]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/dmu.h
OpenZFS 8997 - ztest assertion failure in zil_lwb_write_issue
[mirror_zfs.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 */
30
31 /* Portions Copyright 2010 Robert Milkowski */
32
33 #ifndef _SYS_DMU_H
34 #define _SYS_DMU_H
35
36 /*
37 * This file describes the interface that the DMU provides for its
38 * consumers.
39 *
40 * The DMU also interacts with the SPA. That interface is described in
41 * dmu_spa.h.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/inttypes.h>
46 #include <sys/cred.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/zio_compress.h>
49 #include <sys/zio_priority.h>
50 #include <sys/uio.h>
51
52 #ifdef __cplusplus
53 extern "C" {
54 #endif
55
56 struct page;
57 struct vnode;
58 struct spa;
59 struct zilog;
60 struct zio;
61 struct blkptr;
62 struct zap_cursor;
63 struct dsl_dataset;
64 struct dsl_pool;
65 struct dnode;
66 struct drr_begin;
67 struct drr_end;
68 struct zbookmark_phys;
69 struct spa;
70 struct nvlist;
71 struct arc_buf;
72 struct zio_prop;
73 struct sa_handle;
74
75 typedef struct objset objset_t;
76 typedef struct dmu_tx dmu_tx_t;
77 typedef struct dsl_dir dsl_dir_t;
78 typedef struct dnode dnode_t;
79
80 typedef enum dmu_object_byteswap {
81 DMU_BSWAP_UINT8,
82 DMU_BSWAP_UINT16,
83 DMU_BSWAP_UINT32,
84 DMU_BSWAP_UINT64,
85 DMU_BSWAP_ZAP,
86 DMU_BSWAP_DNODE,
87 DMU_BSWAP_OBJSET,
88 DMU_BSWAP_ZNODE,
89 DMU_BSWAP_OLDACL,
90 DMU_BSWAP_ACL,
91 /*
92 * Allocating a new byteswap type number makes the on-disk format
93 * incompatible with any other format that uses the same number.
94 *
95 * Data can usually be structured to work with one of the
96 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
97 */
98 DMU_BSWAP_NUMFUNCS
99 } dmu_object_byteswap_t;
100
101 #define DMU_OT_NEWTYPE 0x80
102 #define DMU_OT_METADATA 0x40
103 #define DMU_OT_BYTESWAP_MASK 0x3f
104
105 /*
106 * Defines a uint8_t object type. Object types specify if the data
107 * in the object is metadata (boolean) and how to byteswap the data
108 * (dmu_object_byteswap_t).
109 */
110 #define DMU_OT(byteswap, metadata) \
111 (DMU_OT_NEWTYPE | \
112 ((metadata) ? DMU_OT_METADATA : 0) | \
113 ((byteswap) & DMU_OT_BYTESWAP_MASK))
114
115 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
116 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
117 (ot) < DMU_OT_NUMTYPES)
118
119 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
120 ((ot) & DMU_OT_METADATA) : \
121 dmu_ot[(int)(ot)].ot_metadata)
122
123 /*
124 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
125 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
126 * is repurposed for embedded BPs.
