]> git.proxmox.com Git - mirror_zfs.git/blame - module/zfs/vdev_indirect.c
OpenZFS 9102 - zfs should be able to initialize storage devices
[mirror_zfs.git] / module / zfs / vdev_indirect.c
CommitLineData
a1d477c2
MA
1/*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16/*
4bf8108e 17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
a1d477c2
MA
18 */
19
20#include <sys/zfs_context.h>
21#include <sys/spa.h>
22#include <sys/spa_impl.h>
23#include <sys/vdev_impl.h>
24#include <sys/fs/zfs.h>
25#include <sys/zio.h>
9e052db4 26#include <sys/zio_checksum.h>
a1d477c2
MA
27#include <sys/metaslab.h>
28#include <sys/refcount.h>
29#include <sys/dmu.h>
30#include <sys/vdev_indirect_mapping.h>
31#include <sys/dmu_tx.h>
32#include <sys/dsl_synctask.h>
33#include <sys/zap.h>
9d5b5245
SD
34#include <sys/abd.h>
35#include <sys/zthr.h>
a1d477c2
MA
36
37/*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
9e052db4
MA
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
a1d477c2 53 *
9e052db4 54 * - frees and claims to this vdev use the callback to free or claim
a1d477c2
MA
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61/*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127/*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
0dc2f70c 174int zfs_condense_indirect_vdevs_enable = B_TRUE;
a1d477c2
MA
175
176/*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183int zfs_indirect_condense_obsolete_pct = 25;
184
185/*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
0dc2f70c 191unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
a1d477c2
MA
192
193/*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200/*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
9e052db4 208/*
4589f3ae
BB
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
9e052db4 215 */
1258bd77
BB
216int zfs_reconstruct_indirect_combinations_max = 256;
217
218
219/*
220 * Enable to simulate damaged segments and validate reconstruction. This
221 * is intentionally not exposed as a module parameter.
222 */
223unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
9e052db4
MA
224
225/*
226 * The indirect_child_t represents the vdev that we will read from, when we
227 * need to read all copies of the data (e.g. for scrub or reconstruction).
228 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
229 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
230 * ic_vdev is a child of the mirror.
231 */
232typedef struct indirect_child {
233 abd_t *ic_data;
234 vdev_t *ic_vdev;
4589f3ae
BB
235
236 /*
1258bd77
BB
237 * ic_duplicate is NULL when the ic_data contents are unique, when it
238 * is determined to be a duplicate it references the primary child.
4589f3ae 239 */
1258bd77
BB
240 struct indirect_child *ic_duplicate;
241 list_node_t ic_node; /* node on is_unique_child */
9e052db4
MA
242} indirect_child_t;
243
244/*
245 * The indirect_split_t represents one mapped segment of an i/o to the
246 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
247 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
248 * For split blocks, there will be several of these.
249 */
250typedef struct indirect_split {
251 list_node_t is_node; /* link on iv_splits */
252
253 /*
254 * is_split_offset is the offset into the i/o.
255 * This is the sum of the previous splits' is_size's.
256 */
257 uint64_t is_split_offset;
258
259 vdev_t *is_vdev; /* top-level vdev */
260 uint64_t is_target_offset; /* offset on is_vdev */
261 uint64_t is_size;
262 int is_children; /* number of entries in is_child[] */
1258bd77
BB
263 int is_unique_children; /* number of entries in is_unique_child */
264 list_t is_unique_child;
9e052db4
MA
265
266 /*
267 * is_good_child is the child that we are currently using to
268 * attempt reconstruction.
269 */
1258bd77 270 indirect_child_t *is_good_child;
9e052db4
MA
271
272 indirect_child_t is_child[1]; /* variable-length */
273} indirect_split_t;
274
275/*
276 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
277 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
278 */
279typedef struct indirect_vsd {
280 boolean_t iv_split_block;
281 boolean_t iv_reconstruct;
1258bd77
BB
282 uint64_t iv_unique_combinations;
283 uint64_t iv_attempts;
284 uint64_t iv_attempts_max;
9e052db4
MA
285
286 list_t iv_splits; /* list of indirect_split_t's */
287} indirect_vsd_t;
288
289static void
290vdev_indirect_map_free(zio_t *zio)
291{
292 indirect_vsd_t *iv = zio->io_vsd;
293
294 indirect_split_t *is;
295 while ((is = list_head(&iv->iv_splits)) != NULL) {
296 for (int c = 0; c < is->is_children; c++) {
297 indirect_child_t *ic = &is->is_child[c];
298 if (ic->ic_data != NULL)
299 abd_free(ic->ic_data);
300 }
301 list_remove(&iv->iv_splits, is);
1258bd77
BB
302
303 indirect_child_t *ic;
304 while ((ic = list_head(&is->is_unique_child)) != NULL)
305 list_remove(&is->is_unique_child, ic);
306
307 list_destroy(&is->is_unique_child);
308
9e052db4
MA
309 kmem_free(is,
310 offsetof(indirect_split_t, is_child[is->is_children]));
311 }
312 kmem_free(iv, sizeof (*iv));
313}
314
315static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
089500e7
MW
316 .vsd_free = vdev_indirect_map_free,
317 .vsd_cksum_report = zio_vsd_default_cksum_report
9e052db4
MA
318};
319
a1d477c2 320/*
d2734cce 321 * Mark the given offset and size as being obsolete.
a1d477c2
MA
322 */
323void
d2734cce 324vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
a1d477c2
MA
325{
326 spa_t *spa = vd->vdev_spa;
d2734cce 327
a1d477c2
MA
328 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
329 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
330 ASSERT(size > 0);
331 VERIFY(vdev_indirect_mapping_entry_for_offset(
332 vd->vdev_indirect_mapping, offset) != NULL);
333
334 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
335 mutex_enter(&vd->vdev_obsolete_lock);
336 range_tree_add(vd->vdev_obsolete_segments, offset, size);
337 mutex_exit(&vd->vdev_obsolete_lock);
d2734cce 338 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
a1d477c2
MA
339 }
340}
341
342/*
343 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
344 * wrapper is provided because the DMU does not know about vdev_t's and
345 * cannot directly call vdev_indirect_mark_obsolete.
346 */
347void
348spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
349 uint64_t size, dmu_tx_t *tx)
350{
351 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
352 ASSERT(dmu_tx_is_syncing(tx));
353
354 /* The DMU can only remap indirect vdevs. */
355 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
d2734cce 356 vdev_indirect_mark_obsolete(vd, offset, size);
a1d477c2
MA
357}
358
359static spa_condensing_indirect_t *
360spa_condensing_indirect_create(spa_t *spa)
361{
362 spa_condensing_indirect_phys_t *scip =
363 &spa->spa_condensing_indirect_phys;
364 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
365 objset_t *mos = spa->spa_meta_objset;
366
367 for (int i = 0; i < TXG_SIZE; i++) {
368 list_create(&sci->sci_new_mapping_entries[i],
369 sizeof (vdev_indirect_mapping_entry_t),
370 offsetof(vdev_indirect_mapping_entry_t, vime_node));
371 }
372
373 sci->sci_new_mapping =
374 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
375
376 return (sci);
377}
378
379static void
380spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
381{
382 for (int i = 0; i < TXG_SIZE; i++)
383 list_destroy(&sci->sci_new_mapping_entries[i]);
384
385 if (sci->sci_new_mapping != NULL)
386 vdev_indirect_mapping_close(sci->sci_new_mapping);
387
388 kmem_free(sci, sizeof (*sci));
389}
390
391boolean_t
392vdev_indirect_should_condense(vdev_t *vd)
393{
394 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
395 spa_t *spa = vd->vdev_spa;
396
397 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
398
399 if (!zfs_condense_indirect_vdevs_enable)
400 return (B_FALSE);
401
402 /*
403 * We can only condense one indirect vdev at a time.
