]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/spa.h
Extend import_progress kstat with a notes field
[mirror_zfs.git] / include / sys / spa.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2019, Klara Inc.
32 * Copyright (c) 2019, Datto Inc.
33 */
34
35 #ifndef _SYS_SPA_H
36 #define _SYS_SPA_H
37
38 #include <sys/avl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/kstat.h>
41 #include <sys/nvpair.h>
42 #include <sys/sysmacros.h>
43 #include <sys/types.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/spa_checksum.h>
46 #include <sys/dmu.h>
47 #include <sys/space_map.h>
48 #include <sys/bitops.h>
49
50 #ifdef __cplusplus
51 extern "C" {
52 #endif
53
54 /*
55 * Forward references that lots of things need.
56 */
57 typedef struct spa spa_t;
58 typedef struct vdev vdev_t;
59 typedef struct metaslab metaslab_t;
60 typedef struct metaslab_group metaslab_group_t;
61 typedef struct metaslab_class metaslab_class_t;
62 typedef struct zio zio_t;
63 typedef struct zilog zilog_t;
64 typedef struct spa_aux_vdev spa_aux_vdev_t;
65 typedef struct ddt ddt_t;
66 typedef struct ddt_entry ddt_entry_t;
67 typedef struct zbookmark_phys zbookmark_phys_t;
68 typedef struct zbookmark_err_phys zbookmark_err_phys_t;
69
70 struct bpobj;
71 struct bplist;
72 struct dsl_pool;
73 struct dsl_dataset;
74 struct dsl_crypto_params;
75
76 /*
77 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
78 * which can only be set at vdev creation time. Physical writes are always done
79 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
80 *
81 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
82 * (2^16 = 65,536).
83 */
84 #define ASHIFT_MIN 9
85 #define ASHIFT_MAX 16
86
87 /*
88 * Size of block to hold the configuration data (a packed nvlist)
89 */
90 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
91
92 /*
93 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
94 * The ASIZE encoding should be at least 64 times larger (6 more bits)
95 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
96 * overhead, three DVAs per bp, plus one more bit in case we do anything
97 * else that expands the ASIZE.
98 */
99 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
100 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
101 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
102
103 #define SPA_COMPRESSBITS 7
104 #define SPA_VDEVBITS 24
105 #define SPA_COMPRESSMASK ((1U << SPA_COMPRESSBITS) - 1)
106
107 /*
108 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
109 * The members of the dva_t should be considered opaque outside the SPA.
110 */
111 typedef struct dva {
112 uint64_t dva_word[2];
113 } dva_t;
114
115
116 /*
117 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
118 * secret and is suitable for use in MAC algorithms as the key.
119 */
120 typedef struct zio_cksum_salt {
121 uint8_t zcs_bytes[32];
122 } zio_cksum_salt_t;
123
124 /*
125 * Each block is described by its DVAs, time of birth, checksum, etc.
126 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
127 *
128 * 64 56 48 40 32 24 16 8 0
129 * +-------+-------+-------+-------+-------+-------+-------+-------+
130 * 0 | pad | vdev1 | GRID | ASIZE |
131 * +-------+-------+-------+-------+-------+-------+-------+-------+
132 * 1 |G| offset1 |
133 * +-------+-------+-------+-------+-------+-------+-------+-------+
134 * 2 | pad | vdev2 | GRID | ASIZE |
135 * +-------+-------+-------+-------+-------+-------+-------+-------+
136 * 3 |G| offset2 |
137 * +-------+-------+-------+-------+-------+-------+-------+-------+
138 * 4 | pad | vdev3 | GRID | ASIZE |
139 * +-------+-------+-------+-------+-------+-------+-------+-------+
140 * 5 |G| offset3 |
141 * +-------+-------+-------+-------+-------+-------+-------+-------+
142 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
143 * +-------+-------+-------+-------+-------+-------+-------+-------+
144 * 7 | padding |
145 * +-------+-------+-------+-------+-------+-------+-------+-------+
146 * 8 | padding |
147 * +-------+-------+-------+-------+-------+-------+-------+-------+
148 * 9 | physical birth txg |
149 * +-------+-------+-------+-------+-------+-------+-------+-------+
150 * a | logical birth txg |
151 * +-------+-------+-------+-------+-------+-------+-------+-------+
152 * b | fill count |
153 * +-------+-------+-------+-------+-------+-------+-------+-------+
154 * c | checksum[0] |
155 * +-------+-------+-------+-------+-------+-------+-------+-------+
156 * d | checksum[1] |
157 * +-------+-------+-------+-------+-------+-------+-------+-------+
158 * e | checksum[2] |
159 * +-------+-------+-------+-------+-------+-------+-------+-------+
160 * f | checksum[3] |
161 * +-------+-------+-------+-------+-------+-------+-------+-------+
162 *
163 * Legend:
164 *
165 * vdev virtual device ID
166 * offset offset into virtual device
167 * LSIZE logical size
168 * PSIZE physical size (after compression)
169 * ASIZE allocated size (including RAID-Z parity and gang block headers)
170 * GRID RAID-Z layout information (reserved for future use)
171 * cksum checksum function
172 * comp compression function
173 * G gang block indicator
174 * B byteorder (endianness)
175 * D dedup
176 * X encryption
177 * E blkptr_t contains embedded data (see below)
178 * lvl level of indirection
179 * type DMU object type
180 * phys birth txg when dva[0] was written; zero if same as logical birth txg
181 * note that typically all the dva's would be written in this
182 * txg, but they could be different if they were moved by
183 * device removal.
