]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/spa_misc.c
panic in bpobj_space(): null pointer dereference
[mirror_zfs.git] / module / zfs / spa_misc.c
CommitLineData
34dc7c2f
BB
1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21/*
428870ff 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
c3520e7f 23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
adfe9d93 24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
0c66c32d 25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
3c67d83a 26 * Copyright 2013 Saso Kiselkov. All rights reserved.
34dc7c2f
BB
27 */
28
34dc7c2f
BB
29#include <sys/zfs_context.h>
30#include <sys/spa_impl.h>
31#include <sys/zio.h>
32#include <sys/zio_checksum.h>
33#include <sys/zio_compress.h>
34#include <sys/dmu.h>
35#include <sys/dmu_tx.h>
36#include <sys/zap.h>
37#include <sys/zil.h>
38#include <sys/vdev_impl.h>
bc25c932 39#include <sys/vdev_file.h>
ab9f4b0b 40#include <sys/vdev_raidz.h>
34dc7c2f
BB
41#include <sys/metaslab.h>
42#include <sys/uberblock_impl.h>
43#include <sys/txg.h>
44#include <sys/avl.h>
45#include <sys/unique.h>
46#include <sys/dsl_pool.h>
47#include <sys/dsl_dir.h>
48#include <sys/dsl_prop.h>
26685276 49#include <sys/fm/util.h>
428870ff 50#include <sys/dsl_scan.h>
34dc7c2f
BB
51#include <sys/fs/zfs.h>
52#include <sys/metaslab_impl.h>
b128c09f 53#include <sys/arc.h>
428870ff 54#include <sys/ddt.h>
1421c891 55#include <sys/kstat.h>
34dc7c2f 56#include "zfs_prop.h"
3c67d83a 57#include <sys/zfeature.h>
34dc7c2f
BB
58
59/*
60 * SPA locking
61 *
62 * There are four basic locks for managing spa_t structures:
63 *
64 * spa_namespace_lock (global mutex)
65 *
66 * This lock must be acquired to do any of the following:
67 *
68 * - Lookup a spa_t by name
69 * - Add or remove a spa_t from the namespace
70 * - Increase spa_refcount from non-zero
71 * - Check if spa_refcount is zero
72 * - Rename a spa_t
73 * - add/remove/attach/detach devices
74 * - Held for the duration of create/destroy/import/export
75 *
76 * It does not need to handle recursion. A create or destroy may
77 * reference objects (files or zvols) in other pools, but by
78 * definition they must have an existing reference, and will never need
79 * to lookup a spa_t by name.
80 *
81 * spa_refcount (per-spa refcount_t protected by mutex)
82 *
83 * This reference count keep track of any active users of the spa_t. The
84 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
85 * the refcount is never really 'zero' - opening a pool implicitly keeps
b128c09f 86 * some references in the DMU. Internally we check against spa_minref, but
34dc7c2f
BB
87 * present the image of a zero/non-zero value to consumers.
88 *
b128c09f 89 * spa_config_lock[] (per-spa array of rwlocks)
34dc7c2f
BB
90 *
91 * This protects the spa_t from config changes, and must be held in
92 * the following circumstances:
93 *
94 * - RW_READER to perform I/O to the spa
95 * - RW_WRITER to change the vdev config
96 *
34dc7c2f
BB
97 * The locking order is fairly straightforward:
98 *
99 * spa_namespace_lock -> spa_refcount
100 *
101 * The namespace lock must be acquired to increase the refcount from 0
102 * or to check if it is zero.
103 *
b128c09f 104 * spa_refcount -> spa_config_lock[]
34dc7c2f
BB
105 *
106 * There must be at least one valid reference on the spa_t to acquire
107 * the config lock.
108 *
b128c09f 109 * spa_namespace_lock -> spa_config_lock[]
34dc7c2f
BB
110 *
111 * The namespace lock must always be taken before the config lock.
112 *
113 *
b128c09f 114 * The spa_namespace_lock can be acquired directly and is globally visible.
34dc7c2f 115 *
b128c09f
BB
116 * The namespace is manipulated using the following functions, all of which
117 * require the spa_namespace_lock to be held.
34dc7c2f
BB
118 *
119 * spa_lookup() Lookup a spa_t by name.
120 *
121 * spa_add() Create a new spa_t in the namespace.
122 *
123 * spa_remove() Remove a spa_t from the namespace. This also
124 * frees up any memory associated with the spa_t.
125 *
126 * spa_next() Returns the next spa_t in the system, or the
127 * first if NULL is passed.
128 *
129 * spa_evict_all() Shutdown and remove all spa_t structures in
130 * the system.
131 *
132 * spa_guid_exists() Determine whether a pool/device guid exists.
133 *
134 * The spa_refcount is manipulated using the following functions:
135 *
136 * spa_open_ref() Adds a reference to the given spa_t. Must be
137 * called with spa_namespace_lock held if the
138 * refcount is currently zero.
139 *
140 * spa_close() Remove a reference from the spa_t. This will
141 * not free the spa_t or remove it from the
142 * namespace. No locking is required.
143 *
144 * spa_refcount_zero() Returns true if the refcount is currently
145 * zero. Must be called with spa_namespace_lock
146 * held.
147 *
b128c09f
BB
148 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
149 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
150 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
151 *
152 * To read the configuration, it suffices to hold one of these locks as reader.
153 * To modify the configuration, you must hold all locks as writer. To modify
154 * vdev state without altering the vdev tree's topology (e.g. online/offline),
155 * you must hold SCL_STATE and SCL_ZIO as writer.
156 *
157 * We use these distinct config locks to avoid recursive lock entry.
158 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
159 * block allocations (SCL_ALLOC), which may require reading space maps
160 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
161 *
162 * The spa config locks cannot be normal rwlocks because we need the
163 * ability to hand off ownership. For example, SCL_ZIO is acquired
164 * by the issuing thread and later released by an interrupt thread.
165 * They do, however, obey the usual write-wanted semantics to prevent
166 * writer (i.e. system administrator) starvation.
167 *
168 * The lock acquisition rules are as follows:
169 *
170 * SCL_CONFIG
171 * Protects changes to the vdev tree topology, such as vdev
172 * add/remove/attach/detach. Protects the dirty config list
173 * (spa_config_dirty_list) and the set of spares and l2arc devices.
174 *
175 * SCL_STATE
176 * Protects changes to pool state and vdev state, such as vdev
177 * online/offline/fault/degrade/clear. Protects the dirty state list
178 * (spa_state_dirty_list) and global pool state (spa_state).
179 *
180 * SCL_ALLOC
181 * Protects changes to metaslab groups and classes.
182 * Held as reader by metaslab_alloc() and metaslab_claim().
183 *
184 * SCL_ZIO
185 * Held by bp-level zios (those which have no io_vd upon entry)
186 * to prevent changes to the vdev tree. The bp-level zio implicitly
187 * protects all of its vdev child zios, which do not hold SCL_ZIO.
188 *
189 * SCL_FREE
190 * Protects changes to metaslab groups and classes.
191 * Held as reader by metaslab_free(). SCL_FREE is distinct from
192 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
193 * blocks in zio_done() while another i/o that holds either
194 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
195 *
196 * SCL_VDEV
197 * Held as reader to prevent changes to the vdev tree during trivial
428870ff 198 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
b128c09f
BB
199 * other locks, and lower than all of them, to ensure that it's safe
200 * to acquire regardless of caller context.
201 *
202 * In addition, the following rules apply:
203 *
204 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
205 * The lock ordering is SCL_CONFIG > spa_props_lock.
206 *
207 * (b) I/O operations on leaf vdevs. For any zio operation that takes
208 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
209 * or zio_write_phys() -- the caller must ensure that the config cannot
210 * cannot change in the interim, and that the vdev cannot be reopened.
211 * SCL_STATE as reader suffices for both.
34dc7c2f
BB
212 *
213 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
214 *
215 * spa_vdev_enter() Acquire the namespace lock and the config lock
216 * for writing.
217 *
218 * spa_vdev_exit() Release the config lock, wait for all I/O
219 * to complete, sync the updated configs to the
220 * cache, and release the namespace lock.
221 *
b128c09f
BB
222 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
223 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
224 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
225 *
9ae529ec 226 * spa_rename() is also implemented within this file since it requires
b128c09f 227 * manipulation of the namespace.
34dc7c2f
BB
228 */
229
230static avl_tree_t spa_namespace_avl;
231kmutex_t spa_namespace_lock;
232static kcondvar_t spa_namespace_cv;
34dc7c2f
BB
233int spa_max_replication_override = SPA_DVAS_PER_BP;
234
235static kmutex_t spa_spare_lock;
236static avl_tree_t spa_spare_avl;
237static kmutex_t spa_l2cache_lock;
238static avl_tree_t spa_l2cache_avl;
239
240kmem_cache_t *spa_buffer_pool;
fb5f0bc8 241int spa_mode_global;
34dc7c2f 242
0b39b9f9
PS
243#ifdef ZFS_DEBUG
244/* Everything except dprintf and spa is on by default in debug builds */
245int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
246#else
247int zfs_flags = 0;
248#endif
249
250/*
251 * zfs_recover can be set to nonzero to attempt to recover from
252 * otherwise-fatal errors, typically caused by on-disk corruption. When
253 * set, calls to zfs_panic_recover() will turn into warning messages.