127 */
128 #define DMU_OT_HAS_FILL(ot) \
129 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
130
131 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
132 ((ot) & DMU_OT_BYTESWAP_MASK) : \
133 dmu_ot[(int)(ot)].ot_byteswap)
134
135 typedef enum dmu_object_type {
136 DMU_OT_NONE,
137 /* general: */
138 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
139 DMU_OT_OBJECT_ARRAY, /* UINT64 */
140 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
141 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
142 DMU_OT_BPOBJ, /* UINT64 */
143 DMU_OT_BPOBJ_HDR, /* UINT64 */
144 /* spa: */
145 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
146 DMU_OT_SPACE_MAP, /* UINT64 */
147 /* zil: */
148 DMU_OT_INTENT_LOG, /* UINT64 */
149 /* dmu: */
150 DMU_OT_DNODE, /* DNODE */
151 DMU_OT_OBJSET, /* OBJSET */
152 /* dsl: */
153 DMU_OT_DSL_DIR, /* UINT64 */
154 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
155 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
156 DMU_OT_DSL_PROPS, /* ZAP */
157 DMU_OT_DSL_DATASET, /* UINT64 */
158 /* zpl: */
159 DMU_OT_ZNODE, /* ZNODE */
160 DMU_OT_OLDACL, /* Old ACL */
161 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
162 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
163 DMU_OT_MASTER_NODE, /* ZAP */
164 DMU_OT_UNLINKED_SET, /* ZAP */
165 /* zvol: */
166 DMU_OT_ZVOL, /* UINT8 */
167 DMU_OT_ZVOL_PROP, /* ZAP */
168 /* other; for testing only! */
169 DMU_OT_PLAIN_OTHER, /* UINT8 */
170 DMU_OT_UINT64_OTHER, /* UINT64 */
171 DMU_OT_ZAP_OTHER, /* ZAP */
172 /* new object types: */
173 DMU_OT_ERROR_LOG, /* ZAP */
174 DMU_OT_SPA_HISTORY, /* UINT8 */
175 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
176 DMU_OT_POOL_PROPS, /* ZAP */
177 DMU_OT_DSL_PERMS, /* ZAP */
178 DMU_OT_ACL, /* ACL */
179 DMU_OT_SYSACL, /* SYSACL */
180 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
181 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
182 DMU_OT_NEXT_CLONES, /* ZAP */
183 DMU_OT_SCAN_QUEUE, /* ZAP */
184 DMU_OT_USERGROUP_USED, /* ZAP */
185 DMU_OT_USERGROUP_QUOTA, /* ZAP */
186 DMU_OT_USERREFS, /* ZAP */
187 DMU_OT_DDT_ZAP, /* ZAP */
188 DMU_OT_DDT_STATS, /* ZAP */
189 DMU_OT_SA, /* System attr */
190 DMU_OT_SA_MASTER_NODE, /* ZAP */
191 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
192 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
193 DMU_OT_SCAN_XLATE, /* ZAP */
194 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
195 DMU_OT_DEADLIST, /* ZAP */
196 DMU_OT_DEADLIST_HDR, /* UINT64 */
197 DMU_OT_DSL_CLONES, /* ZAP */
198 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
199 /*
200 * Do not allocate new object types here. Doing so makes the on-disk
201 * format incompatible with any other format that uses the same object
202 * type number.
203 *
204 * When creating an object which does not have one of the above types
205 * use the DMU_OTN_* type with the correct byteswap and metadata
206 * values.
207 *
208 * The DMU_OTN_* types do not have entries in the dmu_ot table,
209 * use the DMU_OT_IS_METDATA() and DMU_OT_BYTESWAP() macros instead
210 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
211 * and DMU_OTN_* types).
212 */
213 DMU_OT_NUMTYPES,
214
215 /*
216 * Names for valid types declared with DMU_OT().
217 */
218 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE),
219 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE),
220 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE),
221 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE),
222 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE),
223 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE),
224 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE),
225 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE),
226 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE),
227 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE),
228 } dmu_object_type_t;
229
230 /*
231 * These flags are intended to be used to specify the "txg_how"
232 * parameter when calling the dmu_tx_assign() function. See the comment
233 * above dmu_tx_assign() for more details on the meaning of these flags.
234 */
235 #define TXG_NOWAIT (0ULL)
236 #define TXG_WAIT (1ULL<<0)
237 #define TXG_NOTHROTTLE (1ULL<<1)
238
239 void byteswap_uint64_array(void *buf, size_t size);
240 void byteswap_uint32_array(void *buf, size_t size);
241 void byteswap_uint16_array(void *buf, size_t size);
242 void byteswap_uint8_array(void *buf, size_t size);
243 void zap_byteswap(void *buf, size_t size);
244 void zfs_oldacl_byteswap(void *buf, size_t size);
245 void zfs_acl_byteswap(void *buf, size_t size);
246 void zfs_znode_byteswap(void *buf, size_t size);
247
248 #define DS_FIND_SNAPSHOTS (1<<0)
249 #define DS_FIND_CHILDREN (1<<1)
250 #define DS_FIND_SERIALIZE (1<<2)
251
252 /*
253 * The maximum number of bytes that can be accessed as part of one
254 * operation, including metadata.
