]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/dmu.h
Fix error handling incallers of dbuf_hold_level()
[mirror_zfs.git] / include / sys / dmu.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2017, Intel Corporation.
30 */
31
32 /* Portions Copyright 2010 Robert Milkowski */
33
34 #ifndef _SYS_DMU_H
35 #define _SYS_DMU_H
36
37 /*
38 * This file describes the interface that the DMU provides for its
39 * consumers.
40 *
41 * The DMU also interacts with the SPA. That interface is described in
42 * dmu_spa.h.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/inttypes.h>
47 #include <sys/cred.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/zio_compress.h>
50 #include <sys/zio_priority.h>
51 #include <sys/uio.h>
52
53 #ifdef __cplusplus
54 extern "C" {
55 #endif
56
57 struct page;
58 struct vnode;
59 struct spa;
60 struct zilog;
61 struct zio;
62 struct blkptr;
63 struct zap_cursor;
64 struct dsl_dataset;
65 struct dsl_pool;
66 struct dnode;
67 struct drr_begin;
68 struct drr_end;
69 struct zbookmark_phys;
70 struct spa;
71 struct nvlist;
72 struct arc_buf;
73 struct zio_prop;
74 struct sa_handle;
75 struct dsl_crypto_params;
76 struct locked_range;
77
78 typedef struct objset objset_t;
79 typedef struct dmu_tx dmu_tx_t;
80 typedef struct dsl_dir dsl_dir_t;
81 typedef struct dnode dnode_t;
82
83 typedef enum dmu_object_byteswap {
84 DMU_BSWAP_UINT8,
85 DMU_BSWAP_UINT16,
86 DMU_BSWAP_UINT32,
87 DMU_BSWAP_UINT64,
88 DMU_BSWAP_ZAP,
89 DMU_BSWAP_DNODE,
90 DMU_BSWAP_OBJSET,
91 DMU_BSWAP_ZNODE,
92 DMU_BSWAP_OLDACL,
93 DMU_BSWAP_ACL,
94 /*
95 * Allocating a new byteswap type number makes the on-disk format
96 * incompatible with any other format that uses the same number.
97 *
98 * Data can usually be structured to work with one of the
99 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
100 */
101 DMU_BSWAP_NUMFUNCS
102 } dmu_object_byteswap_t;
103
104 #define DMU_OT_NEWTYPE 0x80
105 #define DMU_OT_METADATA 0x40
106 #define DMU_OT_ENCRYPTED 0x20
107 #define DMU_OT_BYTESWAP_MASK 0x1f
108
109 /*
110 * Defines a uint8_t object type. Object types specify if the data
111 * in the object is metadata (boolean) and how to byteswap the data
112 * (dmu_object_byteswap_t). All of the types created by this method
113 * are cached in the dbuf metadata cache.
114 */
115 #define DMU_OT(byteswap, metadata, encrypted) \
116 (DMU_OT_NEWTYPE | \
117 ((metadata) ? DMU_OT_METADATA : 0) | \
118 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
119 ((byteswap) & DMU_OT_BYTESWAP_MASK))
120
121 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
122 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
123 (ot) < DMU_OT_NUMTYPES)
124
125 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
126 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
127
128 /*
129 * MDB doesn't have dmu_ot; it defines these macros itself.
130 */
131 #ifndef ZFS_MDB
132 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
133 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
134 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
135 #endif
136
137 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
138 ((ot) & DMU_OT_METADATA) : \
139 DMU_OT_IS_METADATA_IMPL(ot))
140
141 #define DMU_OT_IS_DDT(ot) \
142 ((ot) == DMU_OT_DDT_ZAP)
143
144 #define DMU_OT_IS_ZIL(ot) \
145 ((ot) == DMU_OT_INTENT_LOG)
146
147 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
148 #define DMU_OT_IS_FILE(ot) \
149 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
150
151 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
152 ((ot) & DMU_OT_ENCRYPTED) : \
153 DMU_OT_IS_ENCRYPTED_IMPL(ot))
154
155 /*
156 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
157 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
158 * is repurposed for embedded BPs.
