 boolean_t have_lock;
1793 void *stolen = NULL;
e8b96c60
MA
1794 arc_buf_hdr_t marker = {{{ 0 }}};
1795 int count = 0;
34dc7c2f
BB
1796
1797 ASSERT(state == arc_mru || state == arc_mfu);
1798
1799 evicted_state = (state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost;
1800
da8ccd0e 1801top:
34dc7c2f
BB
1802 mutex_enter(&state->arcs_mtx);
1803 mutex_enter(&evicted_state->arcs_mtx);
1804
1805 for (ab = list_tail(list); ab; ab = ab_prev) {
1806 ab_prev = list_prev(list, ab);
1807 /* prefetch buffers have a minimum lifespan */
1808 if (HDR_IO_IN_PROGRESS(ab) ||
1809 (spa && ab->b_spa != spa) ||
1810 (ab->b_flags & (ARC_PREFETCH|ARC_INDIRECT) &&
428870ff 1811 ddi_get_lbolt() - ab->b_arc_access <
bce45ec9 1812 zfs_arc_min_prefetch_lifespan)) {
34dc7c2f
BB
1813 skipped++;
1814 continue;
1815 }
1816 /* "lookahead" for better eviction candidate */
1817 if (recycle && ab->b_size != bytes &&
1818 ab_prev && ab_prev->b_size == bytes)
1819 continue;
e8b96c60
MA
1820
1821 /* ignore markers */
1822 if (ab->b_spa == 0)
1823 continue;
1824
1825 /*
1826 * It may take a long time to evict all the bufs requested.
1827 * To avoid blocking all arc activity, periodically drop
1828 * the arcs_mtx and give other threads a chance to run
1829 * before reacquiring the lock.
1830 *
1831 * If we are looking for a buffer to recycle, we are in
1832 * the hot code path, so don't sleep.
1833 */
1834 if (!recycle && count++ > arc_evict_iterations) {
1835 list_insert_after(list, ab, &marker);
1836 mutex_exit(&evicted_state->arcs_mtx);
1837 mutex_exit(&state->arcs_mtx);
1838 kpreempt(KPREEMPT_SYNC);
1839 mutex_enter(&state->arcs_mtx);
1840 mutex_enter(&evicted_state->arcs_mtx);
1841 ab_prev = list_prev(list, &marker);
1842 list_remove(list, &marker);
1843 count = 0;
1844 continue;
1845 }
1846
34dc7c2f
BB
1847 hash_lock = HDR_LOCK(ab);
1848 have_lock = MUTEX_HELD(hash_lock);
1849 if (have_lock || mutex_tryenter(hash_lock)) {
c99c9001 1850 ASSERT0(refcount_count(&ab->b_refcnt));
34dc7c2f
BB
1851 ASSERT(ab->b_datacnt > 0);
1852 while (ab->b_buf) {
1853 arc_buf_t *buf = ab->b_buf;
428870ff 1854 if (!mutex_tryenter(&buf->b_evict_lock)) {
b128c09f
BB
1855 missed += 1;
1856 break;
1857 }
34dc7c2f
BB
1858 if (buf->b_data) {
1859 bytes_evicted += ab->b_size;
1860 if (recycle && ab->b_type == type &&
1861 ab->b_size == bytes &&
1862 !HDR_L2_WRITING(ab)) {
1863 stolen = buf->b_data;
1864 recycle = FALSE;
1865 }
1866 }
1867 if (buf->b_efunc) {
1868 mutex_enter(&arc_eviction_mtx);
1869 arc_buf_destroy(buf,
1870 buf->b_data == stolen, FALSE);
1871 ab->b_buf = buf->b_next;
1872 buf->b_hdr = &arc_eviction_hdr;
1873 buf->b_next = arc_eviction_list;
1874 arc_eviction_list = buf;
1875 mutex_exit(&arc_eviction_mtx);
428870ff 1876 mutex_exit(&buf->b_evict_lock);
34dc7c2f 1877 } else {
428870ff 1878 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
1879 arc_buf_destroy(buf,
1880 buf->b_data == stolen, TRUE);
1881 }
1882 }
428870ff
BB
1883
1884 if (ab->b_l2hdr) {
1885 ARCSTAT_INCR(arcstat_evict_l2_cached,
1886 ab->b_size);
1887 } else {
1888 if (l2arc_write_eligible(ab->b_spa, ab)) {
1889 ARCSTAT_INCR(arcstat_evict_l2_eligible,
1890 ab->b_size);
1891 } else {
1892 ARCSTAT_INCR(
1893 arcstat_evict_l2_ineligible,
1894 ab->b_size);
1895 }
1896 }
1897
b128c09f
BB
1898 if (ab->b_datacnt == 0) {
1899 arc_change_state(evicted_state, ab, hash_lock);
1900 ASSERT(HDR_IN_HASH_TABLE(ab));
1901 ab->b_flags |= ARC_IN_HASH_TABLE;
1902 ab->b_flags &= ~ARC_BUF_AVAILABLE;
1903 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, ab);
1904 }
34dc7c2f
BB
1905 if (!have_lock)
1906 mutex_exit(hash_lock);
1907 if (bytes >= 0 && bytes_evicted >= bytes)
1908 break;
1909 } else {
1910 missed += 1;
1911 }
1912 }
1913
1914 mutex_exit(&evicted_state->arcs_mtx);
1915 mutex_exit(&state->arcs_mtx);
1916
da8ccd0e
PS
1917 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
1918 (bytes < 0 || bytes_evicted < bytes)) {
1919 /* Prevent second pass from recycling metadata into data */
1920 recycle = FALSE;
1921 type = ARC_BUFC_METADATA;
1922 list = &state->arcs_list[type];
1923 goto top;
1924 }
1925
34dc7c2f 1926 if (bytes_evicted < bytes)
3f504482 1927 dprintf("only evicted %lld bytes from %x\n",
29e57d15 1928 (longlong_t)bytes_evicted, state->arcs_state);
34dc7c2f
BB
1929
1930 if (skipped)
1931 ARCSTAT_INCR(arcstat_evict_skip, skipped);
1932
1933 if (missed)
1934 ARCSTAT_INCR(arcstat_mutex_miss, missed);
1935
1936 /*
e8b96c60
MA
1937 * Note: we have just evicted some data into the ghost state,
1938 * potentially putting the ghost size over the desired size. Rather
1939 * that evicting from the ghost list in this hot code path, leave
1940 * this chore to the arc_reclaim_thread().
34dc7c2f 1941 */
34dc7c2f
BB
1942
1943 return (stolen);
1944}
1945
1946/*
1947 * Remove buffers from list until we've removed the specified number of
1948 * bytes. Destroy the buffers that are removed.
1949 */
1950static void
68121a03
BB
1951arc_evict_ghost(arc_state_t *state, uint64_t spa, int64_t bytes,
1952 arc_buf_contents_t type)
34dc7c2f
BB
1953{
1954 arc_buf_hdr_t *ab, *ab_prev;
2598c001 1955 arc_buf_hdr_t marker;
68121a03 1956 list_t *list = &state->arcs_list[type];
34dc7c2f
BB
1957 kmutex_t *hash_lock;
1958 uint64_t bytes_deleted = 0;
1959 uint64_t bufs_skipped = 0;
e8b96c60 1960 int count = 0;
34dc7c2f
BB
1961
1962 ASSERT(GHOST_STATE(state));
d1d7e268 1963 bzero(&marker, sizeof (marker));
34dc7c2f
BB
1964top:
1965 mutex_enter(&state->arcs_mtx);
1966 for (ab = list_tail(list); ab; ab = ab_prev) {
1967 ab_prev = list_prev(list, ab);
e8b96c60
MA
1968 if (ab->b_type > ARC_BUFC_NUMTYPES)
1969 panic("invalid ab=%p", (void *)ab);
34dc7c2f
BB
1970 if (spa && ab->b_spa != spa)
1971 continue;
572e2857
BB
1972
1973 /* ignore markers */
1974 if (ab->b_spa == 0)
1975 continue;
1976
34dc7c2f 1977 hash_lock = HDR_LOCK(ab);
428870ff
BB
1978 /* caller may be trying to modify this buffer, skip it */
1979 if (MUTEX_HELD(hash_lock))
1980 continue;
e8b96c60
MA
1981
1982 /*
1983 * It may take a long time to evict all the bufs requested.
1984 * To avoid blocking all arc activity, periodically drop
1985 * the arcs_mtx and give other threads a chance to run
1986 * before reacquiring the lock.
1987 */
1988 if (count++ > arc_evict_iterations) {
1989 list_insert_after(list, ab, &marker);
1990 mutex_exit(&state->arcs_mtx);
1991 kpreempt(KPREEMPT_SYNC);
1992 mutex_enter(&state->arcs_mtx);
1993 ab_prev = list_prev(list, &marker);
1994 list_remove(list, &marker);
1995 count = 0;
1996 continue;
1997 }
34dc7c2f
BB
1998 if (mutex_tryenter(hash_lock)) {
1999 ASSERT(!HDR_IO_IN_PROGRESS(ab));
2000 ASSERT(ab->b_buf == NULL);
2001 ARCSTAT_BUMP(arcstat_deleted);
2002 bytes_deleted += ab->b_size;
2003
2004 if (ab->b_l2hdr != NULL) {
2005 /*
2006 * This buffer is cached on the 2nd Level ARC;
2007 * don't destroy the header.
2008 */
2009 arc_change_state(arc_l2c_only, ab, hash_lock);
2010 mutex_exit(hash_lock);
2011 } else {
2012 arc_change_state(arc_anon, ab, hash_lock);
2013 mutex_exit(hash_lock);
2014 arc_hdr_destroy(ab);
2015 }
2016
2017 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, ab);
2018 if (bytes >= 0 && bytes_deleted >= bytes)
2019 break;
572e2857
BB
2020 } else if (bytes < 0) {
2021 /*
2022 * Insert a list marker and then wait for the
2023 * hash lock to become available. Once its
2024 * available, restart from where we left off.
2025 */
2026 list_insert_after(list, ab, &marker);
2027 mutex_exit(&state->arcs_mtx);
2028 mutex_enter(hash_lock);
2029 mutex_exit(hash_lock);
2030 mutex_enter(&state->arcs_mtx);
2031 ab_prev = list_prev(list, &marker);
2032 list_remove(list, &marker);
e8b96c60 2033 } else {
34dc7c2f 2034 bufs_skipped += 1;
e8b96c60 2035 }
34dc7c2f
BB
2036 }
2037 mutex_exit(&state->arcs_mtx);
2038
2039 if (list == &state->arcs_list[ARC_BUFC_DATA] &&
2040 (bytes < 0 || bytes_deleted < bytes)) {
2041 list = &state->arcs_list[ARC_BUFC_METADATA];
2042 goto top;
2043 }
2044
2045 if (bufs_skipped) {
2046 ARCSTAT_INCR(arcstat_mutex_miss, bufs_skipped);
2047 ASSERT(bytes >= 0);
2048 }
2049
2050 if (bytes_deleted < bytes)
3f504482 2051 dprintf("only deleted %lld bytes from %p\n",
34dc7c2f
BB
2052 (longlong_t)bytes_deleted, state);
2053}
2054
2055static void
2056arc_adjust(void)
2057{
d164b209
BB
2058 int64_t adjustment, delta;
2059
2060 /*
2061 * Adjust MRU size
2062 */
34dc7c2f 2063
572e2857 2064 adjustment = MIN((int64_t)(arc_size - arc_c),
77765b54 2065 (int64_t)(arc_anon->arcs_size + arc_mru->arcs_size - arc_p));
34dc7c2f 2066
da8ccd0e
PS
2067 if (adjustment > 0 && arc_mru->arcs_size > 0) {
2068 delta = MIN(arc_mru->arcs_size, adjustment);
b8864a23 2069 (void) arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2070 }
2071
d164b209
BB
2072 /*
2073 * Adjust MFU size
2074 */
34dc7c2f 2075
d164b209
BB
2076 adjustment = arc_size - arc_c;
2077
da8ccd0e
PS
2078 if (adjustment > 0 && arc_mfu->arcs_size > 0) {
2079 delta = MIN(arc_mfu->arcs_size, adjustment);
b8864a23 2080 (void) arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_DATA);
d164b209 2081 }
34dc7c2f 2082
d164b209
BB
2083 /*
2084 * Adjust ghost lists
2085 */
34dc7c2f 2086
d164b209
BB
2087 adjustment = arc_mru->arcs_size + arc_mru_ghost->arcs_size - arc_c;
2088
2089 if (adjustment > 0 && arc_mru_ghost->arcs_size > 0) {
2090 delta = MIN(arc_mru_ghost->arcs_size, adjustment);
68121a03 2091 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_DATA);
d164b209 2092 }
34dc7c2f 2093
d164b209
BB
2094 adjustment =
2095 arc_mru_ghost->arcs_size + arc_mfu_ghost->arcs_size - arc_c;
34dc7c2f 2096
d164b209
BB
2097 if (adjustment > 0 && arc_mfu_ghost->arcs_size > 0) {
2098 delta = MIN(arc_mfu_ghost->arcs_size, adjustment);
68121a03 2099 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_DATA);
34dc7c2f
BB
2100 }
2101}
2102
ab26409d
BB
2103/*
2104 * Request that arc user drop references so that N bytes can be released
2105 * from the cache. This provides a mechanism to ensure the arc can honor
2106 * the arc_meta_limit and reclaim buffers which are pinned in the cache
2107 * by higher layers. (i.e. the zpl)
2108 */
2109static void
2110arc_do_user_prune(int64_t adjustment)
2111{
2112 arc_prune_func_t *func;
2113 void *private;
2114 arc_prune_t *cp, *np;
2115
2116 mutex_enter(&arc_prune_mtx);
2117
2118 cp = list_head(&arc_prune_list);
2119 while (cp != NULL) {
2120 func = cp->p_pfunc;
2121 private = cp->p_private;
2122 np = list_next(&arc_prune_list, cp);
2123 refcount_add(&cp->p_refcnt, func);
2124 mutex_exit(&arc_prune_mtx);
2125
2126 if (func != NULL)
2127 func(adjustment, private);
2128
2129 mutex_enter(&arc_prune_mtx);
2130
2131 /* User removed prune callback concurrently with execution */
2132 if (refcount_remove(&cp->p_refcnt, func) == 0) {
2133 ASSERT(!list_link_active(&cp->p_node));
2134 refcount_destroy(&cp->p_refcnt);
2135 kmem_free(cp, sizeof (*cp));
2136 }
2137
2138 cp = np;
2139 }
2140
2141 ARCSTAT_BUMP(arcstat_prune);
2142 mutex_exit(&arc_prune_mtx);
2143}
2144
34dc7c2f
BB
2145static void
2146arc_do_user_evicts(void)
2147{
2148 mutex_enter(&arc_eviction_mtx);
2149 while (arc_eviction_list != NULL) {
2150 arc_buf_t *buf = arc_eviction_list;
2151 arc_eviction_list = buf->b_next;
428870ff 2152 mutex_enter(&buf->b_evict_lock);
34dc7c2f 2153 buf->b_hdr = NULL;
428870ff 2154 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
2155 mutex_exit(&arc_eviction_mtx);
2156
2157 if (buf->b_efunc != NULL)
bd089c54 2158 VERIFY0(buf->b_efunc(buf->b_private));
34dc7c2f
BB
2159
2160 buf->b_efunc = NULL;
2161 buf->b_private = NULL;
2162 kmem_cache_free(buf_cache, buf);
2163 mutex_enter(&arc_eviction_mtx);
2164 }
2165 mutex_exit(&arc_eviction_mtx);
2166}
2167
ab26409d
BB
2168/*
2169 * Evict only meta data objects from the cache leaving the data objects.
2170 * This is only used to enforce the tunable arc_meta_limit, if we are
2171 * unable to evict enough buffers notify the user via the prune callback.
2172 */
94520ca4
PS
2173static void
2174arc_adjust_meta(void)
ab26409d 2175{
94520ca4 2176 int64_t adjustmnt, delta;
ab26409d 2177
94520ca4
PS
2178 /*
2179 * This slightly differs than the way we evict from the mru in
2180 * arc_adjust because we don't have a "target" value (i.e. no
2181 * "meta" arc_p). As a result, I think we can completely
2182 * cannibalize the metadata in the MRU before we evict the
2183 * metadata from the MFU. I think we probably need to implement a
2184 * "metadata arc_p" value to do this properly.
2185 */
2186 adjustmnt = arc_meta_used - arc_meta_limit;
2187
2188 if (adjustmnt > 0 && arc_mru->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2189 delta = MIN(arc_mru->arcs_lsize[ARC_BUFC_METADATA], adjustmnt);
ab26409d 2190 arc_evict(arc_mru, 0, delta, FALSE, ARC_BUFC_METADATA);
94520ca4 2191 adjustmnt -= delta;
ab26409d
BB
2192 }
2193
94520ca4
PS
2194 /*
2195 * We can't afford to recalculate adjustmnt here. If we do,
2196 * new metadata buffers can sneak into the MRU or ANON lists,
2197 * thus penalize the MFU metadata. Although the fudge factor is
2198 * small, it has been empirically shown to be significant for
2199 * certain workloads (e.g. creating many empty directories). As
2200 * such, we use the original calculation for adjustmnt, and
2201 * simply decrement the amount of data evicted from the MRU.
2202 */
2203
2204 if (adjustmnt > 0 && arc_mfu->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2205 delta = MIN(arc_mfu->arcs_lsize[ARC_BUFC_METADATA], adjustmnt);
ab26409d 2206 arc_evict(arc_mfu, 0, delta, FALSE, ARC_BUFC_METADATA);
ab26409d
BB
2207 }
2208
94520ca4
PS
2209 adjustmnt = arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2210 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] - arc_meta_limit;
2211
2212 if (adjustmnt > 0 && arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2213 delta = MIN(adjustmnt,
2214 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA]);
2215 arc_evict_ghost(arc_mru_ghost, 0, delta, ARC_BUFC_METADATA);
2216 }
2217
2218 adjustmnt = arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2219 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA] - arc_meta_limit;
2220
2221 if (adjustmnt > 0 && arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA] > 0) {
2222 delta = MIN(adjustmnt,
2223 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA]);
2224 arc_evict_ghost(arc_mfu_ghost, 0, delta, ARC_BUFC_METADATA);
2225 }
2226
2227 if (arc_meta_used > arc_meta_limit)
bce45ec9 2228 arc_do_user_prune(zfs_arc_meta_prune);
ab26409d
BB
2229}
2230
34dc7c2f
BB
2231/*
2232 * Flush all *evictable* data from the cache for the given spa.
2233 * NOTE: this will not touch "active" (i.e. referenced) data.
2234 */
2235void
2236arc_flush(spa_t *spa)
2237{
d164b209
BB
2238 uint64_t guid = 0;
2239
2240 if (spa)
3541dc6d 2241 guid = spa_load_guid(spa);
d164b209 2242
34dc7c2f 2243 while (list_head(&arc_mru->arcs_list[ARC_BUFC_DATA])) {
d164b209 2244 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2245 if (spa)
2246 break;
2247 }
2248 while (list_head(&arc_mru->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2249 (void) arc_evict(arc_mru, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2250 if (spa)
2251 break;
2252 }
2253 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_DATA])) {
d164b209 2254 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_DATA);
34dc7c2f
BB
2255 if (spa)
2256 break;
2257 }
2258 while (list_head(&arc_mfu->arcs_list[ARC_BUFC_METADATA])) {
d164b209 2259 (void) arc_evict(arc_mfu, guid, -1, FALSE, ARC_BUFC_METADATA);
34dc7c2f
BB
2260 if (spa)
2261 break;
2262 }
2263
68121a03
BB
2264 arc_evict_ghost(arc_mru_ghost, guid, -1, ARC_BUFC_DATA);
2265 arc_evict_ghost(arc_mfu_ghost, guid, -1, ARC_BUFC_DATA);
34dc7c2f
BB
2266
2267 mutex_enter(&arc_reclaim_thr_lock);
2268 arc_do_user_evicts();
2269 mutex_exit(&arc_reclaim_thr_lock);
2270 ASSERT(spa || arc_eviction_list == NULL);
2271}
2272
34dc7c2f 2273void
302f753f 2274arc_shrink(uint64_t bytes)
34dc7c2f
BB
2275{
2276 if (arc_c > arc_c_min) {
2277 uint64_t to_free;
2278
bce45ec9 2279 to_free = bytes ? bytes : arc_c >> zfs_arc_shrink_shift;
302f753f 2280
34dc7c2f
BB
2281 if (arc_c > arc_c_min + to_free)
2282 atomic_add_64(&arc_c, -to_free);
2283 else
2284 arc_c = arc_c_min;
2285
39e055c4
PS
2286 to_free = bytes ? bytes : arc_p >> zfs_arc_shrink_shift;
2287
f521ce1b 2288 if (arc_p > to_free)
39e055c4
PS
2289 atomic_add_64(&arc_p, -to_free);
2290 else
f521ce1b 2291 arc_p = 0;
39e055c4 2292
34dc7c2f
BB
2293 if (arc_c > arc_size)
2294 arc_c = MAX(arc_size, arc_c_min);
2295 if (arc_p > arc_c)
2296 arc_p = (arc_c >> 1);
2297 ASSERT(arc_c >= arc_c_min);
2298 ASSERT((int64_t)arc_p >= 0);
2299 }
2300
2301 if (arc_size > arc_c)
2302 arc_adjust();
2303}
2304
34dc7c2f 2305static void
302f753f 2306arc_kmem_reap_now(arc_reclaim_strategy_t strat, uint64_t bytes)
34dc7c2f
BB
2307{
2308 size_t i;
2309 kmem_cache_t *prev_cache = NULL;
2310 kmem_cache_t *prev_data_cache = NULL;
2311 extern kmem_cache_t *zio_buf_cache[];
2312 extern kmem_cache_t *zio_data_buf_cache[];
34dc7c2f
BB
2313
2314 /*
2315 * An aggressive reclamation will shrink the cache size as well as
2316 * reap free buffers from the arc kmem caches.