255 */
256 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
257 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
258
259 #define DMU_USERUSED_OBJECT (-1ULL)
260 #define DMU_GROUPUSED_OBJECT (-2ULL)
261
262 /*
263 * Zap prefix for object accounting in DMU_{USER,GROUP}USED_OBJECT.
264 */
265 #define DMU_OBJACCT_PREFIX "obj-"
266 #define DMU_OBJACCT_PREFIX_LEN 4
267
268 /*
269 * artificial blkids for bonus buffer and spill blocks
270 */
271 #define DMU_BONUS_BLKID (-1ULL)
272 #define DMU_SPILL_BLKID (-2ULL)
273 /*
274 * Public routines to create, destroy, open, and close objsets.
275 */
276 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
277 int dmu_objset_own(const char *name, dmu_objset_type_t type,
278 boolean_t readonly, void *tag, objset_t **osp);
279 void dmu_objset_rele(objset_t *os, void *tag);
280 void dmu_objset_disown(objset_t *os, void *tag);
281 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
282
283 void dmu_objset_evict_dbufs(objset_t *os);
284 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
285 void (*func)(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx), void *arg);
286 int dmu_objset_clone(const char *name, const char *origin);
287 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
288 struct nvlist *errlist);
289 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
290 int dmu_objset_snapshot_tmp(const char *, const char *, int);
291 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
292 int flags);
293 void dmu_objset_byteswap(void *buf, size_t size);
294 int dsl_dataset_rename_snapshot(const char *fsname,
295 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
296
297 typedef struct dmu_buf {
298 uint64_t db_object; /* object that this buffer is part of */
299 uint64_t db_offset; /* byte offset in this object */
300 uint64_t db_size; /* size of buffer in bytes */
301 void *db_data; /* data in buffer */
302 } dmu_buf_t;
303
304 /*
305 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
306 */
307 #define DMU_POOL_DIRECTORY_OBJECT 1
308 #define DMU_POOL_CONFIG "config"
309 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
310 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
311 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
312 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
313 #define DMU_POOL_ROOT_DATASET "root_dataset"
314 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
315 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
316 #define DMU_POOL_ERRLOG_LAST "errlog_last"
317 #define DMU_POOL_SPARES "spares"
318 #define DMU_POOL_DEFLATE "deflate"
319 #define DMU_POOL_HISTORY "history"
320 #define DMU_POOL_PROPS "pool_props"
321 #define DMU_POOL_L2CACHE "l2cache"
322 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
323 #define DMU_POOL_DDT "DDT-%s-%s-%s"
324 #define DMU_POOL_DDT_STATS "DDT-statistics"
325 #define DMU_POOL_CREATION_VERSION "creation_version"
326 #define DMU_POOL_SCAN "scan"
327 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
328 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
329 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
330 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
331 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
332
333 /*
334 * Allocate an object from this objset. The range of object numbers
335 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
336 *
337 * The transaction must be assigned to a txg. The newly allocated
338 * object will be "held" in the transaction (ie. you can modify the
339 * newly allocated object in this transaction).
340 *
341 * dmu_object_alloc() chooses an object and returns it in *objectp.
342 *
343 * dmu_object_claim() allocates a specific object number. If that
344 * number is already allocated, it fails and returns EEXIST.
345 *
346 * Return 0 on success, or ENOSPC or EEXIST as specified above.
347 */
348 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
349 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
350 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
351 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
352 int dnodesize, dmu_tx_t *tx);
353 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
354 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
355 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
356 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
357 int dnodesize, dmu_tx_t *tx);
358 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
359 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
360 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
361 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
362 int bonuslen, int dnodesize, dmu_tx_t *txp);
363
364 /*
365 * Free an object from this objset.