184 * log. birth transaction group in which the block was logically born
185 * fill count number of non-zero blocks under this bp
186 * checksum[4] 256-bit checksum of the data this bp describes
187 */
188
189 /*
190 * The blkptr_t's of encrypted blocks also need to store the encryption
191 * parameters so that the block can be decrypted. This layout is as follows:
192 *
193 * 64 56 48 40 32 24 16 8 0
194 * +-------+-------+-------+-------+-------+-------+-------+-------+
195 * 0 | vdev1 | GRID | ASIZE |
196 * +-------+-------+-------+-------+-------+-------+-------+-------+
197 * 1 |G| offset1 |
198 * +-------+-------+-------+-------+-------+-------+-------+-------+
199 * 2 | vdev2 | GRID | ASIZE |
200 * +-------+-------+-------+-------+-------+-------+-------+-------+
201 * 3 |G| offset2 |
202 * +-------+-------+-------+-------+-------+-------+-------+-------+
203 * 4 | salt |
204 * +-------+-------+-------+-------+-------+-------+-------+-------+
205 * 5 | IV1 |
206 * +-------+-------+-------+-------+-------+-------+-------+-------+
207 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
208 * +-------+-------+-------+-------+-------+-------+-------+-------+
209 * 7 | padding |
210 * +-------+-------+-------+-------+-------+-------+-------+-------+
211 * 8 | padding |
212 * +-------+-------+-------+-------+-------+-------+-------+-------+
213 * 9 | physical birth txg |
214 * +-------+-------+-------+-------+-------+-------+-------+-------+
215 * a | logical birth txg |
216 * +-------+-------+-------+-------+-------+-------+-------+-------+
217 * b | IV2 | fill count |
218 * +-------+-------+-------+-------+-------+-------+-------+-------+
219 * c | checksum[0] |
220 * +-------+-------+-------+-------+-------+-------+-------+-------+
221 * d | checksum[1] |
222 * +-------+-------+-------+-------+-------+-------+-------+-------+
223 * e | MAC[0] |
224 * +-------+-------+-------+-------+-------+-------+-------+-------+
225 * f | MAC[1] |
226 * +-------+-------+-------+-------+-------+-------+-------+-------+
227 *
228 * Legend:
229 *
230 * salt Salt for generating encryption keys
231 * IV1 First 64 bits of encryption IV
232 * X Block requires encryption handling (set to 1)
233 * E blkptr_t contains embedded data (set to 0, see below)
234 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
235 * IV2 Last 32 bits of encryption IV
236 * checksum[2] 128-bit checksum of the data this bp describes
237 * MAC[2] 128-bit message authentication code for this data
238 *
239 * The X bit being set indicates that this block is one of 3 types. If this is
240 * a level 0 block with an encrypted object type, the block is encrypted
241 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
242 * object type, this block is authenticated with an HMAC (see
243 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
244 * words to store a checksum-of-MACs from the level below (see
245 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
246 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
247 * refers to any of these 3 kinds of blocks.
248 *
249 * The additional encryption parameters are the salt, IV, and MAC which are
250 * explained in greater detail in the block comment at the top of zio_crypt.c.
251 * The MAC occupies half of the checksum space since it serves a very similar
252 * purpose: to prevent data corruption on disk. The only functional difference
253 * is that the checksum is used to detect on-disk corruption whether or not the
254 * encryption key is loaded and the MAC provides additional protection against
255 * malicious disk tampering. We use the 3rd DVA to store the salt and first
256 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
257 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
258 * the upper bits of what is usually the fill count. Note that only blocks at
259 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
260 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
261 * The salt and IV are not used for authenticated bps or bps with an indirect
262 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
263 * for the fill count.
264 */
265
266 /*
267 * "Embedded" blkptr_t's don't actually point to a block, instead they
268 * have a data payload embedded in the blkptr_t itself. See the comment
269 * in blkptr.c for more details.
270 *
271 * The blkptr_t is laid out as follows:
272 *
273 * 64 56 48 40 32 24 16 8 0
274 * +-------+-------+-------+-------+-------+-------+-------+-------+
275 * 0 | payload |
276 * 1 | payload |
277 * 2 | payload |
278 * 3 | payload |
279 * 4 | payload |
280 * 5 | payload |
281 * +-------+-------+-------+-------+-------+-------+-------+-------+
282 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
283 * +-------+-------+-------+-------+-------+-------+-------+-------+
284 * 7 | payload |
285 * 8 | payload |
286 * 9 | payload |
287 * +-------+-------+-------+-------+-------+-------+-------+-------+
288 * a | logical birth txg |
289 * +-------+-------+-------+-------+-------+-------+-------+-------+
290 * b | payload |
291 * c | payload |
292 * d | payload |
293 * e | payload |
294 * f | payload |
295 * +-------+-------+-------+-------+-------+-------+-------+-------+
296 *
297 * Legend:
298 *
299 * payload contains the embedded data
300 * B (byteorder) byteorder (endianness)
301 * D (dedup) padding (set to zero)
302 * X encryption (set to zero)
303 * E (embedded) set to one
304 * lvl indirection level
305 * type DMU object type
306 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
307 * comp compression function of payload
308 * PSIZE size of payload after compression, in bytes
309 * LSIZE logical size of payload, in bytes
310 * note that 25 bits is enough to store the largest
311 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
312 * log. birth transaction group in which the block was logically born
313 *
314 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
315 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
316 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
317 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
318 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
319 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
320 * other macros, as they assert that they are only used on BP's of the correct
321 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
322 * the payload space for encryption parameters (see the comment above on
323 * how encryption parameters are stored).