2317 */
2318 if (strat == ARC_RECLAIM_AGGR)
302f753f 2319 arc_shrink(bytes);
34dc7c2f
BB
2320
2321 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
2322 if (zio_buf_cache[i] != prev_cache) {
2323 prev_cache = zio_buf_cache[i];
2324 kmem_cache_reap_now(zio_buf_cache[i]);
2325 }
2326 if (zio_data_buf_cache[i] != prev_data_cache) {
2327 prev_data_cache = zio_data_buf_cache[i];
2328 kmem_cache_reap_now(zio_data_buf_cache[i]);
2329 }
2330 }
ab26409d 2331
34dc7c2f
BB
2332 kmem_cache_reap_now(buf_cache);
2333 kmem_cache_reap_now(hdr_cache);
2334}
2335
302f753f
BB
2336/*
2337 * Unlike other ZFS implementations this thread is only responsible for
2338 * adapting the target ARC size on Linux. The responsibility for memory
2339 * reclamation has been entirely delegated to the arc_shrinker_func()
2340 * which is registered with the VM. To reflect this change in behavior
2341 * the arc_reclaim thread has been renamed to arc_adapt.
2342 */
34dc7c2f 2343static void
302f753f 2344arc_adapt_thread(void)
34dc7c2f 2345{
34dc7c2f
BB
2346 callb_cpr_t cpr;
2347
2348 CALLB_CPR_INIT(&cpr, &arc_reclaim_thr_lock, callb_generic_cpr, FTAG);
2349
2350 mutex_enter(&arc_reclaim_thr_lock);
2351 while (arc_thread_exit == 0) {
302f753f
BB
2352#ifndef _KERNEL
2353 arc_reclaim_strategy_t last_reclaim = ARC_RECLAIM_CONS;
2354
2355 if (spa_get_random(100) == 0) {
34dc7c2f
BB
2356
2357 if (arc_no_grow) {
2358 if (last_reclaim == ARC_RECLAIM_CONS) {
2359 last_reclaim = ARC_RECLAIM_AGGR;
2360 } else {
2361 last_reclaim = ARC_RECLAIM_CONS;
2362 }
2363 } else {
2364 arc_no_grow = TRUE;
2365 last_reclaim = ARC_RECLAIM_AGGR;
2366 membar_producer();
2367 }
2368
2369 /* reset the growth delay for every reclaim */
d1d7e268
MK
2370 arc_grow_time = ddi_get_lbolt() +
2371 (zfs_arc_grow_retry * hz);
34dc7c2f 2372
302f753f 2373 arc_kmem_reap_now(last_reclaim, 0);
b128c09f 2374 arc_warm = B_TRUE;
302f753f
BB
2375 }
2376#endif /* !_KERNEL */
34dc7c2f 2377
302f753f 2378 /* No recent memory pressure allow the ARC to grow. */
0b75bdb3
CC
2379 if (arc_no_grow &&
2380 ddi_time_after_eq(ddi_get_lbolt(), arc_grow_time))
34dc7c2f 2381 arc_no_grow = FALSE;
34dc7c2f 2382
94520ca4 2383 arc_adjust_meta();
6a8f9b6b 2384
572e2857 2385 arc_adjust();
34dc7c2f
BB
2386
2387 if (arc_eviction_list != NULL)
2388 arc_do_user_evicts();
2389
2390 /* block until needed, or one second, whichever is shorter */
2391 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb 2392 (void) cv_timedwait_interruptible(&arc_reclaim_thr_cv,
428870ff 2393 &arc_reclaim_thr_lock, (ddi_get_lbolt() + hz));
34dc7c2f 2394 CALLB_CPR_SAFE_END(&cpr, &arc_reclaim_thr_lock);
bce45ec9
BB
2395
2396
2397 /* Allow the module options to be changed */
2398 if (zfs_arc_max > 64 << 20 &&
2399 zfs_arc_max < physmem * PAGESIZE &&
2400 zfs_arc_max != arc_c_max)
2401 arc_c_max = zfs_arc_max;
2402
2403 if (zfs_arc_min > 0 &&
2404 zfs_arc_min < arc_c_max &&
2405 zfs_arc_min != arc_c_min)
2406 arc_c_min = zfs_arc_min;
2407
2408 if (zfs_arc_meta_limit > 0 &&
2409 zfs_arc_meta_limit <= arc_c_max &&
2410 zfs_arc_meta_limit != arc_meta_limit)
2411 arc_meta_limit = zfs_arc_meta_limit;
2412
2413
2414
34dc7c2f
BB
2415 }
2416
2417 arc_thread_exit = 0;
2418 cv_broadcast(&arc_reclaim_thr_cv);
2419 CALLB_CPR_EXIT(&cpr); /* drops arc_reclaim_thr_lock */
2420 thread_exit();
2421}
2422
7cb67b45
BB
2423#ifdef _KERNEL
2424/*
302f753f
BB
2425 * Determine the amount of memory eligible for eviction contained in the
2426 * ARC. All clean data reported by the ghost lists can always be safely
2427 * evicted. Due to arc_c_min, the same does not hold for all clean data
2428 * contained by the regular mru and mfu lists.
2429 *
2430 * In the case of the regular mru and mfu lists, we need to report as
2431 * much clean data as possible, such that evicting that same reported
2432 * data will not bring arc_size below arc_c_min. Thus, in certain
2433 * circumstances, the total amount of clean data in the mru and mfu
2434 * lists might not actually be evictable.
2435 *
2436 * The following two distinct cases are accounted for:
2437 *
2438 * 1. The sum of the amount of dirty data contained by both the mru and
2439 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2440 * is greater than or equal to arc_c_min.
2441 * (i.e. amount of dirty data >= arc_c_min)
2442 *
2443 * This is the easy case; all clean data contained by the mru and mfu
2444 * lists is evictable. Evicting all clean data can only drop arc_size
2445 * to the amount of dirty data, which is greater than arc_c_min.
2446 *
2447 * 2. The sum of the amount of dirty data contained by both the mru and
2448 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
2449 * is less than arc_c_min.
2450 * (i.e. arc_c_min > amount of dirty data)
2451 *
2452 * 2.1. arc_size is greater than or equal arc_c_min.
2453 * (i.e. arc_size >= arc_c_min > amount of dirty data)
2454 *
2455 * In this case, not all clean data from the regular mru and mfu
2456 * lists is actually evictable; we must leave enough clean data
2457 * to keep arc_size above arc_c_min. Thus, the maximum amount of
2458 * evictable data from the two lists combined, is exactly the
2459 * difference between arc_size and arc_c_min.
2460 *
2461 * 2.2. arc_size is less than arc_c_min
2462 * (i.e. arc_c_min > arc_size > amount of dirty data)
2463 *
2464 * In this case, none of the data contained in the mru and mfu
2465 * lists is evictable, even if it's clean. Since arc_size is
2466 * already below arc_c_min, evicting any more would only
2467 * increase this negative difference.
7cb67b45 2468 */
302f753f
BB
2469static uint64_t
2470arc_evictable_memory(void) {
2471 uint64_t arc_clean =
2472 arc_mru->arcs_lsize[ARC_BUFC_DATA] +
2473 arc_mru->arcs_lsize[ARC_BUFC_METADATA] +
2474 arc_mfu->arcs_lsize[ARC_BUFC_DATA] +
2475 arc_mfu->arcs_lsize[ARC_BUFC_METADATA];
2476 uint64_t ghost_clean =
2477 arc_mru_ghost->arcs_lsize[ARC_BUFC_DATA] +
2478 arc_mru_ghost->arcs_lsize[ARC_BUFC_METADATA] +
2479 arc_mfu_ghost->arcs_lsize[ARC_BUFC_DATA] +
2480 arc_mfu_ghost->arcs_lsize[ARC_BUFC_METADATA];
2481 uint64_t arc_dirty = MAX((int64_t)arc_size - (int64_t)arc_clean, 0);
2482
2483 if (arc_dirty >= arc_c_min)
2484 return (ghost_clean + arc_clean);
2485
2486 return (ghost_clean + MAX((int64_t)arc_size - (int64_t)arc_c_min, 0));
2487}
2488
ed6e9cc2
TC
2489/*
2490 * If sc->nr_to_scan is zero, the caller is requesting a query of the
2491 * number of objects which can potentially be freed. If it is nonzero,
2492 * the request is to free that many objects.
2493 *
2494 * Linux kernels >= 3.12 have the count_objects and scan_objects callbacks
2495 * in struct shrinker and also require the shrinker to return the number
2496 * of objects freed.
2497 *
2498 * Older kernels require the shrinker to return the number of freeable
2499 * objects following the freeing of nr_to_free.
2500 */
2501static spl_shrinker_t
7e7baeca 2502__arc_shrinker_func(struct shrinker *shrink, struct shrink_control *sc)
7cb67b45 2503{
ed6e9cc2 2504 int64_t pages;
7cb67b45 2505
302f753f
BB
2506 /* The arc is considered warm once reclaim has occurred */
2507 if (unlikely(arc_warm == B_FALSE))
2508 arc_warm = B_TRUE;
7cb67b45 2509
302f753f 2510 /* Return the potential number of reclaimable pages */
ed6e9cc2 2511 pages = btop((int64_t)arc_evictable_memory());
302f753f
BB
2512 if (sc->nr_to_scan == 0)
2513 return (pages);
3fd70ee6
BB
2514
2515 /* Not allowed to perform filesystem reclaim */
7e7baeca 2516 if (!(sc->gfp_mask & __GFP_FS))
ed6e9cc2 2517 return (SHRINK_STOP);
3fd70ee6 2518
7cb67b45
BB
2519 /* Reclaim in progress */
2520 if (mutex_tryenter(&arc_reclaim_thr_lock) == 0)
ed6e9cc2 2521 return (SHRINK_STOP);
7cb67b45 2522
302f753f
BB
2523 /*
2524 * Evict the requested number of pages by shrinking arc_c the
2525 * requested amount. If there is nothing left to evict just
2526 * reap whatever we can from the various arc slabs.
2527 */
2528 if (pages > 0) {
2529 arc_kmem_reap_now(ARC_RECLAIM_AGGR, ptob(sc->nr_to_scan));
ed6e9cc2
TC
2530
2531#ifdef HAVE_SPLIT_SHRINKER_CALLBACK
2532 pages = MAX(pages - btop(arc_evictable_memory()), 0);
2533#else
1e3cb67b 2534 pages = btop(arc_evictable_memory());
ed6e9cc2 2535#endif
302f753f
BB
2536 } else {
2537 arc_kmem_reap_now(ARC_RECLAIM_CONS, ptob(sc->nr_to_scan));
ed6e9cc2 2538 pages = SHRINK_STOP;
302f753f
BB
2539 }
2540
2541 /*
2542 * When direct reclaim is observed it usually indicates a rapid
2543 * increase in memory pressure. This occurs because the kswapd
2544 * threads were unable to asynchronously keep enough free memory
2545 * available. In this case set arc_no_grow to briefly pause arc
2546 * growth to avoid compounding the memory pressure.
2547 */
7cb67b45 2548 if (current_is_kswapd()) {
302f753f 2549 ARCSTAT_BUMP(arcstat_memory_indirect_count);
7cb67b45 2550 } else {
302f753f 2551 arc_no_grow = B_TRUE;
bce45ec9 2552 arc_grow_time = ddi_get_lbolt() + (zfs_arc_grow_retry * hz);
302f753f 2553 ARCSTAT_BUMP(arcstat_memory_direct_count);
7cb67b45
BB
2554 }
2555
7cb67b45
BB
2556 mutex_exit(&arc_reclaim_thr_lock);
2557
1e3cb67b 2558 return (pages);
7cb67b45 2559}
7e7baeca 2560SPL_SHRINKER_CALLBACK_WRAPPER(arc_shrinker_func);
7cb67b45
BB
2561
2562SPL_SHRINKER_DECLARE(arc_shrinker, arc_shrinker_func, DEFAULT_SEEKS);
2563#endif /* _KERNEL */
2564
34dc7c2f
BB
2565/*
2566 * Adapt arc info given the number of bytes we are trying to add and
2567 * the state that we are comming from. This function is only called
2568 * when we are adding new content to the cache.
2569 */
2570static void
2571arc_adapt(int bytes, arc_state_t *state)
2572{
2573 int mult;
2574
2575 if (state == arc_l2c_only)
2576 return;
2577
2578 ASSERT(bytes > 0);
2579 /*
2580 * Adapt the target size of the MRU list:
2581 * - if we just hit in the MRU ghost list, then increase
2582 * the target size of the MRU list.
2583 * - if we just hit in the MFU ghost list, then increase
2584 * the target size of the MFU list by decreasing the
2585 * target size of the MRU list.
2586 */
2587 if (state == arc_mru_ghost) {
2588 mult = ((arc_mru_ghost->arcs_size >= arc_mfu_ghost->arcs_size) ?
2589 1 : (arc_mfu_ghost->arcs_size/arc_mru_ghost->arcs_size));
62422785
PS
2590
2591 if (!zfs_arc_p_dampener_disable)
2592 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
34dc7c2f 2593
f521ce1b 2594 arc_p = MIN(arc_c, arc_p + bytes * mult);
34dc7c2f 2595 } else if (state == arc_mfu_ghost) {
d164b209
BB
2596 uint64_t delta;
2597
34dc7c2f
BB
2598 mult = ((arc_mfu_ghost->arcs_size >= arc_mru_ghost->arcs_size) ?
2599 1 : (arc_mru_ghost->arcs_size/arc_mfu_ghost->arcs_size));
62422785
PS
2600
2601 if (!zfs_arc_p_dampener_disable)
2602 mult = MIN(mult, 10);
34dc7c2f 2603
d164b209 2604 delta = MIN(bytes * mult, arc_p);
f521ce1b 2605 arc_p = MAX(0, arc_p - delta);
34dc7c2f
BB
2606 }
2607 ASSERT((int64_t)arc_p >= 0);
2608
34dc7c2f
BB
2609 if (arc_no_grow)
2610 return;
2611
2612 if (arc_c >= arc_c_max)
2613 return;
2614
2615 /*
2616 * If we're within (2 * maxblocksize) bytes of the target
2617 * cache size, increment the target cache size
2618 */
2619 if (arc_size > arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
2620 atomic_add_64(&arc_c, (int64_t)bytes);
2621 if (arc_c > arc_c_max)
2622 arc_c = arc_c_max;
2623 else if (state == arc_anon)
2624 atomic_add_64(&arc_p, (int64_t)bytes);
2625 if (arc_p > arc_c)
2626 arc_p = arc_c;
2627 }
2628 ASSERT((int64_t)arc_p >= 0);
2629}
2630
2631/*
2632 * Check if the cache has reached its limits and eviction is required
2633 * prior to insert.
2634 */
2635static int
2636arc_evict_needed(arc_buf_contents_t type)
2637{
2638 if (type == ARC_BUFC_METADATA && arc_meta_used >= arc_meta_limit)
2639 return (1);
2640
302f753f 2641 if (arc_no_grow)
34dc7c2f
BB
2642 return (1);
2643
2644 return (arc_size > arc_c);
2645}
2646
2647/*
2648 * The buffer, supplied as the first argument, needs a data block.
2649 * So, if we are at cache max, determine which cache should be victimized.
2650 * We have the following cases:
2651 *
2652 * 1. Insert for MRU, p > sizeof(arc_anon + arc_mru) ->
2653 * In this situation if we're out of space, but the resident size of the MFU is
2654 * under the limit, victimize the MFU cache to satisfy this insertion request.
2655 *
2656 * 2. Insert for MRU, p <= sizeof(arc_anon + arc_mru) ->
2657 * Here, we've used up all of the available space for the MRU, so we need to
2658 * evict from our own cache instead. Evict from the set of resident MRU
2659 * entries.
2660 *
2661 * 3. Insert for MFU (c - p) > sizeof(arc_mfu) ->
2662 * c minus p represents the MFU space in the cache, since p is the size of the
2663 * cache that is dedicated to the MRU. In this situation there's still space on
2664 * the MFU side, so the MRU side needs to be victimized.
2665 *
2666 * 4. Insert for MFU (c - p) < sizeof(arc_mfu) ->
2667 * MFU's resident set is consuming more space than it has been allotted. In
2668 * this situation, we must victimize our own cache, the MFU, for this insertion.
2669 */
2670static void
2671arc_get_data_buf(arc_buf_t *buf)
2672{
2673 arc_state_t *state = buf->b_hdr->b_state;
2674 uint64_t size = buf->b_hdr->b_size;
2675 arc_buf_contents_t type = buf->b_hdr->b_type;
da8ccd0e
PS
2676 arc_buf_contents_t evict = ARC_BUFC_DATA;
2677 boolean_t recycle = TRUE;
34dc7c2f
BB
2678
2679 arc_adapt(size, state);
2680
2681 /*
2682 * We have not yet reached cache maximum size,
2683 * just allocate a new buffer.
2684 */
2685 if (!arc_evict_needed(type)) {
2686 if (type == ARC_BUFC_METADATA) {
2687 buf->b_data = zio_buf_alloc(size);
cc7f677c 2688 arc_space_consume(size, ARC_SPACE_META);
34dc7c2f
BB
2689 } else {
2690 ASSERT(type == ARC_BUFC_DATA);
2691 buf->b_data = zio_data_buf_alloc(size);
cc7f677c 2692 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f
BB
2693 }
2694 goto out;
2695 }
2696
2697 /*
2698 * If we are prefetching from the mfu ghost list, this buffer
2699 * will end up on the mru list; so steal space from there.
2700 */
2701 if (state == arc_mfu_ghost)
2702 state = buf->b_hdr->b_flags & ARC_PREFETCH ? arc_mru : arc_mfu;
2703 else if (state == arc_mru_ghost)
2704 state = arc_mru;
2705
2706 if (state == arc_mru || state == arc_anon) {
2707 uint64_t mru_used = arc_anon->arcs_size + arc_mru->arcs_size;
d164b209 2708 state = (arc_mfu->arcs_lsize[type] >= size &&
34dc7c2f
BB
2709 arc_p > mru_used) ? arc_mfu : arc_mru;
2710 } else {
2711 /* MFU cases */
2712 uint64_t mfu_space = arc_c - arc_p;
d164b209 2713 state = (arc_mru->arcs_lsize[type] >= size &&
34dc7c2f
BB
2714 mfu_space > arc_mfu->arcs_size) ? arc_mru : arc_mfu;
2715 }
ab26409d 2716
da8ccd0e
PS
2717 /*
2718 * Evict data buffers prior to metadata buffers, unless we're
2719 * over the metadata limit and adding a metadata buffer.
2720 */
2721 if (type == ARC_BUFC_METADATA) {
2722 if (arc_meta_used >= arc_meta_limit)
2723 evict = ARC_BUFC_METADATA;
2724 else
2725 /*
2726 * In this case, we're evicting data while
2727 * adding metadata. Thus, to prevent recycling a
2728 * data buffer into a metadata buffer, recycling
2729 * is disabled in the following arc_evict call.