366 *
367 * The object's data will be freed as well (ie. you don't need to call
368 * dmu_free(object, 0, -1, tx)).
369 *
370 * The object need not be held in the transaction.
371 *
372 * If there are any holds on this object's buffers (via dmu_buf_hold()),
373 * or tx holds on the object (via dmu_tx_hold_object()), you can not
374 * free it; it fails and returns EBUSY.
375 *
376 * If the object is not allocated, it fails and returns ENOENT.
377 *
378 * Return 0 on success, or EBUSY or ENOENT as specified above.
379 */
380 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
381
382 /*
383 * Find the next allocated or free object.
384 *
385 * The objectp parameter is in-out. It will be updated to be the next
386 * object which is allocated. Ignore objects which have not been
387 * modified since txg.
388 *
389 * XXX Can only be called on a objset with no dirty data.
390 *
391 * Returns 0 on success, or ENOENT if there are no more objects.
392 */
393 int dmu_object_next(objset_t *os, uint64_t *objectp,
394 boolean_t hole, uint64_t txg);
395
396 /*
397 * Set the data blocksize for an object.
398 *
399 * The object cannot have any blocks allcated beyond the first. If
400 * the first block is allocated already, the new size must be greater
401 * than the current block size. If these conditions are not met,
402 * ENOTSUP will be returned.
403 *
404 * Returns 0 on success, or EBUSY if there are any holds on the object
405 * contents, or ENOTSUP as described above.
406 */
407 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
408 int ibs, dmu_tx_t *tx);
409
410 /*
411 * Set the checksum property on a dnode. The new checksum algorithm will
412 * apply to all newly written blocks; existing blocks will not be affected.
413 */
414 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
415 dmu_tx_t *tx);
416
417 /*
418 * Set the compress property on a dnode. The new compression algorithm will
419 * apply to all newly written blocks; existing blocks will not be affected.
420 */
421 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
422 dmu_tx_t *tx);
423
424 void
425 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
426 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
427 int compressed_size, int byteorder, dmu_tx_t *tx);
428
429 /*
430 * Decide how to write a block: checksum, compression, number of copies, etc.
431 */
432 #define WP_NOFILL 0x1
433 #define WP_DMU_SYNC 0x2
434 #define WP_SPILL 0x4
435
436 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
437 struct zio_prop *zp);
438 /*
439 * The bonus data is accessed more or less like a regular buffer.
440 * You must dmu_bonus_hold() to get the buffer, which will give you a
441 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
442 * data. As with any normal buffer, you must call dmu_buf_read() to
443 * read db_data, dmu_buf_will_dirty() before modifying it, and the
444 * object must be held in an assigned transaction before calling
445 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
446 * buffer as well. You must release what you hold with dmu_buf_rele().
447 *
448 * Returns ENOENT, EIO, or 0.
449 */
450 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **);
451 int dmu_bonus_max(void);
452 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
453 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
454 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
455 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
456
457 /*
458 * Special spill buffer support used by "SA" framework
459 */
460
461 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
462 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
463 void *tag, dmu_buf_t **dbp);
464 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
465
466 /*
467 * Obtain the DMU buffer from the specified object which contains the
468 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
469 * that it will remain in memory. You must release the hold with
470 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
471 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
472 *
473 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
474 * on the returned buffer before reading or writing the buffer's
475 * db_data. The comments for those routines describe what particular
476 * operations are valid after calling them.
477 *
478 * The object number must be a valid, allocated object number.
479 */
480 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
481 void *tag, dmu_buf_t **, int flags);
482 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
483 void *tag, dmu_buf_t **dbp, int flags);
484
485 /*
486 * Add a reference to a dmu buffer that has already been held via
487 * dmu_buf_hold() in the current context.
488 */
489 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
490
491 /*
492 * Attempt to add a reference to a dmu buffer that is in an unknown state,
493 * using a pointer that may have been invalidated by eviction processing.