324 */
325
326 #define BPE_GET_ETYPE(bp) \
327 (ASSERT(BP_IS_EMBEDDED(bp)), \
328 BF64_GET((bp)->blk_prop, 40, 8))
329 #define BPE_SET_ETYPE(bp, t) do { \
330 ASSERT(BP_IS_EMBEDDED(bp)); \
331 BF64_SET((bp)->blk_prop, 40, 8, t); \
332 } while (0)
333
334 #define BPE_GET_LSIZE(bp) \
335 (ASSERT(BP_IS_EMBEDDED(bp)), \
336 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
337 #define BPE_SET_LSIZE(bp, x) do { \
338 ASSERT(BP_IS_EMBEDDED(bp)); \
339 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
340 } while (0)
341
342 #define BPE_GET_PSIZE(bp) \
343 (ASSERT(BP_IS_EMBEDDED(bp)), \
344 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
345 #define BPE_SET_PSIZE(bp, x) do { \
346 ASSERT(BP_IS_EMBEDDED(bp)); \
347 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
348 } while (0)
349
350 typedef enum bp_embedded_type {
351 BP_EMBEDDED_TYPE_DATA,
352 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for Delphix byteswap feature. */
353 BP_EMBEDDED_TYPE_REDACTED,
354 NUM_BP_EMBEDDED_TYPES
355 } bp_embedded_type_t;
356
357 #define BPE_NUM_WORDS 14
358 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
359 #define BPE_IS_PAYLOADWORD(bp, wp) \
360 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
361
362 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
363 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
364 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
365
366 /*
367 * A block is a hole when it has either 1) never been written to, or
368 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
369 * without physically allocating disk space. Holes are represented in the
370 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
371 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
372 * DMU object type, and birth times are all also stored for holes that
373 * were written to at some point (i.e. were punched after having been filled).
374 */
375 typedef struct blkptr {
376 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
377 uint64_t blk_prop; /* size, compression, type, etc */
378 uint64_t blk_pad[2]; /* Extra space for the future */
379 uint64_t blk_phys_birth; /* txg when block was allocated */
380 uint64_t blk_birth; /* transaction group at birth */
381 uint64_t blk_fill; /* fill count */
382 zio_cksum_t blk_cksum; /* 256-bit checksum */
383 } blkptr_t;
384
385 /*
386 * Macros to get and set fields in a bp or DVA.
387 */
388
389 /*
390 * Note, for gang blocks, DVA_GET_ASIZE() is the total space allocated for
391 * this gang DVA including its children BP's. The space allocated at this
392 * DVA's vdev/offset is vdev_gang_header_asize(vdev).
393 */
394 #define DVA_GET_ASIZE(dva) \
395 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
396 #define DVA_SET_ASIZE(dva, x) \
397 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
398 SPA_MINBLOCKSHIFT, 0, x)
399
400 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
401 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
402
403 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
404 #define DVA_SET_VDEV(dva, x) \
405 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
406
407 #define DVA_GET_OFFSET(dva) \
408 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
409 #define DVA_SET_OFFSET(dva, x) \
410 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
411
412 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
413 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
414
415 #define BP_GET_LSIZE(bp) \
416 (BP_IS_EMBEDDED(bp) ? \
417 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
418 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
419 #define BP_SET_LSIZE(bp, x) do { \
420 ASSERT(!BP_IS_EMBEDDED(bp)); \
421 BF64_SET_SB((bp)->blk_prop, \
422 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
423 } while (0)
424
425 #define BP_GET_PSIZE(bp) \
426 (BP_IS_EMBEDDED(bp) ? 0 : \
427 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
428 #define BP_SET_PSIZE(bp, x) do { \
429 ASSERT(!BP_IS_EMBEDDED(bp)); \
430 BF64_SET_SB((bp)->blk_prop, \
431 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
432 } while (0)
433
434 #define BP_GET_COMPRESS(bp) \
435 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
436 #define BP_SET_COMPRESS(bp, x) \
437 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
438
439 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
440 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
441
442 #define BP_GET_CHECKSUM(bp) \
443 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
444 BF64_GET((bp)->blk_prop, 40, 8))
445 #define BP_SET_CHECKSUM(bp, x) do { \
446 ASSERT(!BP_IS_EMBEDDED(bp)); \
447 BF64_SET((bp)->blk_prop, 40, 8, x); \
448 } while (0)
449
450 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
451 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
452
453 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
454 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
455
456 /* encrypted, authenticated, and MAC cksum bps use the same bit */
457 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
458 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
459
460 #define BP_IS_ENCRYPTED(bp) \
461 (BP_USES_CRYPT(bp) && \
462 BP_GET_LEVEL(bp) <= 0 && \
463 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
464
465 #define BP_IS_AUTHENTICATED(bp) \
466 (BP_USES_CRYPT(bp) && \
467 BP_GET_LEVEL(bp) <= 0 && \
468 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
469
470 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
471 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
472
473 #define BP_IS_PROTECTED(bp) \
474 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
475
476 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
477 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
478
479 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
480 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
481
482 #define BP_GET_FREE(bp) BF64_GET((bp)->blk_fill, 0, 1)
483 #define BP_SET_FREE(bp, x) BF64_SET((bp)->blk_fill, 0, 1, x)
484
485 #define BP_PHYSICAL_BIRTH(bp) \
486 (BP_IS_EMBEDDED(bp) ? 0 : \
487 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
488
489 #define BP_SET_BIRTH(bp, logical, physical) \
490 { \
491 ASSERT(!BP_IS_EMBEDDED(bp)); \
492 (bp)->blk_birth = (logical); \
493 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
494 }
495
496 #define BP_GET_FILL(bp) \
497 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
498 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
499
500 #define BP_SET_FILL(bp, fill) \
501 { \
502 if (BP_IS_ENCRYPTED(bp)) \
503 BF64_SET((bp)->blk_fill, 0, 32, fill); \
504 else \
505 (bp)->blk_fill = fill; \
506 }
507
508 #define BP_GET_IV2(bp) \
509 (ASSERT(BP_IS_ENCRYPTED(bp)), \
510 BF64_GET((bp)->blk_fill, 32, 32))
511 #define BP_SET_IV2(bp, iv2) \
512 { \
513 ASSERT(BP_IS_ENCRYPTED(bp)); \
514 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