404 */
405 if (spa->spa_condensing_indirect != NULL)
406 return (B_FALSE);
407
408 if (spa_shutting_down(spa))
409 return (B_FALSE);
410
411 /*
412 * The mapping object size must not change while we are
413 * condensing, so we can only condense indirect vdevs
414 * (not vdevs that are still in the middle of being removed).
415 */
416 if (vd->vdev_ops != &vdev_indirect_ops)
417 return (B_FALSE);
418
419 /*
420 * If nothing new has been marked obsolete, there is no
421 * point in condensing.
422 */
27f80e85
BB
423 ASSERTV(uint64_t obsolete_sm_obj);
424 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
a1d477c2 425 if (vd->vdev_obsolete_sm == NULL) {
27f80e85 426 ASSERT0(obsolete_sm_obj);
a1d477c2
MA
427 return (B_FALSE);
428 }
429
430 ASSERT(vd->vdev_obsolete_sm != NULL);
431
27f80e85 432 ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
a1d477c2
MA
433
434 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
435 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
436 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
437 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
438
439 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
440
441 /*
442 * If a high percentage of the bytes that are mapped have become
443 * obsolete, condense (unless the mapping is already small enough).
444 * This has a good chance of reducing the amount of memory used
445 * by the mapping.
446 */
447 if (bytes_obsolete * 100 / bytes_mapped >=
448 zfs_indirect_condense_obsolete_pct &&
449 mapping_size > zfs_condense_min_mapping_bytes) {
450 zfs_dbgmsg("should condense vdev %llu because obsolete "
451 "spacemap covers %d%% of %lluMB mapping",
452 (u_longlong_t)vd->vdev_id,
453 (int)(bytes_obsolete * 100 / bytes_mapped),
454 (u_longlong_t)bytes_mapped / 1024 / 1024);
455 return (B_TRUE);
456 }
457
458 /*
459 * If the obsolete space map takes up too much space on disk,
460 * condense in order to free up this disk space.
461 */
462 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
463 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
464 "length %lluMB >= max size %lluMB",
465 (u_longlong_t)vd->vdev_id,
466 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
467 (u_longlong_t)zfs_condense_max_obsolete_bytes /
468 1024 / 1024);
469 return (B_TRUE);
470 }
471
472 return (B_FALSE);
473}
474
475/*
476 * This sync task completes (finishes) a condense, deleting the old
477 * mapping and replacing it with the new one.
478 */
479static void
480spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
481{
482 spa_condensing_indirect_t *sci = arg;
483 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
484 spa_condensing_indirect_phys_t *scip =
485 &spa->spa_condensing_indirect_phys;
486 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
487 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
488 objset_t *mos = spa->spa_meta_objset;
489 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
490 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
491 uint64_t new_count =
492 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
493
494 ASSERT(dmu_tx_is_syncing(tx));
495 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
496 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
497 for (int i = 0; i < TXG_SIZE; i++) {
498 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
499 }
500 ASSERT(vic->vic_mapping_object != 0);
501 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
502 ASSERT(scip->scip_next_mapping_object != 0);
503 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
504
505 /*
506 * Reset vdev_indirect_mapping to refer to the new object.
507 */
508 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
509 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
510 vd->vdev_indirect_mapping = sci->sci_new_mapping;
511 rw_exit(&vd->vdev_indirect_rwlock);
512
513 sci->sci_new_mapping = NULL;
514 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
515 vic->vic_mapping_object = scip->scip_next_mapping_object;
516 scip->scip_next_mapping_object = 0;
517
518 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
519 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
520 scip->scip_prev_obsolete_sm_object = 0;
521
522 scip->scip_vdev = 0;
523
524 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
525 DMU_POOL_CONDENSING_INDIRECT, tx));
526 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
527 spa->spa_condensing_indirect = NULL;
528
529 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
530 "new mapping object %llu has %llu entries "
531 "(was %llu entries)",
532 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
533 new_count, old_count);
534
535 vdev_config_dirty(spa->spa_root_vdev);
536}
537
538/*
539 * This sync task appends entries to the new mapping object.
540 */
541static void
542spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
543{
544 spa_condensing_indirect_t *sci = arg;
545 uint64_t txg = dmu_tx_get_txg(tx);
546 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
547
548 ASSERT(dmu_tx_is_syncing(tx));
549 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
550
551 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
552 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
553 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
554}
555
556/*
557 * Open-context function to add one entry to the new mapping. The new
558 * entry will be remembered and written from syncing context.
559 */
560static void
561spa_condense_indirect_commit_entry(spa_t *spa,
562 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
563{
564 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
565
566 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
567
568 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
569 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
570 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
571 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
572
573 /*
574 * If we are the first entry committed this txg, kick off the sync
575 * task to write to the MOS on our behalf.
576 */
577 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
578 dsl_sync_task_nowait(dmu_tx_pool(tx),
579 spa_condense_indirect_commit_sync, sci,
580 0, ZFS_SPACE_CHECK_NONE, tx);
581 }
582
583 vdev_indirect_mapping_entry_t *vime =
584 kmem_alloc(sizeof (*vime), KM_SLEEP);
585 vime->vime_mapping = *vimep;
586 vime->vime_obsolete_count = count;
587 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
588
589 dmu_tx_commit(tx);
590}
591
592static void
593spa_condense_indirect_generate_new_mapping(vdev_t *vd,
9d5b5245 594 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
a1d477c2
MA
595{
596 spa_t *spa = vd->vdev_spa;
597 uint64_t mapi = start_index;
598 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
599 uint64_t old_num_entries =
600 vdev_indirect_mapping_num_entries(old_mapping);
601
602 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
603 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
604
605 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
606 (u_longlong_t)vd->vdev_id,
607 (u_longlong_t)mapi);
608
9d5b5245
SD
609 while (mapi < old_num_entries) {
610
611 if (zthr_iscancelled(zthr)) {
612 zfs_dbgmsg("pausing condense of vdev %llu "
613 "at index %llu", (u_longlong_t)vd->vdev_id,
614 (u_longlong_t)mapi);
615 break;
616 }
617
a1d477c2
MA
618 vdev_indirect_mapping_entry_phys_t *entry =
619 &old_mapping->vim_entries[mapi];
620 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
621 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
622 if (obsolete_counts[mapi] < entry_size) {
623 spa_condense_indirect_commit_entry(spa, entry,
624 obsolete_counts[mapi]);
625
626 /*
627 * This delay may be requested for testing, debugging,
628 * or performance reasons.