254 * This should only be used as a last resort, as it typically results
255 * in leaked space, or worse.
256 */
257int zfs_recover = B_FALSE;
258
259/*
260 * If destroy encounters an EIO while reading metadata (e.g. indirect
261 * blocks), space referenced by the missing metadata can not be freed.
262 * Normally this causes the background destroy to become "stalled", as
263 * it is unable to make forward progress. While in this stalled state,
264 * all remaining space to free from the error-encountering filesystem is
265 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
266 * permanently leak the space from indirect blocks that can not be read,
267 * and continue to free everything else that it can.
268 *
269 * The default, "stalling" behavior is useful if the storage partially
270 * fails (i.e. some but not all i/os fail), and then later recovers. In
271 * this case, we will be able to continue pool operations while it is
272 * partially failed, and when it recovers, we can continue to free the
273 * space, with no leaks. However, note that this case is actually
274 * fairly rare.
275 *
276 * Typically pools either (a) fail completely (but perhaps temporarily,
277 * e.g. a top-level vdev going offline), or (b) have localized,
278 * permanent errors (e.g. disk returns the wrong data due to bit flip or
279 * firmware bug). In case (a), this setting does not matter because the
280 * pool will be suspended and the sync thread will not be able to make
281 * forward progress regardless. In case (b), because the error is
282 * permanent, the best we can do is leak the minimum amount of space,
283 * which is what setting this flag will do. Therefore, it is reasonable
284 * for this flag to normally be set, but we chose the more conservative
285 * approach of not setting it, so that there is no possibility of
286 * leaking space in the "partial temporary" failure case.
287 */
288int zfs_free_leak_on_eio = B_FALSE;
289
cc92e9d0 290/*
e8b96c60
MA
291 * Expiration time in milliseconds. This value has two meanings. First it is
292 * used to determine when the spa_deadman() logic should fire. By default the
293 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
294 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
295 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
296 * in a system panic.
cc92e9d0 297 */
e8b96c60 298unsigned long zfs_deadman_synctime_ms = 1000000ULL;
cc92e9d0 299
b81a3ddc
TC
300/*
301 * Check time in milliseconds. This defines the frequency at which we check
302 * for hung I/O.
303 */
304unsigned long zfs_deadman_checktime_ms = 5000ULL;
305
cc92e9d0
GW
306/*
307 * By default the deadman is enabled.
308 */
309int zfs_deadman_enabled = 1;
310
e8b96c60
MA
311/*
312 * The worst case is single-sector max-parity RAID-Z blocks, in which
313 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
314 * times the size; so just assume that. Add to this the fact that
315 * we can have up to 3 DVAs per bp, and one more factor of 2 because
316 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
317 * the worst case is:
318 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
319 */
320int spa_asize_inflation = 24;
321
3d45fdd6
MA
322/*
323 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
324 * the pool to be consumed. This ensures that we don't run the pool
325 * completely out of space, due to unaccounted changes (e.g. to the MOS).
326 * It also limits the worst-case time to allocate space. If we have
327 * less than this amount of free space, most ZPL operations (e.g. write,
328 * create) will return ENOSPC.
329 *
330 * Certain operations (e.g. file removal, most administrative actions) can
331 * use half the slop space. They will only return ENOSPC if less than half
332 * the slop space is free. Typically, once the pool has less than the slop
333 * space free, the user will use these operations to free up space in the pool.
334 * These are the operations that call dsl_pool_adjustedsize() with the netfree
335 * argument set to TRUE.
336 *
337 * A very restricted set of operations are always permitted, regardless of
338 * the amount of free space. These are the operations that call
339 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
340 * operations result in a net increase in the amount of space used,
341 * it is possible to run the pool completely out of space, causing it to
342 * be permanently read-only.
343 *
344 * See also the comments in zfs_space_check_t.
345 */
346int spa_slop_shift = 5;
347
34dc7c2f
BB
348/*
349 * ==========================================================================
350 * SPA config locking
351 * ==========================================================================
352 */
353static void
b128c09f
BB
354spa_config_lock_init(spa_t *spa)
355{
d6320ddb
BB
356 int i;
357
358 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
359 spa_config_lock_t *scl = &spa->spa_config_lock[i];
360 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
361 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
13fe0198 362 refcount_create_untracked(&scl->scl_count);
b128c09f
BB
363 scl->scl_writer = NULL;
364 scl->scl_write_wanted = 0;
365 }
34dc7c2f
BB
366}
367
368static void
b128c09f
BB
369spa_config_lock_destroy(spa_t *spa)
370{
d6320ddb
BB
371 int i;
372
373 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
374 spa_config_lock_t *scl = &spa->spa_config_lock[i];
375 mutex_destroy(&scl->scl_lock);
376 cv_destroy(&scl->scl_cv);
377 refcount_destroy(&scl->scl_count);
378 ASSERT(scl->scl_writer == NULL);
379 ASSERT(scl->scl_write_wanted == 0);
380 }
381}
382
383int
384spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 385{
d6320ddb
BB
386 int i;
387
388 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
389 spa_config_lock_t *scl = &spa->spa_config_lock[i];
390 if (!(locks & (1 << i)))
391 continue;
392 mutex_enter(&scl->scl_lock);
393 if (rw == RW_READER) {
394 if (scl->scl_writer || scl->scl_write_wanted) {
395 mutex_exit(&scl->scl_lock);
adfe9d93
SK
396 spa_config_exit(spa, locks & ((1 << i) - 1),
397 tag);
b128c09f
BB
398 return (0);
399 }
400 } else {
401 ASSERT(scl->scl_writer != curthread);
402 if (!refcount_is_zero(&scl->scl_count)) {
403 mutex_exit(&scl->scl_lock);
adfe9d93
SK
404 spa_config_exit(spa, locks & ((1 << i) - 1),
405 tag);
b128c09f
BB
406 return (0);
407 }
408 scl->scl_writer = curthread;
409 }
410 (void) refcount_add(&scl->scl_count, tag);
411 mutex_exit(&scl->scl_lock);
412 }
413 return (1);
34dc7c2f
BB
414}
415
416void
b128c09f 417spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
34dc7c2f 418{
45d1cae3 419 int wlocks_held = 0;
d6320ddb 420 int i;
45d1cae3 421
13fe0198
MA
422 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
423
d6320ddb 424 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f 425 spa_config_lock_t *scl = &spa->spa_config_lock[i];
45d1cae3
BB
426 if (scl->scl_writer == curthread)
427 wlocks_held |= (1 << i);
b128c09f
BB
428 if (!(locks & (1 << i)))
429 continue;
430 mutex_enter(&scl->scl_lock);
431 if (rw == RW_READER) {
432 while (scl->scl_writer || scl->scl_write_wanted) {
433 cv_wait(&scl->scl_cv, &scl->scl_lock);
434 }
435 } else {
436 ASSERT(scl->scl_writer != curthread);
437 while (!refcount_is_zero(&scl->scl_count)) {
438 scl->scl_write_wanted++;
439 cv_wait(&scl->scl_cv, &scl->scl_lock);
440 scl->scl_write_wanted--;
441 }
442 scl->scl_writer = curthread;
443 }
444 (void) refcount_add(&scl->scl_count, tag);
445 mutex_exit(&scl->scl_lock);
34dc7c2f 446 }
45d1cae3 447 ASSERT(wlocks_held <= locks);
34dc7c2f
BB
448}
449
450void
b128c09f 451spa_config_exit(spa_t *spa, int locks, void *tag)
34dc7c2f 452{
d6320ddb
BB
453 int i;
454
455 for (i = SCL_LOCKS - 1; i >= 0; i--) {
b128c09f
BB
456 spa_config_lock_t *scl = &spa->spa_config_lock[i];
457 if (!(locks & (1 << i)))
458 continue;
459 mutex_enter(&scl->scl_lock);
460 ASSERT(!refcount_is_zero(&scl->scl_count));
461 if (refcount_remove(&scl->scl_count, tag) == 0) {
462 ASSERT(scl->scl_writer == NULL ||
463 scl->scl_writer == curthread);
464 scl->scl_writer = NULL; /* OK in either case */
465 cv_broadcast(&scl->scl_cv);
466 }
467 mutex_exit(&scl->scl_lock);
34dc7c2f 468 }
34dc7c2f
BB
469}
470
b128c09f
BB
471int
472spa_config_held(spa_t *spa, int locks, krw_t rw)
34dc7c2f 473{
d6320ddb 474 int i, locks_held = 0;
34dc7c2f 475
d6320ddb 476 for (i = 0; i < SCL_LOCKS; i++) {
b128c09f
BB
477 spa_config_lock_t *scl = &spa->spa_config_lock[i];
478 if (!(locks & (1 << i)))
479 continue;
480 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
481 (rw == RW_WRITER && scl->scl_writer == curthread))
482 locks_held |= 1 << i;
483 }
484
485 return (locks_held);
34dc7c2f
BB
486}
487
488/*
489 * ==========================================================================
490 * SPA namespace functions
491 * ==========================================================================
492 */
493
494/*
495 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
496 * Returns NULL if no matching spa_t is found.