515 }
516
517 #define BP_IS_METADATA(bp) \
518 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
519
520 #define BP_GET_ASIZE(bp) \
521 (BP_IS_EMBEDDED(bp) ? 0 : \
522 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
523 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
524 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
525
526 #define BP_GET_UCSIZE(bp) \
527 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
528
529 #define BP_GET_NDVAS(bp) \
530 (BP_IS_EMBEDDED(bp) ? 0 : \
531 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
532 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
533 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
534
535 #define BP_COUNT_GANG(bp) \
536 (BP_IS_EMBEDDED(bp) ? 0 : \
537 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
538 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
539 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
540
541 #define DVA_EQUAL(dva1, dva2) \
542 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
543 (dva1)->dva_word[0] == (dva2)->dva_word[0])
544
545 #define BP_EQUAL(bp1, bp2) \
546 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
547 (bp1)->blk_birth == (bp2)->blk_birth && \
548 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
549 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
550 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
551
552
553 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
554
555 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
556 #define BP_IS_GANG(bp) \
557 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
558 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
559 (dva)->dva_word[1] == 0ULL)
560 #define BP_IS_HOLE(bp) \
561 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
562
563 #define BP_SET_REDACTED(bp) \
564 { \
565 BP_SET_EMBEDDED(bp, B_TRUE); \
566 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_REDACTED); \
567 }
568 #define BP_IS_REDACTED(bp) \
569 (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_REDACTED)
570
571 /* BP_IS_RAIDZ(bp) assumes no block compression */
572 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
573 BP_GET_PSIZE(bp))
574
575 #define BP_ZERO(bp) \
576 { \
577 (bp)->blk_dva[0].dva_word[0] = 0; \
578 (bp)->blk_dva[0].dva_word[1] = 0; \
579 (bp)->blk_dva[1].dva_word[0] = 0; \
580 (bp)->blk_dva[1].dva_word[1] = 0; \
581 (bp)->blk_dva[2].dva_word[0] = 0; \
582 (bp)->blk_dva[2].dva_word[1] = 0; \
583 (bp)->blk_prop = 0; \
584 (bp)->blk_pad[0] = 0; \
585 (bp)->blk_pad[1] = 0; \
586 (bp)->blk_phys_birth = 0; \
587 (bp)->blk_birth = 0; \
588 (bp)->blk_fill = 0; \
589 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
590 }
591
592 #ifdef _ZFS_BIG_ENDIAN
593 #define ZFS_HOST_BYTEORDER (0ULL)
594 #else
595 #define ZFS_HOST_BYTEORDER (1ULL)
596 #endif
597
598 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
599
600 #define BP_SPRINTF_LEN 400
601
602 /*
603 * This macro allows code sharing between zfs, libzpool, and mdb.
604 * 'func' is either kmem_scnprintf() or mdb_snprintf().
605 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
606 */
607
608 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
609 { \
610 static const char *const copyname[] = \
611 { "zero", "single", "double", "triple" }; \
612 int len = 0; \
613 int copies = 0; \
614 const char *crypt_type; \
615 if (bp != NULL) { \
616 if (BP_IS_ENCRYPTED(bp)) { \
617 crypt_type = "encrypted"; \
618 /* LINTED E_SUSPICIOUS_COMPARISON */ \
619 } else if (BP_IS_AUTHENTICATED(bp)) { \
620 crypt_type = "authenticated"; \
621 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
622 crypt_type = "indirect-MAC"; \
623 } else { \
624 crypt_type = "unencrypted"; \
625 } \
626 } \
627 if (bp == NULL) { \
628 len += func(buf + len, size - len, "<NULL>"); \
629 } else if (BP_IS_HOLE(bp)) { \
630 len += func(buf + len, size - len, \
631 "HOLE [L%llu %s] " \
632 "size=%llxL birth=%lluL", \
633 (u_longlong_t)BP_GET_LEVEL(bp), \
634 type, \
635 (u_longlong_t)BP_GET_LSIZE(bp), \
636 (u_longlong_t)bp->blk_birth); \
637 } else if (BP_IS_EMBEDDED(bp)) { \
638 len = func(buf + len, size - len, \
639 "EMBEDDED [L%llu %s] et=%u %s " \
640 "size=%llxL/%llxP birth=%lluL", \
641 (u_longlong_t)BP_GET_LEVEL(bp), \
642 type, \
643 (int)BPE_GET_ETYPE(bp), \
644 compress, \
645 (u_longlong_t)BPE_GET_LSIZE(bp), \
646 (u_longlong_t)BPE_GET_PSIZE(bp), \
647 (u_longlong_t)bp->blk_birth); \
648 } else if (BP_IS_REDACTED(bp)) { \
649 len += func(buf + len, size - len, \
650 "REDACTED [L%llu %s] size=%llxL birth=%lluL", \
651 (u_longlong_t)BP_GET_LEVEL(bp), \
652 type, \
653 (u_longlong_t)BP_GET_LSIZE(bp), \
654 (u_longlong_t)bp->blk_birth); \
655 } else { \
656 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
657 const dva_t *dva = &bp->blk_dva[d]; \
658 if (DVA_IS_VALID(dva)) \
659 copies++; \
660 len += func(buf + len, size - len, \
661 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
662 (u_longlong_t)DVA_GET_VDEV(dva), \
663 (u_longlong_t)DVA_GET_OFFSET(dva), \
664 (u_longlong_t)DVA_GET_ASIZE(dva), \
665 ws); \
666 } \
667 ASSERT3S(copies, >, 0); \
668 if (BP_IS_ENCRYPTED(bp)) { \
669 len += func(buf + len, size - len, \
670 "salt=%llx iv=%llx:%llx%c", \
671 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
672 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
673 (u_longlong_t)BP_GET_IV2(bp), \
674 ws); \
675 } \
676 if (BP_IS_GANG(bp) && \
677 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
678 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
679 copies--; \
680 len += func(buf + len, size - len, \
681 "[L%llu %s] %s %s %s %s %s %s %s%c" \
682 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
683 "cksum=%016llx:%016llx:%016llx:%016llx", \
684 (u_longlong_t)BP_GET_LEVEL(bp), \
685 type, \
686 checksum, \
687 compress, \
688 crypt_type, \
689 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
690 BP_IS_GANG(bp) ? "gang" : "contiguous", \
691 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
692 copyname[copies], \
693 ws, \
694 (u_longlong_t)BP_GET_LSIZE(bp), \
695 (u_longlong_t)BP_GET_PSIZE(bp), \
696 (u_longlong_t)bp->blk_birth, \
697 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
698 (u_longlong_t)BP_GET_FILL(bp), \
699 ws, \
700 (u_longlong_t)bp->blk_cksum.zc_word[0], \
701 (u_longlong_t)bp->blk_cksum.zc_word[1], \
702 (u_longlong_t)bp->blk_cksum.zc_word[2], \
703 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
704 } \
705 ASSERT(len < size); \
706 }
707
708 #define BP_GET_BUFC_TYPE(bp) \
709 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
710
711 typedef enum spa_import_type {
712 SPA_IMPORT_EXISTING,
713 SPA_IMPORT_ASSEMBLE
714 } spa_import_type_t;
715
716 typedef enum spa_mode {
717 SPA_MODE_UNINIT = 0,
718 SPA_MODE_READ = 1,
719 SPA_MODE_WRITE = 2,
720 } spa_mode_t;
721
722 /*
723 * Send TRIM commands in-line during normal pool operation while deleting.