159 */
160 #define DMU_OT_HAS_FILL(ot) \
161 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
162
163 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
164 ((ot) & DMU_OT_BYTESWAP_MASK) : \
165 DMU_OT_BYTESWAP_IMPL(ot))
166
167 typedef enum dmu_object_type {
168 DMU_OT_NONE,
169 /* general: */
170 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
171 DMU_OT_OBJECT_ARRAY, /* UINT64 */
172 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
173 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
174 DMU_OT_BPOBJ, /* UINT64 */
175 DMU_OT_BPOBJ_HDR, /* UINT64 */
176 /* spa: */
177 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
178 DMU_OT_SPACE_MAP, /* UINT64 */
179 /* zil: */
180 DMU_OT_INTENT_LOG, /* UINT64 */
181 /* dmu: */
182 DMU_OT_DNODE, /* DNODE */
183 DMU_OT_OBJSET, /* OBJSET */
184 /* dsl: */
185 DMU_OT_DSL_DIR, /* UINT64 */
186 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
187 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
188 DMU_OT_DSL_PROPS, /* ZAP */
189 DMU_OT_DSL_DATASET, /* UINT64 */
190 /* zpl: */
191 DMU_OT_ZNODE, /* ZNODE */
192 DMU_OT_OLDACL, /* Old ACL */
193 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
194 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
195 DMU_OT_MASTER_NODE, /* ZAP */
196 DMU_OT_UNLINKED_SET, /* ZAP */
197 /* zvol: */
198 DMU_OT_ZVOL, /* UINT8 */
199 DMU_OT_ZVOL_PROP, /* ZAP */
200 /* other; for testing only! */
201 DMU_OT_PLAIN_OTHER, /* UINT8 */
202 DMU_OT_UINT64_OTHER, /* UINT64 */
203 DMU_OT_ZAP_OTHER, /* ZAP */
204 /* new object types: */
205 DMU_OT_ERROR_LOG, /* ZAP */
206 DMU_OT_SPA_HISTORY, /* UINT8 */
207 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
208 DMU_OT_POOL_PROPS, /* ZAP */
209 DMU_OT_DSL_PERMS, /* ZAP */
210 DMU_OT_ACL, /* ACL */
211 DMU_OT_SYSACL, /* SYSACL */
212 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
213 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
214 DMU_OT_NEXT_CLONES, /* ZAP */
215 DMU_OT_SCAN_QUEUE, /* ZAP */
216 DMU_OT_USERGROUP_USED, /* ZAP */
217 DMU_OT_USERGROUP_QUOTA, /* ZAP */
218 DMU_OT_USERREFS, /* ZAP */
219 DMU_OT_DDT_ZAP, /* ZAP */
220 DMU_OT_DDT_STATS, /* ZAP */
221 DMU_OT_SA, /* System attr */
222 DMU_OT_SA_MASTER_NODE, /* ZAP */
223 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
224 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
225 DMU_OT_SCAN_XLATE, /* ZAP */
226 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
227 DMU_OT_DEADLIST, /* ZAP */
228 DMU_OT_DEADLIST_HDR, /* UINT64 */
229 DMU_OT_DSL_CLONES, /* ZAP */
230 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
231 /*
232 * Do not allocate new object types here. Doing so makes the on-disk
233 * format incompatible with any other format that uses the same object
234 * type number.
235 *
236 * When creating an object which does not have one of the above types
237 * use the DMU_OTN_* type with the correct byteswap and metadata
238 * values.
239 *
240 * The DMU_OTN_* types do not have entries in the dmu_ot table,
241 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
242 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
243 * and DMU_OTN_* types).
244 */
245 DMU_OT_NUMTYPES,
246
247 /*
248 * Names for valid types declared with DMU_OT().
249 */
250 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
251 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
252 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
253 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
254 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
255 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
256 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
257 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
258 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
259 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
260
261 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
262 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
263 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
264 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
265 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
266 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
267 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
268 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
269 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
270 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
271 } dmu_object_type_t;
272
273 /*
274 * These flags are intended to be used to specify the "txg_how"
275 * parameter when calling the dmu_tx_assign() function. See the comment
276 * above dmu_tx_assign() for more details on the meaning of these flags.
