]> git.proxmox.com Git - mirror_zfs.git/blob - include/sys/spa.h
Fixes for procfs files backed by linked lists
[mirror_zfs.git] / include / sys / spa.h
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2014 Integros [integros.com]
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017 Datto Inc.
30 * Copyright (c) 2017, Intel Corporation.
31 */
32
33 #ifndef _SYS_SPA_H
34 #define _SYS_SPA_H
35
36 #include <sys/avl.h>
37 #include <sys/zfs_context.h>
38 #include <sys/kstat.h>
39 #include <sys/nvpair.h>
40 #include <sys/sysmacros.h>
41 #include <sys/types.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/spa_checksum.h>
44 #include <sys/dmu.h>
45
46 #ifdef __cplusplus
47 extern "C" {
48 #endif
49
50 /*
51 * Forward references that lots of things need.
52 */
53 typedef struct spa spa_t;
54 typedef struct vdev vdev_t;
55 typedef struct metaslab metaslab_t;
56 typedef struct metaslab_group metaslab_group_t;
57 typedef struct metaslab_class metaslab_class_t;
58 typedef struct zio zio_t;
59 typedef struct zilog zilog_t;
60 typedef struct spa_aux_vdev spa_aux_vdev_t;
61 typedef struct ddt ddt_t;
62 typedef struct ddt_entry ddt_entry_t;
63 typedef struct zbookmark_phys zbookmark_phys_t;
64
65 struct dsl_pool;
66 struct dsl_dataset;
67 struct dsl_crypto_params;
68
69 /*
70 * General-purpose 32-bit and 64-bit bitfield encodings.
71 */
72 #define BF32_DECODE(x, low, len) P2PHASE((x) >> (low), 1U << (len))
73 #define BF64_DECODE(x, low, len) P2PHASE((x) >> (low), 1ULL << (len))
74 #define BF32_ENCODE(x, low, len) (P2PHASE((x), 1U << (len)) << (low))
75 #define BF64_ENCODE(x, low, len) (P2PHASE((x), 1ULL << (len)) << (low))
76
77 #define BF32_GET(x, low, len) BF32_DECODE(x, low, len)
78 #define BF64_GET(x, low, len) BF64_DECODE(x, low, len)
79
80 #define BF32_SET(x, low, len, val) do { \
81 ASSERT3U(val, <, 1U << (len)); \
82 ASSERT3U(low + len, <=, 32); \
83 (x) ^= BF32_ENCODE((x >> low) ^ (val), low, len); \
84 _NOTE(CONSTCOND) } while (0)
85
86 #define BF64_SET(x, low, len, val) do { \
87 ASSERT3U(val, <, 1ULL << (len)); \
88 ASSERT3U(low + len, <=, 64); \
89 ((x) ^= BF64_ENCODE((x >> low) ^ (val), low, len)); \
90 _NOTE(CONSTCOND) } while (0)
91
92 #define BF32_GET_SB(x, low, len, shift, bias) \
93 ((BF32_GET(x, low, len) + (bias)) << (shift))
94 #define BF64_GET_SB(x, low, len, shift, bias) \
95 ((BF64_GET(x, low, len) + (bias)) << (shift))
96
97 #define BF32_SET_SB(x, low, len, shift, bias, val) do { \
98 ASSERT(IS_P2ALIGNED(val, 1U << shift)); \
99 ASSERT3S((val) >> (shift), >=, bias); \
100 BF32_SET(x, low, len, ((val) >> (shift)) - (bias)); \
101 _NOTE(CONSTCOND) } while (0)
102 #define BF64_SET_SB(x, low, len, shift, bias, val) do { \
103 ASSERT(IS_P2ALIGNED(val, 1ULL << shift)); \
104 ASSERT3S((val) >> (shift), >=, bias); \
105 BF64_SET(x, low, len, ((val) >> (shift)) - (bias)); \
106 _NOTE(CONSTCOND) } while (0)
107
108 /*
109 * We currently support block sizes from 512 bytes to 16MB.
110 * The benefits of larger blocks, and thus larger IO, need to be weighed
111 * against the cost of COWing a giant block to modify one byte, and the
112 * large latency of reading or writing a large block.
113 *
114 * Note that although blocks up to 16MB are supported, the recordsize
115 * property can not be set larger than zfs_max_recordsize (default 1MB).
116 * See the comment near zfs_max_recordsize in dsl_dataset.c for details.
117 *
118 * Note that although the LSIZE field of the blkptr_t can store sizes up
119 * to 32MB, the dnode's dn_datablkszsec can only store sizes up to
120 * 32MB - 512 bytes. Therefore, we limit SPA_MAXBLOCKSIZE to 16MB.
121 */
122 #define SPA_MINBLOCKSHIFT 9
123 #define SPA_OLD_MAXBLOCKSHIFT 17
124 #define SPA_MAXBLOCKSHIFT 24
125 #define SPA_MINBLOCKSIZE (1ULL << SPA_MINBLOCKSHIFT)
126 #define SPA_OLD_MAXBLOCKSIZE (1ULL << SPA_OLD_MAXBLOCKSHIFT)
127 #define SPA_MAXBLOCKSIZE (1ULL << SPA_MAXBLOCKSHIFT)
128
129 /*
130 * Alignment Shift (ashift) is an immutable, internal top-level vdev property
131 * which can only be set at vdev creation time. Physical writes are always done
132 * according to it, which makes 2^ashift the smallest possible IO on a vdev.
133 *
134 * We currently allow values ranging from 512 bytes (2^9 = 512) to 64 KiB
135 * (2^16 = 65,536).
136 */
137 #define ASHIFT_MIN 9
138 #define ASHIFT_MAX 16
139
140 /*
141 * Size of block to hold the configuration data (a packed nvlist)
142 */
143 #define SPA_CONFIG_BLOCKSIZE (1ULL << 14)
144
145 /*
146 * The DVA size encodings for LSIZE and PSIZE support blocks up to 32MB.
147 * The ASIZE encoding should be at least 64 times larger (6 more bits)
148 * to support up to 4-way RAID-Z mirror mode with worst-case gang block
149 * overhead, three DVAs per bp, plus one more bit in case we do anything
150 * else that expands the ASIZE.
151 */
152 #define SPA_LSIZEBITS 16 /* LSIZE up to 32M (2^16 * 512) */
153 #define SPA_PSIZEBITS 16 /* PSIZE up to 32M (2^16 * 512) */
154 #define SPA_ASIZEBITS 24 /* ASIZE up to 64 times larger */
155
156 #define SPA_COMPRESSBITS 7
157 #define SPA_VDEVBITS 24
158
159 /*
160 * All SPA data is represented by 128-bit data virtual addresses (DVAs).