494 * The request will succeed if the passed in dbuf still represents the
495 * same os/object/blkid, is ineligible for eviction, and has at least
496 * one hold by a user other than the syncer.
497 */
498 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
499 uint64_t blkid, void *tag);
500
501 void dmu_buf_rele(dmu_buf_t *db, void *tag);
502 uint64_t dmu_buf_refcount(dmu_buf_t *db);
503
504 /*
505 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
506 * range of an object. A pointer to an array of dmu_buf_t*'s is
507 * returned (in *dbpp).
508 *
509 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
510 * frees the array. The hold on the array of buffers MUST be released
511 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
512 * individually with dmu_buf_rele.
513 */
514 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
515 uint64_t length, boolean_t read, void *tag,
516 int *numbufsp, dmu_buf_t ***dbpp);
517 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
518
519 typedef void dmu_buf_evict_func_t(void *user_ptr);
520
521 /*
522 * A DMU buffer user object may be associated with a dbuf for the
523 * duration of its lifetime. This allows the user of a dbuf (client)
524 * to attach private data to a dbuf (e.g. in-core only data such as a
525 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
526 * when that dbuf has been evicted. Clients typically respond to the
527 * eviction notification by freeing their private data, thus ensuring
528 * the same lifetime for both dbuf and private data.
529 *
530 * The mapping from a dmu_buf_user_t to any client private data is the
531 * client's responsibility. All current consumers of the API with private
532 * data embed a dmu_buf_user_t as the first member of the structure for
533 * their private data. This allows conversions between the two types
534 * with a simple cast. Since the DMU buf user API never needs access
535 * to the private data, other strategies can be employed if necessary
536 * or convenient for the client (e.g. using container_of() to do the
537 * conversion for private data that cannot have the dmu_buf_user_t as
538 * its first member).
539 *
540 * Eviction callbacks are executed without the dbuf mutex held or any
541 * other type of mechanism to guarantee that the dbuf is still available.
542 * For this reason, users must assume the dbuf has already been freed
543 * and not reference the dbuf from the callback context.
544 *
545 * Users requesting "immediate eviction" are notified as soon as the dbuf
546 * is only referenced by dirty records (dirties == holds). Otherwise the
547 * notification occurs after eviction processing for the dbuf begins.
548 */
549 typedef struct dmu_buf_user {
550 /*
551 * Asynchronous user eviction callback state.
552 */
553 taskq_ent_t dbu_tqent;
554
555 /*
556 * This instance's eviction function pointers.
557 *
558 * dbu_evict_func_sync is called synchronously and then
559 * dbu_evict_func_async is executed asynchronously on a taskq.
560 */
561 dmu_buf_evict_func_t *dbu_evict_func_sync;
562 dmu_buf_evict_func_t *dbu_evict_func_async;
563 #ifdef ZFS_DEBUG
564 /*
565 * Pointer to user's dbuf pointer. NULL for clients that do
566 * not associate a dbuf with their user data.
567 *
568 * The dbuf pointer is cleared upon eviction so as to catch
569 * use-after-evict bugs in clients.
570 */
571 dmu_buf_t **dbu_clear_on_evict_dbufp;
572 #endif
573 } dmu_buf_user_t;
574
575 /*
576 * Initialize the given dmu_buf_user_t instance with the eviction function
577 * evict_func, to be called when the user is evicted.
578 *
579 * NOTE: This function should only be called once on a given dmu_buf_user_t.
580 * To allow enforcement of this, dbu must already be zeroed on entry.
581 */
582 /*ARGSUSED*/
583 static inline void
584 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
585 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
586 {
587 ASSERT(dbu->dbu_evict_func_sync == NULL);
588 ASSERT(dbu->dbu_evict_func_async == NULL);
589
590 /* must have at least one evict func */
591 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
592 dbu->dbu_evict_func_sync = evict_func_sync;
593 dbu->dbu_evict_func_async = evict_func_async;
594 taskq_init_ent(&dbu->dbu_tqent);
595 #ifdef ZFS_DEBUG
596 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
597 #endif
598 }
599
600 /*
601 * Attach user data to a dbuf and mark it for normal (when the dbuf's
602 * data is cleared or its reference count goes to zero) eviction processing.