277 */
278 #define TXG_NOWAIT (0ULL)
279 #define TXG_WAIT (1ULL<<0)
280 #define TXG_NOTHROTTLE (1ULL<<1)
281
282 void byteswap_uint64_array(void *buf, size_t size);
283 void byteswap_uint32_array(void *buf, size_t size);
284 void byteswap_uint16_array(void *buf, size_t size);
285 void byteswap_uint8_array(void *buf, size_t size);
286 void zap_byteswap(void *buf, size_t size);
287 void zfs_oldacl_byteswap(void *buf, size_t size);
288 void zfs_acl_byteswap(void *buf, size_t size);
289 void zfs_znode_byteswap(void *buf, size_t size);
290
291 #define DS_FIND_SNAPSHOTS (1<<0)
292 #define DS_FIND_CHILDREN (1<<1)
293 #define DS_FIND_SERIALIZE (1<<2)
294
295 /*
296 * The maximum number of bytes that can be accessed as part of one
297 * operation, including metadata.
298 */
299 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
300 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
301
302 #define DMU_USERUSED_OBJECT (-1ULL)
303 #define DMU_GROUPUSED_OBJECT (-2ULL)
304 #define DMU_PROJECTUSED_OBJECT (-3ULL)
305
306 /*
307 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
308 */
309 #define DMU_OBJACCT_PREFIX "obj-"
310 #define DMU_OBJACCT_PREFIX_LEN 4
311
312 /*
313 * artificial blkids for bonus buffer and spill blocks
314 */
315 #define DMU_BONUS_BLKID (-1ULL)
316 #define DMU_SPILL_BLKID (-2ULL)
317
318 /*
319 * Public routines to create, destroy, open, and close objsets.
320 */
321 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
322 cred_t *cr, dmu_tx_t *tx);
323
324 int dmu_objset_hold(const char *name, void *tag, objset_t **osp);
325 int dmu_objset_own(const char *name, dmu_objset_type_t type,
326 boolean_t readonly, boolean_t key_required, void *tag, objset_t **osp);
327 void dmu_objset_rele(objset_t *os, void *tag);
328 void dmu_objset_disown(objset_t *os, boolean_t key_required, void *tag);
329 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
330
331 void dmu_objset_evict_dbufs(objset_t *os);
332 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
333 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
334 void *arg);
335 int dmu_objset_clone(const char *name, const char *origin);
336 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
337 struct nvlist *errlist);
338 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
339 int dmu_objset_snapshot_tmp(const char *, const char *, int);
340 int dmu_objset_find(char *name, int func(const char *, void *), void *arg,
341 int flags);
342 void dmu_objset_byteswap(void *buf, size_t size);
343 int dsl_dataset_rename_snapshot(const char *fsname,
344 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
345 int dmu_objset_remap_indirects(const char *fsname);
346
347 typedef struct dmu_buf {
348 uint64_t db_object; /* object that this buffer is part of */
349 uint64_t db_offset; /* byte offset in this object */
350 uint64_t db_size; /* size of buffer in bytes */
351 void *db_data; /* data in buffer */
352 } dmu_buf_t;
353
354 /*
355 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
356 */
357 #define DMU_POOL_DIRECTORY_OBJECT 1
358 #define DMU_POOL_CONFIG "config"
359 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
360 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
361 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
362 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
363 #define DMU_POOL_ROOT_DATASET "root_dataset"
364 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
365 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
366 #define DMU_POOL_ERRLOG_LAST "errlog_last"
367 #define DMU_POOL_SPARES "spares"
368 #define DMU_POOL_DEFLATE "deflate"
369 #define DMU_POOL_HISTORY "history"
370 #define DMU_POOL_PROPS "pool_props"
371 #define DMU_POOL_L2CACHE "l2cache"
372 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
373 #define DMU_POOL_DDT "DDT-%s-%s-%s"
374 #define DMU_POOL_DDT_STATS "DDT-statistics"
375 #define DMU_POOL_CREATION_VERSION "creation_version"
376 #define DMU_POOL_SCAN "scan"
377 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
378 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
379 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
380 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
381 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
382 #define DMU_POOL_REMOVING "com.delphix:removing"
383 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
384 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
385 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
386
387 /*
388 * Allocate an object from this objset. The range of object numbers
389 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
390 *
391 * The transaction must be assigned to a txg. The newly allocated
392 * object will be "held" in the transaction (ie. you can modify the
393 * newly allocated object in this transaction).
394 *
395 * dmu_object_alloc() chooses an object and returns it in *objectp.
396 *
397 * dmu_object_claim() allocates a specific object number. If that
398 * number is already allocated, it fails and returns EEXIST.
399 *
400 * Return 0 on success, or ENOSPC or EEXIST as specified above.