161 * The members of the dva_t should be considered opaque outside the SPA.
162 */
163 typedef struct dva {
164 uint64_t dva_word[2];
165 } dva_t;
166
167
168 /*
169 * Some checksums/hashes need a 256-bit initialization salt. This salt is kept
170 * secret and is suitable for use in MAC algorithms as the key.
171 */
172 typedef struct zio_cksum_salt {
173 uint8_t zcs_bytes[32];
174 } zio_cksum_salt_t;
175
176 /*
177 * Each block is described by its DVAs, time of birth, checksum, etc.
178 * The word-by-word, bit-by-bit layout of the blkptr is as follows:
179 *
180 * 64 56 48 40 32 24 16 8 0
181 * +-------+-------+-------+-------+-------+-------+-------+-------+
182 * 0 | pad | vdev1 | GRID | ASIZE |
183 * +-------+-------+-------+-------+-------+-------+-------+-------+
184 * 1 |G| offset1 |
185 * +-------+-------+-------+-------+-------+-------+-------+-------+
186 * 2 | pad | vdev2 | GRID | ASIZE |
187 * +-------+-------+-------+-------+-------+-------+-------+-------+
188 * 3 |G| offset2 |
189 * +-------+-------+-------+-------+-------+-------+-------+-------+
190 * 4 | pad | vdev3 | GRID | ASIZE |
191 * +-------+-------+-------+-------+-------+-------+-------+-------+
192 * 5 |G| offset3 |
193 * +-------+-------+-------+-------+-------+-------+-------+-------+
194 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
195 * +-------+-------+-------+-------+-------+-------+-------+-------+
196 * 7 | padding |
197 * +-------+-------+-------+-------+-------+-------+-------+-------+
198 * 8 | padding |
199 * +-------+-------+-------+-------+-------+-------+-------+-------+
200 * 9 | physical birth txg |
201 * +-------+-------+-------+-------+-------+-------+-------+-------+
202 * a | logical birth txg |
203 * +-------+-------+-------+-------+-------+-------+-------+-------+
204 * b | fill count |
205 * +-------+-------+-------+-------+-------+-------+-------+-------+
206 * c | checksum[0] |
207 * +-------+-------+-------+-------+-------+-------+-------+-------+
208 * d | checksum[1] |
209 * +-------+-------+-------+-------+-------+-------+-------+-------+
210 * e | checksum[2] |
211 * +-------+-------+-------+-------+-------+-------+-------+-------+
212 * f | checksum[3] |
213 * +-------+-------+-------+-------+-------+-------+-------+-------+
214 *
215 * Legend:
216 *
217 * vdev virtual device ID
218 * offset offset into virtual device
219 * LSIZE logical size
220 * PSIZE physical size (after compression)
221 * ASIZE allocated size (including RAID-Z parity and gang block headers)
222 * GRID RAID-Z layout information (reserved for future use)
223 * cksum checksum function
224 * comp compression function
225 * G gang block indicator
226 * B byteorder (endianness)
227 * D dedup
228 * X encryption
229 * E blkptr_t contains embedded data (see below)
230 * lvl level of indirection
231 * type DMU object type
232 * phys birth txg when dva[0] was written; zero if same as logical birth txg
233 * note that typically all the dva's would be written in this
234 * txg, but they could be different if they were moved by
235 * device removal.
236 * log. birth transaction group in which the block was logically born
237 * fill count number of non-zero blocks under this bp
238 * checksum[4] 256-bit checksum of the data this bp describes
239 */
240
241 /*
242 * The blkptr_t's of encrypted blocks also need to store the encryption
243 * parameters so that the block can be decrypted. This layout is as follows:
244 *
245 * 64 56 48 40 32 24 16 8 0
246 * +-------+-------+-------+-------+-------+-------+-------+-------+
247 * 0 | vdev1 | GRID | ASIZE |
248 * +-------+-------+-------+-------+-------+-------+-------+-------+
249 * 1 |G| offset1 |
250 * +-------+-------+-------+-------+-------+-------+-------+-------+
251 * 2 | vdev2 | GRID | ASIZE |
252 * +-------+-------+-------+-------+-------+-------+-------+-------+
253 * 3 |G| offset2 |
254 * +-------+-------+-------+-------+-------+-------+-------+-------+
255 * 4 | salt |
256 * +-------+-------+-------+-------+-------+-------+-------+-------+
257 * 5 | IV1 |
258 * +-------+-------+-------+-------+-------+-------+-------+-------+
259 * 6 |BDX|lvl| type | cksum |E| comp| PSIZE | LSIZE |
260 * +-------+-------+-------+-------+-------+-------+-------+-------+
261 * 7 | padding |
262 * +-------+-------+-------+-------+-------+-------+-------+-------+
263 * 8 | padding |
264 * +-------+-------+-------+-------+-------+-------+-------+-------+
265 * 9 | physical birth txg |
266 * +-------+-------+-------+-------+-------+-------+-------+-------+
267 * a | logical birth txg |
268 * +-------+-------+-------+-------+-------+-------+-------+-------+
269 * b | IV2 | fill count |
270 * +-------+-------+-------+-------+-------+-------+-------+-------+
271 * c | checksum[0] |
272 * +-------+-------+-------+-------+-------+-------+-------+-------+
273 * d | checksum[1] |
274 * +-------+-------+-------+-------+-------+-------+-------+-------+
275 * e | MAC[0] |
276 * +-------+-------+-------+-------+-------+-------+-------+-------+
277 * f | MAC[1] |
278 * +-------+-------+-------+-------+-------+-------+-------+-------+
279 *
280 * Legend:
281 *
282 * salt Salt for generating encryption keys
283 * IV1 First 64 bits of encryption IV
284 * X Block requires encryption handling (set to 1)
285 * E blkptr_t contains embedded data (set to 0, see below)
286 * fill count number of non-zero blocks under this bp (truncated to 32 bits)
287 * IV2 Last 32 bits of encryption IV
288 * checksum[2] 128-bit checksum of the data this bp describes
289 * MAC[2] 128-bit message authentication code for this data
290 *
291 * The X bit being set indicates that this block is one of 3 types. If this is
292 * a level 0 block with an encrypted object type, the block is encrypted
293 * (see BP_IS_ENCRYPTED()). If this is a level 0 block with an unencrypted
294 * object type, this block is authenticated with an HMAC (see
295 * BP_IS_AUTHENTICATED()). Otherwise (if level > 0), this bp will use the MAC
296 * words to store a checksum-of-MACs from the level below (see
297 * BP_HAS_INDIRECT_MAC_CKSUM()). For convenience in the code, BP_IS_PROTECTED()
298 * refers to both encrypted and authenticated blocks and BP_USES_CRYPT()
299 * refers to any of these 3 kinds of blocks.