629 */
630 hrtime_t now = gethrtime();
631 hrtime_t sleep_until = now + MSEC2NSEC(
632 zfs_condense_indirect_commit_entry_delay_ms);
633 zfs_sleep_until(sleep_until);
634 }
635
636 mapi++;
637 }
a1d477c2
MA
638}
639
9d5b5245
SD
640/* ARGSUSED */
641static boolean_t
642spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
a1d477c2 643{
9d5b5245
SD
644 spa_t *spa = arg;
645
646 return (spa->spa_condensing_indirect != NULL);
647}
648
649/* ARGSUSED */
650static int
651spa_condense_indirect_thread(void *arg, zthr_t *zthr)
652{
653 spa_t *spa = arg;
654 vdev_t *vd;
655
656 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
657 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
658 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
659 ASSERT3P(vd, !=, NULL);
660 spa_config_exit(spa, SCL_VDEV, FTAG);
661
a1d477c2
MA
662 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
663 spa_condensing_indirect_phys_t *scip =
664 &spa->spa_condensing_indirect_phys;
665 uint32_t *counts;
666 uint64_t start_index;
667 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
668 space_map_t *prev_obsolete_sm = NULL;
669
670 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
671 ASSERT(scip->scip_next_mapping_object != 0);
672 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
673 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
674
675 for (int i = 0; i < TXG_SIZE; i++) {
676 /*
677 * The list must start out empty in order for the
678 * _commit_sync() sync task to be properly registered
679 * on the first call to _commit_entry(); so it's wise
680 * to double check and ensure we actually are starting
681 * with empty lists.
682 */
683 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
684 }
685
686 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
687 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
688 space_map_update(prev_obsolete_sm);
689 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
690 if (prev_obsolete_sm != NULL) {
691 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
692 counts, prev_obsolete_sm);
693 }
694 space_map_close(prev_obsolete_sm);
695
696 /*
697 * Generate new mapping. Determine what index to continue from
698 * based on the max offset that we've already written in the
699 * new mapping.
700 */
701 uint64_t max_offset =
702 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
703 if (max_offset == 0) {
704 /* We haven't written anything to the new mapping yet. */
705 start_index = 0;
706 } else {
707 /*
708 * Pick up from where we left off. _entry_for_offset()
709 * returns a pointer into the vim_entries array. If
710 * max_offset is greater than any of the mappings
711 * contained in the table NULL will be returned and
712 * that indicates we've exhausted our iteration of the
713 * old_mapping.
714 */
715
716 vdev_indirect_mapping_entry_phys_t *entry =
717 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
718 max_offset);
719
720 if (entry == NULL) {
721 /*
722 * We've already written the whole new mapping.
723 * This special value will cause us to skip the
724 * generate_new_mapping step and just do the sync
725 * task to complete the condense.
726 */
727 start_index = UINT64_MAX;
728 } else {
729 start_index = entry - old_mapping->vim_entries;
730 ASSERT3U(start_index, <,
731 vdev_indirect_mapping_num_entries(old_mapping));
732 }
733 }
734
9d5b5245
SD
735 spa_condense_indirect_generate_new_mapping(vd, counts,
736 start_index, zthr);
a1d477c2
MA
737
738 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
739
740 /*
9d5b5245
SD
741 * If the zthr has received a cancellation signal while running
742 * in generate_new_mapping() or at any point after that, then bail
743 * early. We don't want to complete the condense if the spa is
744 * shutting down.
a1d477c2 745 */
9d5b5245
SD
746 if (zthr_iscancelled(zthr))
747 return (0);
748
749 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
d2734cce
SD
750 spa_condense_indirect_complete_sync, sci, 0,
751 ZFS_SPACE_CHECK_EXTRA_RESERVED));
a1d477c2 752
9d5b5245 753 return (0);
a1d477c2
MA
754}
755
756/*
757 * Sync task to begin the condensing process.
758 */
759void
760spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
761{
762 spa_t *spa = vd->vdev_spa;
763 spa_condensing_indirect_phys_t *scip =
764 &spa->spa_condensing_indirect_phys;
765
766 ASSERT0(scip->scip_next_mapping_object);
767 ASSERT0(scip->scip_prev_obsolete_sm_object);
768 ASSERT0(scip->scip_vdev);
769 ASSERT(dmu_tx_is_syncing(tx));
770 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
771 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
772 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
773
27f80e85
BB
774 uint64_t obsolete_sm_obj;
775 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
776 ASSERT3U(obsolete_sm_obj, !=, 0);
a1d477c2
MA
777
778 scip->scip_vdev = vd->vdev_id;
779 scip->scip_next_mapping_object =
780 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
781
782 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
783
784 /*
785 * We don't need to allocate a new space map object, since
786 * vdev_indirect_sync_obsolete will allocate one when needed.
787 */
788 space_map_close(vd->vdev_obsolete_sm);
789 vd->vdev_obsolete_sm = NULL;
790 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
791 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
792
793 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
794 DMU_POOL_DIRECTORY_OBJECT,
795 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
796 sizeof (*scip) / sizeof (uint64_t), scip, tx));
797
798 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
799 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
800
801 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
802 "posm=%llu nm=%llu",
803 vd->vdev_id, dmu_tx_get_txg(tx),
804 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
805 (u_longlong_t)scip->scip_next_mapping_object);
806
9d5b5245 807 zthr_wakeup(spa->spa_condense_zthr);
a1d477c2
MA
808}
809
810/*
811 * Sync to the given vdev's obsolete space map any segments that are no longer
812 * referenced as of the given txg.
813 *
814 * If the obsolete space map doesn't exist yet, create and open it.
815 */
816void
817vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
818{
819 spa_t *spa = vd->vdev_spa;
820 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
821
822 ASSERT3U(vic->vic_mapping_object, !=, 0);
823 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
824 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
825 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
826
27f80e85
BB
827 uint64_t obsolete_sm_object;
828 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
829 if (obsolete_sm_object == 0) {
830 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
d2734cce 831 vdev_standard_sm_blksz, tx);
a1d477c2
MA
832
833 ASSERT(vd->vdev_top_zap != 0);
834 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
835 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
836 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
27f80e85
BB
837 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
838 ASSERT3U(obsolete_sm_object, !=, 0);
a1d477c2
MA
839
840 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
841 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
842 spa->spa_meta_objset, obsolete_sm_object,
843 0, vd->vdev_asize, 0));
844 space_map_update(vd->vdev_obsolete_sm);
845 }
846
847 ASSERT(vd->vdev_obsolete_sm != NULL);
27f80e85 848 ASSERT3U(obsolete_sm_object, ==,
a1d477c2
MA
849 space_map_object(vd->vdev_obsolete_sm));
850
851 space_map_write(vd->vdev_obsolete_sm,
4d044c4c 852 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
a1d477c2
MA
853 space_map_update(vd->vdev_obsolete_sm);
854 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
855}
856
857int
858spa_condense_init(spa_t *spa)
859{
860 int error = zap_lookup(spa->spa_meta_objset,
861 DMU_POOL_DIRECTORY_OBJECT,
862 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
863 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
864 &spa->spa_condensing_indirect_phys);
865 if (error == 0) {
866 if (spa_writeable(spa)) {
867 spa->spa_condensing_indirect =
868 spa_condensing_indirect_create(spa);
869 }
870 return (0);
871 } else if (error == ENOENT) {
872 return (0);
873 } else {
874 return (error);
875 }
876}
877
878void
879spa_condense_fini(spa_t *spa)
880{
881 if (spa->spa_condensing_indirect != NULL) {
882 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
883 spa->spa_condensing_indirect = NULL;
884 }
885}
886
a1d477c2 887void
9d5b5245 888spa_start_indirect_condensing_thread(spa_t *spa)
a1d477c2 889{
9d5b5245
SD
890 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
891 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
892 spa_condense_indirect_thread, spa);
a1d477c2
MA
893}
894
895/*
27f80e85
BB
896 * Gets the obsolete spacemap object from the vdev's ZAP. On success sm_obj
897 * will contain either the obsolete spacemap object or zero if none exists.