2730 */
2731 recycle = FALSE;
2732 }
2733
2734 if ((buf->b_data = arc_evict(state, 0, size, recycle, evict)) == NULL) {
34dc7c2f
BB
2735 if (type == ARC_BUFC_METADATA) {
2736 buf->b_data = zio_buf_alloc(size);
cc7f677c 2737 arc_space_consume(size, ARC_SPACE_META);
ab26409d
BB
2738
2739 /*
2740 * If we are unable to recycle an existing meta buffer
2741 * signal the reclaim thread. It will notify users
2742 * via the prune callback to drop references. The
2743 * prune callback in run in the context of the reclaim
2744 * thread to avoid deadlocking on the hash_lock.
da8ccd0e 2745 * Of course, only do this when recycle is true.
ab26409d 2746 */
da8ccd0e
PS
2747 if (recycle)
2748 cv_signal(&arc_reclaim_thr_cv);
34dc7c2f
BB
2749 } else {
2750 ASSERT(type == ARC_BUFC_DATA);
2751 buf->b_data = zio_data_buf_alloc(size);
cc7f677c 2752 arc_space_consume(size, ARC_SPACE_DATA);
34dc7c2f 2753 }
ab26409d 2754
da8ccd0e
PS
2755 /* Only bump this if we tried to recycle and failed */
2756 if (recycle)
2757 ARCSTAT_BUMP(arcstat_recycle_miss);
34dc7c2f
BB
2758 }
2759 ASSERT(buf->b_data != NULL);
2760out:
2761 /*
2762 * Update the state size. Note that ghost states have a
2763 * "ghost size" and so don't need to be updated.
2764 */
2765 if (!GHOST_STATE(buf->b_hdr->b_state)) {
2766 arc_buf_hdr_t *hdr = buf->b_hdr;
2767
2768 atomic_add_64(&hdr->b_state->arcs_size, size);
2769 if (list_link_active(&hdr->b_arc_node)) {
2770 ASSERT(refcount_is_zero(&hdr->b_refcnt));
2771 atomic_add_64(&hdr->b_state->arcs_lsize[type], size);
2772 }
2773 /*
2774 * If we are growing the cache, and we are adding anonymous
2775 * data, and we have outgrown arc_p, update arc_p
2776 */
89c8cac4
PS
2777 if (!zfs_arc_p_aggressive_disable &&
2778 arc_size < arc_c && hdr->b_state == arc_anon &&
34dc7c2f
BB
2779 arc_anon->arcs_size + arc_mru->arcs_size > arc_p)
2780 arc_p = MIN(arc_c, arc_p + size);
2781 }
2782}
2783
2784/*
2785 * This routine is called whenever a buffer is accessed.
2786 * NOTE: the hash lock is dropped in this function.
2787 */
2788static void
2789arc_access(arc_buf_hdr_t *buf, kmutex_t *hash_lock)
2790{
428870ff
BB
2791 clock_t now;
2792
34dc7c2f
BB
2793 ASSERT(MUTEX_HELD(hash_lock));
2794
2795 if (buf->b_state == arc_anon) {
2796 /*
2797 * This buffer is not in the cache, and does not
2798 * appear in our "ghost" list. Add the new buffer
2799 * to the MRU state.
2800 */
2801
2802 ASSERT(buf->b_arc_access == 0);
428870ff 2803 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2804 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2805 arc_change_state(arc_mru, buf, hash_lock);
2806
2807 } else if (buf->b_state == arc_mru) {
428870ff
BB
2808 now = ddi_get_lbolt();
2809
34dc7c2f
BB
2810 /*
2811 * If this buffer is here because of a prefetch, then either:
2812 * - clear the flag if this is a "referencing" read
2813 * (any subsequent access will bump this into the MFU state).
2814 * or
2815 * - move the buffer to the head of the list if this is
2816 * another prefetch (to make it less likely to be evicted).
2817 */
2818 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2819 if (refcount_count(&buf->b_refcnt) == 0) {
2820 ASSERT(list_link_active(&buf->b_arc_node));
2821 } else {
2822 buf->b_flags &= ~ARC_PREFETCH;
e0b0ca98 2823 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2824 ARCSTAT_BUMP(arcstat_mru_hits);
2825 }
428870ff 2826 buf->b_arc_access = now;
34dc7c2f
BB
2827 return;
2828 }
2829
2830 /*
2831 * This buffer has been "accessed" only once so far,
2832 * but it is still in the cache. Move it to the MFU
2833 * state.
2834 */
0b75bdb3 2835 if (ddi_time_after(now, buf->b_arc_access + ARC_MINTIME)) {
34dc7c2f
BB
2836 /*
2837 * More than 125ms have passed since we
2838 * instantiated this buffer. Move it to the
2839 * most frequently used state.
2840 */
428870ff 2841 buf->b_arc_access = now;
34dc7c2f
BB
2842 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2843 arc_change_state(arc_mfu, buf, hash_lock);
2844 }
e0b0ca98 2845 atomic_inc_32(&buf->b_mru_hits);
34dc7c2f
BB
2846 ARCSTAT_BUMP(arcstat_mru_hits);
2847 } else if (buf->b_state == arc_mru_ghost) {
2848 arc_state_t *new_state;
2849 /*
2850 * This buffer has been "accessed" recently, but
2851 * was evicted from the cache. Move it to the
2852 * MFU state.
2853 */
2854
2855 if (buf->b_flags & ARC_PREFETCH) {
2856 new_state = arc_mru;
2857 if (refcount_count(&buf->b_refcnt) > 0)
2858 buf->b_flags &= ~ARC_PREFETCH;
2859 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, buf);
2860 } else {
2861 new_state = arc_mfu;
2862 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2863 }
2864
428870ff 2865 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2866 arc_change_state(new_state, buf, hash_lock);
2867
e0b0ca98 2868 atomic_inc_32(&buf->b_mru_ghost_hits);
34dc7c2f
BB
2869 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
2870 } else if (buf->b_state == arc_mfu) {
2871 /*
2872 * This buffer has been accessed more than once and is
2873 * still in the cache. Keep it in the MFU state.
2874 *
2875 * NOTE: an add_reference() that occurred when we did
2876 * the arc_read() will have kicked this off the list.
2877 * If it was a prefetch, we will explicitly move it to
2878 * the head of the list now.
2879 */
2880 if ((buf->b_flags & ARC_PREFETCH) != 0) {
2881 ASSERT(refcount_count(&buf->b_refcnt) == 0);
2882 ASSERT(list_link_active(&buf->b_arc_node));
2883 }
e0b0ca98 2884 atomic_inc_32(&buf->b_mfu_hits);
34dc7c2f 2885 ARCSTAT_BUMP(arcstat_mfu_hits);
428870ff 2886 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2887 } else if (buf->b_state == arc_mfu_ghost) {
2888 arc_state_t *new_state = arc_mfu;
2889 /*
2890 * This buffer has been accessed more than once but has
2891 * been evicted from the cache. Move it back to the
2892 * MFU state.
2893 */
2894
2895 if (buf->b_flags & ARC_PREFETCH) {
2896 /*
2897 * This is a prefetch access...
2898 * move this block back to the MRU state.
2899 */
c99c9001 2900 ASSERT0(refcount_count(&buf->b_refcnt));
34dc7c2f
BB
2901 new_state = arc_mru;
2902 }
2903
428870ff 2904 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2905 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2906 arc_change_state(new_state, buf, hash_lock);
2907
e0b0ca98 2908 atomic_inc_32(&buf->b_mfu_ghost_hits);
34dc7c2f
BB
2909 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
2910 } else if (buf->b_state == arc_l2c_only) {
2911 /*
2912 * This buffer is on the 2nd Level ARC.
2913 */
2914
428870ff 2915 buf->b_arc_access = ddi_get_lbolt();
34dc7c2f
BB
2916 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, buf);
2917 arc_change_state(arc_mfu, buf, hash_lock);
2918 } else {
2919 ASSERT(!"invalid arc state");
2920 }
2921}
2922
2923/* a generic arc_done_func_t which you can use */
2924/* ARGSUSED */
2925void
2926arc_bcopy_func(zio_t *zio, arc_buf_t *buf, void *arg)
2927{
428870ff
BB
2928 if (zio == NULL || zio->io_error == 0)
2929 bcopy(buf->b_data, arg, buf->b_hdr->b_size);
13fe0198 2930 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2931}
2932
2933/* a generic arc_done_func_t */
2934void
2935arc_getbuf_func(zio_t *zio, arc_buf_t *buf, void *arg)
2936{
2937 arc_buf_t **bufp = arg;
2938 if (zio && zio->io_error) {
13fe0198 2939 VERIFY(arc_buf_remove_ref(buf, arg));
34dc7c2f
BB
2940 *bufp = NULL;
2941 } else {
2942 *bufp = buf;
428870ff 2943 ASSERT(buf->b_data);
34dc7c2f
BB
2944 }
2945}
2946
2947static void
2948arc_read_done(zio_t *zio)
2949{
9b67f605 2950 arc_buf_hdr_t *hdr;
34dc7c2f
BB
2951 arc_buf_t *buf;
2952 arc_buf_t *abuf; /* buffer we're assigning to callback */
9b67f605 2953 kmutex_t *hash_lock = NULL;
34dc7c2f
BB
2954 arc_callback_t *callback_list, *acb;
2955 int freeable = FALSE;
2956
2957 buf = zio->io_private;
2958 hdr = buf->b_hdr;
2959
2960 /*
2961 * The hdr was inserted into hash-table and removed from lists
2962 * prior to starting I/O. We should find this header, since
2963 * it's in the hash table, and it should be legit since it's
2964 * not possible to evict it during the I/O. The only possible
2965 * reason for it not to be found is if we were freed during the
2966 * read.
2967 */
9b67f605
MA
2968 if (HDR_IN_HASH_TABLE(hdr)) {
2969 arc_buf_hdr_t *found;
2970
2971 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
2972 ASSERT3U(hdr->b_dva.dva_word[0], ==,
2973 BP_IDENTITY(zio->io_bp)->dva_word[0]);
2974 ASSERT3U(hdr->b_dva.dva_word[1], ==,
2975 BP_IDENTITY(zio->io_bp)->dva_word[1]);
2976
2977 found = buf_hash_find(hdr->b_spa, zio->io_bp,
2978 &hash_lock);
2979
2980 ASSERT((found == NULL && HDR_FREED_IN_READ(hdr) &&
2981 hash_lock == NULL) ||
2982 (found == hdr &&
2983 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
2984 (found == hdr && HDR_L2_READING(hdr)));
2985 }
34dc7c2f 2986
b128c09f 2987 hdr->b_flags &= ~ARC_L2_EVICTED;
34dc7c2f 2988 if (l2arc_noprefetch && (hdr->b_flags & ARC_PREFETCH))
b128c09f 2989 hdr->b_flags &= ~ARC_L2CACHE;
34dc7c2f
BB
2990
2991 /* byteswap if necessary */
2992 callback_list = hdr->b_acb;
2993 ASSERT(callback_list != NULL);
428870ff 2994 if (BP_SHOULD_BYTESWAP(zio->io_bp) && zio->io_error == 0) {
9ae529ec
CS
2995 dmu_object_byteswap_t bswap =
2996 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
b01615d5
RY
2997 if (BP_GET_LEVEL(zio->io_bp) > 0)
2998 byteswap_uint64_array(buf->b_data, hdr->b_size);
2999 else
3000 dmu_ot_byteswap[bswap].ob_func(buf->b_data, hdr->b_size);
b128c09f 3001 }
34dc7c2f
BB
3002
3003 arc_cksum_compute(buf, B_FALSE);
498877ba 3004 arc_buf_watch(buf);
34dc7c2f 3005
428870ff
BB
3006 if (hash_lock && zio->io_error == 0 && hdr->b_state == arc_anon) {
3007 /*
3008 * Only call arc_access on anonymous buffers. This is because
3009 * if we've issued an I/O for an evicted buffer, we've already
3010 * called arc_access (to prevent any simultaneous readers from
3011 * getting confused).
3012 */
3013 arc_access(hdr, hash_lock);
3014 }
3015
34dc7c2f
BB
3016 /* create copies of the data buffer for the callers */
3017 abuf = buf;
3018 for (acb = callback_list; acb; acb = acb->acb_next) {
3019 if (acb->acb_done) {
1eb5bfa3
GW
3020 if (abuf == NULL) {
3021 ARCSTAT_BUMP(arcstat_duplicate_reads);
34dc7c2f 3022 abuf = arc_buf_clone(buf);
1eb5bfa3 3023 }
34dc7c2f
BB
3024 acb->acb_buf = abuf;
3025 abuf = NULL;
3026 }
3027 }
3028 hdr->b_acb = NULL;
3029 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3030 ASSERT(!HDR_BUF_AVAILABLE(hdr));
428870ff
BB
3031 if (abuf == buf) {
3032 ASSERT(buf->b_efunc == NULL);
3033 ASSERT(hdr->b_datacnt == 1);
34dc7c2f 3034 hdr->b_flags |= ARC_BUF_AVAILABLE;
428870ff 3035 }
34dc7c2f
BB
3036
3037 ASSERT(refcount_is_zero(&hdr->b_refcnt) || callback_list != NULL);
3038
3039 if (zio->io_error != 0) {
3040 hdr->b_flags |= ARC_IO_ERROR;
3041 if (hdr->b_state != arc_anon)
3042 arc_change_state(arc_anon, hdr, hash_lock);
3043 if (HDR_IN_HASH_TABLE(hdr))
3044 buf_hash_remove(hdr);
3045 freeable = refcount_is_zero(&hdr->b_refcnt);
34dc7c2f
BB
3046 }
3047
3048 /*
3049 * Broadcast before we drop the hash_lock to avoid the possibility
3050 * that the hdr (and hence the cv) might be freed before we get to
3051 * the cv_broadcast().
3052 */
3053 cv_broadcast(&hdr->b_cv);
3054
3055 if (hash_lock) {
34dc7c2f
BB
3056 mutex_exit(hash_lock);
3057 } else {
3058 /*
3059 * This block was freed while we waited for the read to
3060 * complete. It has been removed from the hash table and
3061 * moved to the anonymous state (so that it won't show up
3062 * in the cache).
3063 */
3064 ASSERT3P(hdr->b_state, ==, arc_anon);
3065 freeable = refcount_is_zero(&hdr->b_refcnt);
3066 }
3067
3068 /* execute each callback and free its structure */
3069 while ((acb = callback_list) != NULL) {
3070 if (acb->acb_done)
3071 acb->acb_done(zio, acb->acb_buf, acb->acb_private);
3072
3073 if (acb->acb_zio_dummy != NULL) {
3074 acb->acb_zio_dummy->io_error = zio->io_error;
3075 zio_nowait(acb->acb_zio_dummy);
3076 }
3077
3078 callback_list = acb->acb_next;
3079 kmem_free(acb, sizeof (arc_callback_t));
3080 }
3081
3082 if (freeable)
3083 arc_hdr_destroy(hdr);
3084}
3085
3086/*
5c839890 3087 * "Read" the block at the specified DVA (in bp) via the
34dc7c2f
BB
3088 * cache. If the block is found in the cache, invoke the provided
3089 * callback immediately and return. Note that the `zio' parameter
3090 * in the callback will be NULL in this case, since no IO was
3091 * required. If the block is not in the cache pass the read request
3092 * on to the spa with a substitute callback function, so that the
3093 * requested block will be added to the cache.
3094 *
3095 * If a read request arrives for a block that has a read in-progress,
3096 * either wait for the in-progress read to complete (and return the
3097 * results); or, if this is a read with a "done" func, add a record
3098 * to the read to invoke the "done" func when the read completes,
3099 * and return; or just return.
3100 *
3101 * arc_read_done() will invoke all the requested "done" functions
3102 * for readers of this block.
3103 */
3104int
294f6806 3105arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_done_func_t *done,
e8b96c60 3106 void *private, zio_priority_t priority, int zio_flags, uint32_t *arc_flags,
5dbd68a3 3107 const zbookmark_phys_t *zb)
34dc7c2f 3108{
9b67f605 3109 arc_buf_hdr_t *hdr = NULL;
d4ed6673 3110 arc_buf_t *buf = NULL;
9b67f605 3111 kmutex_t *hash_lock = NULL;
34dc7c2f 3112 zio_t *rzio;
3541dc6d 3113 uint64_t guid = spa_load_guid(spa);
1421c891 3114 int rc = 0;
34dc7c2f 3115
9b67f605
MA
3116 ASSERT(!BP_IS_EMBEDDED(bp) ||
3117 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
3118
34dc7c2f 3119top:
9b67f605
MA
3120 if (!BP_IS_EMBEDDED(bp)) {
3121 /*
3122 * Embedded BP's have no DVA and require no I/O to "read".
3123 * Create an anonymous arc buf to back it.
3124 */
3125 hdr = buf_hash_find(guid, bp, &hash_lock);
3126 }
3127
3128 if (hdr != NULL && hdr->b_datacnt > 0) {
34dc7c2f
BB
3129
3130 *arc_flags |= ARC_CACHED;
3131
3132 if (HDR_IO_IN_PROGRESS(hdr)) {
3133
3134 if (*arc_flags & ARC_WAIT) {
3135 cv_wait(&hdr->b_cv, hash_lock);
3136 mutex_exit(hash_lock);
3137 goto top;
3138 }
3139 ASSERT(*arc_flags & ARC_NOWAIT);
3140
3141 if (done) {
3142 arc_callback_t *acb = NULL;
3143
3144 acb = kmem_zalloc(sizeof (arc_callback_t),
691f6ac4 3145 KM_PUSHPAGE);
34dc7c2f
BB
3146 acb->acb_done = done;
3147 acb->acb_private = private;
34dc7c2f
BB
3148 if (pio != NULL)
3149 acb->acb_zio_dummy = zio_null(pio,
d164b209 3150 spa, NULL, NULL, NULL, zio_flags);
34dc7c2f
BB
3151
3152 ASSERT(acb->acb_done != NULL);
3153 acb->acb_next = hdr->b_acb;
3154 hdr->b_acb = acb;
3155 add_reference(hdr, hash_lock, private);
3156 mutex_exit(hash_lock);
1421c891 3157 goto out;
34dc7c2f
BB
3158 }
3159 mutex_exit(hash_lock);
1421c891 3160 goto out;
34dc7c2f
BB
3161 }
3162
3163 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3164
3165 if (done) {
3166 add_reference(hdr, hash_lock, private);
3167 /*
3168 * If this block is already in use, create a new
3169 * copy of the data so that we will be guaranteed
3170 * that arc_release() will always succeed.
3171 */
3172 buf = hdr->b_buf;
3173 ASSERT(buf);
3174 ASSERT(buf->b_data);
3175 if (HDR_BUF_AVAILABLE(hdr)) {
3176 ASSERT(buf->b_efunc == NULL);
3177 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3178 } else {
3179 buf = arc_buf_clone(buf);
3180 }
428870ff 3181
34dc7c2f
BB
3182 } else if (*arc_flags & ARC_PREFETCH &&
3183 refcount_count(&hdr->b_refcnt) == 0) {
3184 hdr->b_flags |= ARC_PREFETCH;
3185 }
3186 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
3187 arc_access(hdr, hash_lock);
b128c09f
BB
3188 if (*arc_flags & ARC_L2CACHE)
3189 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3190 if (*arc_flags & ARC_L2COMPRESS)
3191 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3192 mutex_exit(hash_lock);
3193 ARCSTAT_BUMP(arcstat_hits);
3194 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3195 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3196 data, metadata, hits);
3197
3198 if (done)
3199 done(NULL, buf, private);
3200 } else {
3201 uint64_t size = BP_GET_LSIZE(bp);
9b67f605 3202 arc_callback_t *acb;
b128c09f 3203 vdev_t *vd = NULL;
a117a6d6 3204 uint64_t addr = 0;
d164b209 3205 boolean_t devw = B_FALSE;
0ed212dc
BP
3206 enum zio_compress b_compress = ZIO_COMPRESS_OFF;
3207 uint64_t b_asize = 0;
34dc7c2f 3208
5f6d0b6f
BB
3209 /*
3210 * Gracefully handle a damaged logical block size as a
3211 * checksum error by passing a dummy zio to the done callback.