497 */
498spa_t *
499spa_lookup(const char *name)
500{
b128c09f
BB
501 static spa_t search; /* spa_t is large; don't allocate on stack */
502 spa_t *spa;
34dc7c2f 503 avl_index_t where;
34dc7c2f
BB
504 char *cp;
505
506 ASSERT(MUTEX_HELD(&spa_namespace_lock));
507
13fe0198
MA
508 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
509
34dc7c2f
BB
510 /*
511 * If it's a full dataset name, figure out the pool name and
512 * just use that.
513 */
da536844 514 cp = strpbrk(search.spa_name, "/@#");
13fe0198 515 if (cp != NULL)
34dc7c2f 516 *cp = '\0';
34dc7c2f 517
34dc7c2f
BB
518 spa = avl_find(&spa_namespace_avl, &search, &where);
519
34dc7c2f
BB
520 return (spa);
521}
522
cc92e9d0
GW
523/*
524 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
525 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
526 * looking for potentially hung I/Os.
527 */
528void
529spa_deadman(void *arg)
530{
531 spa_t *spa = arg;
532
b81a3ddc
TC
533 /* Disable the deadman if the pool is suspended. */
534 if (spa_suspended(spa))
535 return;
536
cc92e9d0
GW
537 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
538 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
539 ++spa->spa_deadman_calls);
540 if (zfs_deadman_enabled)
541 vdev_deadman(spa->spa_root_vdev);
542
57ddcda1 543 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
f764edf0 544 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
b81a3ddc 545 MSEC_TO_TICK(zfs_deadman_checktime_ms));
cc92e9d0
GW
546}
547
34dc7c2f
BB
548/*
549 * Create an uninitialized spa_t with the given name. Requires
550 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
551 * exist by calling spa_lookup() first.
552 */
553spa_t *
428870ff 554spa_add(const char *name, nvlist_t *config, const char *altroot)
34dc7c2f
BB
555{
556 spa_t *spa;
b128c09f 557 spa_config_dirent_t *dp;
d6320ddb 558 int t;
b0bc7a84 559 int i;
34dc7c2f
BB
560
561 ASSERT(MUTEX_HELD(&spa_namespace_lock));
562
79c76d5b 563 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
34dc7c2f 564
34dc7c2f 565 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 566 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 567 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
0c66c32d 568 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 569 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff 570 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f 571 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
3c67d83a 572 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
428870ff
BB
573 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
574 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
575 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
4eb30c68 576 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
3dfb57a3 577 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
34dc7c2f
BB
578
579 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
0c66c32d 580 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
428870ff 581 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 582 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
b128c09f 583 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
34dc7c2f 584
d6320ddb 585 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
586 bplist_create(&spa->spa_free_bplist[t]);
587
b128c09f 588 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
34dc7c2f
BB
589 spa->spa_state = POOL_STATE_UNINITIALIZED;
590 spa->spa_freeze_txg = UINT64_MAX;
591 spa->spa_final_txg = UINT64_MAX;
428870ff
BB
592 spa->spa_load_max_txg = UINT64_MAX;
593 spa->spa_proc = &p0;
594 spa->spa_proc_state = SPA_PROC_NONE;
34dc7c2f 595
e8b96c60 596 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
cc92e9d0 597
34dc7c2f 598 refcount_create(&spa->spa_refcount);
b128c09f 599 spa_config_lock_init(spa);
1421c891 600 spa_stats_init(spa);
34dc7c2f
BB
601
602 avl_add(&spa_namespace_avl, spa);
603
34dc7c2f
BB
604 /*
605 * Set the alternate root, if there is one.
606 */
0336f3d0 607 if (altroot)
34dc7c2f 608 spa->spa_root = spa_strdup(altroot);
34dc7c2f 609
3dfb57a3
DB
610 avl_create(&spa->spa_alloc_tree, zio_timestamp_compare,
611 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
612
b128c09f
BB
613 /*
614 * Every pool starts with the default cachefile
615 */
616 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
617 offsetof(spa_config_dirent_t, scd_link));
618
79c76d5b 619 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
428870ff 620 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
b128c09f
BB
621 list_insert_head(&spa->spa_config_list, dp);
622
572e2857 623 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
79c76d5b 624 KM_SLEEP) == 0);
572e2857 625
9ae529ec
CS
626 if (config != NULL) {
627 nvlist_t *features;
628
629 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
630 &features) == 0) {
631 VERIFY(nvlist_dup(features, &spa->spa_label_features,
632 0) == 0);
633 }
634
428870ff 635 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
9ae529ec
CS
636 }
637
638 if (spa->spa_label_features == NULL) {
639 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
79c76d5b 640 KM_SLEEP) == 0);
9ae529ec 641 }
428870ff 642
13fe0198
MA
643 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
644
c3520e7f
MA
645 spa->spa_min_ashift = INT_MAX;
646 spa->spa_max_ashift = 0;
647
e8a20144
GN
648 /* Reset cached value */
649 spa->spa_dedup_dspace = ~0ULL;
650
b0bc7a84
MG
651 /*
652 * As a pool is being created, treat all features as disabled by
653 * setting SPA_FEATURE_DISABLED for all entries in the feature
654 * refcount cache.
655 */
656 for (i = 0; i < SPA_FEATURES; i++) {
657 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
658 }
659
34dc7c2f
BB
660 return (spa);
661}
662
663/*
664 * Removes a spa_t from the namespace, freeing up any memory used. Requires
665 * spa_namespace_lock. This is called only after the spa_t has been closed and
666 * deactivated.
667 */
668void
669spa_remove(spa_t *spa)
670{
b128c09f 671 spa_config_dirent_t *dp;
d6320ddb 672 int t;
b128c09f 673
34dc7c2f
BB
674 ASSERT(MUTEX_HELD(&spa_namespace_lock));
675 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
0c66c32d 676 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
34dc7c2f 677
428870ff
BB
678 nvlist_free(spa->spa_config_splitting);
679
34dc7c2f
BB
680 avl_remove(&spa_namespace_avl, spa);
681 cv_broadcast(&spa_namespace_cv);
682
0336f3d0 683 if (spa->spa_root)
34dc7c2f 684 spa_strfree(spa->spa_root);
34dc7c2f 685
b128c09f
BB
686 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
687 list_remove(&spa->spa_config_list, dp);
688 if (dp->scd_path != NULL)
689 spa_strfree(dp->scd_path);
690 kmem_free(dp, sizeof (spa_config_dirent_t));
691 }
34dc7c2f 692
3dfb57a3 693 avl_destroy(&spa->spa_alloc_tree);
b128c09f 694 list_destroy(&spa->spa_config_list);
34dc7c2f 695
9ae529ec 696 nvlist_free(spa->spa_label_features);
572e2857 697 nvlist_free(spa->spa_load_info);
417104bd 698 nvlist_free(spa->spa_feat_stats);
34dc7c2f
BB
699 spa_config_set(spa, NULL);
700
701 refcount_destroy(&spa->spa_refcount);
702
1421c891 703 spa_stats_destroy(spa);
b128c09f 704 spa_config_lock_destroy(spa);
34dc7c2f 705
d6320ddb 706 for (t = 0; t < TXG_SIZE; t++)
428870ff
BB
707 bplist_destroy(&spa->spa_free_bplist[t]);
708
3c67d83a
TH
709 zio_checksum_templates_free(spa);
710
34dc7c2f 711 cv_destroy(&spa->spa_async_cv);
0c66c32d 712 cv_destroy(&spa->spa_evicting_os_cv);
428870ff 713 cv_destroy(&spa->spa_proc_cv);
34dc7c2f 714 cv_destroy(&spa->spa_scrub_io_cv);
b128c09f 715 cv_destroy(&spa->spa_suspend_cv);
34dc7c2f 716
3dfb57a3 717 mutex_destroy(&spa->spa_alloc_lock);
34dc7c2f 718 mutex_destroy(&spa->spa_async_lock);
34dc7c2f 719 mutex_destroy(&spa->spa_errlist_lock);
428870ff 720 mutex_destroy(&spa->spa_errlog_lock);
0c66c32d 721 mutex_destroy(&spa->spa_evicting_os_lock);
34dc7c2f 722 mutex_destroy(&spa->spa_history_lock);
428870ff 723 mutex_destroy(&spa->spa_proc_lock);
34dc7c2f 724 mutex_destroy(&spa->spa_props_lock);
3c67d83a 725 mutex_destroy(&spa->spa_cksum_tmpls_lock);
428870ff 726 mutex_destroy(&spa->spa_scrub_lock);
b128c09f 727 mutex_destroy(&spa->spa_suspend_lock);
428870ff 728 mutex_destroy(&spa->spa_vdev_top_lock);
4eb30c68 729 mutex_destroy(&spa->spa_feat_stats_lock);
34dc7c2f
BB
730
731 kmem_free(spa, sizeof (spa_t));
732}
733
734/*
735 * Given a pool, return the next pool in the namespace, or NULL if there is
736 * none. If 'prev' is NULL, return the first pool.