603 *
604 * Returns NULL on success, or the existing user if another user currently
605 * owns the buffer.
606 */
607 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
608
609 /*
610 * Attach user data to a dbuf and mark it for immediate (its dirty and
611 * reference counts are equal) eviction processing.
612 *
613 * Returns NULL on success, or the existing user if another user currently
614 * owns the buffer.
615 */
616 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
617
618 /*
619 * Replace the current user of a dbuf.
620 *
621 * If given the current user of a dbuf, replaces the dbuf's user with
622 * "new_user" and returns the user data pointer that was replaced.
623 * Otherwise returns the current, and unmodified, dbuf user pointer.
624 */
625 void *dmu_buf_replace_user(dmu_buf_t *db,
626 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
627
628 /*
629 * Remove the specified user data for a DMU buffer.
630 *
631 * Returns the user that was removed on success, or the current user if
632 * another user currently owns the buffer.
633 */
634 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
635
636 /*
637 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
638 */
639 void *dmu_buf_get_user(dmu_buf_t *db);
640
641 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
642 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
643 void dmu_buf_dnode_exit(dmu_buf_t *db);
644
645 /* Block until any in-progress dmu buf user evictions complete. */
646 void dmu_buf_user_evict_wait(void);
647
648 /*
649 * Returns the blkptr associated with this dbuf, or NULL if not set.
650 */
651 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
652
653 /*
654 * Indicate that you are going to modify the buffer's data (db_data).
655 *
656 * The transaction (tx) must be assigned to a txg (ie. you've called
657 * dmu_tx_assign()). The buffer's object must be held in the tx
658 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
659 */
660 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
661
662 /*
663 * You must create a transaction, then hold the objects which you will
664 * (or might) modify as part of this transaction. Then you must assign
665 * the transaction to a transaction group. Once the transaction has
666 * been assigned, you can modify buffers which belong to held objects as
667 * part of this transaction. You can't modify buffers before the
668 * transaction has been assigned; you can't modify buffers which don't
669 * belong to objects which this transaction holds; you can't hold
670 * objects once the transaction has been assigned. You may hold an
671 * object which you are going to free (with dmu_object_free()), but you
672 * don't have to.
673 *
674 * You can abort the transaction before it has been assigned.
675 *
676 * Note that you may hold buffers (with dmu_buf_hold) at any time,
677 * regardless of transaction state.
678 */
679
680 #define DMU_NEW_OBJECT (-1ULL)
681 #define DMU_OBJECT_END (-1ULL)
682
683 dmu_tx_t *dmu_tx_create(objset_t *os);
684 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
685 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
686 int len);
687 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
688 uint64_t len);
689 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
690 uint64_t len);
691 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
692 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
693 const char *name);
694 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
695 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
696 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
697 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
698 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
699 void dmu_tx_abort(dmu_tx_t *tx);
700 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
701 void dmu_tx_wait(dmu_tx_t *tx);
702 void dmu_tx_commit(dmu_tx_t *tx);
703 void dmu_tx_mark_netfree(dmu_tx_t *tx);
704
705 /*
706 * To register a commit callback, dmu_tx_callback_register() must be called.
707 *
708 * dcb_data is a pointer to caller private data that is passed on as a
709 * callback parameter. The caller is responsible for properly allocating and
710 * freeing it.
711 *
712 * When registering a callback, the transaction must be already created, but
713 * it cannot be committed or aborted. It can be assigned to a txg or not.
714 *
715 * The callback will be called after the transaction has been safely written
716 * to stable storage and will also be called if the dmu_tx is aborted.
717 * If there is any error which prevents the transaction from being committed to
718 * disk, the callback will be called with a value of error != 0.