401 */
402 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
403 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
404 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
405 int indirect_blockshift,
406 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
407 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
408 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
409 int dnodesize, dmu_tx_t *tx);
410 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
411 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
412 int bonuslen, int dnodesize, dnode_t **allocated_dnode, void *tag,
413 dmu_tx_t *tx);
414 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
415 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
416 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
417 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
418 int dnodesize, dmu_tx_t *tx);
419 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
420 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
421 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
422 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
423 int bonuslen, int dnodesize, dmu_tx_t *txp);
424
425 /*
426 * Free an object from this objset.
427 *
428 * The object's data will be freed as well (ie. you don't need to call
429 * dmu_free(object, 0, -1, tx)).
430 *
431 * The object need not be held in the transaction.
432 *
433 * If there are any holds on this object's buffers (via dmu_buf_hold()),
434 * or tx holds on the object (via dmu_tx_hold_object()), you can not
435 * free it; it fails and returns EBUSY.
436 *
437 * If the object is not allocated, it fails and returns ENOENT.
438 *
439 * Return 0 on success, or EBUSY or ENOENT as specified above.
440 */
441 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
442
443 /*
444 * Find the next allocated or free object.
445 *
446 * The objectp parameter is in-out. It will be updated to be the next
447 * object which is allocated. Ignore objects which have not been
448 * modified since txg.
449 *
450 * XXX Can only be called on a objset with no dirty data.
451 *
452 * Returns 0 on success, or ENOENT if there are no more objects.
453 */
454 int dmu_object_next(objset_t *os, uint64_t *objectp,
455 boolean_t hole, uint64_t txg);
456
457 /*
458 * Set the number of levels on a dnode. nlevels must be greater than the
459 * current number of levels or an EINVAL will be returned.
460 */
461 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
462 dmu_tx_t *tx);
463
464 /*
465 * Set the data blocksize for an object.
466 *
467 * The object cannot have any blocks allcated beyond the first. If
468 * the first block is allocated already, the new size must be greater
469 * than the current block size. If these conditions are not met,
470 * ENOTSUP will be returned.
471 *
472 * Returns 0 on success, or EBUSY if there are any holds on the object
473 * contents, or ENOTSUP as described above.
474 */
475 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
476 int ibs, dmu_tx_t *tx);
477
478 /*
479 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
480 * to accommodate the change.
481 */
482 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
483 dmu_tx_t *tx);
484
485 /*
486 * Set the checksum property on a dnode. The new checksum algorithm will
487 * apply to all newly written blocks; existing blocks will not be affected.
488 */
489 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
490 dmu_tx_t *tx);
491
492 /*
493 * Set the compress property on a dnode. The new compression algorithm will
494 * apply to all newly written blocks; existing blocks will not be affected.
495 */
496 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
497 dmu_tx_t *tx);
498
499
500 int dmu_object_remap_indirects(objset_t *os, uint64_t object, uint64_t txg);
501
502 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
503 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
504 int compressed_size, int byteorder, dmu_tx_t *tx);
505
506 /*
507 * Decide how to write a block: checksum, compression, number of copies, etc.
508 */
509 #define WP_NOFILL 0x1
510 #define WP_DMU_SYNC 0x2
511 #define WP_SPILL 0x4
512
513 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
514 struct zio_prop *zp);
515
516 /*
517 * The bonus data is accessed more or less like a regular buffer.
518 * You must dmu_bonus_hold() to get the buffer, which will give you a
519 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
520 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
521 * before modifying it, and the
522 * object must be held in an assigned transaction before calling
523 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
524 * buffer as well. You must release what you hold with dmu_buf_rele().
525 *
526 * Returns ENOENT, EIO, or 0.
527 */
528 int dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp);
529 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
530 uint32_t flags);
531 int dmu_bonus_max(void);
532 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
533 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
534 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
535 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
536
537 /*
538 * Special spill buffer support used by "SA" framework
539 */
540
541 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
542 dmu_buf_t **dbp);
543 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
544 void *tag, dmu_buf_t **dbp);
545 int dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp);
546
547 /*
548 * Obtain the DMU buffer from the specified object which contains the
549 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
550 * that it will remain in memory. You must release the hold with
551 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
552 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
553 *
554 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
555 * on the returned buffer before reading or writing the buffer's
556 * db_data. The comments for those routines describe what particular
557 * operations are valid after calling them.
558 *
559 * The object number must be a valid, allocated object number.