724 * OFF: no
725 * ON: yes
726 */
727 typedef enum {
728 SPA_AUTOTRIM_OFF = 0, /* default */
729 SPA_AUTOTRIM_ON,
730 } spa_autotrim_t;
731
732 /*
733 * Reason TRIM command was issued, used internally for accounting purposes.
734 */
735 typedef enum trim_type {
736 TRIM_TYPE_MANUAL = 0,
737 TRIM_TYPE_AUTO = 1,
738 TRIM_TYPE_SIMPLE = 2
739 } trim_type_t;
740
741 /* state manipulation functions */
742 extern int spa_open(const char *pool, spa_t **, const void *tag);
743 extern int spa_open_rewind(const char *pool, spa_t **, const void *tag,
744 nvlist_t *policy, nvlist_t **config);
745 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
746 size_t buflen);
747 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
748 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
749 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
750 uint64_t flags);
751 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
752 extern int spa_destroy(const char *pool);
753 extern int spa_checkpoint(const char *pool);
754 extern int spa_checkpoint_discard(const char *pool);
755 extern int spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
756 boolean_t hardforce);
757 extern int spa_reset(const char *pool);
758 extern void spa_async_request(spa_t *spa, int flag);
759 extern void spa_async_unrequest(spa_t *spa, int flag);
760 extern void spa_async_suspend(spa_t *spa);
761 extern void spa_async_resume(spa_t *spa);
762 extern int spa_async_tasks(spa_t *spa);
763 extern spa_t *spa_inject_addref(char *pool);
764 extern void spa_inject_delref(spa_t *spa);
765 extern void spa_scan_stat_init(spa_t *spa);
766 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
767 extern int bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
768 extern int bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx);
769
770 #define SPA_ASYNC_CONFIG_UPDATE 0x01
771 #define SPA_ASYNC_REMOVE 0x02
772 #define SPA_ASYNC_PROBE 0x04
773 #define SPA_ASYNC_RESILVER_DONE 0x08
774 #define SPA_ASYNC_RESILVER 0x10
775 #define SPA_ASYNC_AUTOEXPAND 0x20
776 #define SPA_ASYNC_REMOVE_DONE 0x40
777 #define SPA_ASYNC_REMOVE_STOP 0x80
778 #define SPA_ASYNC_INITIALIZE_RESTART 0x100
779 #define SPA_ASYNC_TRIM_RESTART 0x200
780 #define SPA_ASYNC_AUTOTRIM_RESTART 0x400
781 #define SPA_ASYNC_L2CACHE_REBUILD 0x800
782 #define SPA_ASYNC_L2CACHE_TRIM 0x1000
783 #define SPA_ASYNC_REBUILD_DONE 0x2000
784 #define SPA_ASYNC_DETACH_SPARE 0x4000
785
786 /* device manipulation */
787 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
788 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
789 int replacing, int rebuild);
790 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
791 int replace_done);
792 extern int spa_vdev_alloc(spa_t *spa, uint64_t guid);
793 extern int spa_vdev_noalloc(spa_t *spa, uint64_t guid);
794 extern boolean_t spa_vdev_remove_active(spa_t *spa);
795 extern int spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
796 nvlist_t *vdev_errlist);
797 extern int spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
798 uint64_t rate, boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist);
799 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
800 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
801 extern int spa_vdev_split_mirror(spa_t *spa, const char *newname,
802 nvlist_t *config, nvlist_t *props, boolean_t exp);
803
804 /* spare state (which is global across all pools) */
805 extern void spa_spare_add(vdev_t *vd);
806 extern void spa_spare_remove(vdev_t *vd);
807 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
808 extern void spa_spare_activate(vdev_t *vd);
809
810 /* L2ARC state (which is global across all pools) */
811 extern void spa_l2cache_add(vdev_t *vd);
812 extern void spa_l2cache_remove(vdev_t *vd);
813 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
814 extern void spa_l2cache_activate(vdev_t *vd);
815 extern void spa_l2cache_drop(spa_t *spa);
816
817 /* scanning */
818 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
819 extern int spa_scan_stop(spa_t *spa);
820 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
821
822 /* spa syncing */
823 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
824 extern void spa_sync_allpools(void);
825
826 extern uint_t zfs_sync_pass_deferred_free;
827
828 /* spa sync taskqueues */
829 taskq_t *spa_sync_tq_create(spa_t *spa, const char *name);
830 void spa_sync_tq_destroy(spa_t *spa);
831 void spa_select_allocator(zio_t *zio);
832
833 /* spa namespace global mutex */
834 extern kmutex_t spa_namespace_lock;
835
836 /*
837 * SPA configuration functions in spa_config.c
838 */
839
840 #define SPA_CONFIG_UPDATE_POOL 0
841 #define SPA_CONFIG_UPDATE_VDEVS 1
842
843 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t, boolean_t);