719 *
720 * When multiple callbacks are registered to the transaction, the callbacks
721 * will be called in reverse order to let Lustre, the only user of commit
722 * callback currently, take the fast path of its commit callback handling.
723 */
724 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
725
726 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
727 void *dcb_data);
728 void dmu_tx_do_callbacks(list_t *cb_list, int error);
729
730 /*
731 * Free up the data blocks for a defined range of a file. If size is
732 * -1, the range from offset to end-of-file is freed.
733 */
734 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
735 uint64_t size, dmu_tx_t *tx);
736 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
737 uint64_t size);
738 int dmu_free_long_object(objset_t *os, uint64_t object);
739
740 /*
741 * Convenience functions.
742 *
743 * Canfail routines will return 0 on success, or an errno if there is a
744 * nonrecoverable I/O error.
745 */
746 #define DMU_READ_PREFETCH 0 /* prefetch */
747 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
748 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
749 void *buf, uint32_t flags);
750 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
751 uint32_t flags);
752 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
753 const void *buf, dmu_tx_t *tx);
754 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
755 const void *buf, dmu_tx_t *tx);
756 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
757 dmu_tx_t *tx);
758 #ifdef _KERNEL
759 #include <linux/blkdev_compat.h>
760 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
761 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
762 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
763 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
764 dmu_tx_t *tx);
765 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
766 dmu_tx_t *tx);
767 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
768 dmu_tx_t *tx);
769 #endif
770 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
771 void dmu_return_arcbuf(struct arc_buf *buf);
772 void dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, struct arc_buf *buf,
773 dmu_tx_t *tx);
774 #ifdef HAVE_UIO_ZEROCOPY
775 int dmu_xuio_init(struct xuio *uio, int niov);
776 void dmu_xuio_fini(struct xuio *uio);
777 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
778 size_t n);
779 int dmu_xuio_cnt(struct xuio *uio);
780 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
781 void dmu_xuio_clear(struct xuio *uio, int i);
782 #endif /* HAVE_UIO_ZEROCOPY */
783 void xuio_stat_wbuf_copied(void);
784 void xuio_stat_wbuf_nocopy(void);
785
786 extern int zfs_prefetch_disable;
787 extern int zfs_max_recordsize;
788
789 /*
790 * Asynchronously try to read in the data.
791 */
792 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
793 uint64_t len, enum zio_priority pri);
794
795 typedef struct dmu_object_info {
796 /* All sizes are in bytes unless otherwise indicated. */
797 uint32_t doi_data_block_size;
798 uint32_t doi_metadata_block_size;
799 dmu_object_type_t doi_type;
800 dmu_object_type_t doi_bonus_type;
801 uint64_t doi_bonus_size;
802 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
803 uint8_t doi_checksum;
804 uint8_t doi_compress;
805 uint8_t doi_nblkptr;
806 uint8_t doi_pad[4];
807 uint64_t doi_dnodesize;
808 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
809 uint64_t doi_max_offset;
810 uint64_t doi_fill_count; /* number of non-empty blocks */
811 } dmu_object_info_t;
812
813 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
814
815 typedef struct dmu_object_type_info {
816 dmu_object_byteswap_t ot_byteswap;
817 boolean_t ot_metadata;
818 char *ot_name;
819 } dmu_object_type_info_t;
820
821 typedef const struct dmu_object_byteswap_info {
822 arc_byteswap_func_t ob_func;
823 char *ob_name;
824 } dmu_object_byteswap_info_t;
825
826 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
827 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
828
829 /*
830 * Get information on a DMU object.
831 *
832 * Return 0 on success or ENOENT if object is not allocated.
833 *
834 * If doi is NULL, just indicates whether the object exists.
835 */
836 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
837 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
838 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
839 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
840 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
841 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
842 /*
843 * Like dmu_object_info_from_db, but faster still when you only care about
844 * the size. This is specifically optimized for zfs_getattr().