898 * All other errors are returned to the caller.
a1d477c2
MA
899 */
900int
27f80e85 901vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
a1d477c2
MA
902{
903 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
27f80e85 904
a1d477c2 905 if (vd->vdev_top_zap == 0) {
27f80e85 906 *sm_obj = 0;
a1d477c2
MA
907 return (0);
908 }
909
27f80e85
BB
910 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
911 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
912 if (error == ENOENT) {
913 *sm_obj = 0;
914 error = 0;
915 }
a1d477c2 916
27f80e85 917 return (error);
a1d477c2
MA
918}
919
27f80e85
BB
920/*
921 * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
922 * On success are_precise will be set to reflect if the counts are precise.
923 * All other errors are returned to the caller.
924 */
925int
926vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
a1d477c2
MA
927{
928 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
27f80e85 929
a1d477c2 930 if (vd->vdev_top_zap == 0) {
27f80e85
BB
931 *are_precise = B_FALSE;
932 return (0);
a1d477c2
MA
933 }
934
935 uint64_t val = 0;
27f80e85 936 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
a1d477c2 937 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
27f80e85
BB
938 if (error == 0) {
939 *are_precise = (val != 0);
940 } else if (error == ENOENT) {
941 *are_precise = B_FALSE;
942 error = 0;
943 }
a1d477c2 944
27f80e85 945 return (error);
a1d477c2
MA
946}
947
948/* ARGSUSED */
949static void
950vdev_indirect_close(vdev_t *vd)
951{
952}
953
a1d477c2
MA
954/* ARGSUSED */
955static int
956vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
957 uint64_t *ashift)
958{
959 *psize = *max_psize = vd->vdev_asize +
960 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
961 *ashift = vd->vdev_ashift;
962 return (0);
963}
964
965typedef struct remap_segment {
966 vdev_t *rs_vd;
967 uint64_t rs_offset;
968 uint64_t rs_asize;
969 uint64_t rs_split_offset;
970 list_node_t rs_node;
971} remap_segment_t;
972
973remap_segment_t *
974rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
975{
976 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
977 rs->rs_vd = vd;
978 rs->rs_offset = offset;
979 rs->rs_asize = asize;
980 rs->rs_split_offset = split_offset;
981 return (rs);
982}
983
4bf8108e
SD
984/*
985 * Given an indirect vdev and an extent on that vdev, it duplicates the
986 * physical entries of the indirect mapping that correspond to the extent
987 * to a new array and returns a pointer to it. In addition, copied_entries
988 * is populated with the number of mapping entries that were duplicated.
989 *
990 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
991 * This ensures that the mapping won't change due to condensing as we
992 * copy over its contents.
993 *
994 * Finally, since we are doing an allocation, it is up to the caller to
995 * free the array allocated in this function.
996 */
997vdev_indirect_mapping_entry_phys_t *
998vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
999 uint64_t asize, uint64_t *copied_entries)
1000{
1001 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
1002 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1003 uint64_t entries = 0;
1004
1005 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1006
1007 vdev_indirect_mapping_entry_phys_t *first_mapping =
1008 vdev_indirect_mapping_entry_for_offset(vim, offset);
1009 ASSERT3P(first_mapping, !=, NULL);
1010
1011 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1012 while (asize > 0) {
1013 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1014
1015 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1016 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1017
1018 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1019 uint64_t inner_size = MIN(asize, size - inner_offset);
1020
1021 offset += inner_size;
1022 asize -= inner_size;
1023 entries++;
1024 m++;
1025 }
1026
1027 size_t copy_length = entries * sizeof (*first_mapping);
1028 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1029 bcopy(first_mapping, duplicate_mappings, copy_length);
1030 *copied_entries = entries;
1031
1032 return (duplicate_mappings);
1033}
1034
a1d477c2
MA
1035/*
1036 * Goes through the relevant indirect mappings until it hits a concrete vdev
1037 * and issues the callback. On the way to the concrete vdev, if any other
1038 * indirect vdevs are encountered, then the callback will also be called on
1039 * each of those indirect vdevs. For example, if the segment is mapped to
1040 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1041 * mapped to segment B on concrete vdev 2, then the callback will be called on
1042 * both vdev 1 and vdev 2.
1043 *
1044 * While the callback passed to vdev_indirect_remap() is called on every vdev
1045 * the function encounters, certain callbacks only care about concrete vdevs.
1046 * These types of callbacks should return immediately and explicitly when they
1047 * are called on an indirect vdev.
1048 *
1049 * Because there is a possibility that a DVA section in the indirect device
1050 * has been split into multiple sections in our mapping, we keep track
1051 * of the relevant contiguous segments of the new location (remap_segment_t)
1052 * in a stack. This way we can call the callback for each of the new sections
1053 * created by a single section of the indirect device. Note though, that in
1054 * this scenario the callbacks in each split block won't occur in-order in
1055 * terms of offset, so callers should not make any assumptions about that.
1056 *
1057 * For callbacks that don't handle split blocks and immediately return when
1058 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1059 * assume that its callback will be applied from the first indirect vdev
1060 * encountered to the last one and then the concrete vdev, in that order.
1061 */
1062static void
1063vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1064 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1065{
1066 list_t stack;
1067 spa_t *spa = vd->vdev_spa;
1068
1069 list_create(&stack, sizeof (remap_segment_t),
1070 offsetof(remap_segment_t, rs_node));
1071
1072 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1073 rs != NULL; rs = list_remove_head(&stack)) {
1074 vdev_t *v = rs->rs_vd;
4bf8108e
SD
1075 uint64_t num_entries = 0;
1076
1077 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1078 ASSERT(rs->rs_asize > 0);
a1d477c2
MA
1079
1080 /*
4bf8108e
SD
1081 * Note: As this function can be called from open context
1082 * (e.g. zio_read()), we need the following rwlock to
1083 * prevent the mapping from being changed by condensing.
1084 *
1085 * So we grab the lock and we make a copy of the entries
1086 * that are relevant to the extent that we are working on.
1087 * Once that is done, we drop the lock and iterate over
1088 * our copy of the mapping. Once we are done with the with
1089 * the remap segment and we free it, we also free our copy
1090 * of the indirect mapping entries that are relevant to it.