844 extern void spa_config_load(void);
845 extern int spa_all_configs(uint64_t *generation, nvlist_t **pools);
846 extern void spa_config_set(spa_t *spa, nvlist_t *config);
847 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
848 int getstats);
849 extern void spa_config_update(spa_t *spa, int what);
850 extern int spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv,
851 vdev_t *parent, uint_t id, int atype);
852
853
854 /*
855 * Miscellaneous SPA routines in spa_misc.c
856 */
857
858 /* Namespace manipulation */
859 extern spa_t *spa_lookup(const char *name);
860 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
861 extern void spa_remove(spa_t *spa);
862 extern spa_t *spa_next(spa_t *prev);
863
864 /* Refcount functions */
865 extern void spa_open_ref(spa_t *spa, const void *tag);
866 extern void spa_close(spa_t *spa, const void *tag);
867 extern void spa_async_close(spa_t *spa, const void *tag);
868 extern boolean_t spa_refcount_zero(spa_t *spa);
869
870 #define SCL_NONE 0x00
871 #define SCL_CONFIG 0x01
872 #define SCL_STATE 0x02
873 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
874 #define SCL_ALLOC 0x08
875 #define SCL_ZIO 0x10
876 #define SCL_FREE 0x20
877 #define SCL_VDEV 0x40
878 #define SCL_LOCKS 7
879 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
880 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
881
882 /* Historical pool statistics */
883 typedef struct spa_history_kstat {
884 kmutex_t lock;
885 uint64_t count;
886 uint64_t size;
887 kstat_t *kstat;
888 void *priv;
889 list_t list;
890 } spa_history_kstat_t;
891
892 typedef struct spa_history_list {
893 uint64_t size;
894 procfs_list_t procfs_list;
895 } spa_history_list_t;
896
897 typedef struct spa_stats {
898 spa_history_list_t read_history;
899 spa_history_list_t txg_history;
900 spa_history_kstat_t tx_assign_histogram;
901 spa_history_list_t mmp_history;
902 spa_history_kstat_t state; /* pool state */
903 spa_history_kstat_t guid; /* pool guid */
904 spa_history_kstat_t iostats;
905 } spa_stats_t;
906
907 typedef enum txg_state {
908 TXG_STATE_BIRTH = 0,
909 TXG_STATE_OPEN = 1,
910 TXG_STATE_QUIESCED = 2,
911 TXG_STATE_WAIT_FOR_SYNC = 3,
912 TXG_STATE_SYNCED = 4,
913 TXG_STATE_COMMITTED = 5,
914 } txg_state_t;
915
916 typedef struct txg_stat {
917 vdev_stat_t vs1;
918 vdev_stat_t vs2;
919 uint64_t txg;
920 uint64_t ndirty;
921 } txg_stat_t;
922
923 /* Assorted pool IO kstats */
924 typedef struct spa_iostats {
925 kstat_named_t trim_extents_written;
926 kstat_named_t trim_bytes_written;
927 kstat_named_t trim_extents_skipped;
928 kstat_named_t trim_bytes_skipped;
929 kstat_named_t trim_extents_failed;
930 kstat_named_t trim_bytes_failed;
931 kstat_named_t autotrim_extents_written;
932 kstat_named_t autotrim_bytes_written;
933 kstat_named_t autotrim_extents_skipped;
934 kstat_named_t autotrim_bytes_skipped;
935 kstat_named_t autotrim_extents_failed;
936 kstat_named_t autotrim_bytes_failed;
937 kstat_named_t simple_trim_extents_written;
938 kstat_named_t simple_trim_bytes_written;
939 kstat_named_t simple_trim_extents_skipped;
940 kstat_named_t simple_trim_bytes_skipped;
941 kstat_named_t simple_trim_extents_failed;
942 kstat_named_t simple_trim_bytes_failed;
943 } spa_iostats_t;
944
945 extern void spa_stats_init(spa_t *spa);
946 extern void spa_stats_destroy(spa_t *spa);
947 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
948 uint32_t aflags);
949 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
950 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
951 txg_state_t completed_state, hrtime_t completed_time);
952 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
953 struct dsl_pool *);
954 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
955 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
956 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
957 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
958 hrtime_t duration);
959 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
960 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
961 int error);
962 extern void spa_iostats_trim_add(spa_t *spa, trim_type_t type,
963 uint64_t extents_written, uint64_t bytes_written,
964 uint64_t extents_skipped, uint64_t bytes_skipped,
965 uint64_t extents_failed, uint64_t bytes_failed);
966 extern void spa_import_progress_add(spa_t *spa);
967 extern void spa_import_progress_remove(uint64_t spa_guid);
968 extern int spa_import_progress_set_mmp_check(uint64_t pool_guid,
969 uint64_t mmp_sec_remaining);
970 extern int spa_import_progress_set_max_txg(uint64_t pool_guid,
971 uint64_t max_txg);
972 extern int spa_import_progress_set_state(uint64_t pool_guid,
973 spa_load_state_t spa_load_state);
974 extern void spa_import_progress_set_notes(spa_t *spa,