560 */
561 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
562 void *tag, dmu_buf_t **, int flags);
563 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
564 void *tag, dmu_buf_t **dbp, int flags);
565
566 /*
567 * Add a reference to a dmu buffer that has already been held via
568 * dmu_buf_hold() in the current context.
569 */
570 void dmu_buf_add_ref(dmu_buf_t *db, void* tag);
571
572 /*
573 * Attempt to add a reference to a dmu buffer that is in an unknown state,
574 * using a pointer that may have been invalidated by eviction processing.
575 * The request will succeed if the passed in dbuf still represents the
576 * same os/object/blkid, is ineligible for eviction, and has at least
577 * one hold by a user other than the syncer.
578 */
579 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
580 uint64_t blkid, void *tag);
581
582 void dmu_buf_rele(dmu_buf_t *db, void *tag);
583 uint64_t dmu_buf_refcount(dmu_buf_t *db);
584 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
585
586 /*
587 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
588 * range of an object. A pointer to an array of dmu_buf_t*'s is
589 * returned (in *dbpp).
590 *
591 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
592 * frees the array. The hold on the array of buffers MUST be released
593 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
594 * individually with dmu_buf_rele.
595 */
596 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
597 uint64_t length, boolean_t read, void *tag,
598 int *numbufsp, dmu_buf_t ***dbpp);
599 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, void *tag);
600
601 typedef void dmu_buf_evict_func_t(void *user_ptr);
602
603 /*
604 * A DMU buffer user object may be associated with a dbuf for the
605 * duration of its lifetime. This allows the user of a dbuf (client)
606 * to attach private data to a dbuf (e.g. in-core only data such as a
607 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
608 * when that dbuf has been evicted. Clients typically respond to the
609 * eviction notification by freeing their private data, thus ensuring
610 * the same lifetime for both dbuf and private data.
611 *
612 * The mapping from a dmu_buf_user_t to any client private data is the
613 * client's responsibility. All current consumers of the API with private
614 * data embed a dmu_buf_user_t as the first member of the structure for
615 * their private data. This allows conversions between the two types
616 * with a simple cast. Since the DMU buf user API never needs access
617 * to the private data, other strategies can be employed if necessary
618 * or convenient for the client (e.g. using container_of() to do the
619 * conversion for private data that cannot have the dmu_buf_user_t as
620 * its first member).
621 *
622 * Eviction callbacks are executed without the dbuf mutex held or any
623 * other type of mechanism to guarantee that the dbuf is still available.
624 * For this reason, users must assume the dbuf has already been freed
625 * and not reference the dbuf from the callback context.
626 *
627 * Users requesting "immediate eviction" are notified as soon as the dbuf
628 * is only referenced by dirty records (dirties == holds). Otherwise the
629 * notification occurs after eviction processing for the dbuf begins.
630 */
631 typedef struct dmu_buf_user {
632 /*
633 * Asynchronous user eviction callback state.
634 */
635 taskq_ent_t dbu_tqent;
636
637 /*
638 * This instance's eviction function pointers.
639 *
640 * dbu_evict_func_sync is called synchronously and then
641 * dbu_evict_func_async is executed asynchronously on a taskq.
642 */
643 dmu_buf_evict_func_t *dbu_evict_func_sync;
644 dmu_buf_evict_func_t *dbu_evict_func_async;
645 #ifdef ZFS_DEBUG
646 /*
647 * Pointer to user's dbuf pointer. NULL for clients that do
648 * not associate a dbuf with their user data.
649 *
650 * The dbuf pointer is cleared upon eviction so as to catch
651 * use-after-evict bugs in clients.
652 */
653 dmu_buf_t **dbu_clear_on_evict_dbufp;
654 #endif
655 } dmu_buf_user_t;
656
657 /*
658 * Initialize the given dmu_buf_user_t instance with the eviction function
659 * evict_func, to be called when the user is evicted.
660 *
661 * NOTE: This function should only be called once on a given dmu_buf_user_t.
662 * To allow enforcement of this, dbu must already be zeroed on entry.