737 */
738spa_t *
739spa_next(spa_t *prev)
740{
741 ASSERT(MUTEX_HELD(&spa_namespace_lock));
742
743 if (prev)
744 return (AVL_NEXT(&spa_namespace_avl, prev));
745 else
746 return (avl_first(&spa_namespace_avl));
747}
748
749/*
750 * ==========================================================================
751 * SPA refcount functions
752 * ==========================================================================
753 */
754
755/*
756 * Add a reference to the given spa_t. Must have at least one reference, or
757 * have the namespace lock held.
758 */
759void
760spa_open_ref(spa_t *spa, void *tag)
761{
b128c09f 762 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
34dc7c2f 763 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
764 (void) refcount_add(&spa->spa_refcount, tag);
765}
766
767/*
768 * Remove a reference to the given spa_t. Must have at least one reference, or
769 * have the namespace lock held.
770 */
771void
772spa_close(spa_t *spa, void *tag)
773{
b128c09f 774 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
34dc7c2f 775 MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
776 (void) refcount_remove(&spa->spa_refcount, tag);
777}
778
0c66c32d
JG
779/*
780 * Remove a reference to the given spa_t held by a dsl dir that is
781 * being asynchronously released. Async releases occur from a taskq
782 * performing eviction of dsl datasets and dirs. The namespace lock
783 * isn't held and the hold by the object being evicted may contribute to
784 * spa_minref (e.g. dataset or directory released during pool export),
785 * so the asserts in spa_close() do not apply.
786 */
787void
788spa_async_close(spa_t *spa, void *tag)
789{
790 (void) refcount_remove(&spa->spa_refcount, tag);
791}
792
34dc7c2f
BB
793/*
794 * Check to see if the spa refcount is zero. Must be called with
b128c09f 795 * spa_namespace_lock held. We really compare against spa_minref, which is the
34dc7c2f
BB
796 * number of references acquired when opening a pool
797 */
798boolean_t
799spa_refcount_zero(spa_t *spa)
800{
801 ASSERT(MUTEX_HELD(&spa_namespace_lock));
802
b128c09f 803 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
34dc7c2f
BB
804}
805
806/*
807 * ==========================================================================
808 * SPA spare and l2cache tracking
809 * ==========================================================================
810 */
811
812/*
813 * Hot spares and cache devices are tracked using the same code below,
814 * for 'auxiliary' devices.
815 */
816
817typedef struct spa_aux {
818 uint64_t aux_guid;
819 uint64_t aux_pool;
820 avl_node_t aux_avl;
821 int aux_count;
822} spa_aux_t;
823
ee36c709 824static inline int
34dc7c2f
BB
825spa_aux_compare(const void *a, const void *b)
826{
ee36c709
GN
827 const spa_aux_t *sa = (const spa_aux_t *)a;
828 const spa_aux_t *sb = (const spa_aux_t *)b;
34dc7c2f 829
ee36c709 830 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
34dc7c2f
BB
831}
832
833void
834spa_aux_add(vdev_t *vd, avl_tree_t *avl)
835{
836 avl_index_t where;
837 spa_aux_t search;
838 spa_aux_t *aux;
839
840 search.aux_guid = vd->vdev_guid;
841 if ((aux = avl_find(avl, &search, &where)) != NULL) {
842 aux->aux_count++;
843 } else {
79c76d5b 844 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
34dc7c2f
BB
845 aux->aux_guid = vd->vdev_guid;
846 aux->aux_count = 1;
847 avl_insert(avl, aux, where);
848 }
849}
850
851void
852spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
853{
854 spa_aux_t search;
855 spa_aux_t *aux;
856 avl_index_t where;
857
858 search.aux_guid = vd->vdev_guid;
859 aux = avl_find(avl, &search, &where);
860
861 ASSERT(aux != NULL);
862
863 if (--aux->aux_count == 0) {
864 avl_remove(avl, aux);
865 kmem_free(aux, sizeof (spa_aux_t));
866 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
867 aux->aux_pool = 0ULL;
868 }
869}
870
871boolean_t
b128c09f 872spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
34dc7c2f
BB
873{
874 spa_aux_t search, *found;
34dc7c2f
BB
875
876 search.aux_guid = guid;
b128c09f 877 found = avl_find(avl, &search, NULL);
34dc7c2f
BB
878
879 if (pool) {
880 if (found)
881 *pool = found->aux_pool;
882 else
883 *pool = 0ULL;
884 }
885
b128c09f
BB
886 if (refcnt) {
887 if (found)
888 *refcnt = found->aux_count;
889 else
890 *refcnt = 0;
891 }
892
34dc7c2f
BB
893 return (found != NULL);
894}
895
896void
897spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
898{
899 spa_aux_t search, *found;
900 avl_index_t where;
901
902 search.aux_guid = vd->vdev_guid;
903 found = avl_find(avl, &search, &where);
904 ASSERT(found != NULL);
905 ASSERT(found->aux_pool == 0ULL);
906
907 found->aux_pool = spa_guid(vd->vdev_spa);
908}
909
910/*
911 * Spares are tracked globally due to the following constraints:
912 *
913 * - A spare may be part of multiple pools.
914 * - A spare may be added to a pool even if it's actively in use within
915 * another pool.
916 * - A spare in use in any pool can only be the source of a replacement if
917 * the target is a spare in the same pool.
918 *
919 * We keep track of all spares on the system through the use of a reference
920 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
921 * spare, then we bump the reference count in the AVL tree. In addition, we set
922 * the 'vdev_isspare' member to indicate that the device is a spare (active or
923 * inactive). When a spare is made active (used to replace a device in the
924 * pool), we also keep track of which pool its been made a part of.
925 *
926 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
927 * called under the spa_namespace lock as part of vdev reconfiguration. The
928 * separate spare lock exists for the status query path, which does not need to
929 * be completely consistent with respect to other vdev configuration changes.
930 */
931
932static int
933spa_spare_compare(const void *a, const void *b)
934{
935 return (spa_aux_compare(a, b));
936}
937
938void
939spa_spare_add(vdev_t *vd)
940{
941 mutex_enter(&spa_spare_lock);
942 ASSERT(!vd->vdev_isspare);
943 spa_aux_add(vd, &spa_spare_avl);
944 vd->vdev_isspare = B_TRUE;
945 mutex_exit(&spa_spare_lock);
946}
947
948void
949spa_spare_remove(vdev_t *vd)
950{
951 mutex_enter(&spa_spare_lock);
952 ASSERT(vd->vdev_isspare);
953 spa_aux_remove(vd, &spa_spare_avl);
954 vd->vdev_isspare = B_FALSE;
955 mutex_exit(&spa_spare_lock);
956}
957
958boolean_t
b128c09f 959spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
34dc7c2f
BB
960{
961 boolean_t found;
962
963 mutex_enter(&spa_spare_lock);
b128c09f 964 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
34dc7c2f
BB
965 mutex_exit(&spa_spare_lock);
966
967 return (found);
968}
969
970void
971spa_spare_activate(vdev_t *vd)
972{
973 mutex_enter(&spa_spare_lock);
974 ASSERT(vd->vdev_isspare);
975 spa_aux_activate(vd, &spa_spare_avl);
976 mutex_exit(&spa_spare_lock);
977}
978
979/*
980 * Level 2 ARC devices are tracked globally for the same reasons as spares.
981 * Cache devices currently only support one pool per cache device, and so
982 * for these devices the aux reference count is currently unused beyond 1.
983 */
984
985static int
986spa_l2cache_compare(const void *a, const void *b)
987{
988 return (spa_aux_compare(a, b));
989}
990
991void
992spa_l2cache_add(vdev_t *vd)
993{
994 mutex_enter(&spa_l2cache_lock);
995 ASSERT(!vd->vdev_isl2cache);
996 spa_aux_add(vd, &spa_l2cache_avl);
997 vd->vdev_isl2cache = B_TRUE;
998 mutex_exit(&spa_l2cache_lock);
999}
1000
1001void
1002spa_l2cache_remove(vdev_t *vd)
1003{
1004 mutex_enter(&spa_l2cache_lock);
1005 ASSERT(vd->vdev_isl2cache);
1006 spa_aux_remove(vd, &spa_l2cache_avl);
1007 vd->vdev_isl2cache = B_FALSE;
1008 mutex_exit(&spa_l2cache_lock);
1009}
1010
1011boolean_t
1012spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1013{
1014 boolean_t found;
1015
1016 mutex_enter(&spa_l2cache_lock);
b128c09f 1017 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
34dc7c2f
BB
1018 mutex_exit(&spa_l2cache_lock);
1019
1020 return (found);
1021}
1022
1023void
1024spa_l2cache_activate(vdev_t *vd)
1025{
1026 mutex_enter(&spa_l2cache_lock);
1027 ASSERT(vd->vdev_isl2cache);
1028 spa_aux_activate(vd, &spa_l2cache_avl);
1029 mutex_exit(&spa_l2cache_lock);
1030}
1031
34dc7c2f
BB
1032/*
1033 * ==========================================================================
1034 * SPA vdev locking
1035 * ==========================================================================
1036 */
1037
1038/*
1039 * Lock the given spa_t for the purpose of adding or removing a vdev.