300 *
301 * The additional encryption parameters are the salt, IV, and MAC which are
302 * explained in greater detail in the block comment at the top of zio_crypt.c.
303 * The MAC occupies half of the checksum space since it serves a very similar
304 * purpose: to prevent data corruption on disk. The only functional difference
305 * is that the checksum is used to detect on-disk corruption whether or not the
306 * encryption key is loaded and the MAC provides additional protection against
307 * malicious disk tampering. We use the 3rd DVA to store the salt and first
308 * 64 bits of the IV. As a result encrypted blocks can only have 2 copies
309 * maximum instead of the normal 3. The last 32 bits of the IV are stored in
310 * the upper bits of what is usually the fill count. Note that only blocks at
311 * level 0 or -2 are ever encrypted, which allows us to guarantee that these
312 * 32 bits are not trampled over by other code (see zio_crypt.c for details).
313 * The salt and IV are not used for authenticated bps or bps with an indirect
314 * MAC checksum, so these blocks can utilize all 3 DVAs and the full 64 bits
315 * for the fill count.
316 */
317
318 /*
319 * "Embedded" blkptr_t's don't actually point to a block, instead they
320 * have a data payload embedded in the blkptr_t itself. See the comment
321 * in blkptr.c for more details.
322 *
323 * The blkptr_t is laid out as follows:
324 *
325 * 64 56 48 40 32 24 16 8 0
326 * +-------+-------+-------+-------+-------+-------+-------+-------+
327 * 0 | payload |
328 * 1 | payload |
329 * 2 | payload |
330 * 3 | payload |
331 * 4 | payload |
332 * 5 | payload |
333 * +-------+-------+-------+-------+-------+-------+-------+-------+
334 * 6 |BDX|lvl| type | etype |E| comp| PSIZE| LSIZE |
335 * +-------+-------+-------+-------+-------+-------+-------+-------+
336 * 7 | payload |
337 * 8 | payload |
338 * 9 | payload |
339 * +-------+-------+-------+-------+-------+-------+-------+-------+
340 * a | logical birth txg |
341 * +-------+-------+-------+-------+-------+-------+-------+-------+
342 * b | payload |
343 * c | payload |
344 * d | payload |
345 * e | payload |
346 * f | payload |
347 * +-------+-------+-------+-------+-------+-------+-------+-------+
348 *
349 * Legend:
350 *
351 * payload contains the embedded data
352 * B (byteorder) byteorder (endianness)
353 * D (dedup) padding (set to zero)
354 * X encryption (set to zero)
355 * E (embedded) set to one
356 * lvl indirection level
357 * type DMU object type
358 * etype how to interpret embedded data (BP_EMBEDDED_TYPE_*)
359 * comp compression function of payload
360 * PSIZE size of payload after compression, in bytes
361 * LSIZE logical size of payload, in bytes
362 * note that 25 bits is enough to store the largest
363 * "normal" BP's LSIZE (2^16 * 2^9) in bytes
364 * log. birth transaction group in which the block was logically born
365 *
366 * Note that LSIZE and PSIZE are stored in bytes, whereas for non-embedded
367 * bp's they are stored in units of SPA_MINBLOCKSHIFT.
368 * Generally, the generic BP_GET_*() macros can be used on embedded BP's.
369 * The B, D, X, lvl, type, and comp fields are stored the same as with normal
370 * BP's so the BP_SET_* macros can be used with them. etype, PSIZE, LSIZE must
371 * be set with the BPE_SET_* macros. BP_SET_EMBEDDED() should be called before
372 * other macros, as they assert that they are only used on BP's of the correct
373 * "embedded-ness". Encrypted blkptr_t's cannot be embedded because they use
374 * the payload space for encryption parameters (see the comment above on
375 * how encryption parameters are stored).
376 */
377
378 #define BPE_GET_ETYPE(bp) \
379 (ASSERT(BP_IS_EMBEDDED(bp)), \
380 BF64_GET((bp)->blk_prop, 40, 8))
381 #define BPE_SET_ETYPE(bp, t) do { \
382 ASSERT(BP_IS_EMBEDDED(bp)); \
383 BF64_SET((bp)->blk_prop, 40, 8, t); \
384 _NOTE(CONSTCOND) } while (0)
385
386 #define BPE_GET_LSIZE(bp) \
387 (ASSERT(BP_IS_EMBEDDED(bp)), \
388 BF64_GET_SB((bp)->blk_prop, 0, 25, 0, 1))
389 #define BPE_SET_LSIZE(bp, x) do { \
390 ASSERT(BP_IS_EMBEDDED(bp)); \
391 BF64_SET_SB((bp)->blk_prop, 0, 25, 0, 1, x); \
392 _NOTE(CONSTCOND) } while (0)
393
394 #define BPE_GET_PSIZE(bp) \
395 (ASSERT(BP_IS_EMBEDDED(bp)), \
396 BF64_GET_SB((bp)->blk_prop, 25, 7, 0, 1))
397 #define BPE_SET_PSIZE(bp, x) do { \
398 ASSERT(BP_IS_EMBEDDED(bp)); \
399 BF64_SET_SB((bp)->blk_prop, 25, 7, 0, 1, x); \
400 _NOTE(CONSTCOND) } while (0)
401
402 typedef enum bp_embedded_type {
403 BP_EMBEDDED_TYPE_DATA,
404 BP_EMBEDDED_TYPE_RESERVED, /* Reserved for an unintegrated feature. */
405 NUM_BP_EMBEDDED_TYPES = BP_EMBEDDED_TYPE_RESERVED
406 } bp_embedded_type_t;
407
408 #define BPE_NUM_WORDS 14
409 #define BPE_PAYLOAD_SIZE (BPE_NUM_WORDS * sizeof (uint64_t))
410 #define BPE_IS_PAYLOADWORD(bp, wp) \
411 ((wp) != &(bp)->blk_prop && (wp) != &(bp)->blk_birth)
412
413 #define SPA_BLKPTRSHIFT 7 /* blkptr_t is 128 bytes */
414 #define SPA_DVAS_PER_BP 3 /* Number of DVAs in a bp */
415 #define SPA_SYNC_MIN_VDEVS 3 /* min vdevs to update during sync */
416
417 /*
418 * A block is a hole when it has either 1) never been written to, or
419 * 2) is zero-filled. In both cases, ZFS can return all zeroes for all reads
420 * without physically allocating disk space. Holes are represented in the
421 * blkptr_t structure by zeroed blk_dva. Correct checking for holes is
422 * done through the BP_IS_HOLE macro. For holes, the logical size, level,
423 * DMU object type, and birth times are all also stored for holes that
424 * were written to at some point (i.e. were punched after having been filled).