663 */
664 /*ARGSUSED*/
665 static inline void
666 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
667 dmu_buf_evict_func_t *evict_func_async, dmu_buf_t **clear_on_evict_dbufp)
668 {
669 ASSERT(dbu->dbu_evict_func_sync == NULL);
670 ASSERT(dbu->dbu_evict_func_async == NULL);
671
672 /* must have at least one evict func */
673 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
674 dbu->dbu_evict_func_sync = evict_func_sync;
675 dbu->dbu_evict_func_async = evict_func_async;
676 taskq_init_ent(&dbu->dbu_tqent);
677 #ifdef ZFS_DEBUG
678 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
679 #endif
680 }
681
682 /*
683 * Attach user data to a dbuf and mark it for normal (when the dbuf's
684 * data is cleared or its reference count goes to zero) eviction processing.
685 *
686 * Returns NULL on success, or the existing user if another user currently
687 * owns the buffer.
688 */
689 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
690
691 /*
692 * Attach user data to a dbuf and mark it for immediate (its dirty and
693 * reference counts are equal) eviction processing.
694 *
695 * Returns NULL on success, or the existing user if another user currently
696 * owns the buffer.
697 */
698 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
699
700 /*
701 * Replace the current user of a dbuf.
702 *
703 * If given the current user of a dbuf, replaces the dbuf's user with
704 * "new_user" and returns the user data pointer that was replaced.
705 * Otherwise returns the current, and unmodified, dbuf user pointer.
706 */
707 void *dmu_buf_replace_user(dmu_buf_t *db,
708 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
709
710 /*
711 * Remove the specified user data for a DMU buffer.
712 *
713 * Returns the user that was removed on success, or the current user if
714 * another user currently owns the buffer.
715 */
716 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
717
718 /*
719 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
720 */
721 void *dmu_buf_get_user(dmu_buf_t *db);
722
723 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
724 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
725 void dmu_buf_dnode_exit(dmu_buf_t *db);
726
727 /* Block until any in-progress dmu buf user evictions complete. */
728 void dmu_buf_user_evict_wait(void);
729
730 /*
731 * Returns the blkptr associated with this dbuf, or NULL if not set.
732 */
733 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
734
735 /*
736 * Indicate that you are going to modify the buffer's data (db_data).
737 *
738 * The transaction (tx) must be assigned to a txg (ie. you've called
739 * dmu_tx_assign()). The buffer's object must be held in the tx
740 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
741 */
742 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
743 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
744 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
745
746 /*
747 * You must create a transaction, then hold the objects which you will
748 * (or might) modify as part of this transaction. Then you must assign
749 * the transaction to a transaction group. Once the transaction has
750 * been assigned, you can modify buffers which belong to held objects as
751 * part of this transaction. You can't modify buffers before the
752 * transaction has been assigned; you can't modify buffers which don't
753 * belong to objects which this transaction holds; you can't hold
754 * objects once the transaction has been assigned. You may hold an
755 * object which you are going to free (with dmu_object_free()), but you
756 * don't have to.
757 *
758 * You can abort the transaction before it has been assigned.
759 *
760 * Note that you may hold buffers (with dmu_buf_hold) at any time,
761 * regardless of transaction state.
762 */
763
764 #define DMU_NEW_OBJECT (-1ULL)
765 #define DMU_OBJECT_END (-1ULL)
766
767 dmu_tx_t *dmu_tx_create(objset_t *os);
768 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
769 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
770 int len);
771 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
772 uint64_t len);
773 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
774 uint64_t len);
775 void dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object);
776 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
777 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
778 const char *name);
779 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
780 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
781 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
782 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
783 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
784 void dmu_tx_abort(dmu_tx_t *tx);
785 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
786 void dmu_tx_wait(dmu_tx_t *tx);
787 void dmu_tx_commit(dmu_tx_t *tx);
788 void dmu_tx_mark_netfree(dmu_tx_t *tx);
789
790 /*
791 * To register a commit callback, dmu_tx_callback_register() must be called.
792 *
793 * dcb_data is a pointer to caller private data that is passed on as a
794 * callback parameter. The caller is responsible for properly allocating and
795 * freeing it.
796 *
797 * When registering a callback, the transaction must be already created, but
798 * it cannot be committed or aborted. It can be assigned to a txg or not.
799 *
800 * The callback will be called after the transaction has been safely written
801 * to stable storage and will also be called if the dmu_tx is aborted.
802 * If there is any error which prevents the transaction from being committed to
803 * disk, the callback will be called with a value of error != 0.
804 *
805 * When multiple callbacks are registered to the transaction, the callbacks
806 * will be called in reverse order to let Lustre, the only user of commit
807 * callback currently, take the fast path of its commit callback handling.