3212 */
3213 if (size > SPA_MAXBLOCKSIZE) {
3214 if (done) {
3215 rzio = zio_null(pio, spa, NULL,
3216 NULL, NULL, zio_flags);
3217 rzio->io_error = ECKSUM;
3218 done(rzio, buf, private);
3219 zio_nowait(rzio);
3220 }
3221 rc = ECKSUM;
3222 goto out;
3223 }
3224
34dc7c2f
BB
3225 if (hdr == NULL) {
3226 /* this block is not in the cache */
9b67f605 3227 arc_buf_hdr_t *exists = NULL;
34dc7c2f
BB
3228 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
3229 buf = arc_buf_alloc(spa, size, private, type);
3230 hdr = buf->b_hdr;
9b67f605
MA
3231 if (!BP_IS_EMBEDDED(bp)) {
3232 hdr->b_dva = *BP_IDENTITY(bp);
3233 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
3234 hdr->b_cksum0 = bp->blk_cksum.zc_word[0];
3235 exists = buf_hash_insert(hdr, &hash_lock);
3236 }
3237 if (exists != NULL) {
34dc7c2f
BB
3238 /* somebody beat us to the hash insert */
3239 mutex_exit(hash_lock);
428870ff 3240 buf_discard_identity(hdr);
34dc7c2f
BB
3241 (void) arc_buf_remove_ref(buf, private);
3242 goto top; /* restart the IO request */
3243 }
3244 /* if this is a prefetch, we don't have a reference */
3245 if (*arc_flags & ARC_PREFETCH) {
3246 (void) remove_reference(hdr, hash_lock,
3247 private);
3248 hdr->b_flags |= ARC_PREFETCH;
3249 }
b128c09f
BB
3250 if (*arc_flags & ARC_L2CACHE)
3251 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3252 if (*arc_flags & ARC_L2COMPRESS)
3253 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3254 if (BP_GET_LEVEL(bp) > 0)
3255 hdr->b_flags |= ARC_INDIRECT;
3256 } else {
3257 /* this block is in the ghost cache */
3258 ASSERT(GHOST_STATE(hdr->b_state));
3259 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
c99c9001 3260 ASSERT0(refcount_count(&hdr->b_refcnt));
34dc7c2f
BB
3261 ASSERT(hdr->b_buf == NULL);
3262
3263 /* if this is a prefetch, we don't have a reference */
3264 if (*arc_flags & ARC_PREFETCH)
3265 hdr->b_flags |= ARC_PREFETCH;
3266 else
3267 add_reference(hdr, hash_lock, private);
b128c09f
BB
3268 if (*arc_flags & ARC_L2CACHE)
3269 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3270 if (*arc_flags & ARC_L2COMPRESS)
3271 hdr->b_flags |= ARC_L2COMPRESS;
34dc7c2f
BB
3272 buf = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
3273 buf->b_hdr = hdr;
3274 buf->b_data = NULL;
3275 buf->b_efunc = NULL;
3276 buf->b_private = NULL;
3277 buf->b_next = NULL;
3278 hdr->b_buf = buf;
34dc7c2f
BB
3279 ASSERT(hdr->b_datacnt == 0);
3280 hdr->b_datacnt = 1;
428870ff
BB
3281 arc_get_data_buf(buf);
3282 arc_access(hdr, hash_lock);
34dc7c2f
BB
3283 }
3284
428870ff
BB
3285 ASSERT(!GHOST_STATE(hdr->b_state));
3286
691f6ac4 3287 acb = kmem_zalloc(sizeof (arc_callback_t), KM_PUSHPAGE);
34dc7c2f
BB
3288 acb->acb_done = done;
3289 acb->acb_private = private;
34dc7c2f
BB
3290
3291 ASSERT(hdr->b_acb == NULL);
3292 hdr->b_acb = acb;
3293 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3294
0ed212dc 3295 if (hdr->b_l2hdr != NULL &&
b128c09f 3296 (vd = hdr->b_l2hdr->b_dev->l2ad_vdev) != NULL) {
d164b209 3297 devw = hdr->b_l2hdr->b_dev->l2ad_writing;
b128c09f 3298 addr = hdr->b_l2hdr->b_daddr;
0ed212dc
BP
3299 b_compress = hdr->b_l2hdr->b_compress;
3300 b_asize = hdr->b_l2hdr->b_asize;
b128c09f
BB
3301 /*
3302 * Lock out device removal.
3303 */
3304 if (vdev_is_dead(vd) ||
3305 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
3306 vd = NULL;
3307 }
3308
9b67f605
MA
3309 if (hash_lock != NULL)
3310 mutex_exit(hash_lock);
b128c09f 3311
e49f1e20
WA
3312 /*
3313 * At this point, we have a level 1 cache miss. Try again in
3314 * L2ARC if possible.
3315 */
34dc7c2f 3316 ASSERT3U(hdr->b_size, ==, size);
428870ff 3317 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr, blkptr_t *, bp,
5dbd68a3 3318 uint64_t, size, zbookmark_phys_t *, zb);
34dc7c2f
BB
3319 ARCSTAT_BUMP(arcstat_misses);
3320 ARCSTAT_CONDSTAT(!(hdr->b_flags & ARC_PREFETCH),
3321 demand, prefetch, hdr->b_type != ARC_BUFC_METADATA,
3322 data, metadata, misses);
3323
d164b209 3324 if (vd != NULL && l2arc_ndev != 0 && !(l2arc_norw && devw)) {
34dc7c2f
BB
3325 /*
3326 * Read from the L2ARC if the following are true:
b128c09f
BB
3327 * 1. The L2ARC vdev was previously cached.
3328 * 2. This buffer still has L2ARC metadata.
3329 * 3. This buffer isn't currently writing to the L2ARC.
3330 * 4. The L2ARC entry wasn't evicted, which may
3331 * also have invalidated the vdev.
d164b209 3332 * 5. This isn't prefetch and l2arc_noprefetch is set.
34dc7c2f 3333 */
b128c09f 3334 if (hdr->b_l2hdr != NULL &&
d164b209
BB
3335 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
3336 !(l2arc_noprefetch && HDR_PREFETCH(hdr))) {
34dc7c2f
BB
3337 l2arc_read_callback_t *cb;
3338
3339 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
3340 ARCSTAT_BUMP(arcstat_l2_hits);
e0b0ca98 3341 atomic_inc_32(&hdr->b_l2hdr->b_hits);
34dc7c2f 3342
34dc7c2f 3343 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
691f6ac4 3344 KM_PUSHPAGE);
34dc7c2f
BB
3345 cb->l2rcb_buf = buf;
3346 cb->l2rcb_spa = spa;
3347 cb->l2rcb_bp = *bp;
3348 cb->l2rcb_zb = *zb;
b128c09f 3349 cb->l2rcb_flags = zio_flags;
0ed212dc 3350 cb->l2rcb_compress = b_compress;
34dc7c2f 3351
a117a6d6
GW
3352 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
3353 addr + size < vd->vdev_psize -
3354 VDEV_LABEL_END_SIZE);
3355
34dc7c2f 3356 /*
b128c09f
BB
3357 * l2arc read. The SCL_L2ARC lock will be
3358 * released by l2arc_read_done().
3a17a7a9
SK
3359 * Issue a null zio if the underlying buffer
3360 * was squashed to zero size by compression.
34dc7c2f 3361 */
0ed212dc 3362 if (b_compress == ZIO_COMPRESS_EMPTY) {
3a17a7a9
SK
3363 rzio = zio_null(pio, spa, vd,
3364 l2arc_read_done, cb,
3365 zio_flags | ZIO_FLAG_DONT_CACHE |
3366 ZIO_FLAG_CANFAIL |
3367 ZIO_FLAG_DONT_PROPAGATE |
3368 ZIO_FLAG_DONT_RETRY);
3369 } else {
3370 rzio = zio_read_phys(pio, vd, addr,
0ed212dc
BP
3371 b_asize, buf->b_data,
3372 ZIO_CHECKSUM_OFF,
3a17a7a9
SK
3373 l2arc_read_done, cb, priority,
3374 zio_flags | ZIO_FLAG_DONT_CACHE |
3375 ZIO_FLAG_CANFAIL |
3376 ZIO_FLAG_DONT_PROPAGATE |
3377 ZIO_FLAG_DONT_RETRY, B_FALSE);
3378 }
34dc7c2f
BB
3379 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
3380 zio_t *, rzio);
0ed212dc 3381 ARCSTAT_INCR(arcstat_l2_read_bytes, b_asize);
34dc7c2f 3382
b128c09f
BB
3383 if (*arc_flags & ARC_NOWAIT) {
3384 zio_nowait(rzio);
1421c891 3385 goto out;
b128c09f 3386 }
34dc7c2f 3387
b128c09f
BB
3388 ASSERT(*arc_flags & ARC_WAIT);
3389 if (zio_wait(rzio) == 0)
1421c891 3390 goto out;
b128c09f
BB
3391
3392 /* l2arc read error; goto zio_read() */
34dc7c2f
BB
3393 } else {
3394 DTRACE_PROBE1(l2arc__miss,
3395 arc_buf_hdr_t *, hdr);
3396 ARCSTAT_BUMP(arcstat_l2_misses);
3397 if (HDR_L2_WRITING(hdr))
3398 ARCSTAT_BUMP(arcstat_l2_rw_clash);
b128c09f 3399 spa_config_exit(spa, SCL_L2ARC, vd);
34dc7c2f 3400 }
d164b209
BB
3401 } else {
3402 if (vd != NULL)
3403 spa_config_exit(spa, SCL_L2ARC, vd);
3404 if (l2arc_ndev != 0) {
3405 DTRACE_PROBE1(l2arc__miss,
3406 arc_buf_hdr_t *, hdr);
3407 ARCSTAT_BUMP(arcstat_l2_misses);
3408 }
34dc7c2f 3409 }
34dc7c2f
BB
3410
3411 rzio = zio_read(pio, spa, bp, buf->b_data, size,
b128c09f 3412 arc_read_done, buf, priority, zio_flags, zb);
34dc7c2f 3413
1421c891
PS
3414 if (*arc_flags & ARC_WAIT) {
3415 rc = zio_wait(rzio);
3416 goto out;
3417 }
34dc7c2f
BB
3418
3419 ASSERT(*arc_flags & ARC_NOWAIT);
3420 zio_nowait(rzio);
3421 }
1421c891
PS
3422
3423out:
3424 spa_read_history_add(spa, zb, *arc_flags);
3425 return (rc);
34dc7c2f
BB
3426}
3427
ab26409d
BB
3428arc_prune_t *
3429arc_add_prune_callback(arc_prune_func_t *func, void *private)
3430{
3431 arc_prune_t *p;
3432
d1d7e268 3433 p = kmem_alloc(sizeof (*p), KM_SLEEP);
ab26409d
BB
3434 p->p_pfunc = func;
3435 p->p_private = private;
3436 list_link_init(&p->p_node);
3437 refcount_create(&p->p_refcnt);
3438
3439 mutex_enter(&arc_prune_mtx);
3440 refcount_add(&p->p_refcnt, &arc_prune_list);
3441 list_insert_head(&arc_prune_list, p);
3442 mutex_exit(&arc_prune_mtx);
3443
3444 return (p);
3445}
3446
3447void
3448arc_remove_prune_callback(arc_prune_t *p)
3449{
3450 mutex_enter(&arc_prune_mtx);
3451 list_remove(&arc_prune_list, p);
3452 if (refcount_remove(&p->p_refcnt, &arc_prune_list) == 0) {
3453 refcount_destroy(&p->p_refcnt);
3454 kmem_free(p, sizeof (*p));
3455 }
3456 mutex_exit(&arc_prune_mtx);
3457}
3458
34dc7c2f
BB
3459void
3460arc_set_callback(arc_buf_t *buf, arc_evict_func_t *func, void *private)
3461{
3462 ASSERT(buf->b_hdr != NULL);
3463 ASSERT(buf->b_hdr->b_state != arc_anon);
3464 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt) || func == NULL);
428870ff
BB
3465 ASSERT(buf->b_efunc == NULL);
3466 ASSERT(!HDR_BUF_AVAILABLE(buf->b_hdr));
3467
34dc7c2f
BB
3468 buf->b_efunc = func;
3469 buf->b_private = private;
3470}
3471
df4474f9
MA
3472/*
3473 * Notify the arc that a block was freed, and thus will never be used again.
3474 */
3475void
3476arc_freed(spa_t *spa, const blkptr_t *bp)
3477{
3478 arc_buf_hdr_t *hdr;
3479 kmutex_t *hash_lock;
3480 uint64_t guid = spa_load_guid(spa);
3481
9b67f605
MA
3482 ASSERT(!BP_IS_EMBEDDED(bp));
3483
3484 hdr = buf_hash_find(guid, bp, &hash_lock);
df4474f9
MA
3485 if (hdr == NULL)
3486 return;
3487 if (HDR_BUF_AVAILABLE(hdr)) {
3488 arc_buf_t *buf = hdr->b_buf;
3489 add_reference(hdr, hash_lock, FTAG);
3490 hdr->b_flags &= ~ARC_BUF_AVAILABLE;
3491 mutex_exit(hash_lock);
3492
3493 arc_release(buf, FTAG);
3494 (void) arc_buf_remove_ref(buf, FTAG);
3495 } else {
3496 mutex_exit(hash_lock);
3497 }
3498
3499}
3500
34dc7c2f 3501/*
bd089c54
MA
3502 * Clear the user eviction callback set by arc_set_callback(), first calling
3503 * it if it exists. Because the presence of a callback keeps an arc_buf cached
3504 * clearing the callback may result in the arc_buf being destroyed. However,
3505 * it will not result in the *last* arc_buf being destroyed, hence the data
3506 * will remain cached in the ARC. We make a copy of the arc buffer here so
3507 * that we can process the callback without holding any locks.
3508 *
3509 * It's possible that the callback is already in the process of being cleared
3510 * by another thread. In this case we can not clear the callback.
3511 *
3512 * Returns B_TRUE if the callback was successfully called and cleared.
34dc7c2f 3513 */
bd089c54
MA
3514boolean_t
3515arc_clear_callback(arc_buf_t *buf)
34dc7c2f
BB
3516{
3517 arc_buf_hdr_t *hdr;
3518 kmutex_t *hash_lock;
bd089c54
MA
3519 arc_evict_func_t *efunc = buf->b_efunc;
3520 void *private = buf->b_private;
34dc7c2f 3521
428870ff 3522 mutex_enter(&buf->b_evict_lock);
34dc7c2f
BB
3523 hdr = buf->b_hdr;
3524 if (hdr == NULL) {
3525 /*
3526 * We are in arc_do_user_evicts().
3527 */
3528 ASSERT(buf->b_data == NULL);
428870ff 3529 mutex_exit(&buf->b_evict_lock);
bd089c54 3530 return (B_FALSE);
b128c09f 3531 } else if (buf->b_data == NULL) {
34dc7c2f 3532 /*
b128c09f
BB
3533 * We are on the eviction list; process this buffer now
3534 * but let arc_do_user_evicts() do the reaping.
34dc7c2f 3535 */
b128c09f 3536 buf->b_efunc = NULL;
428870ff 3537 mutex_exit(&buf->b_evict_lock);
bd089c54
MA
3538 VERIFY0(efunc(private));
3539 return (B_TRUE);
34dc7c2f 3540 }
b128c09f
BB
3541 hash_lock = HDR_LOCK(hdr);
3542 mutex_enter(hash_lock);
428870ff
BB
3543 hdr = buf->b_hdr;
3544 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 3545
34dc7c2f
BB
3546 ASSERT3U(refcount_count(&hdr->b_refcnt), <, hdr->b_datacnt);
3547 ASSERT(hdr->b_state == arc_mru || hdr->b_state == arc_mfu);
3548
bd089c54
MA
3549 buf->b_efunc = NULL;
3550 buf->b_private = NULL;
34dc7c2f 3551
bd089c54
MA
3552 if (hdr->b_datacnt > 1) {
3553 mutex_exit(&buf->b_evict_lock);
3554 arc_buf_destroy(buf, FALSE, TRUE);
3555 } else {
3556 ASSERT(buf == hdr->b_buf);
3557 hdr->b_flags |= ARC_BUF_AVAILABLE;
3558 mutex_exit(&buf->b_evict_lock);
34dc7c2f 3559 }
34dc7c2f 3560
bd089c54
MA
3561 mutex_exit(hash_lock);
3562 VERIFY0(efunc(private));
3563 return (B_TRUE);
34dc7c2f
BB
3564}
3565
3566/*
e49f1e20
WA
3567 * Release this buffer from the cache, making it an anonymous buffer. This
3568 * must be done after a read and prior to modifying the buffer contents.
34dc7c2f 3569 * If the buffer has more than one reference, we must make
b128c09f 3570 * a new hdr for the buffer.
34dc7c2f
BB
3571 */
3572void
3573arc_release(arc_buf_t *buf, void *tag)
3574{
b128c09f 3575 arc_buf_hdr_t *hdr;
428870ff 3576 kmutex_t *hash_lock = NULL;
b128c09f 3577 l2arc_buf_hdr_t *l2hdr;
d4ed6673 3578 uint64_t buf_size = 0;
34dc7c2f 3579
428870ff
BB
3580 /*
3581 * It would be nice to assert that if it's DMU metadata (level >
3582 * 0 || it's the dnode file), then it must be syncing context.
3583 * But we don't know that information at this level.
3584 */
3585
3586 mutex_enter(&buf->b_evict_lock);
b128c09f
BB
3587 hdr = buf->b_hdr;
3588
34dc7c2f
BB
3589 /* this buffer is not on any list */
3590 ASSERT(refcount_count(&hdr->b_refcnt) > 0);
3591
3592 if (hdr->b_state == arc_anon) {
3593 /* this buffer is already released */
34dc7c2f 3594 ASSERT(buf->b_efunc == NULL);
9babb374
BB
3595 } else {
3596 hash_lock = HDR_LOCK(hdr);
3597 mutex_enter(hash_lock);
428870ff
BB
3598 hdr = buf->b_hdr;
3599 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f
BB
3600 }
3601
b128c09f
BB
3602 l2hdr = hdr->b_l2hdr;
3603 if (l2hdr) {
3604 mutex_enter(&l2arc_buflist_mtx);
3605 hdr->b_l2hdr = NULL;
47fe91b5 3606 list_remove(l2hdr->b_dev->l2ad_buflist, hdr);
b128c09f 3607 }
a117a6d6 3608 buf_size = hdr->b_size;
b128c09f 3609
34dc7c2f
BB
3610 /*
3611 * Do we have more than one buf?
3612 */
b128c09f 3613 if (hdr->b_datacnt > 1) {
34dc7c2f
BB
3614 arc_buf_hdr_t *nhdr;
3615 arc_buf_t **bufp;
3616 uint64_t blksz = hdr->b_size;
d164b209 3617 uint64_t spa = hdr->b_spa;
34dc7c2f
BB
3618 arc_buf_contents_t type = hdr->b_type;
3619 uint32_t flags = hdr->b_flags;
3620
b128c09f 3621 ASSERT(hdr->b_buf != buf || buf->b_next != NULL);
34dc7c2f 3622 /*
428870ff
BB
3623 * Pull the data off of this hdr and attach it to
3624 * a new anonymous hdr.
34dc7c2f
BB
3625 */
3626 (void) remove_reference(hdr, hash_lock, tag);
3627 bufp = &hdr->b_buf;
3628 while (*bufp != buf)
3629 bufp = &(*bufp)->b_next;
428870ff 3630 *bufp = buf->b_next;
34dc7c2f
BB
3631 buf->b_next = NULL;
3632
3633 ASSERT3U(hdr->b_state->arcs_size, >=, hdr->b_size);
3634 atomic_add_64(&hdr->b_state->arcs_size, -hdr->b_size);
3635 if (refcount_is_zero(&hdr->b_refcnt)) {
3636 uint64_t *size = &hdr->b_state->arcs_lsize[hdr->b_type];
3637 ASSERT3U(*size, >=, hdr->b_size);
3638 atomic_add_64(size, -hdr->b_size);
3639 }
1eb5bfa3
GW
3640
3641 /*
3642 * We're releasing a duplicate user data buffer, update
3643 * our statistics accordingly.