1091 *
1092 * This way we don't need to wait until the function is
1093 * finished with a segment, to condense it. In addition, we
1094 * don't need a recursive rwlock for the case that a call to
1095 * vdev_indirect_remap() needs to call itself (through the
1096 * codepath of its callback) for the same vdev in the middle
1097 * of its execution.
a1d477c2
MA
1098 */
1099 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
4bf8108e 1100 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
a1d477c2
MA
1101
1102 vdev_indirect_mapping_entry_phys_t *mapping =
4bf8108e
SD
1103 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1104 rs->rs_offset, rs->rs_asize, &num_entries);
a1d477c2 1105 ASSERT3P(mapping, !=, NULL);
4bf8108e
SD
1106 ASSERT3U(num_entries, >, 0);
1107 rw_exit(&v->vdev_indirect_rwlock);
a1d477c2 1108
4bf8108e 1109 for (uint64_t i = 0; i < num_entries; i++) {
a1d477c2
MA
1110 /*
1111 * Note: the vdev_indirect_mapping can not change
1112 * while we are running. It only changes while the
1113 * removal is in progress, and then only from syncing
1114 * context. While a removal is in progress, this
1115 * function is only called for frees, which also only
1116 * happen from syncing context.
1117 */
4bf8108e
SD
1118 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1119
1120 ASSERT3P(m, !=, NULL);
1121 ASSERT3U(rs->rs_asize, >, 0);
a1d477c2 1122
4bf8108e
SD
1123 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1124 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1125 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
a1d477c2
MA
1126
1127 ASSERT3U(rs->rs_offset, >=,
4bf8108e 1128 DVA_MAPPING_GET_SRC_OFFSET(m));
a1d477c2 1129 ASSERT3U(rs->rs_offset, <,
4bf8108e 1130 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
a1d477c2
MA
1131 ASSERT3U(dst_vdev, !=, v->vdev_id);
1132
1133 uint64_t inner_offset = rs->rs_offset -
4bf8108e 1134 DVA_MAPPING_GET_SRC_OFFSET(m);
a1d477c2
MA
1135 uint64_t inner_size =
1136 MIN(rs->rs_asize, size - inner_offset);
1137
1138 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1139 ASSERT3P(dst_v, !=, NULL);
1140
1141 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1142 list_insert_head(&stack,
1143 rs_alloc(dst_v, dst_offset + inner_offset,
1144 inner_size, rs->rs_split_offset));
1145
1146 }
1147
1148 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1149 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1150 /*
1151 * Note: This clause exists only solely for
1152 * testing purposes. We use it to ensure that
1153 * split blocks work and that the callbacks
1154 * using them yield the same result if issued
1155 * in reverse order.
1156 */
1157 uint64_t inner_half = inner_size / 2;
1158
1159 func(rs->rs_split_offset + inner_half, dst_v,
1160 dst_offset + inner_offset + inner_half,
1161 inner_half, arg);
1162
1163 func(rs->rs_split_offset, dst_v,
1164 dst_offset + inner_offset,
1165 inner_half, arg);
1166 } else {
1167 func(rs->rs_split_offset, dst_v,
1168 dst_offset + inner_offset,
1169 inner_size, arg);
1170 }
1171
1172 rs->rs_offset += inner_size;
1173 rs->rs_asize -= inner_size;
1174 rs->rs_split_offset += inner_size;
a1d477c2 1175 }
4bf8108e 1176 VERIFY0(rs->rs_asize);
a1d477c2 1177
4bf8108e 1178 kmem_free(mapping, num_entries * sizeof (*mapping));
a1d477c2
MA
1179 kmem_free(rs, sizeof (remap_segment_t));
1180 }
1181 list_destroy(&stack);
1182}
1183
1184static void
1185vdev_indirect_child_io_done(zio_t *zio)
1186{
1187 zio_t *pio = zio->io_private;
1188
1189 mutex_enter(&pio->io_lock);
1190 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1191 mutex_exit(&pio->io_lock);
1192
1193 abd_put(zio->io_abd);
1194}
1195
9e052db4
MA
1196/*
1197 * This is a callback for vdev_indirect_remap() which allocates an
1198 * indirect_split_t for each split segment and adds it to iv_splits.
1199 */
a1d477c2 1200static void
9e052db4 1201vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
a1d477c2
MA
1202 uint64_t size, void *arg)
1203{
1204 zio_t *zio = arg;
9e052db4 1205 indirect_vsd_t *iv = zio->io_vsd;
a1d477c2
MA
1206
1207 ASSERT3P(vd, !=, NULL);
1208
1209 if (vd->vdev_ops == &vdev_indirect_ops)
1210 return;
1211
9e052db4
MA
1212 int n = 1;
1213 if (vd->vdev_ops == &vdev_mirror_ops)
1214 n = vd->vdev_children;
1215
1216 indirect_split_t *is =
1217 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1218
1219 is->is_children = n;
1220 is->is_size = size;
1221 is->is_split_offset = split_offset;
1222 is->is_target_offset = offset;
1223 is->is_vdev = vd;
1258bd77
BB
1224 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1225 offsetof(indirect_child_t, ic_node));
9e052db4
MA
1226
1227 /*
1228 * Note that we only consider multiple copies of the data for
1229 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1230 * though they use the same ops as mirror, because there's only one
1231 * "good" copy under the replacing/spare.
1232 */
1233 if (vd->vdev_ops == &vdev_mirror_ops) {
1234 for (int i = 0; i < n; i++) {
1235 is->is_child[i].ic_vdev = vd->vdev_child[i];
1258bd77 1236 list_link_init(&is->is_child[i].ic_node);
9e052db4
MA
1237 }
1238 } else {
1239 is->is_child[0].ic_vdev = vd;
1240 }
1241
1242 list_insert_tail(&iv->iv_splits, is);
1243}
1244
1245static void
1246vdev_indirect_read_split_done(zio_t *zio)
1247{
1248 indirect_child_t *ic = zio->io_private;
1249
1250 if (zio->io_error != 0) {
1251 /*
1252 * Clear ic_data to indicate that we do not have data for this
1253 * child.
1254 */
1255 abd_free(ic->ic_data);
1256 ic->ic_data = NULL;
1257 }
1258}
1259
1260/*
1261 * Issue reads for all copies (mirror children) of all splits.
1262 */
1263static void
1264vdev_indirect_read_all(zio_t *zio)
1265{
1266 indirect_vsd_t *iv = zio->io_vsd;
1267
5aa95ba0
TC
1268 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1269
9e052db4
MA
1270 for (indirect_split_t *is = list_head(&iv->iv_splits);
1271 is != NULL; is = list_next(&iv->iv_splits, is)) {
1272 for (int i = 0; i < is->is_children; i++) {
1273 indirect_child_t *ic = &is->is_child[i];
1274
1275 if (!vdev_readable(ic->ic_vdev))
1276 continue;
1277
1278 /*
1279 * Note, we may read from a child whose DTL
1280 * indicates that the data may not be present here.
1281 * While this might result in a few i/os that will
1282 * likely return incorrect data, it simplifies the
1283 * code since we can treat scrub and resilver
1284 * identically. (The incorrect data will be
1285 * detected and ignored when we verify the
1286 * checksum.)
1287 */
1288
1289 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1290 is->is_size);
1258bd77 1291 ic->ic_duplicate = NULL;
9e052db4
MA
1292
1293 zio_nowait(zio_vdev_child_io(zio, NULL,
1294 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1295 is->is_size, zio->io_type, zio->io_priority, 0,
1296 vdev_indirect_read_split_done, ic));
1297 }
1298 }
1299 iv->iv_reconstruct = B_TRUE;
a1d477c2
MA
1300}
1301
1302static void
1303vdev_indirect_io_start(zio_t *zio)
1304{
1305 ASSERTV(spa_t *spa = zio->io_spa);
9e052db4
MA
1306 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1307 list_create(&iv->iv_splits,
1308 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1309
1310 zio->io_vsd = iv;
1311 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
a1d477c2
MA
1312
1313 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1314 if (zio->io_type != ZIO_TYPE_READ) {
1315 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
9e052db4
MA
1316 /*
1317 * Note: this code can handle other kinds of writes,
1318 * but we don't expect them.