808 */
809 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
810
811 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
812 void *dcb_data);
813 void dmu_tx_do_callbacks(list_t *cb_list, int error);
814
815 /*
816 * Free up the data blocks for a defined range of a file. If size is
817 * -1, the range from offset to end-of-file is freed.
818 */
819 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
820 uint64_t size, dmu_tx_t *tx);
821 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
822 uint64_t size);
823 int dmu_free_long_object(objset_t *os, uint64_t object);
824
825 /*
826 * Convenience functions.
827 *
828 * Canfail routines will return 0 on success, or an errno if there is a
829 * nonrecoverable I/O error.
830 */
831 #define DMU_READ_PREFETCH 0 /* prefetch */
832 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
833 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
834 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
835 void *buf, uint32_t flags);
836 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
837 uint32_t flags);
838 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
839 const void *buf, dmu_tx_t *tx);
840 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
841 const void *buf, dmu_tx_t *tx);
842 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
843 dmu_tx_t *tx);
844 #ifdef _KERNEL
845 #include <linux/blkdev_compat.h>
846 int dmu_read_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size);
847 int dmu_read_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size);
848 int dmu_read_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size);
849 int dmu_write_uio(objset_t *os, uint64_t object, struct uio *uio, uint64_t size,
850 dmu_tx_t *tx);
851 int dmu_write_uio_dbuf(dmu_buf_t *zdb, struct uio *uio, uint64_t size,
852 dmu_tx_t *tx);
853 int dmu_write_uio_dnode(dnode_t *dn, struct uio *uio, uint64_t size,
854 dmu_tx_t *tx);
855 #endif
856 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
857 void dmu_return_arcbuf(struct arc_buf *buf);
858 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
859 struct arc_buf *buf, dmu_tx_t *tx);
860 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
861 struct arc_buf *buf, dmu_tx_t *tx);
862 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
863 void dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
864 dmu_buf_t *handle, dmu_tx_t *tx);
865 #ifdef HAVE_UIO_ZEROCOPY
866 int dmu_xuio_init(struct xuio *uio, int niov);
867 void dmu_xuio_fini(struct xuio *uio);
868 int dmu_xuio_add(struct xuio *uio, struct arc_buf *abuf, offset_t off,
869 size_t n);
870 int dmu_xuio_cnt(struct xuio *uio);
871 struct arc_buf *dmu_xuio_arcbuf(struct xuio *uio, int i);
872 void dmu_xuio_clear(struct xuio *uio, int i);
873 #endif /* HAVE_UIO_ZEROCOPY */
874 void xuio_stat_wbuf_copied(void);
875 void xuio_stat_wbuf_nocopy(void);
876
877 extern int zfs_prefetch_disable;
878 extern int zfs_max_recordsize;
879
880 /*
881 * Asynchronously try to read in the data.
882 */
883 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
884 uint64_t len, enum zio_priority pri);
885
886 typedef struct dmu_object_info {
887 /* All sizes are in bytes unless otherwise indicated. */
888 uint32_t doi_data_block_size;
889 uint32_t doi_metadata_block_size;
890 dmu_object_type_t doi_type;
891 dmu_object_type_t doi_bonus_type;
892 uint64_t doi_bonus_size;
893 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
894 uint8_t doi_checksum;
895 uint8_t doi_compress;
896 uint8_t doi_nblkptr;
897 uint8_t doi_pad[4];
898 uint64_t doi_dnodesize;
899 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
900 uint64_t doi_max_offset;
901 uint64_t doi_fill_count; /* number of non-empty blocks */
902 } dmu_object_info_t;
903
904 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
905
906 typedef struct dmu_object_type_info {
907 dmu_object_byteswap_t ot_byteswap;
908 boolean_t ot_metadata;
909 boolean_t ot_dbuf_metadata_cache;
910 boolean_t ot_encrypt;
911 char *ot_name;
912 } dmu_object_type_info_t;
913
914 typedef const struct dmu_object_byteswap_info {
915 arc_byteswap_func_t ob_func;
916 char *ob_name;
917 } dmu_object_byteswap_info_t;
918
919 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
920 extern const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
921
922 /*
923 * Get information on a DMU object.
924 *
925 * Return 0 on success or ENOENT if object is not allocated.
926 *
927 * If doi is NULL, just indicates whether the object exists.
928 */
929 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
930 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
931 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
932 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
933 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
934 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
935 /*
936 * Like dmu_object_info_from_db, but faster still when you only care about
937 * the size. This is specifically optimized for zfs_getattr().