3644 */
3645 if (hdr->b_type == ARC_BUFC_DATA) {
3646 ARCSTAT_BUMPDOWN(arcstat_duplicate_buffers);
3647 ARCSTAT_INCR(arcstat_duplicate_buffers_size,
3648 -hdr->b_size);
3649 }
34dc7c2f 3650 hdr->b_datacnt -= 1;
34dc7c2f 3651 arc_cksum_verify(buf);
498877ba 3652 arc_buf_unwatch(buf);
34dc7c2f
BB
3653
3654 mutex_exit(hash_lock);
3655
3656 nhdr = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
3657 nhdr->b_size = blksz;
3658 nhdr->b_spa = spa;
3659 nhdr->b_type = type;
3660 nhdr->b_buf = buf;
3661 nhdr->b_state = arc_anon;
3662 nhdr->b_arc_access = 0;
e0b0ca98
BB
3663 nhdr->b_mru_hits = 0;
3664 nhdr->b_mru_ghost_hits = 0;
3665 nhdr->b_mfu_hits = 0;
3666 nhdr->b_mfu_ghost_hits = 0;
3667 nhdr->b_l2_hits = 0;
34dc7c2f
BB
3668 nhdr->b_flags = flags & ARC_L2_WRITING;
3669 nhdr->b_l2hdr = NULL;
3670 nhdr->b_datacnt = 1;
3671 nhdr->b_freeze_cksum = NULL;
3672 (void) refcount_add(&nhdr->b_refcnt, tag);
3673 buf->b_hdr = nhdr;
428870ff 3674 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3675 atomic_add_64(&arc_anon->arcs_size, blksz);
3676 } else {
428870ff 3677 mutex_exit(&buf->b_evict_lock);
34dc7c2f
BB
3678 ASSERT(refcount_count(&hdr->b_refcnt) == 1);
3679 ASSERT(!list_link_active(&hdr->b_arc_node));
3680 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
428870ff
BB
3681 if (hdr->b_state != arc_anon)
3682 arc_change_state(arc_anon, hdr, hash_lock);
34dc7c2f 3683 hdr->b_arc_access = 0;
e0b0ca98
BB
3684 hdr->b_mru_hits = 0;
3685 hdr->b_mru_ghost_hits = 0;
3686 hdr->b_mfu_hits = 0;
3687 hdr->b_mfu_ghost_hits = 0;
3688 hdr->b_l2_hits = 0;
428870ff
BB
3689 if (hash_lock)
3690 mutex_exit(hash_lock);
34dc7c2f 3691
428870ff 3692 buf_discard_identity(hdr);
34dc7c2f
BB
3693 arc_buf_thaw(buf);
3694 }
3695 buf->b_efunc = NULL;
3696 buf->b_private = NULL;
3697
3698 if (l2hdr) {
3a17a7a9 3699 ARCSTAT_INCR(arcstat_l2_asize, -l2hdr->b_asize);
3bec585e
SK
3700 vdev_space_update(l2hdr->b_dev->l2ad_vdev,
3701 -l2hdr->b_asize, 0, 0);
ecf3d9b8 3702 kmem_cache_free(l2arc_hdr_cache, l2hdr);
6e1d7276 3703 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f 3704 ARCSTAT_INCR(arcstat_l2_size, -buf_size);
34dc7c2f 3705 mutex_exit(&l2arc_buflist_mtx);
b128c09f 3706 }
34dc7c2f
BB
3707}
3708
3709int
3710arc_released(arc_buf_t *buf)
3711{
b128c09f
BB
3712 int released;
3713
428870ff 3714 mutex_enter(&buf->b_evict_lock);
b128c09f 3715 released = (buf->b_data != NULL && buf->b_hdr->b_state == arc_anon);
428870ff 3716 mutex_exit(&buf->b_evict_lock);
b128c09f 3717 return (released);
34dc7c2f
BB
3718}
3719
34dc7c2f
BB
3720#ifdef ZFS_DEBUG
3721int
3722arc_referenced(arc_buf_t *buf)
3723{
b128c09f
BB
3724 int referenced;
3725
428870ff 3726 mutex_enter(&buf->b_evict_lock);
b128c09f 3727 referenced = (refcount_count(&buf->b_hdr->b_refcnt));
428870ff 3728 mutex_exit(&buf->b_evict_lock);
b128c09f 3729 return (referenced);
34dc7c2f
BB
3730}
3731#endif
3732
3733static void
3734arc_write_ready(zio_t *zio)
3735{
3736 arc_write_callback_t *callback = zio->io_private;
3737 arc_buf_t *buf = callback->awcb_buf;
3738 arc_buf_hdr_t *hdr = buf->b_hdr;
3739
b128c09f
BB
3740 ASSERT(!refcount_is_zero(&buf->b_hdr->b_refcnt));
3741 callback->awcb_ready(zio, buf, callback->awcb_private);
3742
34dc7c2f
BB
3743 /*
3744 * If the IO is already in progress, then this is a re-write
b128c09f
BB
3745 * attempt, so we need to thaw and re-compute the cksum.
3746 * It is the responsibility of the callback to handle the
3747 * accounting for any re-write attempt.
34dc7c2f
BB
3748 */
3749 if (HDR_IO_IN_PROGRESS(hdr)) {
34dc7c2f
BB
3750 mutex_enter(&hdr->b_freeze_lock);
3751 if (hdr->b_freeze_cksum != NULL) {
3752 kmem_free(hdr->b_freeze_cksum, sizeof (zio_cksum_t));
3753 hdr->b_freeze_cksum = NULL;
3754 }
3755 mutex_exit(&hdr->b_freeze_lock);
3756 }
3757 arc_cksum_compute(buf, B_FALSE);
3758 hdr->b_flags |= ARC_IO_IN_PROGRESS;
3759}
3760
e8b96c60
MA
3761/*
3762 * The SPA calls this callback for each physical write that happens on behalf
3763 * of a logical write. See the comment in dbuf_write_physdone() for details.
3764 */
3765static void
3766arc_write_physdone(zio_t *zio)
3767{
3768 arc_write_callback_t *cb = zio->io_private;
3769 if (cb->awcb_physdone != NULL)
3770 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
3771}
3772
34dc7c2f
BB
3773static void
3774arc_write_done(zio_t *zio)
3775{
3776 arc_write_callback_t *callback = zio->io_private;
3777 arc_buf_t *buf = callback->awcb_buf;
3778 arc_buf_hdr_t *hdr = buf->b_hdr;
3779
428870ff
BB
3780 ASSERT(hdr->b_acb == NULL);
3781
3782 if (zio->io_error == 0) {
9b67f605 3783 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
b0bc7a84
MG
3784 buf_discard_identity(hdr);
3785 } else {
3786 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
3787 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
3788 hdr->b_cksum0 = zio->io_bp->blk_cksum.zc_word[0];
3789 }
428870ff
BB
3790 } else {
3791 ASSERT(BUF_EMPTY(hdr));
3792 }
34dc7c2f 3793
34dc7c2f 3794 /*
9b67f605
MA
3795 * If the block to be written was all-zero or compressed enough to be
3796 * embedded in the BP, no write was performed so there will be no
3797 * dva/birth/checksum. The buffer must therefore remain anonymous
3798 * (and uncached).
34dc7c2f
BB
3799 */
3800 if (!BUF_EMPTY(hdr)) {
3801 arc_buf_hdr_t *exists;
3802 kmutex_t *hash_lock;
3803
428870ff
BB
3804 ASSERT(zio->io_error == 0);
3805
34dc7c2f
BB
3806 arc_cksum_verify(buf);
3807
3808 exists = buf_hash_insert(hdr, &hash_lock);
3809 if (exists) {
3810 /*
3811 * This can only happen if we overwrite for
3812 * sync-to-convergence, because we remove
3813 * buffers from the hash table when we arc_free().
3814 */
428870ff
BB
3815 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
3816 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3817 panic("bad overwrite, hdr=%p exists=%p",
3818 (void *)hdr, (void *)exists);
3819 ASSERT(refcount_is_zero(&exists->b_refcnt));
3820 arc_change_state(arc_anon, exists, hash_lock);
3821 mutex_exit(hash_lock);
3822 arc_hdr_destroy(exists);
3823 exists = buf_hash_insert(hdr, &hash_lock);
3824 ASSERT3P(exists, ==, NULL);
03c6040b
GW
3825 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
3826 /* nopwrite */
3827 ASSERT(zio->io_prop.zp_nopwrite);
3828 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
3829 panic("bad nopwrite, hdr=%p exists=%p",
3830 (void *)hdr, (void *)exists);
428870ff
BB
3831 } else {
3832 /* Dedup */
3833 ASSERT(hdr->b_datacnt == 1);
3834 ASSERT(hdr->b_state == arc_anon);
3835 ASSERT(BP_GET_DEDUP(zio->io_bp));
3836 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
3837 }
34dc7c2f
BB
3838 }
3839 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
b128c09f 3840 /* if it's not anon, we are doing a scrub */
428870ff 3841 if (!exists && hdr->b_state == arc_anon)
b128c09f 3842 arc_access(hdr, hash_lock);
34dc7c2f 3843 mutex_exit(hash_lock);
34dc7c2f
BB
3844 } else {
3845 hdr->b_flags &= ~ARC_IO_IN_PROGRESS;
3846 }
3847
428870ff
BB
3848 ASSERT(!refcount_is_zero(&hdr->b_refcnt));
3849 callback->awcb_done(zio, buf, callback->awcb_private);
34dc7c2f
BB
3850
3851 kmem_free(callback, sizeof (arc_write_callback_t));
3852}
3853
3854zio_t *
428870ff 3855arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
3a17a7a9 3856 blkptr_t *bp, arc_buf_t *buf, boolean_t l2arc, boolean_t l2arc_compress,
e8b96c60
MA
3857 const zio_prop_t *zp, arc_done_func_t *ready, arc_done_func_t *physdone,
3858 arc_done_func_t *done, void *private, zio_priority_t priority,
5dbd68a3 3859 int zio_flags, const zbookmark_phys_t *zb)
34dc7c2f
BB
3860{
3861 arc_buf_hdr_t *hdr = buf->b_hdr;
3862 arc_write_callback_t *callback;
b128c09f 3863 zio_t *zio;
34dc7c2f 3864
b128c09f 3865 ASSERT(ready != NULL);
428870ff 3866 ASSERT(done != NULL);
34dc7c2f
BB
3867 ASSERT(!HDR_IO_ERROR(hdr));
3868 ASSERT((hdr->b_flags & ARC_IO_IN_PROGRESS) == 0);
428870ff 3869 ASSERT(hdr->b_acb == NULL);
b128c09f
BB
3870 if (l2arc)
3871 hdr->b_flags |= ARC_L2CACHE;
3a17a7a9
SK
3872 if (l2arc_compress)
3873 hdr->b_flags |= ARC_L2COMPRESS;
b8d06fca 3874 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_PUSHPAGE);
34dc7c2f 3875 callback->awcb_ready = ready;
e8b96c60 3876 callback->awcb_physdone = physdone;
34dc7c2f
BB
3877 callback->awcb_done = done;
3878 callback->awcb_private = private;
3879 callback->awcb_buf = buf;
b128c09f 3880
428870ff 3881 zio = zio_write(pio, spa, txg, bp, buf->b_data, hdr->b_size, zp,
e8b96c60
MA
3882 arc_write_ready, arc_write_physdone, arc_write_done, callback,
3883 priority, zio_flags, zb);
34dc7c2f
BB
3884
3885 return (zio);
3886}
3887
34dc7c2f 3888static int
e8b96c60 3889arc_memory_throttle(uint64_t reserve, uint64_t txg)
34dc7c2f
BB
3890{
3891#ifdef _KERNEL
0c5493d4
BB
3892 if (zfs_arc_memory_throttle_disable)
3893 return (0);
3894
e8b96c60 3895 if (freemem <= physmem * arc_lotsfree_percent / 100) {
34dc7c2f 3896 ARCSTAT_INCR(arcstat_memory_throttle_count, 1);
570827e1 3897 DMU_TX_STAT_BUMP(dmu_tx_memory_reclaim);
2e528b49 3898 return (SET_ERROR(EAGAIN));
34dc7c2f 3899 }
34dc7c2f
BB
3900#endif
3901 return (0);
3902}
3903
3904void
3905arc_tempreserve_clear(uint64_t reserve)
3906{
3907 atomic_add_64(&arc_tempreserve, -reserve);
3908 ASSERT((int64_t)arc_tempreserve >= 0);
3909}
3910
3911int
3912arc_tempreserve_space(uint64_t reserve, uint64_t txg)
3913{
3914 int error;
9babb374 3915 uint64_t anon_size;
34dc7c2f 3916
34dc7c2f
BB
3917 if (reserve > arc_c/4 && !arc_no_grow)
3918 arc_c = MIN(arc_c_max, reserve * 4);
12f9a6a3
BB
3919
3920 /*
3921 * Throttle when the calculated memory footprint for the TXG
3922 * exceeds the target ARC size.
3923 */
570827e1
BB
3924 if (reserve > arc_c) {
3925 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
12f9a6a3 3926 return (SET_ERROR(ERESTART));
570827e1 3927 }
34dc7c2f 3928
9babb374
BB
3929 /*
3930 * Don't count loaned bufs as in flight dirty data to prevent long
3931 * network delays from blocking transactions that are ready to be
3932 * assigned to a txg.
3933 */
3934 anon_size = MAX((int64_t)(arc_anon->arcs_size - arc_loaned_bytes), 0);
3935
34dc7c2f
BB
3936 /*
3937 * Writes will, almost always, require additional memory allocations
d3cc8b15 3938 * in order to compress/encrypt/etc the data. We therefore need to
34dc7c2f
BB
3939 * make sure that there is sufficient available memory for this.
3940 */
e8b96c60
MA
3941 error = arc_memory_throttle(reserve, txg);
3942 if (error != 0)
34dc7c2f
BB
3943 return (error);
3944
3945 /*
3946 * Throttle writes when the amount of dirty data in the cache
3947 * gets too large. We try to keep the cache less than half full
3948 * of dirty blocks so that our sync times don't grow too large.
3949 * Note: if two requests come in concurrently, we might let them
3950 * both succeed, when one of them should fail. Not a huge deal.
3951 */
9babb374
BB
3952
3953 if (reserve + arc_tempreserve + anon_size > arc_c / 2 &&
3954 anon_size > arc_c / 4) {
34dc7c2f
BB
3955 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
3956 "anon_data=%lluK tempreserve=%lluK arc_c=%lluK\n",
3957 arc_tempreserve>>10,
3958 arc_anon->arcs_lsize[ARC_BUFC_METADATA]>>10,
3959 arc_anon->arcs_lsize[ARC_BUFC_DATA]>>10,
3960 reserve>>10, arc_c>>10);
570827e1 3961 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
2e528b49 3962 return (SET_ERROR(ERESTART));
34dc7c2f
BB
3963 }
3964 atomic_add_64(&arc_tempreserve, reserve);
3965 return (0);
3966}
3967
13be560d
BB
3968static void
3969arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
3970 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
3971{
3972 size->value.ui64 = state->arcs_size;
3973 evict_data->value.ui64 = state->arcs_lsize[ARC_BUFC_DATA];
3974 evict_metadata->value.ui64 = state->arcs_lsize[ARC_BUFC_METADATA];
3975}
3976
3977static int
3978arc_kstat_update(kstat_t *ksp, int rw)
3979{
3980 arc_stats_t *as = ksp->ks_data;
3981
3982 if (rw == KSTAT_WRITE) {
2e528b49 3983 return (SET_ERROR(EACCES));
13be560d
BB
3984 } else {
3985 arc_kstat_update_state(arc_anon,
3986 &as->arcstat_anon_size,
3987 &as->arcstat_anon_evict_data,
3988 &as->arcstat_anon_evict_metadata);
3989 arc_kstat_update_state(arc_mru,
3990 &as->arcstat_mru_size,
3991 &as->arcstat_mru_evict_data,
3992 &as->arcstat_mru_evict_metadata);
3993 arc_kstat_update_state(arc_mru_ghost,
3994 &as->arcstat_mru_ghost_size,
3995 &as->arcstat_mru_ghost_evict_data,
3996 &as->arcstat_mru_ghost_evict_metadata);
3997 arc_kstat_update_state(arc_mfu,
3998 &as->arcstat_mfu_size,
3999 &as->arcstat_mfu_evict_data,
4000 &as->arcstat_mfu_evict_metadata);
fc41c640 4001 arc_kstat_update_state(arc_mfu_ghost,
13be560d
BB
4002 &as->arcstat_mfu_ghost_size,
4003 &as->arcstat_mfu_ghost_evict_data,
4004 &as->arcstat_mfu_ghost_evict_metadata);
4005 }
4006
4007 return (0);
4008}
4009
34dc7c2f
BB
4010void
4011arc_init(void)
4012{
4013 mutex_init(&arc_reclaim_thr_lock, NULL, MUTEX_DEFAULT, NULL);
4014 cv_init(&arc_reclaim_thr_cv, NULL, CV_DEFAULT, NULL);
4015
4016 /* Convert seconds to clock ticks */
bce45ec9 4017 zfs_arc_min_prefetch_lifespan = 1 * hz;
34dc7c2f
BB
4018
4019 /* Start out with 1/8 of all memory */
4020 arc_c = physmem * PAGESIZE / 8;
4021
4022#ifdef _KERNEL
4023 /*
4024 * On architectures where the physical memory can be larger
4025 * than the addressable space (intel in 32-bit mode), we may
4026 * need to limit the cache to 1/8 of VM size.
4027 */
4028 arc_c = MIN(arc_c, vmem_size(heap_arena, VMEM_ALLOC | VMEM_FREE) / 8);
7cb67b45
BB
4029 /*
4030 * Register a shrinker to support synchronous (direct) memory
4031 * reclaim from the arc. This is done to prevent kswapd from
4032 * swapping out pages when it is preferable to shrink the arc.
4033 */
4034 spl_register_shrinker(&arc_shrinker);
34dc7c2f
BB
4035#endif
4036
91415825
BB
4037 /* set min cache to zero */
4038 arc_c_min = 4<<20;
518b4876 4039 /* set max to 1/2 of all memory */
be5db977 4040 arc_c_max = arc_c * 4;
34dc7c2f
BB
4041
4042 /*
4043 * Allow the tunables to override our calculations if they are
4044 * reasonable (ie. over 64MB)
4045 */
4046 if (zfs_arc_max > 64<<20 && zfs_arc_max < physmem * PAGESIZE)
4047 arc_c_max = zfs_arc_max;
91415825 4048 if (zfs_arc_min > 0 && zfs_arc_min <= arc_c_max)
34dc7c2f
BB
4049 arc_c_min = zfs_arc_min;
4050
4051 arc_c = arc_c_max;
4052 arc_p = (arc_c >> 1);
4053
2b13331d
PS
4054 /* limit meta-data to 3/4 of the arc capacity */
4055 arc_meta_limit = (3 * arc_c_max) / 4;
1834f2d8 4056 arc_meta_max = 0;
34dc7c2f
BB
4057
4058 /* Allow the tunable to override if it is reasonable */
4059 if (zfs_arc_meta_limit > 0 && zfs_arc_meta_limit <= arc_c_max)
4060 arc_meta_limit = zfs_arc_meta_limit;
4061
34dc7c2f
BB
4062 /* if kmem_flags are set, lets try to use less memory */
4063 if (kmem_debugging())
4064 arc_c = arc_c / 2;
4065 if (arc_c < arc_c_min)
4066 arc_c = arc_c_min;
4067
4068 arc_anon = &ARC_anon;
4069 arc_mru = &ARC_mru;
4070 arc_mru_ghost = &ARC_mru_ghost;
4071 arc_mfu = &ARC_mfu;
4072 arc_mfu_ghost = &ARC_mfu_ghost;
4073 arc_l2c_only = &ARC_l2c_only;
4074 arc_size = 0;
4075
4076 mutex_init(&arc_anon->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4077 mutex_init(&arc_mru->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4078 mutex_init(&arc_mru_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4079 mutex_init(&arc_mfu->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4080 mutex_init(&arc_mfu_ghost->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4081 mutex_init(&arc_l2c_only->arcs_mtx, NULL, MUTEX_DEFAULT, NULL);
4082
4083 list_create(&arc_mru->arcs_list[ARC_BUFC_METADATA],
4084 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4085 list_create(&arc_mru->arcs_list[ARC_BUFC_DATA],
4086 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4087 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
4088 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4089 list_create(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
4090 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4091 list_create(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
4092 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4093 list_create(&arc_mfu->arcs_list[ARC_BUFC_DATA],
4094 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4095 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
4096 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4097 list_create(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
4098 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4099 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
4100 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4101 list_create(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
4102 sizeof (arc_buf_hdr_t), offsetof(arc_buf_hdr_t, b_arc_node));
4103
e0b0ca98
BB
4104 arc_anon->arcs_state = ARC_STATE_ANON;
4105 arc_mru->arcs_state = ARC_STATE_MRU;
4106 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
4107 arc_mfu->arcs_state = ARC_STATE_MFU;
4108 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
4109 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
4110
34dc7c2f
BB
4111 buf_init();
4112
4113 arc_thread_exit = 0;
ab26409d
BB
4114 list_create(&arc_prune_list, sizeof (arc_prune_t),
4115 offsetof(arc_prune_t, p_node));
34dc7c2f 4116 arc_eviction_list = NULL;
ab26409d 4117 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
4118 mutex_init(&arc_eviction_mtx, NULL, MUTEX_DEFAULT, NULL);
4119 bzero(&arc_eviction_hdr, sizeof (arc_buf_hdr_t));
4120
4121 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
4122 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
4123
4124 if (arc_ksp != NULL) {
4125 arc_ksp->ks_data = &arc_stats;
13be560d 4126 arc_ksp->ks_update = arc_kstat_update;
34dc7c2f
BB
4127 kstat_install(arc_ksp);
4128 }
4129
302f753f 4130 (void) thread_create(NULL, 0, arc_adapt_thread, NULL, 0, &p0,
34dc7c2f
BB
4131 TS_RUN, minclsyspri);
4132
4133 arc_dead = FALSE;
b128c09f 4134 arc_warm = B_FALSE;
34dc7c2f 4135
e8b96c60
MA
4136 /*
4137 * Calculate maximum amount of dirty data per pool.