1319 */
1320 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1321 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
a1d477c2
MA
1322 }
1323
1324 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
9e052db4
MA
1325 vdev_indirect_gather_splits, zio);
1326
1327 indirect_split_t *first = list_head(&iv->iv_splits);
1328 if (first->is_size == zio->io_size) {
1329 /*
1330 * This is not a split block; we are pointing to the entire
1331 * data, which will checksum the same as the original data.
1332 * Pass the BP down so that the child i/o can verify the
1333 * checksum, and try a different location if available
1334 * (e.g. on a mirror).
1335 *
1336 * While this special case could be handled the same as the
1337 * general (split block) case, doing it this way ensures
1338 * that the vast majority of blocks on indirect vdevs
1339 * (which are not split) are handled identically to blocks
1340 * on non-indirect vdevs. This allows us to be less strict
1341 * about performance in the general (but rare) case.
1342 */
1343 ASSERT0(first->is_split_offset);
1344 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1345 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1346 first->is_vdev, first->is_target_offset,
1347 abd_get_offset(zio->io_abd, 0),
1348 zio->io_size, zio->io_type, zio->io_priority, 0,
1349 vdev_indirect_child_io_done, zio));
1350 } else {
1351 iv->iv_split_block = B_TRUE;
5aa95ba0
TC
1352 if (zio->io_type == ZIO_TYPE_READ &&
1353 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
9e052db4
MA
1354 /*
1355 * Read all copies. Note that for simplicity,
1356 * we don't bother consulting the DTL in the
1357 * resilver case.
1358 */
1359 vdev_indirect_read_all(zio);
1360 } else {
1361 /*
5aa95ba0
TC
1362 * If this is a read zio, we read one copy of each
1363 * split segment, from the top-level vdev. Since
1364 * we don't know the checksum of each split
1365 * individually, the child zio can't ensure that
1366 * we get the right data. E.g. if it's a mirror,
1367 * it will just read from a random (healthy) leaf
1368 * vdev. We have to verify the checksum in
1369 * vdev_indirect_io_done().
1370 *
1371 * For write zios, the vdev code will ensure we write
1372 * to all children.
9e052db4
MA
1373 */
1374 for (indirect_split_t *is = list_head(&iv->iv_splits);
1375 is != NULL; is = list_next(&iv->iv_splits, is)) {
1376 zio_nowait(zio_vdev_child_io(zio, NULL,
1377 is->is_vdev, is->is_target_offset,
1378 abd_get_offset(zio->io_abd,
1379 is->is_split_offset), is->is_size,
1380 zio->io_type, zio->io_priority, 0,
1381 vdev_indirect_child_io_done, zio));
1382 }
1383
1384 }
1385 }
a1d477c2
MA
1386
1387 zio_execute(zio);
1388}
1389
9e052db4
MA
1390/*
1391 * Report a checksum error for a child.
1392 */
1393static void
1394vdev_indirect_checksum_error(zio_t *zio,
1395 indirect_split_t *is, indirect_child_t *ic)
1396{
1397 vdev_t *vd = ic->ic_vdev;
1398
1399 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1400 return;
1401
1402 mutex_enter(&vd->vdev_stat_lock);
1403 vd->vdev_stat.vs_checksum_errors++;
1404 mutex_exit(&vd->vdev_stat_lock);
1405
1406 zio_bad_cksum_t zbc = {{{ 0 }}};
1407 abd_t *bad_abd = ic->ic_data;
1258bd77 1408 abd_t *good_abd = is->is_good_child->ic_data;
9e052db4
MA
1409 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1410 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1411}
1412
1413/*
1414 * Issue repair i/os for any incorrect copies. We do this by comparing
1415 * each split segment's correct data (is_good_child's ic_data) with each
1416 * other copy of the data. If they differ, then we overwrite the bad data
1417 * with the good copy. Note that we do this without regard for the DTL's,
1418 * which simplifies this code and also issues the optimal number of writes
1419 * (based on which copies actually read bad data, as opposed to which we
1420 * think might be wrong). For the same reason, we always use
1421 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1422 */
1423static void
1424vdev_indirect_repair(zio_t *zio)
1425{
1426 indirect_vsd_t *iv = zio->io_vsd;
1427
1428 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1429
1430 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1431 flags |= ZIO_FLAG_SELF_HEAL;
1432
1433 if (!spa_writeable(zio->io_spa))
1434 return;
1435
1436 for (indirect_split_t *is = list_head(&iv->iv_splits);
1437 is != NULL; is = list_next(&iv->iv_splits, is)) {
9e052db4
MA
1438 for (int c = 0; c < is->is_children; c++) {
1439 indirect_child_t *ic = &is->is_child[c];
1258bd77 1440 if (ic == is->is_good_child)
9e052db4
MA
1441 continue;
1442 if (ic->ic_data == NULL)
1443 continue;
4589f3ae 1444 if (ic->ic_duplicate == is->is_good_child)
9e052db4
MA
1445 continue;
1446
1447 zio_nowait(zio_vdev_child_io(zio, NULL,
1448 ic->ic_vdev, is->is_target_offset,
1258bd77 1449 is->is_good_child->ic_data, is->is_size,
9e052db4
MA
1450 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1451 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1452 NULL, NULL));
1453
1454 vdev_indirect_checksum_error(zio, is, ic);
1455 }
1456 }
1457}
1458
1459/*
1460 * Report checksum errors on all children that we read from.
1461 */
1462static void
1463vdev_indirect_all_checksum_errors(zio_t *zio)
1464{
1465 indirect_vsd_t *iv = zio->io_vsd;
1466
1467 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1468 return;
1469
1470 for (indirect_split_t *is = list_head(&iv->iv_splits);
1471 is != NULL; is = list_next(&iv->iv_splits, is)) {
1472 for (int c = 0; c < is->is_children; c++) {
1473 indirect_child_t *ic = &is->is_child[c];
1474
1475 if (ic->ic_data == NULL)
1476 continue;
1477
1478 vdev_t *vd = ic->ic_vdev;
1479
1480 mutex_enter(&vd->vdev_stat_lock);
1481 vd->vdev_stat.vs_checksum_errors++;
1482 mutex_exit(&vd->vdev_stat_lock);
1483
1484 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1485 is->is_target_offset, is->is_size,
1486 NULL, NULL, NULL);
1487 }
1488 }
1489}
1490
1258bd77
BB
1491/*
1492 * Copy data from all the splits to a main zio then validate the checksum.
1493 * If then checksum is successfully validated return success.