1040 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1041 * It returns the next transaction group for the spa_t.
1042 */
1043uint64_t
1044spa_vdev_enter(spa_t *spa)
1045{
428870ff 1046 mutex_enter(&spa->spa_vdev_top_lock);
34dc7c2f 1047 mutex_enter(&spa_namespace_lock);
428870ff
BB
1048 return (spa_vdev_config_enter(spa));
1049}
1050
1051/*
1052 * Internal implementation for spa_vdev_enter(). Used when a vdev
1053 * operation requires multiple syncs (i.e. removing a device) while
1054 * keeping the spa_namespace_lock held.
1055 */
1056uint64_t
1057spa_vdev_config_enter(spa_t *spa)
1058{
1059 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f 1060
b128c09f 1061 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f
BB
1062
1063 return (spa_last_synced_txg(spa) + 1);
1064}
1065
1066/*
428870ff
BB
1067 * Used in combination with spa_vdev_config_enter() to allow the syncing
1068 * of multiple transactions without releasing the spa_namespace_lock.
34dc7c2f 1069 */
428870ff
BB
1070void
1071spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
34dc7c2f
BB
1072{
1073 int config_changed = B_FALSE;
1074
d6320ddb 1075 ASSERT(MUTEX_HELD(&spa_namespace_lock));
34dc7c2f
BB
1076 ASSERT(txg > spa_last_synced_txg(spa));
1077
b128c09f
BB
1078 spa->spa_pending_vdev = NULL;
1079
34dc7c2f
BB
1080 /*
1081 * Reassess the DTLs.
1082 */
1083 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1084
b128c09f 1085 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
34dc7c2f 1086 config_changed = B_TRUE;
428870ff 1087 spa->spa_config_generation++;
34dc7c2f
BB
1088 }
1089
428870ff
BB
1090 /*
1091 * Verify the metaslab classes.
1092 */
1093 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1094 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1095
b128c09f 1096 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f 1097
428870ff
BB
1098 /*
1099 * Panic the system if the specified tag requires it. This
1100 * is useful for ensuring that configurations are updated
1101 * transactionally.
1102 */
1103 if (zio_injection_enabled)
1104 zio_handle_panic_injection(spa, tag, 0);
1105
34dc7c2f
BB
1106 /*
1107 * Note: this txg_wait_synced() is important because it ensures
1108 * that there won't be more than one config change per txg.
1109 * This allows us to use the txg as the generation number.
1110 */
1111 if (error == 0)
1112 txg_wait_synced(spa->spa_dsl_pool, txg);
1113
1114 if (vd != NULL) {
93cf2076 1115 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
fb5f0bc8 1116 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
34dc7c2f 1117 vdev_free(vd);
fb5f0bc8 1118 spa_config_exit(spa, SCL_ALL, spa);
34dc7c2f
BB
1119 }
1120
1121 /*
1122 * If the config changed, update the config cache.
1123 */
1124 if (config_changed)
b128c09f 1125 spa_config_sync(spa, B_FALSE, B_TRUE);
428870ff 1126}
34dc7c2f 1127
428870ff
BB
1128/*
1129 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1130 * locking of spa_vdev_enter(), we also want make sure the transactions have
1131 * synced to disk, and then update the global configuration cache with the new
1132 * information.
1133 */
1134int
1135spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1136{
1137 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
34dc7c2f 1138 mutex_exit(&spa_namespace_lock);
428870ff 1139 mutex_exit(&spa->spa_vdev_top_lock);
34dc7c2f
BB
1140
1141 return (error);
1142}
1143
b128c09f
BB
1144/*
1145 * Lock the given spa_t for the purpose of changing vdev state.
1146 */
1147void
428870ff 1148spa_vdev_state_enter(spa_t *spa, int oplocks)
b128c09f 1149{
428870ff
BB
1150 int locks = SCL_STATE_ALL | oplocks;
1151
1152 /*
1153 * Root pools may need to read of the underlying devfs filesystem
1154 * when opening up a vdev. Unfortunately if we're holding the
1155 * SCL_ZIO lock it will result in a deadlock when we try to issue
1156 * the read from the root filesystem. Instead we "prefetch"
1157 * the associated vnodes that we need prior to opening the
1158 * underlying devices and cache them so that we can prevent
1159 * any I/O when we are doing the actual open.
1160 */
1161 if (spa_is_root(spa)) {
1162 int low = locks & ~(SCL_ZIO - 1);
1163 int high = locks & ~low;
1164
1165 spa_config_enter(spa, high, spa, RW_WRITER);
1166 vdev_hold(spa->spa_root_vdev);
1167 spa_config_enter(spa, low, spa, RW_WRITER);
1168 } else {
1169 spa_config_enter(spa, locks, spa, RW_WRITER);
1170 }
1171 spa->spa_vdev_locks = locks;
b128c09f
BB
1172}
1173
1174int
1175spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1176{
428870ff
BB
1177 boolean_t config_changed = B_FALSE;
1178
1179 if (vd != NULL || error == 0)
1180 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1181 0, 0, B_FALSE);
1182
1183 if (vd != NULL) {
b128c09f 1184 vdev_state_dirty(vd->vdev_top);
428870ff
BB
1185 config_changed = B_TRUE;
1186 spa->spa_config_generation++;
1187 }
b128c09f 1188
428870ff
BB
1189 if (spa_is_root(spa))
1190 vdev_rele(spa->spa_root_vdev);
1191
1192 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1193 spa_config_exit(spa, spa->spa_vdev_locks, spa);
b128c09f 1194
fb5f0bc8
BB
1195 /*
1196 * If anything changed, wait for it to sync. This ensures that,
1197 * from the system administrator's perspective, zpool(1M) commands
1198 * are synchronous. This is important for things like zpool offline:
1199 * when the command completes, you expect no further I/O from ZFS.
1200 */
1201 if (vd != NULL)
1202 txg_wait_synced(spa->spa_dsl_pool, 0);
1203
428870ff
BB
1204 /*
1205 * If the config changed, update the config cache.
1206 */
1207 if (config_changed) {
1208 mutex_enter(&spa_namespace_lock);
1209 spa_config_sync(spa, B_FALSE, B_TRUE);
1210 mutex_exit(&spa_namespace_lock);
1211 }
1212
b128c09f
BB
1213 return (error);
1214}
1215
34dc7c2f
BB
1216/*
1217 * ==========================================================================
1218 * Miscellaneous functions
1219 * ==========================================================================
1220 */
1221
9ae529ec 1222void
b0bc7a84 1223spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
9ae529ec 1224{
fa86b5db
MA
1225 if (!nvlist_exists(spa->spa_label_features, feature)) {
1226 fnvlist_add_boolean(spa->spa_label_features, feature);
b0bc7a84
MG
1227 /*
1228 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1229 * dirty the vdev config because lock SCL_CONFIG is not held.
1230 * Thankfully, in this case we don't need to dirty the config
1231 * because it will be written out anyway when we finish
1232 * creating the pool.
1233 */
1234 if (tx->tx_txg != TXG_INITIAL)
1235 vdev_config_dirty(spa->spa_root_vdev);
fa86b5db 1236 }
9ae529ec
CS
1237}
1238
1239void
1240spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1241{
fa86b5db
MA
1242 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1243 vdev_config_dirty(spa->spa_root_vdev);
9ae529ec
CS
1244}
1245
34dc7c2f
BB
1246/*
1247 * Rename a spa_t.
1248 */
1249int
1250spa_rename(const char *name, const char *newname)
1251{
1252 spa_t *spa;
1253 int err;
1254
1255 /*
1256 * Lookup the spa_t and grab the config lock for writing. We need to
1257 * actually open the pool so that we can sync out the necessary labels.
1258 * It's OK to call spa_open() with the namespace lock held because we
1259 * allow recursive calls for other reasons.
1260 */
1261 mutex_enter(&spa_namespace_lock);
1262 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1263 mutex_exit(&spa_namespace_lock);
1264 return (err);
1265 }
1266
b128c09f 1267 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1268
1269 avl_remove(&spa_namespace_avl, spa);
b128c09f 1270 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
34dc7c2f
BB
1271 avl_add(&spa_namespace_avl, spa);
1272
1273 /*
1274 * Sync all labels to disk with the new names by marking the root vdev
1275 * dirty and waiting for it to sync. It will pick up the new pool name
1276 * during the sync.
1277 */
1278 vdev_config_dirty(spa->spa_root_vdev);
1279
b128c09f 1280 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1281
1282 txg_wait_synced(spa->spa_dsl_pool, 0);
1283
1284 /*
1285 * Sync the updated config cache.
1286 */
b128c09f 1287 spa_config_sync(spa, B_FALSE, B_TRUE);
34dc7c2f
BB
1288
1289 spa_close(spa, FTAG);
1290
1291 mutex_exit(&spa_namespace_lock);
1292
1293 return (0);
1294}
1295
34dc7c2f 1296/*
572e2857
BB
1297 * Return the spa_t associated with given pool_guid, if it exists. If
1298 * device_guid is non-zero, determine whether the pool exists *and* contains
1299 * a device with the specified device_guid.