425 */
426 typedef struct blkptr {
427 dva_t blk_dva[SPA_DVAS_PER_BP]; /* Data Virtual Addresses */
428 uint64_t blk_prop; /* size, compression, type, etc */
429 uint64_t blk_pad[2]; /* Extra space for the future */
430 uint64_t blk_phys_birth; /* txg when block was allocated */
431 uint64_t blk_birth; /* transaction group at birth */
432 uint64_t blk_fill; /* fill count */
433 zio_cksum_t blk_cksum; /* 256-bit checksum */
434 } blkptr_t;
435
436 /*
437 * Macros to get and set fields in a bp or DVA.
438 */
439 #define DVA_GET_ASIZE(dva) \
440 BF64_GET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, SPA_MINBLOCKSHIFT, 0)
441 #define DVA_SET_ASIZE(dva, x) \
442 BF64_SET_SB((dva)->dva_word[0], 0, SPA_ASIZEBITS, \
443 SPA_MINBLOCKSHIFT, 0, x)
444
445 #define DVA_GET_GRID(dva) BF64_GET((dva)->dva_word[0], 24, 8)
446 #define DVA_SET_GRID(dva, x) BF64_SET((dva)->dva_word[0], 24, 8, x)
447
448 #define DVA_GET_VDEV(dva) BF64_GET((dva)->dva_word[0], 32, SPA_VDEVBITS)
449 #define DVA_SET_VDEV(dva, x) \
450 BF64_SET((dva)->dva_word[0], 32, SPA_VDEVBITS, x)
451
452 #define DVA_GET_OFFSET(dva) \
453 BF64_GET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0)
454 #define DVA_SET_OFFSET(dva, x) \
455 BF64_SET_SB((dva)->dva_word[1], 0, 63, SPA_MINBLOCKSHIFT, 0, x)
456
457 #define DVA_GET_GANG(dva) BF64_GET((dva)->dva_word[1], 63, 1)
458 #define DVA_SET_GANG(dva, x) BF64_SET((dva)->dva_word[1], 63, 1, x)
459
460 #define BP_GET_LSIZE(bp) \
461 (BP_IS_EMBEDDED(bp) ? \
462 (BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA ? BPE_GET_LSIZE(bp) : 0): \
463 BF64_GET_SB((bp)->blk_prop, 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1))
464 #define BP_SET_LSIZE(bp, x) do { \
465 ASSERT(!BP_IS_EMBEDDED(bp)); \
466 BF64_SET_SB((bp)->blk_prop, \
467 0, SPA_LSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
468 _NOTE(CONSTCOND) } while (0)
469
470 #define BP_GET_PSIZE(bp) \
471 (BP_IS_EMBEDDED(bp) ? 0 : \
472 BF64_GET_SB((bp)->blk_prop, 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1))
473 #define BP_SET_PSIZE(bp, x) do { \
474 ASSERT(!BP_IS_EMBEDDED(bp)); \
475 BF64_SET_SB((bp)->blk_prop, \
476 16, SPA_PSIZEBITS, SPA_MINBLOCKSHIFT, 1, x); \
477 _NOTE(CONSTCOND) } while (0)
478
479 #define BP_GET_COMPRESS(bp) \
480 BF64_GET((bp)->blk_prop, 32, SPA_COMPRESSBITS)
481 #define BP_SET_COMPRESS(bp, x) \
482 BF64_SET((bp)->blk_prop, 32, SPA_COMPRESSBITS, x)
483
484 #define BP_IS_EMBEDDED(bp) BF64_GET((bp)->blk_prop, 39, 1)
485 #define BP_SET_EMBEDDED(bp, x) BF64_SET((bp)->blk_prop, 39, 1, x)
486
487 #define BP_GET_CHECKSUM(bp) \
488 (BP_IS_EMBEDDED(bp) ? ZIO_CHECKSUM_OFF : \
489 BF64_GET((bp)->blk_prop, 40, 8))
490 #define BP_SET_CHECKSUM(bp, x) do { \
491 ASSERT(!BP_IS_EMBEDDED(bp)); \
492 BF64_SET((bp)->blk_prop, 40, 8, x); \
493 _NOTE(CONSTCOND) } while (0)
494
495 #define BP_GET_TYPE(bp) BF64_GET((bp)->blk_prop, 48, 8)
496 #define BP_SET_TYPE(bp, x) BF64_SET((bp)->blk_prop, 48, 8, x)
497
498 #define BP_GET_LEVEL(bp) BF64_GET((bp)->blk_prop, 56, 5)
499 #define BP_SET_LEVEL(bp, x) BF64_SET((bp)->blk_prop, 56, 5, x)
500
501 /* encrypted, authenticated, and MAC cksum bps use the same bit */
502 #define BP_USES_CRYPT(bp) BF64_GET((bp)->blk_prop, 61, 1)
503 #define BP_SET_CRYPT(bp, x) BF64_SET((bp)->blk_prop, 61, 1, x)
504
505 #define BP_IS_ENCRYPTED(bp) \
506 (BP_USES_CRYPT(bp) && \
507 BP_GET_LEVEL(bp) <= 0 && \
508 DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
509
510 #define BP_IS_AUTHENTICATED(bp) \
511 (BP_USES_CRYPT(bp) && \
512 BP_GET_LEVEL(bp) <= 0 && \
513 !DMU_OT_IS_ENCRYPTED(BP_GET_TYPE(bp)))
514
515 #define BP_HAS_INDIRECT_MAC_CKSUM(bp) \
516 (BP_USES_CRYPT(bp) && BP_GET_LEVEL(bp) > 0)
517
518 #define BP_IS_PROTECTED(bp) \
519 (BP_IS_ENCRYPTED(bp) || BP_IS_AUTHENTICATED(bp))
520
521 #define BP_GET_DEDUP(bp) BF64_GET((bp)->blk_prop, 62, 1)
522 #define BP_SET_DEDUP(bp, x) BF64_SET((bp)->blk_prop, 62, 1, x)
523