845 */
846 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
847 u_longlong_t *nblk512);
848
849 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
850
851 typedef struct dmu_objset_stats {
852 uint64_t dds_num_clones; /* number of clones of this */
853 uint64_t dds_creation_txg;
854 uint64_t dds_guid;
855 dmu_objset_type_t dds_type;
856 uint8_t dds_is_snapshot;
857 uint8_t dds_inconsistent;
858 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
859 } dmu_objset_stats_t;
860
861 /*
862 * Get stats on a dataset.
863 */
864 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
865
866 /*
867 * Add entries to the nvlist for all the objset's properties. See
868 * zfs_prop_table[] and zfs(1m) for details on the properties.
869 */
870 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
871
872 /*
873 * Get the space usage statistics for statvfs().
874 *
875 * refdbytes is the amount of space "referenced" by this objset.
876 * availbytes is the amount of space available to this objset, taking
877 * into account quotas & reservations, assuming that no other objsets
878 * use the space first. These values correspond to the 'referenced' and
879 * 'available' properties, described in the zfs(1m) manpage.
880 *
881 * usedobjs and availobjs are the number of objects currently allocated,
882 * and available.
883 */
884 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
885 uint64_t *usedobjsp, uint64_t *availobjsp);
886
887 /*
888 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
889 * (Contrast with the ds_guid which is a 64-bit ID that will never
890 * change, so there is a small probability that it will collide.)
891 */
892 uint64_t dmu_objset_fsid_guid(objset_t *os);
893
894 /*
895 * Get the [cm]time for an objset's snapshot dir
896 */
897 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
898
899 int dmu_objset_is_snapshot(objset_t *os);
900
901 extern struct spa *dmu_objset_spa(objset_t *os);
902 extern struct zilog *dmu_objset_zil(objset_t *os);
903 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
904 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
905 extern void dmu_objset_name(objset_t *os, char *buf);
906 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
907 extern uint64_t dmu_objset_id(objset_t *os);
908 extern uint64_t dmu_objset_dnodesize(objset_t *os);
909 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
910 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
911 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
912 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
913 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
914 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
915 int maxlen, boolean_t *conflict);
916 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
917 uint64_t *idp, uint64_t *offp);
918
919 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
920 void *bonus, uint64_t *userp, uint64_t *groupp);
921 extern void dmu_objset_register_type(dmu_objset_type_t ost,
922 objset_used_cb_t *cb);
923 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
924 extern void *dmu_objset_get_user(objset_t *os);
925
926 /*
927 * Return the txg number for the given assigned transaction.
928 */
929 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
930
931 /*
932 * Synchronous write.
933 * If a parent zio is provided this function initiates a write on the
934 * provided buffer as a child of the parent zio.
935 * In the absence of a parent zio, the write is completed synchronously.
936 * At write completion, blk is filled with the bp of the written block.
937 * Note that while the data covered by this function will be on stable
938 * storage when the write completes this new data does not become a
939 * permanent part of the file until the associated transaction commits.
940 */
941
942 /*
943 * {zfs,zvol,ztest}_get_done() args
944 */
945 typedef struct zgd {
946 struct zilog *zgd_zilog;
947 struct blkptr *zgd_bp;
948 dmu_buf_t *zgd_db;
949 struct rl *zgd_rl;
950 void *zgd_private;
951 } zgd_t;
952
953 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
954 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
955
956 /*
957 * Find the next hole or data block in file starting at *off
958 * Return found offset in *off. Return ESRCH for end of file.
959 */
960 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
961 uint64_t *off);
962
963 /*
964 * Initial setup and final teardown.
965 */
966 extern void dmu_init(void);
967 extern void dmu_fini(void);
968
969 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
970 uint64_t object, uint64_t offset, int len);
971 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
972 dmu_traverse_cb_t cb, void *arg);
973
974 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
975 struct vnode *vp, offset_t *offp);
976
977 /* CRC64 table */
978 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
979 extern uint64_t zfs_crc64_table[256];
980
981 extern int zfs_mdcomp_disable;
982
983 #ifdef __cplusplus
984 }
985 #endif
986
987 #endif /* _SYS_DMU_H */