34dc7c2f 1300 */
572e2857
BB
1301spa_t *
1302spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
34dc7c2f
BB
1303{
1304 spa_t *spa;
1305 avl_tree_t *t = &spa_namespace_avl;
1306
1307 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1308
1309 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1310 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1311 continue;
1312 if (spa->spa_root_vdev == NULL)
1313 continue;
1314 if (spa_guid(spa) == pool_guid) {
1315 if (device_guid == 0)
1316 break;
1317
1318 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1319 device_guid) != NULL)
1320 break;
1321
1322 /*
1323 * Check any devices we may be in the process of adding.
1324 */
1325 if (spa->spa_pending_vdev) {
1326 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1327 device_guid) != NULL)
1328 break;
1329 }
1330 }
1331 }
1332
572e2857
BB
1333 return (spa);
1334}
1335
1336/*
1337 * Determine whether a pool with the given pool_guid exists.
1338 */
1339boolean_t
1340spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1341{
1342 return (spa_by_guid(pool_guid, device_guid) != NULL);
34dc7c2f
BB
1343}
1344
1345char *
1346spa_strdup(const char *s)
1347{
1348 size_t len;
1349 char *new;
1350
1351 len = strlen(s);
79c76d5b 1352 new = kmem_alloc(len + 1, KM_SLEEP);
34dc7c2f
BB
1353 bcopy(s, new, len);
1354 new[len] = '\0';
1355
1356 return (new);
1357}
1358
1359void
1360spa_strfree(char *s)
1361{
1362 kmem_free(s, strlen(s) + 1);
1363}
1364
1365uint64_t
1366spa_get_random(uint64_t range)
1367{
1368 uint64_t r;
1369
1370 ASSERT(range != 0);
1371
1372 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1373
1374 return (r % range);
1375}
1376
428870ff
BB
1377uint64_t
1378spa_generate_guid(spa_t *spa)
34dc7c2f 1379{
428870ff 1380 uint64_t guid = spa_get_random(-1ULL);
34dc7c2f 1381
428870ff
BB
1382 if (spa != NULL) {
1383 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1384 guid = spa_get_random(-1ULL);
1385 } else {
1386 while (guid == 0 || spa_guid_exists(guid, 0))
1387 guid = spa_get_random(-1ULL);
34dc7c2f
BB
1388 }
1389
428870ff
BB
1390 return (guid);
1391}
1392
1393void
b0bc7a84 1394snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
428870ff 1395{
9ae529ec 1396 char type[256];
428870ff
BB
1397 char *checksum = NULL;
1398 char *compress = NULL;
34dc7c2f 1399
428870ff 1400 if (bp != NULL) {
9ae529ec
CS
1401 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1402 dmu_object_byteswap_t bswap =
1403 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1404 (void) snprintf(type, sizeof (type), "bswap %s %s",
1405 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1406 "metadata" : "data",
1407 dmu_ot_byteswap[bswap].ob_name);
1408 } else {
1409 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1410 sizeof (type));
1411 }
9b67f605
MA
1412 if (!BP_IS_EMBEDDED(bp)) {
1413 checksum =
1414 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1415 }
428870ff 1416 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
34dc7c2f
BB
1417 }
1418
b0bc7a84
MG
1419 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1420 compress);
34dc7c2f
BB
1421}
1422
1423void
1424spa_freeze(spa_t *spa)
1425{
1426 uint64_t freeze_txg = 0;
1427
b128c09f 1428 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
34dc7c2f
BB
1429 if (spa->spa_freeze_txg == UINT64_MAX) {
1430 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1431 spa->spa_freeze_txg = freeze_txg;
1432 }
b128c09f 1433 spa_config_exit(spa, SCL_ALL, FTAG);
34dc7c2f
BB
1434 if (freeze_txg != 0)
1435 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1436}
1437
0b39b9f9
PS
1438void
1439zfs_panic_recover(const char *fmt, ...)
1440{
1441 va_list adx;
1442
1443 va_start(adx, fmt);
1444 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1445 va_end(adx);
1446}
1447
428870ff
BB
1448/*
1449 * This is a stripped-down version of strtoull, suitable only for converting
d3cc8b15 1450 * lowercase hexadecimal numbers that don't overflow.
428870ff
BB
1451 */
1452uint64_t
1453strtonum(const char *str, char **nptr)
1454{
1455 uint64_t val = 0;
1456 char c;
1457 int digit;
1458
1459 while ((c = *str) != '\0') {
1460 if (c >= '0' && c <= '9')
1461 digit = c - '0';
1462 else if (c >= 'a' && c <= 'f')
1463 digit = 10 + c - 'a';
1464 else
1465 break;
1466
1467 val *= 16;
1468 val += digit;
1469
1470 str++;
1471 }
1472
1473 if (nptr)
1474 *nptr = (char *)str;
1475
1476 return (val);
1477}
1478
34dc7c2f
BB
1479/*
1480 * ==========================================================================
1481 * Accessor functions
1482 * ==========================================================================
1483 */
1484
b128c09f
BB
1485boolean_t
1486spa_shutting_down(spa_t *spa)
34dc7c2f 1487{
b128c09f 1488 return (spa->spa_async_suspended);
34dc7c2f
BB
1489}
1490
1491dsl_pool_t *
1492spa_get_dsl(spa_t *spa)
1493{
1494 return (spa->spa_dsl_pool);
1495}
1496
9ae529ec
CS
1497boolean_t
1498spa_is_initializing(spa_t *spa)
1499{
1500 return (spa->spa_is_initializing);
1501}
1502
34dc7c2f
BB
1503blkptr_t *
1504spa_get_rootblkptr(spa_t *spa)
1505{
1506 return (&spa->spa_ubsync.ub_rootbp);
1507}
1508
1509void
1510spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1511{
1512 spa->spa_uberblock.ub_rootbp = *bp;
1513}
1514
1515void
1516spa_altroot(spa_t *spa, char *buf, size_t buflen)
1517{
1518 if (spa->spa_root == NULL)
1519 buf[0] = '\0';
1520 else
1521 (void) strncpy(buf, spa->spa_root, buflen);
1522}
1523
1524int
1525spa_sync_pass(spa_t *spa)
1526{
1527 return (spa->spa_sync_pass);
1528}
1529
1530char *
1531spa_name(spa_t *spa)
1532{
34dc7c2f
BB
1533 return (spa->spa_name);
1534}
1535
1536uint64_t
1537spa_guid(spa_t *spa)
1538{
3bc7e0fb
GW
1539 dsl_pool_t *dp = spa_get_dsl(spa);
1540 uint64_t guid;
1541
34dc7c2f
BB
1542 /*
1543 * If we fail to parse the config during spa_load(), we can go through
1544 * the error path (which posts an ereport) and end up here with no root
3541dc6d 1545 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
34dc7c2f
BB
1546 * this case.
1547 */
3bc7e0fb
GW
1548 if (spa->spa_root_vdev == NULL)
1549 return (spa->spa_config_guid);
1550
1551 guid = spa->spa_last_synced_guid != 0 ?
1552 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1553
1554 /*
1555 * Return the most recently synced out guid unless we're
1556 * in syncing context.
1557 */
1558 if (dp && dsl_pool_sync_context(dp))
34dc7c2f
BB
1559 return (spa->spa_root_vdev->vdev_guid);
1560 else
3bc7e0fb 1561 return (guid);
3541dc6d
GA
1562}
1563
1564uint64_t
1565spa_load_guid(spa_t *spa)
1566{
1567 /*
1568 * This is a GUID that exists solely as a reference for the
1569 * purposes of the arc. It is generated at load time, and
1570 * is never written to persistent storage.
1571 */
1572 return (spa->spa_load_guid);
34dc7c2f
BB
1573}
1574
1575uint64_t
1576spa_last_synced_txg(spa_t *spa)
1577{
1578 return (spa->spa_ubsync.ub_txg);
1579}
1580
1581uint64_t
1582spa_first_txg(spa_t *spa)
1583{
1584 return (spa->spa_first_txg);
1585}
1586
428870ff
BB
1587uint64_t
1588spa_syncing_txg(spa_t *spa)
1589{
1590 return (spa->spa_syncing_txg);
1591}
1592
b128c09f 1593pool_state_t
34dc7c2f
BB
1594spa_state(spa_t *spa)
1595{
1596 return (spa->spa_state);
1597}
1598
428870ff
BB
1599spa_load_state_t
1600spa_load_state(spa_t *spa)
34dc7c2f 1601{
428870ff 1602 return (spa->spa_load_state);
34dc7c2f
BB
1603}
1604
34dc7c2f 1605uint64_t
428870ff 1606spa_freeze_txg(spa_t *spa)
34dc7c2f 1607{
428870ff 1608 return (spa->spa_freeze_txg);
34dc7c2f
BB
1609}
1610
428870ff 1611/* ARGSUSED */
34dc7c2f 1612uint64_t
428870ff 1613spa_get_asize(spa_t *spa, uint64_t lsize)
34dc7c2f 1614{
e8b96c60 1615 return (lsize * spa_asize_inflation);
34dc7c2f
BB
1616}
1617
3d45fdd6
MA
1618/*
1619 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1620 * or at least 32MB.