524 #define BP_GET_BYTEORDER(bp) BF64_GET((bp)->blk_prop, 63, 1)
525 #define BP_SET_BYTEORDER(bp, x) BF64_SET((bp)->blk_prop, 63, 1, x)
526
527 #define BP_PHYSICAL_BIRTH(bp) \
528 (BP_IS_EMBEDDED(bp) ? 0 : \
529 (bp)->blk_phys_birth ? (bp)->blk_phys_birth : (bp)->blk_birth)
530
531 #define BP_SET_BIRTH(bp, logical, physical) \
532 { \
533 ASSERT(!BP_IS_EMBEDDED(bp)); \
534 (bp)->blk_birth = (logical); \
535 (bp)->blk_phys_birth = ((logical) == (physical) ? 0 : (physical)); \
536 }
537
538 #define BP_GET_FILL(bp) \
539 ((BP_IS_ENCRYPTED(bp)) ? BF64_GET((bp)->blk_fill, 0, 32) : \
540 ((BP_IS_EMBEDDED(bp)) ? 1 : (bp)->blk_fill))
541
542 #define BP_SET_FILL(bp, fill) \
543 { \
544 if (BP_IS_ENCRYPTED(bp)) \
545 BF64_SET((bp)->blk_fill, 0, 32, fill); \
546 else \
547 (bp)->blk_fill = fill; \
548 }
549
550 #define BP_GET_IV2(bp) \
551 (ASSERT(BP_IS_ENCRYPTED(bp)), \
552 BF64_GET((bp)->blk_fill, 32, 32))
553 #define BP_SET_IV2(bp, iv2) \
554 { \
555 ASSERT(BP_IS_ENCRYPTED(bp)); \
556 BF64_SET((bp)->blk_fill, 32, 32, iv2); \
557 }
558
559 #define BP_IS_METADATA(bp) \
560 (BP_GET_LEVEL(bp) > 0 || DMU_OT_IS_METADATA(BP_GET_TYPE(bp)))
561
562 #define BP_GET_ASIZE(bp) \
563 (BP_IS_EMBEDDED(bp) ? 0 : \
564 DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
565 DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
566 (DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
567
568 #define BP_GET_UCSIZE(bp) \
569 (BP_IS_METADATA(bp) ? BP_GET_PSIZE(bp) : BP_GET_LSIZE(bp))
570
571 #define BP_GET_NDVAS(bp) \
572 (BP_IS_EMBEDDED(bp) ? 0 : \
573 !!DVA_GET_ASIZE(&(bp)->blk_dva[0]) + \
574 !!DVA_GET_ASIZE(&(bp)->blk_dva[1]) + \
575 (!!DVA_GET_ASIZE(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp)))
576
577 #define BP_COUNT_GANG(bp) \
578 (BP_IS_EMBEDDED(bp) ? 0 : \
579 (DVA_GET_GANG(&(bp)->blk_dva[0]) + \
580 DVA_GET_GANG(&(bp)->blk_dva[1]) + \
581 (DVA_GET_GANG(&(bp)->blk_dva[2]) * !BP_IS_ENCRYPTED(bp))))
582
583 #define DVA_EQUAL(dva1, dva2) \
584 ((dva1)->dva_word[1] == (dva2)->dva_word[1] && \
585 (dva1)->dva_word[0] == (dva2)->dva_word[0])
586
587 #define BP_EQUAL(bp1, bp2) \
588 (BP_PHYSICAL_BIRTH(bp1) == BP_PHYSICAL_BIRTH(bp2) && \
589 (bp1)->blk_birth == (bp2)->blk_birth && \
590 DVA_EQUAL(&(bp1)->blk_dva[0], &(bp2)->blk_dva[0]) && \
591 DVA_EQUAL(&(bp1)->blk_dva[1], &(bp2)->blk_dva[1]) && \
592 DVA_EQUAL(&(bp1)->blk_dva[2], &(bp2)->blk_dva[2]))
593
594
595 #define DVA_IS_VALID(dva) (DVA_GET_ASIZE(dva) != 0)
596
597 #define BP_IDENTITY(bp) (ASSERT(!BP_IS_EMBEDDED(bp)), &(bp)->blk_dva[0])
598 #define BP_IS_GANG(bp) \
599 (BP_IS_EMBEDDED(bp) ? B_FALSE : DVA_GET_GANG(BP_IDENTITY(bp)))
600 #define DVA_IS_EMPTY(dva) ((dva)->dva_word[0] == 0ULL && \
601 (dva)->dva_word[1] == 0ULL)
602 #define BP_IS_HOLE(bp) \
603 (!BP_IS_EMBEDDED(bp) && DVA_IS_EMPTY(BP_IDENTITY(bp)))
604
605 /* BP_IS_RAIDZ(bp) assumes no block compression */
606 #define BP_IS_RAIDZ(bp) (DVA_GET_ASIZE(&(bp)->blk_dva[0]) > \
607 BP_GET_PSIZE(bp))
608
609 #define BP_ZERO(bp) \
610 { \
611 (bp)->blk_dva[0].dva_word[0] = 0; \
612 (bp)->blk_dva[0].dva_word[1] = 0; \
613 (bp)->blk_dva[1].dva_word[0] = 0; \
614 (bp)->blk_dva[1].dva_word[1] = 0; \
615 (bp)->blk_dva[2].dva_word[0] = 0; \
616 (bp)->blk_dva[2].dva_word[1] = 0; \
617 (bp)->blk_prop = 0; \
618 (bp)->blk_pad[0] = 0; \
619 (bp)->blk_pad[1] = 0; \
620 (bp)->blk_phys_birth = 0; \
621 (bp)->blk_birth = 0; \
622 (bp)->blk_fill = 0; \
623 ZIO_SET_CHECKSUM(&(bp)->blk_cksum, 0, 0, 0, 0); \
624 }
625
626 #ifdef _BIG_ENDIAN
627 #define ZFS_HOST_BYTEORDER (0ULL)
628 #else
629 #define ZFS_HOST_BYTEORDER (1ULL)
630 #endif
631
632 #define BP_SHOULD_BYTESWAP(bp) (BP_GET_BYTEORDER(bp) != ZFS_HOST_BYTEORDER)
633
634 #define BP_SPRINTF_LEN 400
635
636 /*
637 * This macro allows code sharing between zfs, libzpool, and mdb.
638 * 'func' is either snprintf() or mdb_snprintf().
639 * 'ws' (whitespace) can be ' ' for single-line format, '\n' for multi-line.