4138 *
4139 * If it has been set by a module parameter, take that.
4140 * Otherwise, use a percentage of physical memory defined by
4141 * zfs_dirty_data_max_percent (default 10%) with a cap at
4142 * zfs_dirty_data_max_max (default 25% of physical memory).
4143 */
4144 if (zfs_dirty_data_max_max == 0)
4145 zfs_dirty_data_max_max = physmem * PAGESIZE *
4146 zfs_dirty_data_max_max_percent / 100;
4147
4148 if (zfs_dirty_data_max == 0) {
4149 zfs_dirty_data_max = physmem * PAGESIZE *
4150 zfs_dirty_data_max_percent / 100;
4151 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
4152 zfs_dirty_data_max_max);
4153 }
34dc7c2f
BB
4154}
4155
4156void
4157arc_fini(void)
4158{
ab26409d
BB
4159 arc_prune_t *p;
4160
34dc7c2f 4161 mutex_enter(&arc_reclaim_thr_lock);
7cb67b45
BB
4162#ifdef _KERNEL
4163 spl_unregister_shrinker(&arc_shrinker);
4164#endif /* _KERNEL */
4165
34dc7c2f
BB
4166 arc_thread_exit = 1;
4167 while (arc_thread_exit != 0)
4168 cv_wait(&arc_reclaim_thr_cv, &arc_reclaim_thr_lock);
4169 mutex_exit(&arc_reclaim_thr_lock);
4170
4171 arc_flush(NULL);
4172
4173 arc_dead = TRUE;
4174
4175 if (arc_ksp != NULL) {
4176 kstat_delete(arc_ksp);
4177 arc_ksp = NULL;
4178 }
4179
ab26409d
BB
4180 mutex_enter(&arc_prune_mtx);
4181 while ((p = list_head(&arc_prune_list)) != NULL) {
4182 list_remove(&arc_prune_list, p);
4183 refcount_remove(&p->p_refcnt, &arc_prune_list);
4184 refcount_destroy(&p->p_refcnt);
4185 kmem_free(p, sizeof (*p));
4186 }
4187 mutex_exit(&arc_prune_mtx);
4188
4189 list_destroy(&arc_prune_list);
4190 mutex_destroy(&arc_prune_mtx);
34dc7c2f
BB
4191 mutex_destroy(&arc_eviction_mtx);
4192 mutex_destroy(&arc_reclaim_thr_lock);
4193 cv_destroy(&arc_reclaim_thr_cv);
4194
4195 list_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
4196 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
4197 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
4198 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
4199 list_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
4200 list_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
4201 list_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
4202 list_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
4203
4204 mutex_destroy(&arc_anon->arcs_mtx);
4205 mutex_destroy(&arc_mru->arcs_mtx);
4206 mutex_destroy(&arc_mru_ghost->arcs_mtx);
4207 mutex_destroy(&arc_mfu->arcs_mtx);
4208 mutex_destroy(&arc_mfu_ghost->arcs_mtx);
fb5f0bc8 4209 mutex_destroy(&arc_l2c_only->arcs_mtx);
34dc7c2f
BB
4210
4211 buf_fini();
9babb374
BB
4212
4213 ASSERT(arc_loaned_bytes == 0);
34dc7c2f
BB
4214}
4215
4216/*
4217 * Level 2 ARC
4218 *
4219 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
4220 * It uses dedicated storage devices to hold cached data, which are populated
4221 * using large infrequent writes. The main role of this cache is to boost
4222 * the performance of random read workloads. The intended L2ARC devices
4223 * include short-stroked disks, solid state disks, and other media with
4224 * substantially faster read latency than disk.
4225 *
4226 * +-----------------------+
4227 * | ARC |
4228 * +-----------------------+
4229 * | ^ ^
4230 * | | |
4231 * l2arc_feed_thread() arc_read()
4232 * | | |
4233 * | l2arc read |
4234 * V | |
4235 * +---------------+ |
4236 * | L2ARC | |
4237 * +---------------+ |
4238 * | ^ |
4239 * l2arc_write() | |
4240 * | | |
4241 * V | |
4242 * +-------+ +-------+
4243 * | vdev | | vdev |
4244 * | cache | | cache |
4245 * +-------+ +-------+
4246 * +=========+ .-----.
4247 * : L2ARC : |-_____-|
4248 * : devices : | Disks |
4249 * +=========+ `-_____-'
4250 *
4251 * Read requests are satisfied from the following sources, in order:
4252 *
4253 * 1) ARC
4254 * 2) vdev cache of L2ARC devices
4255 * 3) L2ARC devices
4256 * 4) vdev cache of disks
4257 * 5) disks
4258 *
4259 * Some L2ARC device types exhibit extremely slow write performance.
4260 * To accommodate for this there are some significant differences between
4261 * the L2ARC and traditional cache design:
4262 *
4263 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
4264 * the ARC behave as usual, freeing buffers and placing headers on ghost
4265 * lists. The ARC does not send buffers to the L2ARC during eviction as
4266 * this would add inflated write latencies for all ARC memory pressure.
4267 *
4268 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
4269 * It does this by periodically scanning buffers from the eviction-end of
4270 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
3a17a7a9
SK
4271 * not already there. It scans until a headroom of buffers is satisfied,
4272 * which itself is a buffer for ARC eviction. If a compressible buffer is
4273 * found during scanning and selected for writing to an L2ARC device, we
4274 * temporarily boost scanning headroom during the next scan cycle to make
4275 * sure we adapt to compression effects (which might significantly reduce
4276 * the data volume we write to L2ARC). The thread that does this is
34dc7c2f
BB
4277 * l2arc_feed_thread(), illustrated below; example sizes are included to
4278 * provide a better sense of ratio than this diagram:
4279 *
4280 * head --> tail
4281 * +---------------------+----------+
4282 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
4283 * +---------------------+----------+ | o L2ARC eligible
4284 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
4285 * +---------------------+----------+ |
4286 * 15.9 Gbytes ^ 32 Mbytes |
4287 * headroom |
4288 * l2arc_feed_thread()
4289 * |
4290 * l2arc write hand <--[oooo]--'
4291 * | 8 Mbyte
4292 * | write max
4293 * V
4294 * +==============================+
4295 * L2ARC dev |####|#|###|###| |####| ... |
4296 * +==============================+
4297 * 32 Gbytes
4298 *
4299 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
4300 * evicted, then the L2ARC has cached a buffer much sooner than it probably
4301 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
4302 * safe to say that this is an uncommon case, since buffers at the end of
4303 * the ARC lists have moved there due to inactivity.
4304 *
4305 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
4306 * then the L2ARC simply misses copying some buffers. This serves as a
4307 * pressure valve to prevent heavy read workloads from both stalling the ARC
4308 * with waits and clogging the L2ARC with writes. This also helps prevent
4309 * the potential for the L2ARC to churn if it attempts to cache content too
4310 * quickly, such as during backups of the entire pool.
4311 *
b128c09f
BB
4312 * 5. After system boot and before the ARC has filled main memory, there are
4313 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
4314 * lists can remain mostly static. Instead of searching from tail of these
4315 * lists as pictured, the l2arc_feed_thread() will search from the list heads
4316 * for eligible buffers, greatly increasing its chance of finding them.
4317 *
4318 * The L2ARC device write speed is also boosted during this time so that
4319 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
4320 * there are no L2ARC reads, and no fear of degrading read performance
4321 * through increased writes.
4322 *
4323 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
34dc7c2f
BB
4324 * the vdev queue can aggregate them into larger and fewer writes. Each
4325 * device is written to in a rotor fashion, sweeping writes through
4326 * available space then repeating.
4327 *
b128c09f 4328 * 7. The L2ARC does not store dirty content. It never needs to flush
34dc7c2f
BB
4329 * write buffers back to disk based storage.
4330 *
b128c09f 4331 * 8. If an ARC buffer is written (and dirtied) which also exists in the
34dc7c2f
BB
4332 * L2ARC, the now stale L2ARC buffer is immediately dropped.
4333 *
4334 * The performance of the L2ARC can be tweaked by a number of tunables, which
4335 * may be necessary for different workloads:
4336 *
4337 * l2arc_write_max max write bytes per interval
b128c09f 4338 * l2arc_write_boost extra write bytes during device warmup
34dc7c2f 4339 * l2arc_noprefetch skip caching prefetched buffers
3a17a7a9 4340 * l2arc_nocompress skip compressing buffers
34dc7c2f 4341 * l2arc_headroom number of max device writes to precache
3a17a7a9
SK
4342 * l2arc_headroom_boost when we find compressed buffers during ARC
4343 * scanning, we multiply headroom by this
4344 * percentage factor for the next scan cycle,
4345 * since more compressed buffers are likely to
4346 * be present
34dc7c2f
BB
4347 * l2arc_feed_secs seconds between L2ARC writing
4348 *
4349 * Tunables may be removed or added as future performance improvements are
4350 * integrated, and also may become zpool properties.
d164b209
BB
4351 *
4352 * There are three key functions that control how the L2ARC warms up:
4353 *
4354 * l2arc_write_eligible() check if a buffer is eligible to cache
4355 * l2arc_write_size() calculate how much to write
4356 * l2arc_write_interval() calculate sleep delay between writes
4357 *
4358 * These three functions determine what to write, how much, and how quickly
4359 * to send writes.
34dc7c2f
BB
4360 */
4361
d164b209
BB
4362static boolean_t
4363l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *ab)
4364{
4365 /*
4366 * A buffer is *not* eligible for the L2ARC if it:
4367 * 1. belongs to a different spa.
428870ff
BB
4368 * 2. is already cached on the L2ARC.
4369 * 3. has an I/O in progress (it may be an incomplete read).
4370 * 4. is flagged not eligible (zfs property).
d164b209 4371 */
428870ff 4372 if (ab->b_spa != spa_guid || ab->b_l2hdr != NULL ||
d164b209
BB
4373 HDR_IO_IN_PROGRESS(ab) || !HDR_L2CACHE(ab))
4374 return (B_FALSE);
4375
4376 return (B_TRUE);
4377}
4378
4379static uint64_t
3a17a7a9 4380l2arc_write_size(void)
d164b209
BB
4381{
4382 uint64_t size;
4383
3a17a7a9
SK
4384 /*
4385 * Make sure our globals have meaningful values in case the user
4386 * altered them.
4387 */
4388 size = l2arc_write_max;
4389 if (size == 0) {
4390 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
4391 "be greater than zero, resetting it to the default (%d)",
4392 L2ARC_WRITE_SIZE);
4393 size = l2arc_write_max = L2ARC_WRITE_SIZE;
4394 }
d164b209
BB
4395
4396 if (arc_warm == B_FALSE)
3a17a7a9 4397 size += l2arc_write_boost;
d164b209
BB
4398
4399 return (size);
4400
4401}
4402
4403static clock_t
4404l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
4405{
428870ff 4406 clock_t interval, next, now;
d164b209
BB
4407
4408 /*
4409 * If the ARC lists are busy, increase our write rate; if the
4410 * lists are stale, idle back. This is achieved by checking
4411 * how much we previously wrote - if it was more than half of
4412 * what we wanted, schedule the next write much sooner.
4413 */
4414 if (l2arc_feed_again && wrote > (wanted / 2))
4415 interval = (hz * l2arc_feed_min_ms) / 1000;
4416 else
4417 interval = hz * l2arc_feed_secs;
4418
428870ff
BB
4419 now = ddi_get_lbolt();
4420 next = MAX(now, MIN(now + interval, began + interval));
d164b209
BB
4421
4422 return (next);
4423}
4424
34dc7c2f
BB
4425static void
4426l2arc_hdr_stat_add(void)
4427{
6e1d7276 4428 ARCSTAT_INCR(arcstat_l2_hdr_size, HDR_SIZE);
34dc7c2f
BB
4429 ARCSTAT_INCR(arcstat_hdr_size, -HDR_SIZE);
4430}
4431
4432static void
4433l2arc_hdr_stat_remove(void)
4434{
6e1d7276 4435 ARCSTAT_INCR(arcstat_l2_hdr_size, -HDR_SIZE);
34dc7c2f
BB
4436 ARCSTAT_INCR(arcstat_hdr_size, HDR_SIZE);
4437}
4438
4439/*
4440 * Cycle through L2ARC devices. This is how L2ARC load balances.
b128c09f 4441 * If a device is returned, this also returns holding the spa config lock.
34dc7c2f
BB
4442 */
4443static l2arc_dev_t *
4444l2arc_dev_get_next(void)
4445{
b128c09f 4446 l2arc_dev_t *first, *next = NULL;
34dc7c2f 4447
b128c09f
BB
4448 /*
4449 * Lock out the removal of spas (spa_namespace_lock), then removal
4450 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
4451 * both locks will be dropped and a spa config lock held instead.
4452 */
4453 mutex_enter(&spa_namespace_lock);
4454 mutex_enter(&l2arc_dev_mtx);
4455
4456 /* if there are no vdevs, there is nothing to do */
4457 if (l2arc_ndev == 0)
4458 goto out;
4459
4460 first = NULL;
4461 next = l2arc_dev_last;
4462 do {
4463 /* loop around the list looking for a non-faulted vdev */
4464 if (next == NULL) {
34dc7c2f 4465 next = list_head(l2arc_dev_list);
b128c09f
BB
4466 } else {
4467 next = list_next(l2arc_dev_list, next);
4468 if (next == NULL)
4469 next = list_head(l2arc_dev_list);
4470 }
4471
4472 /* if we have come back to the start, bail out */
4473 if (first == NULL)
4474 first = next;
4475 else if (next == first)
4476 break;
4477
4478 } while (vdev_is_dead(next->l2ad_vdev));
4479
4480 /* if we were unable to find any usable vdevs, return NULL */
4481 if (vdev_is_dead(next->l2ad_vdev))
4482 next = NULL;
34dc7c2f
BB
4483
4484 l2arc_dev_last = next;
4485
b128c09f
BB
4486out:
4487 mutex_exit(&l2arc_dev_mtx);
4488
4489 /*
4490 * Grab the config lock to prevent the 'next' device from being
4491 * removed while we are writing to it.
4492 */
4493 if (next != NULL)
4494 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
4495 mutex_exit(&spa_namespace_lock);
4496
34dc7c2f
BB
4497 return (next);
4498}
4499
b128c09f
BB
4500/*
4501 * Free buffers that were tagged for destruction.
4502 */
4503static void
0bc8fd78 4504l2arc_do_free_on_write(void)
b128c09f
BB
4505{
4506 list_t *buflist;
4507 l2arc_data_free_t *df, *df_prev;
4508
4509 mutex_enter(&l2arc_free_on_write_mtx);
4510 buflist = l2arc_free_on_write;
4511
4512 for (df = list_tail(buflist); df; df = df_prev) {
4513 df_prev = list_prev(buflist, df);
4514 ASSERT(df->l2df_data != NULL);
4515 ASSERT(df->l2df_func != NULL);
4516 df->l2df_func(df->l2df_data, df->l2df_size);
4517 list_remove(buflist, df);
4518 kmem_free(df, sizeof (l2arc_data_free_t));
4519 }
4520
4521 mutex_exit(&l2arc_free_on_write_mtx);
4522}
4523
34dc7c2f
BB
4524/*
4525 * A write to a cache device has completed. Update all headers to allow
4526 * reads from these buffers to begin.
4527 */
4528static void
4529l2arc_write_done(zio_t *zio)
4530{
4531 l2arc_write_callback_t *cb;
4532 l2arc_dev_t *dev;
4533 list_t *buflist;
34dc7c2f 4534 arc_buf_hdr_t *head, *ab, *ab_prev;
b128c09f 4535 l2arc_buf_hdr_t *abl2;
34dc7c2f 4536 kmutex_t *hash_lock;
3bec585e 4537 int64_t bytes_dropped = 0;
34dc7c2f
BB
4538
4539 cb = zio->io_private;
4540 ASSERT(cb != NULL);
4541 dev = cb->l2wcb_dev;
4542 ASSERT(dev != NULL);
4543 head = cb->l2wcb_head;
4544 ASSERT(head != NULL);
4545 buflist = dev->l2ad_buflist;
4546 ASSERT(buflist != NULL);
4547 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
4548 l2arc_write_callback_t *, cb);
4549
4550 if (zio->io_error != 0)
4551 ARCSTAT_BUMP(arcstat_l2_writes_error);
4552
4553 mutex_enter(&l2arc_buflist_mtx);
4554
4555 /*
4556 * All writes completed, or an error was hit.
4557 */
4558 for (ab = list_prev(buflist, head); ab; ab = ab_prev) {
4559 ab_prev = list_prev(buflist, ab);
1ca546b3
SK
4560 abl2 = ab->b_l2hdr;
4561
4562 /*
4563 * Release the temporary compressed buffer as soon as possible.
4564 */
4565 if (abl2->b_compress != ZIO_COMPRESS_OFF)
4566 l2arc_release_cdata_buf(ab);
34dc7c2f
BB
4567
4568 hash_lock = HDR_LOCK(ab);
4569 if (!mutex_tryenter(hash_lock)) {
4570 /*
4571 * This buffer misses out. It may be in a stage
4572 * of eviction. Its ARC_L2_WRITING flag will be
4573 * left set, denying reads to this buffer.
4574 */
4575 ARCSTAT_BUMP(arcstat_l2_writes_hdr_miss);
4576 continue;
4577 }
4578
4579 if (zio->io_error != 0) {
4580 /*
b128c09f 4581 * Error - drop L2ARC entry.
34dc7c2f 4582 */
b128c09f 4583 list_remove(buflist, ab);
3a17a7a9 4584 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
3bec585e 4585 bytes_dropped += abl2->b_asize;
34dc7c2f 4586 ab->b_l2hdr = NULL;
ecf3d9b8 4587 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4588 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
b128c09f 4589 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
34dc7c2f
BB
4590 }
4591
4592 /*
4593 * Allow ARC to begin reads to this L2ARC entry.
4594 */
4595 ab->b_flags &= ~ARC_L2_WRITING;
4596
4597 mutex_exit(hash_lock);
4598 }
4599
4600 atomic_inc_64(&l2arc_writes_done);
4601 list_remove(buflist, head);
4602 kmem_cache_free(hdr_cache, head);
4603 mutex_exit(&l2arc_buflist_mtx);
4604
3bec585e
SK
4605 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
4606
b128c09f 4607 l2arc_do_free_on_write();
34dc7c2f
BB
4608
4609 kmem_free(cb, sizeof (l2arc_write_callback_t));
4610}
4611
4612/*
4613 * A read to a cache device completed. Validate buffer contents before
4614 * handing over to the regular ARC routines.
4615 */
4616static void
4617l2arc_read_done(zio_t *zio)
4618{
4619 l2arc_read_callback_t *cb;
4620 arc_buf_hdr_t *hdr;
4621 arc_buf_t *buf;
34dc7c2f 4622 kmutex_t *hash_lock;
b128c09f
BB
4623 int equal;
4624
4625 ASSERT(zio->io_vd != NULL);
4626 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
4627
4628 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
34dc7c2f
BB
4629
4630 cb = zio->io_private;
4631 ASSERT(cb != NULL);
4632 buf = cb->l2rcb_buf;
4633 ASSERT(buf != NULL);
34dc7c2f 4634
428870ff 4635 hash_lock = HDR_LOCK(buf->b_hdr);
34dc7c2f 4636 mutex_enter(hash_lock);
428870ff
BB
4637 hdr = buf->b_hdr;
4638 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
34dc7c2f 4639
3a17a7a9
SK
4640 /*
4641 * If the buffer was compressed, decompress it first.
4642 */
4643 if (cb->l2rcb_compress != ZIO_COMPRESS_OFF)
4644 l2arc_decompress_zio(zio, hdr, cb->l2rcb_compress);
4645 ASSERT(zio->io_data != NULL);
4646
34dc7c2f
BB
4647 /*
4648 * Check this survived the L2ARC journey.