1621 *
1622 * See the comment above spa_slop_shift for details.
1623 */
1624uint64_t
4ea3f864
GM
1625spa_get_slop_space(spa_t *spa)
1626{
3d45fdd6
MA
1627 uint64_t space = spa_get_dspace(spa);
1628 return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1629}
1630
34dc7c2f
BB
1631uint64_t
1632spa_get_dspace(spa_t *spa)
1633{
428870ff 1634 return (spa->spa_dspace);
34dc7c2f
BB
1635}
1636
428870ff
BB
1637void
1638spa_update_dspace(spa_t *spa)
34dc7c2f 1639{
428870ff
BB
1640 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1641 ddt_get_dedup_dspace(spa);
34dc7c2f
BB
1642}
1643
1644/*
1645 * Return the failure mode that has been set to this pool. The default
1646 * behavior will be to block all I/Os when a complete failure occurs.
1647 */
1648uint8_t
1649spa_get_failmode(spa_t *spa)
1650{
1651 return (spa->spa_failmode);
1652}
1653
b128c09f
BB
1654boolean_t
1655spa_suspended(spa_t *spa)
1656{
1657 return (spa->spa_suspended);
1658}
1659
34dc7c2f
BB
1660uint64_t
1661spa_version(spa_t *spa)
1662{
1663 return (spa->spa_ubsync.ub_version);
1664}
1665
428870ff
BB
1666boolean_t
1667spa_deflate(spa_t *spa)
1668{
1669 return (spa->spa_deflate);
1670}
1671
1672metaslab_class_t *
1673spa_normal_class(spa_t *spa)
1674{
1675 return (spa->spa_normal_class);
1676}
1677
1678metaslab_class_t *
1679spa_log_class(spa_t *spa)
1680{
1681 return (spa->spa_log_class);
1682}
1683
0c66c32d
JG
1684void
1685spa_evicting_os_register(spa_t *spa, objset_t *os)
1686{
1687 mutex_enter(&spa->spa_evicting_os_lock);
1688 list_insert_head(&spa->spa_evicting_os_list, os);
1689 mutex_exit(&spa->spa_evicting_os_lock);
1690}
1691
1692void
1693spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1694{
1695 mutex_enter(&spa->spa_evicting_os_lock);
1696 list_remove(&spa->spa_evicting_os_list, os);
1697 cv_broadcast(&spa->spa_evicting_os_cv);
1698 mutex_exit(&spa->spa_evicting_os_lock);
1699}
1700
1701void
1702spa_evicting_os_wait(spa_t *spa)
1703{
1704 mutex_enter(&spa->spa_evicting_os_lock);
1705 while (!list_is_empty(&spa->spa_evicting_os_list))
1706 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1707 mutex_exit(&spa->spa_evicting_os_lock);
1708
1709 dmu_buf_user_evict_wait();
1710}
1711
34dc7c2f
BB
1712int
1713spa_max_replication(spa_t *spa)
1714{
1715 /*
1716 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1717 * handle BPs with more than one DVA allocated. Set our max
1718 * replication level accordingly.
1719 */
1720 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1721 return (1);
1722 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1723}
1724
428870ff
BB
1725int
1726spa_prev_software_version(spa_t *spa)
1727{
1728 return (spa->spa_prev_software_version);
1729}
1730
cc92e9d0
GW
1731uint64_t
1732spa_deadman_synctime(spa_t *spa)
1733{
1734 return (spa->spa_deadman_synctime);
1735}
1736
34dc7c2f 1737uint64_t
428870ff 1738dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
34dc7c2f 1739{
428870ff
BB
1740 uint64_t asize = DVA_GET_ASIZE(dva);
1741 uint64_t dsize = asize;
34dc7c2f 1742
428870ff 1743 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
34dc7c2f 1744
428870ff
BB
1745 if (asize != 0 && spa->spa_deflate) {
1746 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
2c33b912
BB
1747 if (vd != NULL)
1748 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1749 vd->vdev_deflate_ratio;
34dc7c2f 1750 }
428870ff
BB
1751
1752 return (dsize);
1753}
1754
1755uint64_t
1756bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1757{
1758 uint64_t dsize = 0;
d6320ddb 1759 int d;
428870ff 1760
9b67f605 1761 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1762 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1763
1764 return (dsize);
1765}
1766
1767uint64_t
1768bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1769{
1770 uint64_t dsize = 0;
d6320ddb 1771 int d;
428870ff
BB
1772
1773 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1774
9b67f605 1775 for (d = 0; d < BP_GET_NDVAS(bp); d++)
428870ff
BB
1776 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1777
b128c09f 1778 spa_config_exit(spa, SCL_VDEV, FTAG);
428870ff
BB
1779
1780 return (dsize);
34dc7c2f
BB
1781}
1782
1783/*
1784 * ==========================================================================
1785 * Initialization and Termination
1786 * ==========================================================================
1787 */
1788
1789static int
1790spa_name_compare(const void *a1, const void *a2)
1791{
1792 const spa_t *s1 = a1;
1793 const spa_t *s2 = a2;
1794 int s;
1795
1796 s = strcmp(s1->spa_name, s2->spa_name);
ee36c709
GN
1797
1798 return (AVL_ISIGN(s));
34dc7c2f
BB
1799}
1800
34dc7c2f 1801void
0bc8fd78 1802spa_boot_init(void)
34dc7c2f
BB
1803{
1804 spa_config_load();
1805}
1806
1807void
1808spa_init(int mode)
1809{
1810 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1811 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1812 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1813 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1814
1815 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1816 offsetof(spa_t, spa_avl));
1817
1818 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1819 offsetof(spa_aux_t, aux_avl));
1820
1821 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1822 offsetof(spa_aux_t, aux_avl));
1823
fb5f0bc8 1824 spa_mode_global = mode;
34dc7c2f 1825
498877ba
MA
1826#ifndef _KERNEL
1827 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1828 struct sigaction sa;
1829
1830 sa.sa_flags = SA_SIGINFO;
1831 sigemptyset(&sa.sa_mask);
1832 sa.sa_sigaction = arc_buf_sigsegv;
1833
1834 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1835 perror("could not enable watchpoints: "
1836 "sigaction(SIGSEGV, ...) = ");
1837 } else {
1838 arc_watch = B_TRUE;
1839 }
1840 }
1841#endif
1842
26685276 1843 fm_init();
34dc7c2f
BB
1844 refcount_init();
1845 unique_init();
93cf2076 1846 range_tree_init();
4e21fd06 1847 metaslab_alloc_trace_init();
ecf3d9b8 1848 ddt_init();
34dc7c2f
BB
1849 zio_init();
1850 dmu_init();
1851 zil_init();
1852 vdev_cache_stat_init();
ab9f4b0b 1853 vdev_raidz_math_init();
da8f51e1 1854 vdev_file_init();
34dc7c2f
BB
1855 zfs_prop_init();
1856 zpool_prop_init();
9ae529ec 1857 zpool_feature_init();
34dc7c2f 1858 spa_config_load();
b128c09f 1859 l2arc_start();
34dc7c2f
BB
1860}
1861
1862void
1863spa_fini(void)
1864{
b128c09f
BB
1865 l2arc_stop();
1866
34dc7c2f
BB
1867 spa_evict_all();
1868
da8f51e1 1869 vdev_file_fini();
34dc7c2f 1870 vdev_cache_stat_fini();
ab9f4b0b 1871 vdev_raidz_math_fini();
34dc7c2f
BB
1872 zil_fini();
1873 dmu_fini();
1874 zio_fini();
ecf3d9b8 1875 ddt_fini();
4e21fd06 1876 metaslab_alloc_trace_fini();
93cf2076 1877 range_tree_fini();
34dc7c2f
BB
1878 unique_fini();
1879 refcount_fini();
26685276 1880 fm_fini();
34dc7c2f
BB
1881
1882 avl_destroy(&spa_namespace_avl);
1883 avl_destroy(&spa_spare_avl);
1884 avl_destroy(&spa_l2cache_avl);
1885
1886 cv_destroy(&spa_namespace_cv);
1887 mutex_destroy(&spa_namespace_lock);
1888 mutex_destroy(&spa_spare_lock);
1889 mutex_destroy(&spa_l2cache_lock);
1890}
1891
1892/*
1893 * Return whether this pool has slogs. No locking needed.
1894 * It's not a problem if the wrong answer is returned as it's only for
1895 * performance and not correctness
1896 */
1897boolean_t
1898spa_has_slogs(spa_t *spa)
1899{
1900 return (spa->spa_log_class->mc_rotor != NULL);
1901}
b128c09f 1902
428870ff
BB
1903spa_log_state_t
1904spa_get_log_state(spa_t *spa)
1905{
1906 return (spa->spa_log_state);
1907}
1908
1909void
1910spa_set_log_state(spa_t *spa, spa_log_state_t state)
1911{
1912 spa->spa_log_state = state;
1913}
1914
b128c09f
BB
1915boolean_t
1916spa_is_root(spa_t *spa)
1917{
1918 return (spa->spa_is_root);
1919}
fb5f0bc8
BB
1920
1921boolean_t
1922spa_writeable(spa_t *spa)
1923{
1924 return (!!(spa->spa_mode & FWRITE));
1925}
1926
acbad6ff
AR
1927/*
1928 * Returns true if there is a pending sync task in any of the current
1929 * syncing txg, the current quiescing txg, or the current open txg.