640 */
641 #define SNPRINTF_BLKPTR(func, ws, buf, size, bp, type, checksum, compress) \
642 { \
643 static const char *copyname[] = \
644 { "zero", "single", "double", "triple" }; \
645 int len = 0; \
646 int copies = 0; \
647 const char *crypt_type; \
648 if (bp != NULL) { \
649 if (BP_IS_ENCRYPTED(bp)) { \
650 crypt_type = "encrypted"; \
651 /* LINTED E_SUSPICIOUS_COMPARISON */ \
652 } else if (BP_IS_AUTHENTICATED(bp)) { \
653 crypt_type = "authenticated"; \
654 } else if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) { \
655 crypt_type = "indirect-MAC"; \
656 } else { \
657 crypt_type = "unencrypted"; \
658 } \
659 } \
660 if (bp == NULL) { \
661 len += func(buf + len, size - len, "<NULL>"); \
662 } else if (BP_IS_HOLE(bp)) { \
663 len += func(buf + len, size - len, \
664 "HOLE [L%llu %s] " \
665 "size=%llxL birth=%lluL", \
666 (u_longlong_t)BP_GET_LEVEL(bp), \
667 type, \
668 (u_longlong_t)BP_GET_LSIZE(bp), \
669 (u_longlong_t)bp->blk_birth); \
670 } else if (BP_IS_EMBEDDED(bp)) { \
671 len = func(buf + len, size - len, \
672 "EMBEDDED [L%llu %s] et=%u %s " \
673 "size=%llxL/%llxP birth=%lluL", \
674 (u_longlong_t)BP_GET_LEVEL(bp), \
675 type, \
676 (int)BPE_GET_ETYPE(bp), \
677 compress, \
678 (u_longlong_t)BPE_GET_LSIZE(bp), \
679 (u_longlong_t)BPE_GET_PSIZE(bp), \
680 (u_longlong_t)bp->blk_birth); \
681 } else { \
682 for (int d = 0; d < BP_GET_NDVAS(bp); d++) { \
683 const dva_t *dva = &bp->blk_dva[d]; \
684 if (DVA_IS_VALID(dva)) \
685 copies++; \
686 len += func(buf + len, size - len, \
687 "DVA[%d]=<%llu:%llx:%llx>%c", d, \
688 (u_longlong_t)DVA_GET_VDEV(dva), \
689 (u_longlong_t)DVA_GET_OFFSET(dva), \
690 (u_longlong_t)DVA_GET_ASIZE(dva), \
691 ws); \
692 } \
693 if (BP_IS_ENCRYPTED(bp)) { \
694 len += func(buf + len, size - len, \
695 "salt=%llx iv=%llx:%llx%c", \
696 (u_longlong_t)bp->blk_dva[2].dva_word[0], \
697 (u_longlong_t)bp->blk_dva[2].dva_word[1], \
698 (u_longlong_t)BP_GET_IV2(bp), \
699 ws); \
700 } \
701 if (BP_IS_GANG(bp) && \
702 DVA_GET_ASIZE(&bp->blk_dva[2]) <= \
703 DVA_GET_ASIZE(&bp->blk_dva[1]) / 2) \
704 copies--; \
705 len += func(buf + len, size - len, \
706 "[L%llu %s] %s %s %s %s %s %s %s%c" \
707 "size=%llxL/%llxP birth=%lluL/%lluP fill=%llu%c" \
708 "cksum=%llx:%llx:%llx:%llx", \
709 (u_longlong_t)BP_GET_LEVEL(bp), \
710 type, \
711 checksum, \
712 compress, \
713 crypt_type, \
714 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", \
715 BP_IS_GANG(bp) ? "gang" : "contiguous", \
716 BP_GET_DEDUP(bp) ? "dedup" : "unique", \
717 copyname[copies], \
718 ws, \
719 (u_longlong_t)BP_GET_LSIZE(bp), \
720 (u_longlong_t)BP_GET_PSIZE(bp), \
721 (u_longlong_t)bp->blk_birth, \
722 (u_longlong_t)BP_PHYSICAL_BIRTH(bp), \
723 (u_longlong_t)BP_GET_FILL(bp), \
724 ws, \
725 (u_longlong_t)bp->blk_cksum.zc_word[0], \
726 (u_longlong_t)bp->blk_cksum.zc_word[1], \
727 (u_longlong_t)bp->blk_cksum.zc_word[2], \
728 (u_longlong_t)bp->blk_cksum.zc_word[3]); \
729 } \
730 ASSERT(len < size); \
731 }
732
733 #define BP_GET_BUFC_TYPE(bp) \
734 (BP_IS_METADATA(bp) ? ARC_BUFC_METADATA : ARC_BUFC_DATA)
735
736 typedef enum spa_import_type {
737 SPA_IMPORT_EXISTING,
738 SPA_IMPORT_ASSEMBLE
739 } spa_import_type_t;
740
741 /* state manipulation functions */
742 extern int spa_open(const char *pool, spa_t **, void *tag);
743 extern int spa_open_rewind(const char *pool, spa_t **, void *tag,
744 nvlist_t *policy, nvlist_t **config);
745 extern int spa_get_stats(const char *pool, nvlist_t **config, char *altroot,
746 size_t buflen);
747 extern int spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
748 nvlist_t *zplprops, struct dsl_crypto_params *dcp);
749 extern int spa_import(char *pool, nvlist_t *config, nvlist_t *props,
750 uint64_t flags);
751 extern nvlist_t *spa_tryimport(nvlist_t *tryconfig);
752 extern int spa_destroy(char *pool);
753 extern int spa_checkpoint(const char *pool);
754 extern int spa_checkpoint_discard(const char *pool);
755 extern int spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
756 boolean_t hardforce);
757 extern int spa_reset(char *pool);
758 extern void spa_async_request(spa_t *spa, int flag);
759 extern void spa_async_unrequest(spa_t *spa, int flag);
760 extern void spa_async_suspend(spa_t *spa);
761 extern void spa_async_resume(spa_t *spa);
762 extern spa_t *spa_inject_addref(char *pool);
763 extern void spa_inject_delref(spa_t *spa);
764 extern void spa_scan_stat_init(spa_t *spa);
765 extern int spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps);
766
767 #define SPA_ASYNC_CONFIG_UPDATE 0x01
768 #define SPA_ASYNC_REMOVE 0x02
769 #define SPA_ASYNC_PROBE 0x04
770 #define SPA_ASYNC_RESILVER_DONE 0x08
771 #define SPA_ASYNC_RESILVER 0x10
772 #define SPA_ASYNC_AUTOEXPAND 0x20
773 #define SPA_ASYNC_REMOVE_DONE 0x40
774 #define SPA_ASYNC_REMOVE_STOP 0x80
775
776 /*
777 * Controls the behavior of spa_vdev_remove().