975 const char *fmt, ...) __printflike(2, 3);
976 extern void spa_import_progress_set_notes_nolog(spa_t *spa,
977 const char *fmt, ...) __printflike(2, 3);
978
979 /* Pool configuration locks */
980 extern int spa_config_tryenter(spa_t *spa, int locks, const void *tag,
981 krw_t rw);
982 extern void spa_config_enter(spa_t *spa, int locks, const void *tag, krw_t rw);
983 extern void spa_config_enter_mmp(spa_t *spa, int locks, const void *tag,
984 krw_t rw);
985 extern void spa_config_exit(spa_t *spa, int locks, const void *tag);
986 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
987
988 /* Pool vdev add/remove lock */
989 extern uint64_t spa_vdev_enter(spa_t *spa);
990 extern uint64_t spa_vdev_detach_enter(spa_t *spa, uint64_t guid);
991 extern uint64_t spa_vdev_config_enter(spa_t *spa);
992 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
993 int error, const char *tag);
994 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
995
996 /* Pool vdev state change lock */
997 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
998 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
999
1000 /* Log state */
1001 typedef enum spa_log_state {
1002 SPA_LOG_UNKNOWN = 0, /* unknown log state */
1003 SPA_LOG_MISSING, /* missing log(s) */
1004 SPA_LOG_CLEAR, /* clear the log(s) */
1005 SPA_LOG_GOOD, /* log(s) are good */
1006 } spa_log_state_t;
1007
1008 extern spa_log_state_t spa_get_log_state(spa_t *spa);
1009 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
1010 extern int spa_reset_logs(spa_t *spa);
1011
1012 /* Log claim callback */
1013 extern void spa_claim_notify(zio_t *zio);
1014 extern void spa_deadman(void *);
1015
1016 /* Accessor functions */
1017 extern boolean_t spa_shutting_down(spa_t *spa);
1018 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
1019 extern boolean_t spa_is_initializing(spa_t *spa);
1020 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
1021 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
1022 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
1023 extern void spa_altroot(spa_t *, char *, size_t);
1024 extern uint32_t spa_sync_pass(spa_t *spa);
1025 extern char *spa_name(spa_t *spa);
1026 extern uint64_t spa_guid(spa_t *spa);
1027 extern uint64_t spa_load_guid(spa_t *spa);
1028 extern uint64_t spa_last_synced_txg(spa_t *spa);
1029 extern uint64_t spa_first_txg(spa_t *spa);
1030 extern uint64_t spa_syncing_txg(spa_t *spa);
1031 extern uint64_t spa_final_dirty_txg(spa_t *spa);
1032 extern uint64_t spa_version(spa_t *spa);
1033 extern pool_state_t spa_state(spa_t *spa);
1034 extern spa_load_state_t spa_load_state(spa_t *spa);
1035 extern uint64_t spa_freeze_txg(spa_t *spa);
1036 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
1037 extern uint64_t spa_get_dspace(spa_t *spa);
1038 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
1039 extern uint64_t spa_get_slop_space(spa_t *spa);
1040 extern void spa_update_dspace(spa_t *spa);
1041 extern uint64_t spa_version(spa_t *spa);
1042 extern boolean_t spa_deflate(spa_t *spa);
1043 extern metaslab_class_t *spa_normal_class(spa_t *spa);
1044 extern metaslab_class_t *spa_log_class(spa_t *spa);
1045 extern metaslab_class_t *spa_embedded_log_class(spa_t *spa);
1046 extern metaslab_class_t *spa_special_class(spa_t *spa);
1047 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
1048 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
1049 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
1050
1051 extern void spa_evicting_os_register(spa_t *, objset_t *os);
1052 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
1053 extern void spa_evicting_os_wait(spa_t *spa);
1054 extern int spa_max_replication(spa_t *spa);
1055 extern int spa_prev_software_version(spa_t *spa);
1056 extern uint64_t spa_get_failmode(spa_t *spa);
1057 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
1058 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
1059 extern boolean_t spa_suspended(spa_t *spa);
1060 extern uint64_t spa_bootfs(spa_t *spa);
1061 extern uint64_t spa_delegation(spa_t *spa);
1062 extern objset_t *spa_meta_objset(spa_t *spa);
1063 extern space_map_t *spa_syncing_log_sm(spa_t *spa);
1064 extern uint64_t spa_deadman_synctime(spa_t *spa);
1065 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1066 extern uint64_t spa_dirty_data(spa_t *spa);
1067 extern spa_autotrim_t spa_get_autotrim(spa_t *spa);
1068 extern int spa_get_allocator(spa_t *spa);
1069 extern void spa_set_allocator(spa_t *spa, const char *allocator);
1070
1071 /* Miscellaneous support routines */
1072 extern void spa_load_failed(spa_t *spa, const char *fmt, ...)
1073 __attribute__((format(printf, 2, 3)));
1074 extern void spa_load_note(spa_t *spa, const char *fmt, ...)