1494 */
1495static int
1496vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1497{
1498 zio_bad_cksum_t zbc;
1499
1500 for (indirect_split_t *is = list_head(&iv->iv_splits);
1501 is != NULL; is = list_next(&iv->iv_splits, is)) {
1502
1503 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1504 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1505
1506 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1507 is->is_split_offset, 0, is->is_size);
1508 }
1509
1510 return (zio_checksum_error(zio, &zbc));
1511}
1512
1513/*
1514 * There are relatively few possible combinations making it feasible to
1515 * deterministically check them all. We do this by setting the good_child
1516 * to the next unique split version. If we reach the end of the list then
1517 * "carry over" to the next unique split version (like counting in base
1518 * is_unique_children, but each digit can have a different base).
1519 */
1520static int
1521vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1522{
1523 boolean_t more = B_TRUE;
1524
1525 iv->iv_attempts = 0;
1526
1527 for (indirect_split_t *is = list_head(&iv->iv_splits);
1528 is != NULL; is = list_next(&iv->iv_splits, is))
1529 is->is_good_child = list_head(&is->is_unique_child);
1530
1531 while (more == B_TRUE) {
1532 iv->iv_attempts++;
1533 more = B_FALSE;
1534
1535 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1536 return (0);
1537
1538 for (indirect_split_t *is = list_head(&iv->iv_splits);
1539 is != NULL; is = list_next(&iv->iv_splits, is)) {
1540 is->is_good_child = list_next(&is->is_unique_child,
1541 is->is_good_child);
1542 if (is->is_good_child != NULL) {
1543 more = B_TRUE;
1544 break;
1545 }
1546
1547 is->is_good_child = list_head(&is->is_unique_child);
1548 }
1549 }
1550
1551 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1552
1553 return (SET_ERROR(ECKSUM));
1554}
1555
1556/*
1557 * There are too many combinations to try all of them in a reasonable amount
1558 * of time. So try a fixed number of random combinations from the unique
1559 * split versions, after which we'll consider the block unrecoverable.
1560 */
1561static int
1562vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1563{
1564 iv->iv_attempts = 0;
1565
1566 while (iv->iv_attempts < iv->iv_attempts_max) {
1567 iv->iv_attempts++;
1568
1569 for (indirect_split_t *is = list_head(&iv->iv_splits);
1570 is != NULL; is = list_next(&iv->iv_splits, is)) {
1571 indirect_child_t *ic = list_head(&is->is_unique_child);
1572 int children = is->is_unique_children;
1573
1574 for (int i = spa_get_random(children); i > 0; i--)
1575 ic = list_next(&is->is_unique_child, ic);
1576
1577 ASSERT3P(ic, !=, NULL);
1578 is->is_good_child = ic;
1579 }
1580
1581 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1582 return (0);
1583 }
1584
1585 return (SET_ERROR(ECKSUM));
1586}
1587
1588/*
1589 * This is a validation function for reconstruction. It randomly selects
1590 * a good combination, if one can be found, and then it intentionally
1591 * damages all other segment copes by zeroing them. This forces the
1592 * reconstruction algorithm to locate the one remaining known good copy.
1593 */
1594static int
1595vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1596{
20eb30d0
TC
1597 int error;
1598
1258bd77
BB
1599 /* Presume all the copies are unique for initial selection. */
1600 for (indirect_split_t *is = list_head(&iv->iv_splits);
1601 is != NULL; is = list_next(&iv->iv_splits, is)) {
1602 is->is_unique_children = 0;
1603
1604 for (int i = 0; i < is->is_children; i++) {
1605 indirect_child_t *ic = &is->is_child[i];
1606 if (ic->ic_data != NULL) {
1607 is->is_unique_children++;
1608 list_insert_tail(&is->is_unique_child, ic);
1609 }
1610 }
20eb30d0
TC
1611
1612 if (list_is_empty(&is->is_unique_child)) {
1613 error = SET_ERROR(EIO);
1614 goto out;
1615 }
1258bd77
BB
1616 }
1617
1618 /*
1619 * Set each is_good_child to a randomly-selected child which
1620 * is known to contain validated data.
1621 */
20eb30d0 1622 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1258bd77
BB
1623 if (error)
1624 goto out;
1625
1626 /*
1627 * Damage all but the known good copy by zeroing it. This will
1628 * result in two or less unique copies per indirect_child_t.
1629 * Both may need to be checked in order to reconstruct the block.
1630 * Set iv->iv_attempts_max such that all unique combinations will
4a7eb69a 1631 * enumerated, but limit the damage to at most 12 indirect splits.
1258bd77
BB
1632 */
1633 iv->iv_attempts_max = 1;
1634
1635 for (indirect_split_t *is = list_head(&iv->iv_splits);
1636 is != NULL; is = list_next(&iv->iv_splits, is)) {
1637 for (int c = 0; c < is->is_children; c++) {
1638 indirect_child_t *ic = &is->is_child[c];
1639
1640 if (ic == is->is_good_child)
1641 continue;
1642 if (ic->ic_data == NULL)
1643 continue;
1644
1645 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1646 }
1647
1648 iv->iv_attempts_max *= 2;
4a7eb69a 1649 if (iv->iv_attempts_max >= (1ULL << 12)) {
1258bd77
BB
1650 iv->iv_attempts_max = UINT64_MAX;
1651 break;
1652 }
1653 }
1654
1655out:
1656 /* Empty the unique children lists so they can be reconstructed. */
1657 for (indirect_split_t *is = list_head(&iv->iv_splits);
1658 is != NULL; is = list_next(&iv->iv_splits, is)) {
1659 indirect_child_t *ic;
1660 while ((ic = list_head(&is->is_unique_child)) != NULL)
1661 list_remove(&is->is_unique_child, ic);
1662
1663 is->is_unique_children = 0;
1664 }
1665
1666 return (error);
1667}
1668
9e052db4
MA
1669/*
1670 * This function is called when we have read all copies of the data and need
1671 * to try to find a combination of copies that gives us the right checksum.
1672 *
1673 * If we pointed to any mirror vdevs, this effectively does the job of the
1674 * mirror. The mirror vdev code can't do its own job because we don't know
4589f3ae 1675 * the checksum of each split segment individually.
9e052db4 1676 *
4589f3ae
BB
1677 * We have to try every unique combination of copies of split segments, until
1678 * we find one that checksums correctly. Duplicate segment copies are first
1258bd77
BB
1679 * identified and latter skipped during reconstruction. This optimization
1680 * reduces the search space and ensures that of the remaining combinations
1681 * at most one is correct.
4589f3ae
BB
1682 *
1683 * When the total number of combinations is small they can all be checked.
1684 * For example, if we have 3 segments in the split, and each points to a
1685 * 2-way mirror with unique copies, we will have the following pieces of data:
9e052db4
MA
1686 *
1687 * | mirror child
1688 * split | [0] [1]
1689 * ======|=====================
1690 * A | data_A_0 data_A_1
1691 * B | data_B_0 data_B_1
1692 * C | data_C_0 data_C_1
1693 *
1694 * We will try the following (mirror children)^(number of splits) (2^3=8)
1695 * combinations, which is similar to bitwise-little-endian counting in
1696 * binary. In general each "digit" corresponds to a split segment, and the
1697 * base of each digit is is_children, which can be different for each
1698 * digit.