778 */
779 #define SPA_REMOVE_UNSPARE 0x01
780 #define SPA_REMOVE_DONE 0x02
781
782 /* device manipulation */
783 extern int spa_vdev_add(spa_t *spa, nvlist_t *nvroot);
784 extern int spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot,
785 int replacing);
786 extern int spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid,
787 int replace_done);
788 extern int spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare);
789 extern boolean_t spa_vdev_remove_active(spa_t *spa);
790 extern int spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath);
791 extern int spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru);
792 extern int spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
793 nvlist_t *props, boolean_t exp);
794
795 /* spare state (which is global across all pools) */
796 extern void spa_spare_add(vdev_t *vd);
797 extern void spa_spare_remove(vdev_t *vd);
798 extern boolean_t spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt);
799 extern void spa_spare_activate(vdev_t *vd);
800
801 /* L2ARC state (which is global across all pools) */
802 extern void spa_l2cache_add(vdev_t *vd);
803 extern void spa_l2cache_remove(vdev_t *vd);
804 extern boolean_t spa_l2cache_exists(uint64_t guid, uint64_t *pool);
805 extern void spa_l2cache_activate(vdev_t *vd);
806 extern void spa_l2cache_drop(spa_t *spa);
807
808 /* scanning */
809 extern int spa_scan(spa_t *spa, pool_scan_func_t func);
810 extern int spa_scan_stop(spa_t *spa);
811 extern int spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t flag);
812
813 /* spa syncing */
814 extern void spa_sync(spa_t *spa, uint64_t txg); /* only for DMU use */
815 extern void spa_sync_allpools(void);
816
817 extern int zfs_sync_pass_deferred_free;
818
819 /* spa namespace global mutex */
820 extern kmutex_t spa_namespace_lock;
821
822 /*
823 * SPA configuration functions in spa_config.c
824 */
825
826 #define SPA_CONFIG_UPDATE_POOL 0
827 #define SPA_CONFIG_UPDATE_VDEVS 1
828
829 extern void spa_write_cachefile(spa_t *, boolean_t, boolean_t);
830 extern void spa_config_load(void);
831 extern nvlist_t *spa_all_configs(uint64_t *);
832 extern void spa_config_set(spa_t *spa, nvlist_t *config);
833 extern nvlist_t *spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg,
834 int getstats);
835 extern void spa_config_update(spa_t *spa, int what);
836
837 /*
838 * Miscellaneous SPA routines in spa_misc.c
839 */
840
841 /* Namespace manipulation */
842 extern spa_t *spa_lookup(const char *name);
843 extern spa_t *spa_add(const char *name, nvlist_t *config, const char *altroot);
844 extern void spa_remove(spa_t *spa);
845 extern spa_t *spa_next(spa_t *prev);
846
847 /* Refcount functions */
848 extern void spa_open_ref(spa_t *spa, void *tag);
849 extern void spa_close(spa_t *spa, void *tag);
850 extern void spa_async_close(spa_t *spa, void *tag);
851 extern boolean_t spa_refcount_zero(spa_t *spa);
852
853 #define SCL_NONE 0x00
854 #define SCL_CONFIG 0x01
855 #define SCL_STATE 0x02
856 #define SCL_L2ARC 0x04 /* hack until L2ARC 2.0 */
857 #define SCL_ALLOC 0x08
858 #define SCL_ZIO 0x10
859 #define SCL_FREE 0x20
860 #define SCL_VDEV 0x40
861 #define SCL_LOCKS 7
862 #define SCL_ALL ((1 << SCL_LOCKS) - 1)
863 #define SCL_STATE_ALL (SCL_STATE | SCL_L2ARC | SCL_ZIO)
864
865 /* Historical pool statistics */
866 typedef struct spa_history_kstat {
867 kmutex_t lock;
868 uint64_t count;
869 uint64_t size;
870 kstat_t *kstat;
871 void *private;
872 list_t list;
873 } spa_history_kstat_t;
874
875 typedef struct spa_history_list {
876 uint64_t size;
877 procfs_list_t procfs_list;
878 } spa_history_list_t;
879
880 typedef struct spa_stats {
881 spa_history_list_t read_history;
882 spa_history_list_t txg_history;
883 spa_history_kstat_t tx_assign_histogram;
884 spa_history_kstat_t io_history;
885 spa_history_list_t mmp_history;
886 spa_history_kstat_t state; /* pool state */
887 } spa_stats_t;
888
889 typedef enum txg_state {
890 TXG_STATE_BIRTH = 0,
891 TXG_STATE_OPEN = 1,
892 TXG_STATE_QUIESCED = 2,
893 TXG_STATE_WAIT_FOR_SYNC = 3,
894 TXG_STATE_SYNCED = 4,
895 TXG_STATE_COMMITTED = 5,
896 } txg_state_t;
897
898 typedef struct txg_stat {
899 vdev_stat_t vs1;
900 vdev_stat_t vs2;
901 uint64_t txg;
902 uint64_t ndirty;
903 } txg_stat_t;
904
905 extern void spa_stats_init(spa_t *spa);
906 extern void spa_stats_destroy(spa_t *spa);
907 extern void spa_read_history_add(spa_t *spa, const zbookmark_phys_t *zb,
908 uint32_t aflags);
909 extern void spa_txg_history_add(spa_t *spa, uint64_t txg, hrtime_t birth_time);
910 extern int spa_txg_history_set(spa_t *spa, uint64_t txg,
911 txg_state_t completed_state, hrtime_t completed_time);
912 extern txg_stat_t *spa_txg_history_init_io(spa_t *, uint64_t,
913 struct dsl_pool *);
914 extern void spa_txg_history_fini_io(spa_t *, txg_stat_t *);
915 extern void spa_tx_assign_add_nsecs(spa_t *spa, uint64_t nsecs);
916 extern int spa_mmp_history_set_skip(spa_t *spa, uint64_t mmp_kstat_id);
917 extern int spa_mmp_history_set(spa_t *spa, uint64_t mmp_kstat_id, int io_error,
918 hrtime_t duration);
919 extern void spa_mmp_history_add(spa_t *spa, uint64_t txg, uint64_t timestamp,
920 uint64_t mmp_delay, vdev_t *vd, int label, uint64_t mmp_kstat_id,
921 int error);
922
923 /* Pool configuration locks */
924 extern int spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw);
925 extern void spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw);
926 extern void spa_config_exit(spa_t *spa, int locks, void *tag);
927 extern int spa_config_held(spa_t *spa, int locks, krw_t rw);
928
929 /* Pool vdev add/remove lock */
930 extern uint64_t spa_vdev_enter(spa_t *spa);
931 extern uint64_t spa_vdev_config_enter(spa_t *spa);
932 extern void spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg,