1075 __attribute__((format(printf, 2, 3)));
1076 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1077 dmu_tx_t *tx);
1078 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1079 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1080 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1081 extern char *spa_strdup(const char *);
1082 extern void spa_strfree(char *);
1083 extern uint64_t spa_generate_guid(spa_t *spa);
1084 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1085 extern void spa_freeze(spa_t *spa);
1086 extern int spa_change_guid(spa_t *spa);
1087 extern void spa_upgrade(spa_t *spa, uint64_t version);
1088 extern void spa_evict_all(void);
1089 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1090 boolean_t l2cache);
1091 extern boolean_t spa_has_l2cache(spa_t *, uint64_t guid);
1092 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1093 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1094 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1095 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1096 extern boolean_t spa_has_slogs(spa_t *spa);
1097 extern boolean_t spa_is_root(spa_t *spa);
1098 extern boolean_t spa_writeable(spa_t *spa);
1099 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1100 extern int spa_maxblocksize(spa_t *spa);
1101 extern int spa_maxdnodesize(spa_t *spa);
1102 extern boolean_t spa_has_checkpoint(spa_t *spa);
1103 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1104 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1105 extern uint64_t spa_min_claim_txg(spa_t *spa);
1106 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1107 const blkptr_t *bp);
1108 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1109 void *arg);
1110 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1111 spa_remap_cb_t callback, void *arg);
1112 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1113 extern boolean_t spa_trust_config(spa_t *spa);
1114 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1115 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1116 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1117 extern uint64_t spa_total_metaslabs(spa_t *spa);
1118 extern boolean_t spa_multihost(spa_t *spa);
1119 extern uint32_t spa_get_hostid(spa_t *spa);
1120 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1121 extern boolean_t spa_livelist_delete_check(spa_t *spa);
1122
1123 extern spa_mode_t spa_mode(spa_t *spa);
1124 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1125
1126 extern char *spa_his_ievent_table[];
1127
1128 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1129 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1130 char *his_buf);
1131 extern int spa_history_log(spa_t *spa, const char *his_buf);
1132 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1133 extern void spa_history_log_version(spa_t *spa, const char *operation,
1134 dmu_tx_t *tx);
1135 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1136 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1137 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1138 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1139 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1140 dmu_tx_t *tx, const char *fmt, ...) __printflike(4, 5);
1141
1142 extern const char *spa_state_to_name(spa_t *spa);
1143
1144 /* error handling */
1145 struct zbookmark_phys;
1146 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb,
1147 const uint64_t *birth);
1148 extern void spa_remove_error(spa_t *spa, zbookmark_phys_t *zb,
1149 const uint64_t *birth);
1150 extern int zfs_ereport_post(const char *clazz, spa_t *spa, vdev_t *vd,
1151 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state);
1152 extern boolean_t zfs_ereport_is_valid(const char *clazz, spa_t *spa, vdev_t *vd,
1153 zio_t *zio);
1154 extern void zfs_ereport_taskq_fini(void);
1155 extern void zfs_ereport_clear(spa_t *spa, vdev_t *vd);
1156 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1157 const char *name, nvlist_t *aux);
1158 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1159 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1160 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1161 extern uint64_t spa_approx_errlog_size(spa_t *spa);
1162 extern int spa_get_errlog(spa_t *spa, void *uaddr, uint64_t *count);
1163 extern uint64_t spa_get_last_errlog_size(spa_t *spa);
1164 extern void spa_errlog_rotate(spa_t *spa);
1165 extern void spa_errlog_drain(spa_t *spa);
1166 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1167 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1168 extern void spa_delete_dataset_errlog(spa_t *spa, uint64_t ds, dmu_tx_t *tx);
1169 extern void spa_swap_errlog(spa_t *spa, uint64_t new_head_ds,
1170 uint64_t old_head_ds, dmu_tx_t *tx);
1171 extern void sync_error_list(spa_t *spa, avl_tree_t *t, uint64_t *obj,
1172 dmu_tx_t *tx);
1173 extern void spa_upgrade_errlog(spa_t *spa, dmu_tx_t *tx);
1174 extern int find_top_affected_fs(spa_t *spa, uint64_t head_ds,
1175 zbookmark_err_phys_t *zep, uint64_t *top_affected_fs);
1176 extern int find_birth_txg(struct dsl_dataset *ds, zbookmark_err_phys_t *zep,
1177 uint64_t *birth_txg);
1178 extern void zep_to_zb(uint64_t dataset, zbookmark_err_phys_t *zep,
1179 zbookmark_phys_t *zb);
1180 extern void name_to_errphys(char *buf, zbookmark_err_phys_t *zep);
1181
1182 /* vdev mirror */
1183 extern void vdev_mirror_stat_init(void);
1184 extern void vdev_mirror_stat_fini(void);
1185
1186 /* Initialization and termination */
1187 extern void spa_init(spa_mode_t mode);
1188 extern void spa_fini(void);
1189 extern void spa_boot_init(void);
1190
1191 /* properties */
1192 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1193 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1194 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1195 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1196
1197 /* asynchronous event notification */
1198 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1199 const char *name);
1200 extern void zfs_ereport_zvol_post(const char *subclass, const char *name,
1201 const char *device_name, const char *raw_name);
1202
1203 /* waiting for pool activities to complete */
1204 extern int spa_wait(const char *pool, zpool_wait_activity_t activity,
1205 boolean_t *waited);
1206 extern int spa_wait_tag(const char *name, zpool_wait_activity_t activity,
1207 uint64_t tag, boolean_t *waited);
1208 extern void spa_notify_waiters(spa_t *spa);
1209 extern void spa_wake_waiters(spa_t *spa);
1210
1211 extern void spa_import_os(spa_t *spa);
1212 extern void spa_export_os(spa_t *spa);
1213 extern void spa_activate_os(spa_t *spa);
1214 extern void spa_deactivate_os(spa_t *spa);
1215
1216 /* module param call functions */
1217 int param_set_deadman_ziotime(ZFS_MODULE_PARAM_ARGS);
1218 int param_set_deadman_synctime(ZFS_MODULE_PARAM_ARGS);
1219 int param_set_slop_shift(ZFS_MODULE_PARAM_ARGS);
1220 int param_set_deadman_failmode(ZFS_MODULE_PARAM_ARGS);
1221 int param_set_active_allocator(ZFS_MODULE_PARAM_ARGS);
1222
1223 #ifdef ZFS_DEBUG
1224 #define dprintf_bp(bp, fmt, ...) do { \
1225 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1226 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1227 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1228 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1229 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1230 } \
1231 } while (0)
1232 #else
1233 #define dprintf_bp(bp, fmt, ...)
1234 #endif
1235
1236 extern spa_mode_t spa_mode_global;
1237 extern int zfs_deadman_enabled;
1238 extern uint64_t zfs_deadman_synctime_ms;
1239 extern uint64_t zfs_deadman_ziotime_ms;
1240 extern uint64_t zfs_deadman_checktime_ms;
1241
1242 extern kmem_cache_t *zio_buf_cache[];
1243 extern kmem_cache_t *zio_data_buf_cache[];
1244
1245 #ifdef __cplusplus
1246 }
1247 #endif
1248
1249 #endif /* _SYS_SPA_H */