4649 */
4650 equal = arc_cksum_equal(buf);
4651 if (equal && zio->io_error == 0 && !HDR_L2_EVICTED(hdr)) {
4652 mutex_exit(hash_lock);
4653 zio->io_private = buf;
b128c09f
BB
4654 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
4655 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
34dc7c2f
BB
4656 arc_read_done(zio);
4657 } else {
4658 mutex_exit(hash_lock);
4659 /*
4660 * Buffer didn't survive caching. Increment stats and
4661 * reissue to the original storage device.
4662 */
b128c09f 4663 if (zio->io_error != 0) {
34dc7c2f 4664 ARCSTAT_BUMP(arcstat_l2_io_error);
b128c09f 4665 } else {
2e528b49 4666 zio->io_error = SET_ERROR(EIO);
b128c09f 4667 }
34dc7c2f
BB
4668 if (!equal)
4669 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
4670
34dc7c2f 4671 /*
b128c09f
BB
4672 * If there's no waiter, issue an async i/o to the primary
4673 * storage now. If there *is* a waiter, the caller must
4674 * issue the i/o in a context where it's OK to block.
34dc7c2f 4675 */
d164b209
BB
4676 if (zio->io_waiter == NULL) {
4677 zio_t *pio = zio_unique_parent(zio);
4678
4679 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
4680
4681 zio_nowait(zio_read(pio, cb->l2rcb_spa, &cb->l2rcb_bp,
b128c09f
BB
4682 buf->b_data, zio->io_size, arc_read_done, buf,
4683 zio->io_priority, cb->l2rcb_flags, &cb->l2rcb_zb));
d164b209 4684 }
34dc7c2f
BB
4685 }
4686
4687 kmem_free(cb, sizeof (l2arc_read_callback_t));
4688}
4689
4690/*
4691 * This is the list priority from which the L2ARC will search for pages to
4692 * cache. This is used within loops (0..3) to cycle through lists in the
4693 * desired order. This order can have a significant effect on cache
4694 * performance.
4695 *
4696 * Currently the metadata lists are hit first, MFU then MRU, followed by
4697 * the data lists. This function returns a locked list, and also returns
4698 * the lock pointer.
4699 */
4700static list_t *
4701l2arc_list_locked(int list_num, kmutex_t **lock)
4702{
d4ed6673 4703 list_t *list = NULL;
34dc7c2f
BB
4704
4705 ASSERT(list_num >= 0 && list_num <= 3);
4706
4707 switch (list_num) {
4708 case 0:
4709 list = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
4710 *lock = &arc_mfu->arcs_mtx;
4711 break;
4712 case 1:
4713 list = &arc_mru->arcs_list[ARC_BUFC_METADATA];
4714 *lock = &arc_mru->arcs_mtx;
4715 break;
4716 case 2:
4717 list = &arc_mfu->arcs_list[ARC_BUFC_DATA];
4718 *lock = &arc_mfu->arcs_mtx;
4719 break;
4720 case 3:
4721 list = &arc_mru->arcs_list[ARC_BUFC_DATA];
4722 *lock = &arc_mru->arcs_mtx;
4723 break;
4724 }
4725
4726 ASSERT(!(MUTEX_HELD(*lock)));
4727 mutex_enter(*lock);
4728 return (list);
4729}
4730
4731/*
4732 * Evict buffers from the device write hand to the distance specified in
4733 * bytes. This distance may span populated buffers, it may span nothing.
4734 * This is clearing a region on the L2ARC device ready for writing.
4735 * If the 'all' boolean is set, every buffer is evicted.
4736 */
4737static void
4738l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
4739{
4740 list_t *buflist;
4741 l2arc_buf_hdr_t *abl2;
4742 arc_buf_hdr_t *ab, *ab_prev;
4743 kmutex_t *hash_lock;
4744 uint64_t taddr;
3bec585e 4745 int64_t bytes_evicted = 0;
34dc7c2f 4746
34dc7c2f
BB
4747 buflist = dev->l2ad_buflist;
4748
4749 if (buflist == NULL)
4750 return;
4751
4752 if (!all && dev->l2ad_first) {
4753 /*
4754 * This is the first sweep through the device. There is
4755 * nothing to evict.
4756 */
4757 return;
4758 }
4759
b128c09f 4760 if (dev->l2ad_hand >= (dev->l2ad_end - (2 * distance))) {
34dc7c2f
BB
4761 /*
4762 * When nearing the end of the device, evict to the end
4763 * before the device write hand jumps to the start.
4764 */
4765 taddr = dev->l2ad_end;
4766 } else {
4767 taddr = dev->l2ad_hand + distance;
4768 }
4769 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
4770 uint64_t, taddr, boolean_t, all);
4771
4772top:
4773 mutex_enter(&l2arc_buflist_mtx);
4774 for (ab = list_tail(buflist); ab; ab = ab_prev) {
4775 ab_prev = list_prev(buflist, ab);
4776
4777 hash_lock = HDR_LOCK(ab);
4778 if (!mutex_tryenter(hash_lock)) {
4779 /*
4780 * Missed the hash lock. Retry.
4781 */
4782 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
4783 mutex_exit(&l2arc_buflist_mtx);
4784 mutex_enter(hash_lock);
4785 mutex_exit(hash_lock);
4786 goto top;
4787 }
4788
4789 if (HDR_L2_WRITE_HEAD(ab)) {
4790 /*
4791 * We hit a write head node. Leave it for
4792 * l2arc_write_done().
4793 */
4794 list_remove(buflist, ab);
4795 mutex_exit(hash_lock);
4796 continue;
4797 }
4798
4799 if (!all && ab->b_l2hdr != NULL &&
4800 (ab->b_l2hdr->b_daddr > taddr ||
4801 ab->b_l2hdr->b_daddr < dev->l2ad_hand)) {
4802 /*
4803 * We've evicted to the target address,
4804 * or the end of the device.
4805 */
4806 mutex_exit(hash_lock);
4807 break;
4808 }
4809
4810 if (HDR_FREE_IN_PROGRESS(ab)) {
4811 /*
4812 * Already on the path to destruction.
4813 */
4814 mutex_exit(hash_lock);
4815 continue;
4816 }
4817
4818 if (ab->b_state == arc_l2c_only) {
4819 ASSERT(!HDR_L2_READING(ab));
4820 /*
4821 * This doesn't exist in the ARC. Destroy.
4822 * arc_hdr_destroy() will call list_remove()
4823 * and decrement arcstat_l2_size.
4824 */
4825 arc_change_state(arc_anon, ab, hash_lock);
4826 arc_hdr_destroy(ab);
4827 } else {
b128c09f
BB
4828 /*
4829 * Invalidate issued or about to be issued
4830 * reads, since we may be about to write
4831 * over this location.
4832 */
4833 if (HDR_L2_READING(ab)) {
4834 ARCSTAT_BUMP(arcstat_l2_evict_reading);
4835 ab->b_flags |= ARC_L2_EVICTED;
4836 }
4837
34dc7c2f
BB
4838 /*
4839 * Tell ARC this no longer exists in L2ARC.
4840 */
4841 if (ab->b_l2hdr != NULL) {
4842 abl2 = ab->b_l2hdr;
3a17a7a9 4843 ARCSTAT_INCR(arcstat_l2_asize, -abl2->b_asize);
3bec585e 4844 bytes_evicted += abl2->b_asize;
34dc7c2f 4845 ab->b_l2hdr = NULL;
ecf3d9b8 4846 kmem_cache_free(l2arc_hdr_cache, abl2);
6e1d7276 4847 arc_space_return(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4848 ARCSTAT_INCR(arcstat_l2_size, -ab->b_size);
4849 }
4850 list_remove(buflist, ab);
4851
4852 /*
4853 * This may have been leftover after a
4854 * failed write.
4855 */
4856 ab->b_flags &= ~ARC_L2_WRITING;
34dc7c2f
BB
4857 }
4858 mutex_exit(hash_lock);
4859 }
4860 mutex_exit(&l2arc_buflist_mtx);
4861
3bec585e 4862 vdev_space_update(dev->l2ad_vdev, -bytes_evicted, 0, 0);
34dc7c2f
BB
4863 dev->l2ad_evict = taddr;
4864}
4865
4866/*
4867 * Find and write ARC buffers to the L2ARC device.
4868 *
4869 * An ARC_L2_WRITING flag is set so that the L2ARC buffers are not valid
4870 * for reading until they have completed writing.
3a17a7a9
SK
4871 * The headroom_boost is an in-out parameter used to maintain headroom boost
4872 * state between calls to this function.
4873 *
4874 * Returns the number of bytes actually written (which may be smaller than
4875 * the delta by which the device hand has changed due to alignment).
34dc7c2f 4876 */
d164b209 4877static uint64_t
3a17a7a9
SK
4878l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz,
4879 boolean_t *headroom_boost)
34dc7c2f
BB
4880{
4881 arc_buf_hdr_t *ab, *ab_prev, *head;
34dc7c2f 4882 list_t *list;
3a17a7a9
SK
4883 uint64_t write_asize, write_psize, write_sz, headroom,
4884 buf_compress_minsz;
34dc7c2f 4885 void *buf_data;
3a17a7a9
SK
4886 kmutex_t *list_lock = NULL;
4887 boolean_t full;
34dc7c2f
BB
4888 l2arc_write_callback_t *cb;
4889 zio_t *pio, *wzio;
3541dc6d 4890 uint64_t guid = spa_load_guid(spa);
d6320ddb 4891 int try;
3a17a7a9 4892 const boolean_t do_headroom_boost = *headroom_boost;
34dc7c2f 4893
34dc7c2f
BB
4894 ASSERT(dev->l2ad_vdev != NULL);
4895
3a17a7a9
SK
4896 /* Lower the flag now, we might want to raise it again later. */
4897 *headroom_boost = B_FALSE;
4898
34dc7c2f 4899 pio = NULL;
3a17a7a9 4900 write_sz = write_asize = write_psize = 0;
34dc7c2f
BB
4901 full = B_FALSE;
4902 head = kmem_cache_alloc(hdr_cache, KM_PUSHPAGE);
4903 head->b_flags |= ARC_L2_WRITE_HEAD;
4904
3a17a7a9
SK
4905 /*
4906 * We will want to try to compress buffers that are at least 2x the
4907 * device sector size.
4908 */
4909 buf_compress_minsz = 2 << dev->l2ad_vdev->vdev_ashift;
4910
34dc7c2f
BB
4911 /*
4912 * Copy buffers for L2ARC writing.
4913 */
4914 mutex_enter(&l2arc_buflist_mtx);
d6320ddb 4915 for (try = 0; try <= 3; try++) {
3a17a7a9
SK
4916 uint64_t passed_sz = 0;
4917
34dc7c2f 4918 list = l2arc_list_locked(try, &list_lock);
34dc7c2f 4919
b128c09f
BB
4920 /*
4921 * L2ARC fast warmup.
4922 *
4923 * Until the ARC is warm and starts to evict, read from the
4924 * head of the ARC lists rather than the tail.
4925 */
b128c09f
BB
4926 if (arc_warm == B_FALSE)
4927 ab = list_head(list);
4928 else
4929 ab = list_tail(list);
4930
3a17a7a9
SK
4931 headroom = target_sz * l2arc_headroom;
4932 if (do_headroom_boost)
4933 headroom = (headroom * l2arc_headroom_boost) / 100;
4934
b128c09f 4935 for (; ab; ab = ab_prev) {
3a17a7a9
SK
4936 l2arc_buf_hdr_t *l2hdr;
4937 kmutex_t *hash_lock;
4938 uint64_t buf_sz;
4939
b128c09f
BB
4940 if (arc_warm == B_FALSE)
4941 ab_prev = list_next(list, ab);
4942 else
4943 ab_prev = list_prev(list, ab);
34dc7c2f
BB
4944
4945 hash_lock = HDR_LOCK(ab);
3a17a7a9 4946 if (!mutex_tryenter(hash_lock)) {
34dc7c2f
BB
4947 /*
4948 * Skip this buffer rather than waiting.
4949 */
4950 continue;
4951 }
4952
4953 passed_sz += ab->b_size;
4954 if (passed_sz > headroom) {
4955 /*
4956 * Searched too far.
4957 */
4958 mutex_exit(hash_lock);
4959 break;
4960 }
4961
d164b209 4962 if (!l2arc_write_eligible(guid, ab)) {
34dc7c2f
BB
4963 mutex_exit(hash_lock);
4964 continue;
4965 }
4966
4967 if ((write_sz + ab->b_size) > target_sz) {
4968 full = B_TRUE;
4969 mutex_exit(hash_lock);
4970 break;
4971 }
4972
34dc7c2f
BB
4973 if (pio == NULL) {
4974 /*
4975 * Insert a dummy header on the buflist so
4976 * l2arc_write_done() can find where the
4977 * write buffers begin without searching.
4978 */
4979 list_insert_head(dev->l2ad_buflist, head);
4980
409dc1a5 4981 cb = kmem_alloc(sizeof (l2arc_write_callback_t),
d1d7e268 4982 KM_PUSHPAGE);
34dc7c2f
BB
4983 cb->l2wcb_dev = dev;
4984 cb->l2wcb_head = head;
4985 pio = zio_root(spa, l2arc_write_done, cb,
4986 ZIO_FLAG_CANFAIL);
4987 }
4988
4989 /*
4990 * Create and add a new L2ARC header.
4991 */
ecf3d9b8 4992 l2hdr = kmem_cache_alloc(l2arc_hdr_cache, KM_PUSHPAGE);
3a17a7a9 4993 l2hdr->b_dev = dev;
ecf3d9b8 4994 l2hdr->b_daddr = 0;
6e1d7276 4995 arc_space_consume(L2HDR_SIZE, ARC_SPACE_L2HDRS);
34dc7c2f
BB
4996
4997 ab->b_flags |= ARC_L2_WRITING;
3a17a7a9
SK
4998
4999 /*
5000 * Temporarily stash the data buffer in b_tmp_cdata.
5001 * The subsequent write step will pick it up from
5002 * there. This is because can't access ab->b_buf
5003 * without holding the hash_lock, which we in turn
5004 * can't access without holding the ARC list locks
5005 * (which we want to avoid during compression/writing)
5006 */
5007 l2hdr->b_compress = ZIO_COMPRESS_OFF;
5008 l2hdr->b_asize = ab->b_size;
5009 l2hdr->b_tmp_cdata = ab->b_buf->b_data;
e0b0ca98 5010 l2hdr->b_hits = 0;
3a17a7a9 5011
34dc7c2f 5012 buf_sz = ab->b_size;
3a17a7a9
SK
5013 ab->b_l2hdr = l2hdr;
5014
5015 list_insert_head(dev->l2ad_buflist, ab);
34dc7c2f
BB
5016
5017 /*
5018 * Compute and store the buffer cksum before
5019 * writing. On debug the cksum is verified first.
5020 */
5021 arc_cksum_verify(ab->b_buf);
5022 arc_cksum_compute(ab->b_buf, B_TRUE);
5023
5024 mutex_exit(hash_lock);
5025
3a17a7a9
SK
5026 write_sz += buf_sz;
5027 }
5028
5029 mutex_exit(list_lock);
5030
5031 if (full == B_TRUE)
5032 break;
5033 }
5034
5035 /* No buffers selected for writing? */
5036 if (pio == NULL) {
5037 ASSERT0(write_sz);
5038 mutex_exit(&l2arc_buflist_mtx);
5039 kmem_cache_free(hdr_cache, head);
5040 return (0);
5041 }
5042
5043 /*
5044 * Now start writing the buffers. We're starting at the write head
5045 * and work backwards, retracing the course of the buffer selector
5046 * loop above.
5047 */
5048 for (ab = list_prev(dev->l2ad_buflist, head); ab;
5049 ab = list_prev(dev->l2ad_buflist, ab)) {
5050 l2arc_buf_hdr_t *l2hdr;
5051 uint64_t buf_sz;
5052
5053 /*
5054 * We shouldn't need to lock the buffer here, since we flagged
5055 * it as ARC_L2_WRITING in the previous step, but we must take
5056 * care to only access its L2 cache parameters. In particular,
5057 * ab->b_buf may be invalid by now due to ARC eviction.
5058 */
5059 l2hdr = ab->b_l2hdr;
5060 l2hdr->b_daddr = dev->l2ad_hand;
5061
5062 if (!l2arc_nocompress && (ab->b_flags & ARC_L2COMPRESS) &&
5063 l2hdr->b_asize >= buf_compress_minsz) {
5064 if (l2arc_compress_buf(l2hdr)) {
5065 /*
5066 * If compression succeeded, enable headroom
5067 * boost on the next scan cycle.
5068 */
5069 *headroom_boost = B_TRUE;
5070 }
5071 }
5072
5073 /*
5074 * Pick up the buffer data we had previously stashed away
5075 * (and now potentially also compressed).
5076 */
5077 buf_data = l2hdr->b_tmp_cdata;
5078 buf_sz = l2hdr->b_asize;
5079
5080 /* Compression may have squashed the buffer to zero length. */
5081 if (buf_sz != 0) {
5082 uint64_t buf_p_sz;
5083
34dc7c2f
BB
5084 wzio = zio_write_phys(pio, dev->l2ad_vdev,
5085 dev->l2ad_hand, buf_sz, buf_data, ZIO_CHECKSUM_OFF,
5086 NULL, NULL, ZIO_PRIORITY_ASYNC_WRITE,
5087 ZIO_FLAG_CANFAIL, B_FALSE);
5088
5089 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
5090 zio_t *, wzio);
5091 (void) zio_nowait(wzio);
5092
3a17a7a9 5093 write_asize += buf_sz;
b128c09f
BB
5094 /*
5095 * Keep the clock hand suitably device-aligned.
5096 */
3a17a7a9
SK
5097 buf_p_sz = vdev_psize_to_asize(dev->l2ad_vdev, buf_sz);
5098 write_psize += buf_p_sz;
5099 dev->l2ad_hand += buf_p_sz;
34dc7c2f 5100 }
34dc7c2f 5101 }
34dc7c2f 5102
3a17a7a9 5103 mutex_exit(&l2arc_buflist_mtx);
34dc7c2f 5104
3a17a7a9 5105 ASSERT3U(write_asize, <=, target_sz);
34dc7c2f 5106 ARCSTAT_BUMP(arcstat_l2_writes_sent);
3a17a7a9 5107 ARCSTAT_INCR(arcstat_l2_write_bytes, write_asize);
34dc7c2f 5108 ARCSTAT_INCR(arcstat_l2_size, write_sz);
3a17a7a9 5109 ARCSTAT_INCR(arcstat_l2_asize, write_asize);
3bec585e 5110 vdev_space_update(dev->l2ad_vdev, write_asize, 0, 0);
34dc7c2f
BB
5111
5112 /*
5113 * Bump device hand to the device start if it is approaching the end.
5114 * l2arc_evict() will already have evicted ahead for this case.
5115 */
b128c09f 5116 if (dev->l2ad_hand >= (dev->l2ad_end - target_sz)) {
34dc7c2f
BB
5117 dev->l2ad_hand = dev->l2ad_start;
5118 dev->l2ad_evict = dev->l2ad_start;
5119 dev->l2ad_first = B_FALSE;
5120 }
5121
d164b209 5122 dev->l2ad_writing = B_TRUE;
34dc7c2f 5123 (void) zio_wait(pio);
d164b209
BB
5124 dev->l2ad_writing = B_FALSE;
5125
3a17a7a9
SK
5126 return (write_asize);
5127}
5128
5129/*
5130 * Compresses an L2ARC buffer.
5131 * The data to be compressed must be prefilled in l2hdr->b_tmp_cdata and its
5132 * size in l2hdr->b_asize. This routine tries to compress the data and
5133 * depending on the compression result there are three possible outcomes:
5134 * *) The buffer was incompressible. The original l2hdr contents were left
5135 * untouched and are ready for writing to an L2 device.
5136 * *) The buffer was all-zeros, so there is no need to write it to an L2
5137 * device. To indicate this situation b_tmp_cdata is NULL'ed, b_asize is
5138 * set to zero and b_compress is set to ZIO_COMPRESS_EMPTY.
5139 * *) Compression succeeded and b_tmp_cdata was replaced with a temporary
5140 * data buffer which holds the compressed data to be written, and b_asize
5141 * tells us how much data there is. b_compress is set to the appropriate
5142 * compression algorithm. Once writing is done, invoke
5143 * l2arc_release_cdata_buf on this l2hdr to free this temporary buffer.
5144 *
5145 * Returns B_TRUE if compression succeeded, or B_FALSE if it didn't (the
5146 * buffer was incompressible).