1930 */
1931boolean_t
1932spa_has_pending_synctask(spa_t *spa)
1933{
1934 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1935}
1936
fb5f0bc8
BB
1937int
1938spa_mode(spa_t *spa)
1939{
1940 return (spa->spa_mode);
1941}
428870ff
BB
1942
1943uint64_t
1944spa_bootfs(spa_t *spa)
1945{
1946 return (spa->spa_bootfs);
1947}
1948
1949uint64_t
1950spa_delegation(spa_t *spa)
1951{
1952 return (spa->spa_delegation);
1953}
1954
1955objset_t *
1956spa_meta_objset(spa_t *spa)
1957{
1958 return (spa->spa_meta_objset);
1959}
1960
1961enum zio_checksum
1962spa_dedup_checksum(spa_t *spa)
1963{
1964 return (spa->spa_dedup_checksum);
1965}
1966
1967/*
1968 * Reset pool scan stat per scan pass (or reboot).
1969 */
1970void
1971spa_scan_stat_init(spa_t *spa)
1972{
1973 /* data not stored on disk */
1974 spa->spa_scan_pass_start = gethrestime_sec();
1975 spa->spa_scan_pass_exam = 0;
1976 vdev_scan_stat_init(spa->spa_root_vdev);
1977}
1978
1979/*
1980 * Get scan stats for zpool status reports
1981 */
1982int
1983spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1984{
1985 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1986
1987 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2e528b49 1988 return (SET_ERROR(ENOENT));
428870ff
BB
1989 bzero(ps, sizeof (pool_scan_stat_t));
1990
1991 /* data stored on disk */
1992 ps->pss_func = scn->scn_phys.scn_func;
1993 ps->pss_start_time = scn->scn_phys.scn_start_time;
1994 ps->pss_end_time = scn->scn_phys.scn_end_time;
1995 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1996 ps->pss_examined = scn->scn_phys.scn_examined;
1997 ps->pss_to_process = scn->scn_phys.scn_to_process;
1998 ps->pss_processed = scn->scn_phys.scn_processed;
1999 ps->pss_errors = scn->scn_phys.scn_errors;
2000 ps->pss_state = scn->scn_phys.scn_state;
2001
2002 /* data not stored on disk */
2003 ps->pss_pass_start = spa->spa_scan_pass_start;
2004 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2005
2006 return (0);
2007}
c28b2279 2008
6d974228
GW
2009boolean_t
2010spa_debug_enabled(spa_t *spa)
2011{
2012 return (spa->spa_debug);
2013}
2014
f1512ee6
MA
2015int
2016spa_maxblocksize(spa_t *spa)
2017{
2018 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2019 return (SPA_MAXBLOCKSIZE);
2020 else
2021 return (SPA_OLD_MAXBLOCKSIZE);
2022}
2023
50c957f7
NB
2024int
2025spa_maxdnodesize(spa_t *spa)
2026{
2027 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2028 return (DNODE_MAX_SIZE);
2029 else
2030 return (DNODE_MIN_SIZE);
2031}
2032
c28b2279
BB
2033#if defined(_KERNEL) && defined(HAVE_SPL)
2034/* Namespace manipulation */
2035EXPORT_SYMBOL(spa_lookup);
2036EXPORT_SYMBOL(spa_add);
2037EXPORT_SYMBOL(spa_remove);
2038EXPORT_SYMBOL(spa_next);
2039
2040/* Refcount functions */
2041EXPORT_SYMBOL(spa_open_ref);
2042EXPORT_SYMBOL(spa_close);
2043EXPORT_SYMBOL(spa_refcount_zero);
2044
2045/* Pool configuration lock */
2046EXPORT_SYMBOL(spa_config_tryenter);
2047EXPORT_SYMBOL(spa_config_enter);
2048EXPORT_SYMBOL(spa_config_exit);
2049EXPORT_SYMBOL(spa_config_held);
2050
2051/* Pool vdev add/remove lock */
2052EXPORT_SYMBOL(spa_vdev_enter);
2053EXPORT_SYMBOL(spa_vdev_exit);
2054
2055/* Pool vdev state change lock */
2056EXPORT_SYMBOL(spa_vdev_state_enter);
2057EXPORT_SYMBOL(spa_vdev_state_exit);
2058
2059/* Accessor functions */
2060EXPORT_SYMBOL(spa_shutting_down);
2061EXPORT_SYMBOL(spa_get_dsl);
2062EXPORT_SYMBOL(spa_get_rootblkptr);
2063EXPORT_SYMBOL(spa_set_rootblkptr);
2064EXPORT_SYMBOL(spa_altroot);
2065EXPORT_SYMBOL(spa_sync_pass);
2066EXPORT_SYMBOL(spa_name);
2067EXPORT_SYMBOL(spa_guid);
2068EXPORT_SYMBOL(spa_last_synced_txg);
2069EXPORT_SYMBOL(spa_first_txg);
2070EXPORT_SYMBOL(spa_syncing_txg);
2071EXPORT_SYMBOL(spa_version);
2072EXPORT_SYMBOL(spa_state);
2073EXPORT_SYMBOL(spa_load_state);
2074EXPORT_SYMBOL(spa_freeze_txg);
2075EXPORT_SYMBOL(spa_get_asize);
2076EXPORT_SYMBOL(spa_get_dspace);
2077EXPORT_SYMBOL(spa_update_dspace);
2078EXPORT_SYMBOL(spa_deflate);
2079EXPORT_SYMBOL(spa_normal_class);
2080EXPORT_SYMBOL(spa_log_class);
2081EXPORT_SYMBOL(spa_max_replication);
2082EXPORT_SYMBOL(spa_prev_software_version);
2083EXPORT_SYMBOL(spa_get_failmode);
2084EXPORT_SYMBOL(spa_suspended);
2085EXPORT_SYMBOL(spa_bootfs);
2086EXPORT_SYMBOL(spa_delegation);
2087EXPORT_SYMBOL(spa_meta_objset);
f1512ee6 2088EXPORT_SYMBOL(spa_maxblocksize);
50c957f7 2089EXPORT_SYMBOL(spa_maxdnodesize);
c28b2279
BB
2090
2091/* Miscellaneous support routines */
2092EXPORT_SYMBOL(spa_rename);
2093EXPORT_SYMBOL(spa_guid_exists);
2094EXPORT_SYMBOL(spa_strdup);
2095EXPORT_SYMBOL(spa_strfree);
2096EXPORT_SYMBOL(spa_get_random);
2097EXPORT_SYMBOL(spa_generate_guid);
b0bc7a84 2098EXPORT_SYMBOL(snprintf_blkptr);
c28b2279
BB
2099EXPORT_SYMBOL(spa_freeze);
2100EXPORT_SYMBOL(spa_upgrade);
2101EXPORT_SYMBOL(spa_evict_all);
2102EXPORT_SYMBOL(spa_lookup_by_guid);
2103EXPORT_SYMBOL(spa_has_spare);
2104EXPORT_SYMBOL(dva_get_dsize_sync);
2105EXPORT_SYMBOL(bp_get_dsize_sync);
2106EXPORT_SYMBOL(bp_get_dsize);
2107EXPORT_SYMBOL(spa_has_slogs);
2108EXPORT_SYMBOL(spa_is_root);
2109EXPORT_SYMBOL(spa_writeable);
2110EXPORT_SYMBOL(spa_mode);
c28b2279 2111EXPORT_SYMBOL(spa_namespace_lock);
cc92e9d0 2112
02730c33 2113/* BEGIN CSTYLED */
33b6dbbc 2114module_param(zfs_flags, uint, 0644);
0b39b9f9
PS
2115MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2116
2117module_param(zfs_recover, int, 0644);
2118MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2119
2120module_param(zfs_free_leak_on_eio, int, 0644);
2121MODULE_PARM_DESC(zfs_free_leak_on_eio,
2122 "Set to ignore IO errors during free and permanently leak the space");
2123
e8b96c60 2124module_param(zfs_deadman_synctime_ms, ulong, 0644);
d1d7e268 2125MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
cc92e9d0 2126
b81a3ddc
TC
2127module_param(zfs_deadman_checktime_ms, ulong, 0644);
2128MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2129 "Dead I/O check interval in milliseconds");
2130
cc92e9d0
GW
2131module_param(zfs_deadman_enabled, int, 0644);
2132MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
e8b96c60
MA
2133
2134module_param(spa_asize_inflation, int, 0644);
2135MODULE_PARM_DESC(spa_asize_inflation,
d1d7e268 2136 "SPA size estimate multiplication factor");
6cde6435
BB
2137
2138module_param(spa_slop_shift, int, 0644);
2139MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
02730c33 2140/* END CSTYLED */
c28b2279 2141#endif