938 */
939 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
940 u_longlong_t *nblk512);
941
942 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
943
944 typedef struct dmu_objset_stats {
945 uint64_t dds_num_clones; /* number of clones of this */
946 uint64_t dds_creation_txg;
947 uint64_t dds_guid;
948 dmu_objset_type_t dds_type;
949 uint8_t dds_is_snapshot;
950 uint8_t dds_inconsistent;
951 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
952 } dmu_objset_stats_t;
953
954 /*
955 * Get stats on a dataset.
956 */
957 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
958
959 /*
960 * Add entries to the nvlist for all the objset's properties. See
961 * zfs_prop_table[] and zfs(1m) for details on the properties.
962 */
963 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
964
965 /*
966 * Get the space usage statistics for statvfs().
967 *
968 * refdbytes is the amount of space "referenced" by this objset.
969 * availbytes is the amount of space available to this objset, taking
970 * into account quotas & reservations, assuming that no other objsets
971 * use the space first. These values correspond to the 'referenced' and
972 * 'available' properties, described in the zfs(1m) manpage.
973 *
974 * usedobjs and availobjs are the number of objects currently allocated,
975 * and available.
976 */
977 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
978 uint64_t *usedobjsp, uint64_t *availobjsp);
979
980 /*
981 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
982 * (Contrast with the ds_guid which is a 64-bit ID that will never
983 * change, so there is a small probability that it will collide.)
984 */
985 uint64_t dmu_objset_fsid_guid(objset_t *os);
986
987 /*
988 * Get the [cm]time for an objset's snapshot dir
989 */
990 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
991
992 int dmu_objset_is_snapshot(objset_t *os);
993
994 extern struct spa *dmu_objset_spa(objset_t *os);
995 extern struct zilog *dmu_objset_zil(objset_t *os);
996 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
997 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
998 extern void dmu_objset_name(objset_t *os, char *buf);
999 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1000 extern uint64_t dmu_objset_id(objset_t *os);
1001 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1002 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1003 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1004 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1005 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1006 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
1007 extern int dmu_snapshot_realname(objset_t *os, char *name, char *real,
1008 int maxlen, boolean_t *conflict);
1009 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1010 uint64_t *idp, uint64_t *offp);
1011
1012 typedef int objset_used_cb_t(dmu_object_type_t bonustype,
1013 void *bonus, uint64_t *userp, uint64_t *groupp, uint64_t *projectp);
1014 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1015 objset_used_cb_t *cb);
1016 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1017 extern void *dmu_objset_get_user(objset_t *os);
1018
1019 /*
1020 * Return the txg number for the given assigned transaction.
1021 */
1022 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1023
1024 /*
1025 * Synchronous write.
1026 * If a parent zio is provided this function initiates a write on the
1027 * provided buffer as a child of the parent zio.
1028 * In the absence of a parent zio, the write is completed synchronously.
1029 * At write completion, blk is filled with the bp of the written block.
1030 * Note that while the data covered by this function will be on stable
1031 * storage when the write completes this new data does not become a
1032 * permanent part of the file until the associated transaction commits.
1033 */
1034
1035 /*
1036 * {zfs,zvol,ztest}_get_done() args
1037 */
1038 typedef struct zgd {
1039 struct lwb *zgd_lwb;
1040 struct blkptr *zgd_bp;
1041 dmu_buf_t *zgd_db;
1042 struct locked_range *zgd_lr;
1043 void *zgd_private;
1044 } zgd_t;
1045
1046 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1047 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1048
1049 /*
1050 * Find the next hole or data block in file starting at *off
1051 * Return found offset in *off. Return ESRCH for end of file.
1052 */
1053 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1054 uint64_t *off);
1055
1056 /*
1057 * Initial setup and final teardown.
1058 */
1059 extern void dmu_init(void);
1060 extern void dmu_fini(void);
1061
1062 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1063 uint64_t object, uint64_t offset, int len);
1064 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1065 dmu_traverse_cb_t cb, void *arg);
1066
1067 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1068 struct vnode *vp, offset_t *offp);
1069
1070 /* CRC64 table */
1071 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1072 extern uint64_t zfs_crc64_table[256];
1073
1074 #ifdef __cplusplus
1075 }
1076 #endif
1077
1078 #endif /* _SYS_DMU_H */