5147 */
5148static boolean_t
5149l2arc_compress_buf(l2arc_buf_hdr_t *l2hdr)
5150{
5151 void *cdata;
9b67f605 5152 size_t csize, len, rounded;
3a17a7a9
SK
5153
5154 ASSERT(l2hdr->b_compress == ZIO_COMPRESS_OFF);
5155 ASSERT(l2hdr->b_tmp_cdata != NULL);
5156
5157 len = l2hdr->b_asize;
5158 cdata = zio_data_buf_alloc(len);
5159 csize = zio_compress_data(ZIO_COMPRESS_LZ4, l2hdr->b_tmp_cdata,
5160 cdata, l2hdr->b_asize);
5161
9b67f605
MA
5162 rounded = P2ROUNDUP(csize, (size_t)SPA_MINBLOCKSIZE);
5163 if (rounded > csize) {
5164 bzero((char *)cdata + csize, rounded - csize);
5165 csize = rounded;
5166 }
5167
3a17a7a9
SK
5168 if (csize == 0) {
5169 /* zero block, indicate that there's nothing to write */
5170 zio_data_buf_free(cdata, len);
5171 l2hdr->b_compress = ZIO_COMPRESS_EMPTY;
5172 l2hdr->b_asize = 0;
5173 l2hdr->b_tmp_cdata = NULL;
5174 ARCSTAT_BUMP(arcstat_l2_compress_zeros);
5175 return (B_TRUE);
5176 } else if (csize > 0 && csize < len) {
5177 /*
5178 * Compression succeeded, we'll keep the cdata around for
5179 * writing and release it afterwards.
5180 */
5181 l2hdr->b_compress = ZIO_COMPRESS_LZ4;
5182 l2hdr->b_asize = csize;
5183 l2hdr->b_tmp_cdata = cdata;
5184 ARCSTAT_BUMP(arcstat_l2_compress_successes);
5185 return (B_TRUE);
5186 } else {
5187 /*
5188 * Compression failed, release the compressed buffer.
5189 * l2hdr will be left unmodified.
5190 */
5191 zio_data_buf_free(cdata, len);
5192 ARCSTAT_BUMP(arcstat_l2_compress_failures);
5193 return (B_FALSE);
5194 }
5195}
5196
5197/*
5198 * Decompresses a zio read back from an l2arc device. On success, the
5199 * underlying zio's io_data buffer is overwritten by the uncompressed
5200 * version. On decompression error (corrupt compressed stream), the
5201 * zio->io_error value is set to signal an I/O error.
5202 *
5203 * Please note that the compressed data stream is not checksummed, so
5204 * if the underlying device is experiencing data corruption, we may feed
5205 * corrupt data to the decompressor, so the decompressor needs to be
5206 * able to handle this situation (LZ4 does).
5207 */
5208static void
5209l2arc_decompress_zio(zio_t *zio, arc_buf_hdr_t *hdr, enum zio_compress c)
5210{
5211 uint64_t csize;
5212 void *cdata;
5213
5214 ASSERT(L2ARC_IS_VALID_COMPRESS(c));
5215
5216 if (zio->io_error != 0) {
5217 /*
5218 * An io error has occured, just restore the original io
5219 * size in preparation for a main pool read.
5220 */
5221 zio->io_orig_size = zio->io_size = hdr->b_size;
5222 return;
5223 }
5224
5225 if (c == ZIO_COMPRESS_EMPTY) {
5226 /*
5227 * An empty buffer results in a null zio, which means we
5228 * need to fill its io_data after we're done restoring the
5229 * buffer's contents.
5230 */
5231 ASSERT(hdr->b_buf != NULL);
5232 bzero(hdr->b_buf->b_data, hdr->b_size);
5233 zio->io_data = zio->io_orig_data = hdr->b_buf->b_data;
5234 } else {
5235 ASSERT(zio->io_data != NULL);
5236 /*
5237 * We copy the compressed data from the start of the arc buffer
5238 * (the zio_read will have pulled in only what we need, the
5239 * rest is garbage which we will overwrite at decompression)
5240 * and then decompress back to the ARC data buffer. This way we
5241 * can minimize copying by simply decompressing back over the
5242 * original compressed data (rather than decompressing to an
5243 * aux buffer and then copying back the uncompressed buffer,
5244 * which is likely to be much larger).
5245 */
5246 csize = zio->io_size;
5247 cdata = zio_data_buf_alloc(csize);
5248 bcopy(zio->io_data, cdata, csize);
5249 if (zio_decompress_data(c, cdata, zio->io_data, csize,
5250 hdr->b_size) != 0)
2e528b49 5251 zio->io_error = SET_ERROR(EIO);
3a17a7a9
SK
5252 zio_data_buf_free(cdata, csize);
5253 }
5254
5255 /* Restore the expected uncompressed IO size. */
5256 zio->io_orig_size = zio->io_size = hdr->b_size;
5257}
5258
5259/*
5260 * Releases the temporary b_tmp_cdata buffer in an l2arc header structure.
5261 * This buffer serves as a temporary holder of compressed data while
5262 * the buffer entry is being written to an l2arc device. Once that is
5263 * done, we can dispose of it.
5264 */
5265static void
5266l2arc_release_cdata_buf(arc_buf_hdr_t *ab)
5267{
5268 l2arc_buf_hdr_t *l2hdr = ab->b_l2hdr;
5269
5270 if (l2hdr->b_compress == ZIO_COMPRESS_LZ4) {
5271 /*
5272 * If the data was compressed, then we've allocated a
5273 * temporary buffer for it, so now we need to release it.
5274 */
5275 ASSERT(l2hdr->b_tmp_cdata != NULL);
5276 zio_data_buf_free(l2hdr->b_tmp_cdata, ab->b_size);
5277 }
5278 l2hdr->b_tmp_cdata = NULL;
34dc7c2f
BB
5279}
5280
5281/*
5282 * This thread feeds the L2ARC at regular intervals. This is the beating
5283 * heart of the L2ARC.
5284 */
5285static void
5286l2arc_feed_thread(void)
5287{
5288 callb_cpr_t cpr;
5289 l2arc_dev_t *dev;
5290 spa_t *spa;
d164b209 5291 uint64_t size, wrote;
428870ff 5292 clock_t begin, next = ddi_get_lbolt();
3a17a7a9 5293 boolean_t headroom_boost = B_FALSE;
34dc7c2f
BB
5294
5295 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
5296
5297 mutex_enter(&l2arc_feed_thr_lock);
5298
5299 while (l2arc_thread_exit == 0) {
34dc7c2f 5300 CALLB_CPR_SAFE_BEGIN(&cpr);
5b63b3eb
BB
5301 (void) cv_timedwait_interruptible(&l2arc_feed_thr_cv,
5302 &l2arc_feed_thr_lock, next);
34dc7c2f 5303 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
428870ff 5304 next = ddi_get_lbolt() + hz;
34dc7c2f
BB
5305
5306 /*
b128c09f 5307 * Quick check for L2ARC devices.
34dc7c2f
BB
5308 */
5309 mutex_enter(&l2arc_dev_mtx);
5310 if (l2arc_ndev == 0) {
5311 mutex_exit(&l2arc_dev_mtx);
5312 continue;
5313 }
b128c09f 5314 mutex_exit(&l2arc_dev_mtx);
428870ff 5315 begin = ddi_get_lbolt();
34dc7c2f
BB
5316
5317 /*
b128c09f
BB
5318 * This selects the next l2arc device to write to, and in
5319 * doing so the next spa to feed from: dev->l2ad_spa. This
5320 * will return NULL if there are now no l2arc devices or if
5321 * they are all faulted.
5322 *
5323 * If a device is returned, its spa's config lock is also
5324 * held to prevent device removal. l2arc_dev_get_next()
5325 * will grab and release l2arc_dev_mtx.
34dc7c2f 5326 */
b128c09f 5327 if ((dev = l2arc_dev_get_next()) == NULL)
34dc7c2f 5328 continue;
b128c09f
BB
5329
5330 spa = dev->l2ad_spa;
5331 ASSERT(spa != NULL);
34dc7c2f 5332
572e2857
BB
5333 /*
5334 * If the pool is read-only then force the feed thread to
5335 * sleep a little longer.
5336 */
5337 if (!spa_writeable(spa)) {
5338 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
5339 spa_config_exit(spa, SCL_L2ARC, dev);
5340 continue;
5341 }
5342
34dc7c2f 5343 /*
b128c09f 5344 * Avoid contributing to memory pressure.
34dc7c2f 5345 */
302f753f 5346 if (arc_no_grow) {
b128c09f
BB
5347 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
5348 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5349 continue;
5350 }
b128c09f 5351
34dc7c2f
BB
5352 ARCSTAT_BUMP(arcstat_l2_feeds);
5353
3a17a7a9 5354 size = l2arc_write_size();
b128c09f 5355
34dc7c2f
BB
5356 /*
5357 * Evict L2ARC buffers that will be overwritten.
5358 */
b128c09f 5359 l2arc_evict(dev, size, B_FALSE);
34dc7c2f
BB
5360
5361 /*
5362 * Write ARC buffers.
5363 */
3a17a7a9 5364 wrote = l2arc_write_buffers(spa, dev, size, &headroom_boost);
d164b209
BB
5365
5366 /*
5367 * Calculate interval between writes.
5368 */
5369 next = l2arc_write_interval(begin, size, wrote);
b128c09f 5370 spa_config_exit(spa, SCL_L2ARC, dev);
34dc7c2f
BB
5371 }
5372
5373 l2arc_thread_exit = 0;
5374 cv_broadcast(&l2arc_feed_thr_cv);
5375 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
5376 thread_exit();
5377}
5378
b128c09f
BB
5379boolean_t
5380l2arc_vdev_present(vdev_t *vd)
5381{
5382 l2arc_dev_t *dev;
5383
5384 mutex_enter(&l2arc_dev_mtx);
5385 for (dev = list_head(l2arc_dev_list); dev != NULL;
5386 dev = list_next(l2arc_dev_list, dev)) {
5387 if (dev->l2ad_vdev == vd)
5388 break;
5389 }
5390 mutex_exit(&l2arc_dev_mtx);
5391
5392 return (dev != NULL);
5393}
5394
34dc7c2f
BB
5395/*
5396 * Add a vdev for use by the L2ARC. By this point the spa has already
5397 * validated the vdev and opened it.
5398 */
5399void
9babb374 5400l2arc_add_vdev(spa_t *spa, vdev_t *vd)
34dc7c2f
BB
5401{
5402 l2arc_dev_t *adddev;
5403
b128c09f
BB
5404 ASSERT(!l2arc_vdev_present(vd));
5405
34dc7c2f
BB
5406 /*
5407 * Create a new l2arc device entry.
5408 */
5409 adddev = kmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
5410 adddev->l2ad_spa = spa;
5411 adddev->l2ad_vdev = vd;
9babb374
BB
5412 adddev->l2ad_start = VDEV_LABEL_START_SIZE;
5413 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
34dc7c2f
BB
5414 adddev->l2ad_hand = adddev->l2ad_start;
5415 adddev->l2ad_evict = adddev->l2ad_start;
5416 adddev->l2ad_first = B_TRUE;
d164b209 5417 adddev->l2ad_writing = B_FALSE;
98f72a53 5418 list_link_init(&adddev->l2ad_node);
34dc7c2f
BB
5419
5420 /*
5421 * This is a list of all ARC buffers that are still valid on the
5422 * device.
5423 */
5424 adddev->l2ad_buflist = kmem_zalloc(sizeof (list_t), KM_SLEEP);
5425 list_create(adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
5426 offsetof(arc_buf_hdr_t, b_l2node));
5427
428870ff 5428 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
34dc7c2f
BB
5429
5430 /*
5431 * Add device to global list
5432 */
5433 mutex_enter(&l2arc_dev_mtx);
5434 list_insert_head(l2arc_dev_list, adddev);
5435 atomic_inc_64(&l2arc_ndev);
5436 mutex_exit(&l2arc_dev_mtx);
5437}
5438
5439/*
5440 * Remove a vdev from the L2ARC.
5441 */
5442void
5443l2arc_remove_vdev(vdev_t *vd)
5444{
5445 l2arc_dev_t *dev, *nextdev, *remdev = NULL;
5446
34dc7c2f
BB
5447 /*
5448 * Find the device by vdev
5449 */
5450 mutex_enter(&l2arc_dev_mtx);
5451 for (dev = list_head(l2arc_dev_list); dev; dev = nextdev) {
5452 nextdev = list_next(l2arc_dev_list, dev);
5453 if (vd == dev->l2ad_vdev) {
5454 remdev = dev;
5455 break;
5456 }
5457 }
5458 ASSERT(remdev != NULL);
5459
5460 /*
5461 * Remove device from global list
5462 */
5463 list_remove(l2arc_dev_list, remdev);
5464 l2arc_dev_last = NULL; /* may have been invalidated */
b128c09f
BB
5465 atomic_dec_64(&l2arc_ndev);
5466 mutex_exit(&l2arc_dev_mtx);
34dc7c2f
BB
5467
5468 /*
5469 * Clear all buflists and ARC references. L2ARC device flush.
5470 */
5471 l2arc_evict(remdev, 0, B_TRUE);
5472 list_destroy(remdev->l2ad_buflist);
5473 kmem_free(remdev->l2ad_buflist, sizeof (list_t));
5474 kmem_free(remdev, sizeof (l2arc_dev_t));
34dc7c2f
BB
5475}
5476
5477void
b128c09f 5478l2arc_init(void)
34dc7c2f
BB
5479{
5480 l2arc_thread_exit = 0;
5481 l2arc_ndev = 0;
5482 l2arc_writes_sent = 0;
5483 l2arc_writes_done = 0;
5484
5485 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
5486 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
5487 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
5488 mutex_init(&l2arc_buflist_mtx, NULL, MUTEX_DEFAULT, NULL);
5489 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
5490
5491 l2arc_dev_list = &L2ARC_dev_list;
5492 l2arc_free_on_write = &L2ARC_free_on_write;
5493 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
5494 offsetof(l2arc_dev_t, l2ad_node));
5495 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
5496 offsetof(l2arc_data_free_t, l2df_list_node));
34dc7c2f
BB
5497}
5498
5499void
b128c09f 5500l2arc_fini(void)
34dc7c2f 5501{
b128c09f
BB
5502 /*
5503 * This is called from dmu_fini(), which is called from spa_fini();
5504 * Because of this, we can assume that all l2arc devices have
5505 * already been removed when the pools themselves were removed.
5506 */
5507
5508 l2arc_do_free_on_write();
34dc7c2f
BB
5509
5510 mutex_destroy(&l2arc_feed_thr_lock);
5511 cv_destroy(&l2arc_feed_thr_cv);
5512 mutex_destroy(&l2arc_dev_mtx);
5513 mutex_destroy(&l2arc_buflist_mtx);
5514 mutex_destroy(&l2arc_free_on_write_mtx);
5515
5516 list_destroy(l2arc_dev_list);
5517 list_destroy(l2arc_free_on_write);
5518}
b128c09f
BB
5519
5520void
5521l2arc_start(void)
5522{
fb5f0bc8 5523 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5524 return;
5525
5526 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
5527 TS_RUN, minclsyspri);
5528}
5529
5530void
5531l2arc_stop(void)
5532{
fb5f0bc8 5533 if (!(spa_mode_global & FWRITE))
b128c09f
BB
5534 return;
5535
5536 mutex_enter(&l2arc_feed_thr_lock);
5537 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
5538 l2arc_thread_exit = 1;
5539 while (l2arc_thread_exit != 0)
5540 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
5541 mutex_exit(&l2arc_feed_thr_lock);
5542}
c28b2279
BB
5543
5544#if defined(_KERNEL) && defined(HAVE_SPL)
0f699108
AZ
5545EXPORT_SYMBOL(arc_buf_size);
5546EXPORT_SYMBOL(arc_write);
c28b2279
BB
5547EXPORT_SYMBOL(arc_read);
5548EXPORT_SYMBOL(arc_buf_remove_ref);
e0b0ca98 5549EXPORT_SYMBOL(arc_buf_info);
c28b2279 5550EXPORT_SYMBOL(arc_getbuf_func);
ab26409d
BB
5551EXPORT_SYMBOL(arc_add_prune_callback);
5552EXPORT_SYMBOL(arc_remove_prune_callback);
c28b2279 5553
bce45ec9 5554module_param(zfs_arc_min, ulong, 0644);
c409e464 5555MODULE_PARM_DESC(zfs_arc_min, "Min arc size");
c28b2279 5556
bce45ec9 5557module_param(zfs_arc_max, ulong, 0644);
c409e464 5558MODULE_PARM_DESC(zfs_arc_max, "Max arc size");
c28b2279 5559
bce45ec9 5560module_param(zfs_arc_meta_limit, ulong, 0644);
c28b2279 5561MODULE_PARM_DESC(zfs_arc_meta_limit, "Meta limit for arc size");
6a8f9b6b 5562
bce45ec9 5563module_param(zfs_arc_meta_prune, int, 0644);
ab26409d 5564MODULE_PARM_DESC(zfs_arc_meta_prune, "Bytes of meta data to prune");
c409e464 5565
bce45ec9 5566module_param(zfs_arc_grow_retry, int, 0644);
c409e464
BB
5567MODULE_PARM_DESC(zfs_arc_grow_retry, "Seconds before growing arc size");
5568
89c8cac4
PS
5569module_param(zfs_arc_p_aggressive_disable, int, 0644);
5570MODULE_PARM_DESC(zfs_arc_p_aggressive_disable, "disable aggressive arc_p grow");
5571
62422785
PS
5572module_param(zfs_arc_p_dampener_disable, int, 0644);
5573MODULE_PARM_DESC(zfs_arc_p_dampener_disable, "disable arc_p adapt dampener");
5574
bce45ec9 5575module_param(zfs_arc_shrink_shift, int, 0644);
c409e464
BB
5576MODULE_PARM_DESC(zfs_arc_shrink_shift, "log2(fraction of arc to reclaim)");
5577
1f7c30df
BB
5578module_param(zfs_disable_dup_eviction, int, 0644);
5579MODULE_PARM_DESC(zfs_disable_dup_eviction, "disable duplicate buffer eviction");
5580
49ddb315
MA
5581module_param(zfs_arc_average_blocksize, int, 0444);
5582MODULE_PARM_DESC(zfs_arc_average_blocksize, "Target average block size");
5583
0c5493d4
BB
5584module_param(zfs_arc_memory_throttle_disable, int, 0644);
5585MODULE_PARM_DESC(zfs_arc_memory_throttle_disable, "disable memory throttle");
5586
bce45ec9
BB
5587module_param(zfs_arc_min_prefetch_lifespan, int, 0644);
5588MODULE_PARM_DESC(zfs_arc_min_prefetch_lifespan, "Min life of prefetch block");
5589
5590module_param(l2arc_write_max, ulong, 0644);
abd8610c
BB
5591MODULE_PARM_DESC(l2arc_write_max, "Max write bytes per interval");
5592
bce45ec9 5593module_param(l2arc_write_boost, ulong, 0644);
abd8610c
BB
5594MODULE_PARM_DESC(l2arc_write_boost, "Extra write bytes during device warmup");
5595
bce45ec9 5596module_param(l2arc_headroom, ulong, 0644);
abd8610c
BB
5597MODULE_PARM_DESC(l2arc_headroom, "Number of max device writes to precache");
5598
3a17a7a9
SK
5599module_param(l2arc_headroom_boost, ulong, 0644);
5600MODULE_PARM_DESC(l2arc_headroom_boost, "Compressed l2arc_headroom multiplier");
5601
bce45ec9 5602module_param(l2arc_feed_secs, ulong, 0644);
abd8610c
BB
5603MODULE_PARM_DESC(l2arc_feed_secs, "Seconds between L2ARC writing");
5604
bce45ec9 5605module_param(l2arc_feed_min_ms, ulong, 0644);
abd8610c
BB
5606MODULE_PARM_DESC(l2arc_feed_min_ms, "Min feed interval in milliseconds");
5607
bce45ec9 5608module_param(l2arc_noprefetch, int, 0644);
abd8610c
BB
5609MODULE_PARM_DESC(l2arc_noprefetch, "Skip caching prefetched buffers");
5610
3a17a7a9
SK
5611module_param(l2arc_nocompress, int, 0644);
5612MODULE_PARM_DESC(l2arc_nocompress, "Skip compressing L2ARC buffers");
5613
bce45ec9 5614module_param(l2arc_feed_again, int, 0644);
abd8610c
BB
5615MODULE_PARM_DESC(l2arc_feed_again, "Turbo L2ARC warmup");
5616
bce45ec9 5617module_param(l2arc_norw, int, 0644);
abd8610c
BB
5618MODULE_PARM_DESC(l2arc_norw, "No reads during writes");
5619
c28b2279 5620#endif