1699 *
1700 * "low bit" "high bit"
1701 * v v
1702 * data_A_0 data_B_0 data_C_0
1703 * data_A_1 data_B_0 data_C_0
1704 * data_A_0 data_B_1 data_C_0
1705 * data_A_1 data_B_1 data_C_0
1706 * data_A_0 data_B_0 data_C_1
1707 * data_A_1 data_B_0 data_C_1
1708 * data_A_0 data_B_1 data_C_1
1709 * data_A_1 data_B_1 data_C_1
1710 *
1711 * Note that the split segments may be on the same or different top-level
1258bd77
BB
1712 * vdevs. In either case, we may need to try lots of combinations (see
1713 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1714 * has small silent errors on all of its children, we can still reconstruct
1715 * the correct data, as long as those errors are at sufficiently-separated
9e052db4
MA
1716 * offsets (specifically, separated by the largest block size - default of
1717 * 128KB, but up to 16MB).
1718 */
1719static void
1720vdev_indirect_reconstruct_io_done(zio_t *zio)
1721{
1722 indirect_vsd_t *iv = zio->io_vsd;
1258bd77
BB
1723 boolean_t known_good = B_FALSE;
1724 int error;
1725
1726 iv->iv_unique_combinations = 1;
1727 iv->iv_attempts_max = UINT64_MAX;
4589f3ae
BB
1728
1729 if (zfs_reconstruct_indirect_combinations_max > 0)
1258bd77
BB
1730 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1731
1732 /*
1733 * If nonzero, every 1/x blocks will be damaged, in order to validate
1734 * reconstruction when there are split segments with damaged copies.
4a7eb69a 1735 * Known_good will be TRUE when reconstruction is known to be possible.
1258bd77
BB
1736 */
1737 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1738 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1739 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
9e052db4 1740
4589f3ae 1741 /*
1258bd77
BB
1742 * Determine the unique children for a split segment and add them
1743 * to the is_unique_child list. By restricting reconstruction
1744 * to these children, only unique combinations will be considered.
1745 * This can vastly reduce the search space when there are a large
1746 * number of indirect splits.
4589f3ae 1747 */
9e052db4 1748 for (indirect_split_t *is = list_head(&iv->iv_splits);
4589f3ae 1749 is != NULL; is = list_next(&iv->iv_splits, is)) {
1258bd77 1750 is->is_unique_children = 0;
4589f3ae
BB
1751
1752 for (int i = 0; i < is->is_children; i++) {
1258bd77
BB
1753 indirect_child_t *ic_i = &is->is_child[i];
1754
1755 if (ic_i->ic_data == NULL ||
1756 ic_i->ic_duplicate != NULL)
4589f3ae
BB
1757 continue;
1758
1759 for (int j = i + 1; j < is->is_children; j++) {
1258bd77
BB
1760 indirect_child_t *ic_j = &is->is_child[j];
1761
1762 if (ic_j->ic_data == NULL ||
1763 ic_j->ic_duplicate != NULL)
4589f3ae
BB
1764 continue;
1765
1258bd77
BB
1766 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1767 ic_j->ic_duplicate = ic_i;
4589f3ae
BB
1768 }
1769
1258bd77
BB
1770 is->is_unique_children++;
1771 list_insert_tail(&is->is_unique_child, ic_i);
4589f3ae
BB
1772 }
1773
1258bd77
BB
1774 /* Reconstruction is impossible, no valid children */
1775 EQUIV(list_is_empty(&is->is_unique_child),
1776 is->is_unique_children == 0);
1777 if (list_is_empty(&is->is_unique_child)) {
4589f3ae
BB
1778 zio->io_error = EIO;
1779 vdev_indirect_all_checksum_errors(zio);
1780 zio_checksum_verified(zio);
1781 return;
1782 }
1783
1258bd77 1784 iv->iv_unique_combinations *= is->is_unique_children;
4589f3ae 1785 }
9e052db4 1786
1258bd77
BB
1787 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1788 error = vdev_indirect_splits_enumerate_all(iv, zio);
1789 else
1790 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
9e052db4 1791
1258bd77
BB
1792 if (error != 0) {
1793 /* All attempted combinations failed. */
1794 ASSERT3B(known_good, ==, B_FALSE);
1795 zio->io_error = error;
1796 vdev_indirect_all_checksum_errors(zio);
1797 } else {
9e052db4 1798 /*
1258bd77
BB
1799 * The checksum has been successfully validated. Issue
1800 * repair I/Os to any copies of splits which don't match
1801 * the validated version.
9e052db4 1802 */
1258bd77
BB
1803 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1804 vdev_indirect_repair(zio);
1805 zio_checksum_verified(zio);
9e052db4
MA
1806 }
1807}
1808
1809static void
1810vdev_indirect_io_done(zio_t *zio)
1811{
1812 indirect_vsd_t *iv = zio->io_vsd;
1813
1814 if (iv->iv_reconstruct) {
1815 /*
1816 * We have read all copies of the data (e.g. from mirrors),
1817 * either because this was a scrub/resilver, or because the
1818 * one-copy read didn't checksum correctly.
1819 */
1820 vdev_indirect_reconstruct_io_done(zio);
1821 return;
1822 }
1823
1824 if (!iv->iv_split_block) {
1825 /*
1826 * This was not a split block, so we passed the BP down,
1827 * and the checksum was handled by the (one) child zio.
1828 */
1829 return;
1830 }
1831
1832 zio_bad_cksum_t zbc;
1833 int ret = zio_checksum_error(zio, &zbc);
1834 if (ret == 0) {
1835 zio_checksum_verified(zio);
1836 return;
1837 }
1838
1839 /*
1840 * The checksum didn't match. Read all copies of all splits, and
1841 * then we will try to reconstruct. The next time
1842 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1843 */
1844 vdev_indirect_read_all(zio);
1845
1846 zio_vdev_io_redone(zio);
1847}
1848
a1d477c2
MA
1849vdev_ops_t vdev_indirect_ops = {
1850 vdev_indirect_open,
1851 vdev_indirect_close,
1852 vdev_default_asize,
1853 vdev_indirect_io_start,
1854 vdev_indirect_io_done,
1855 NULL,
1856 NULL,
1857 NULL,
1858 NULL,
1859 vdev_indirect_remap,
619f0976 1860 NULL,
a1d477c2
MA
1861 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1862 B_FALSE /* leaf vdev */
1863};
1864
93ce2b4c 1865#if defined(_KERNEL)
a1d477c2
MA
1866EXPORT_SYMBOL(rs_alloc);
1867EXPORT_SYMBOL(spa_condense_fini);
9d5b5245 1868EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
a1d477c2
MA
1869EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1870EXPORT_SYMBOL(spa_condense_init);
1871EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1872EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1873EXPORT_SYMBOL(vdev_indirect_should_condense);
1874EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1875EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1876EXPORT_SYMBOL(vdev_obsolete_sm_object);
1877
0dc2f70c
MA
1878module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1879MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1880 "Whether to attempt condensing indirect vdev mappings");
1881
a1d477c2
MA
1882/* CSTYLED */
1883module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1884MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1885 "Minimum size of vdev mapping to condense");
1886
0dc2f70c
MA
1887/* CSTYLED */
1888module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1889MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1890 "Minimum size obsolete spacemap to attempt condensing");
1891
a1d477c2
MA
1892module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1893MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1894 "Delay while condensing vdev mapping");
9e052db4 1895
4589f3ae
BB
1896module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1897MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1898 "Maximum number of combinations when reconstructing split segments");
a1d477c2 1899#endif