933 int error, char *tag);
934 extern int spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error);
935
936 /* Pool vdev state change lock */
937 extern void spa_vdev_state_enter(spa_t *spa, int oplock);
938 extern int spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error);
939
940 /* Log state */
941 typedef enum spa_log_state {
942 SPA_LOG_UNKNOWN = 0, /* unknown log state */
943 SPA_LOG_MISSING, /* missing log(s) */
944 SPA_LOG_CLEAR, /* clear the log(s) */
945 SPA_LOG_GOOD, /* log(s) are good */
946 } spa_log_state_t;
947
948 extern spa_log_state_t spa_get_log_state(spa_t *spa);
949 extern void spa_set_log_state(spa_t *spa, spa_log_state_t state);
950 extern int spa_reset_logs(spa_t *spa);
951
952 /* Log claim callback */
953 extern void spa_claim_notify(zio_t *zio);
954 extern void spa_deadman(void *);
955
956 /* Accessor functions */
957 extern boolean_t spa_shutting_down(spa_t *spa);
958 extern struct dsl_pool *spa_get_dsl(spa_t *spa);
959 extern boolean_t spa_is_initializing(spa_t *spa);
960 extern boolean_t spa_indirect_vdevs_loaded(spa_t *spa);
961 extern blkptr_t *spa_get_rootblkptr(spa_t *spa);
962 extern void spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp);
963 extern void spa_altroot(spa_t *, char *, size_t);
964 extern int spa_sync_pass(spa_t *spa);
965 extern char *spa_name(spa_t *spa);
966 extern uint64_t spa_guid(spa_t *spa);
967 extern uint64_t spa_load_guid(spa_t *spa);
968 extern uint64_t spa_last_synced_txg(spa_t *spa);
969 extern uint64_t spa_first_txg(spa_t *spa);
970 extern uint64_t spa_syncing_txg(spa_t *spa);
971 extern uint64_t spa_final_dirty_txg(spa_t *spa);
972 extern uint64_t spa_version(spa_t *spa);
973 extern pool_state_t spa_state(spa_t *spa);
974 extern spa_load_state_t spa_load_state(spa_t *spa);
975 extern uint64_t spa_freeze_txg(spa_t *spa);
976 extern uint64_t spa_get_worst_case_asize(spa_t *spa, uint64_t lsize);
977 extern uint64_t spa_get_dspace(spa_t *spa);
978 extern uint64_t spa_get_checkpoint_space(spa_t *spa);
979 extern uint64_t spa_get_slop_space(spa_t *spa);
980 extern void spa_update_dspace(spa_t *spa);
981 extern uint64_t spa_version(spa_t *spa);
982 extern boolean_t spa_deflate(spa_t *spa);
983 extern metaslab_class_t *spa_normal_class(spa_t *spa);
984 extern metaslab_class_t *spa_log_class(spa_t *spa);
985 extern metaslab_class_t *spa_special_class(spa_t *spa);
986 extern metaslab_class_t *spa_dedup_class(spa_t *spa);
987 extern metaslab_class_t *spa_preferred_class(spa_t *spa, uint64_t size,
988 dmu_object_type_t objtype, uint_t level, uint_t special_smallblk);
989
990 extern void spa_evicting_os_register(spa_t *, objset_t *os);
991 extern void spa_evicting_os_deregister(spa_t *, objset_t *os);
992 extern void spa_evicting_os_wait(spa_t *spa);
993 extern int spa_max_replication(spa_t *spa);
994 extern int spa_prev_software_version(spa_t *spa);
995 extern uint64_t spa_get_failmode(spa_t *spa);
996 extern uint64_t spa_get_deadman_failmode(spa_t *spa);
997 extern void spa_set_deadman_failmode(spa_t *spa, const char *failmode);
998 extern boolean_t spa_suspended(spa_t *spa);
999 extern uint64_t spa_bootfs(spa_t *spa);
1000 extern uint64_t spa_delegation(spa_t *spa);
1001 extern objset_t *spa_meta_objset(spa_t *spa);
1002 extern uint64_t spa_deadman_synctime(spa_t *spa);
1003 extern uint64_t spa_deadman_ziotime(spa_t *spa);
1004 extern uint64_t spa_dirty_data(spa_t *spa);
1005
1006 /* Miscellaneous support routines */
1007 extern void spa_load_failed(spa_t *spa, const char *fmt, ...);
1008 extern void spa_load_note(spa_t *spa, const char *fmt, ...);
1009 extern void spa_activate_mos_feature(spa_t *spa, const char *feature,
1010 dmu_tx_t *tx);
1011 extern void spa_deactivate_mos_feature(spa_t *spa, const char *feature);
1012 extern int spa_rename(const char *oldname, const char *newname);
1013 extern spa_t *spa_by_guid(uint64_t pool_guid, uint64_t device_guid);
1014 extern boolean_t spa_guid_exists(uint64_t pool_guid, uint64_t device_guid);
1015 extern char *spa_strdup(const char *);
1016 extern void spa_strfree(char *);
1017 extern uint64_t spa_get_random(uint64_t range);
1018 extern uint64_t spa_generate_guid(spa_t *spa);
1019 extern void snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp);
1020 extern void spa_freeze(spa_t *spa);
1021 extern int spa_change_guid(spa_t *spa);
1022 extern void spa_upgrade(spa_t *spa, uint64_t version);
1023 extern void spa_evict_all(void);
1024 extern vdev_t *spa_lookup_by_guid(spa_t *spa, uint64_t guid,
1025 boolean_t l2cache);
1026 extern boolean_t spa_has_spare(spa_t *, uint64_t guid);
1027 extern uint64_t dva_get_dsize_sync(spa_t *spa, const dva_t *dva);
1028 extern uint64_t bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp);
1029 extern uint64_t bp_get_dsize(spa_t *spa, const blkptr_t *bp);
1030 extern boolean_t spa_has_slogs(spa_t *spa);
1031 extern boolean_t spa_is_root(spa_t *spa);
1032 extern boolean_t spa_writeable(spa_t *spa);
1033 extern boolean_t spa_has_pending_synctask(spa_t *spa);
1034 extern int spa_maxblocksize(spa_t *spa);
1035 extern int spa_maxdnodesize(spa_t *spa);
1036 extern boolean_t spa_has_checkpoint(spa_t *spa);
1037 extern boolean_t spa_importing_readonly_checkpoint(spa_t *spa);
1038 extern boolean_t spa_suspend_async_destroy(spa_t *spa);
1039 extern uint64_t spa_min_claim_txg(spa_t *spa);
1040 extern void zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp);
1041 extern boolean_t zfs_dva_valid(spa_t *spa, const dva_t *dva,
1042 const blkptr_t *bp);
1043 typedef void (*spa_remap_cb_t)(uint64_t vdev, uint64_t offset, uint64_t size,
1044 void *arg);
1045 extern boolean_t spa_remap_blkptr(spa_t *spa, blkptr_t *bp,
1046 spa_remap_cb_t callback, void *arg);
1047 extern uint64_t spa_get_last_removal_txg(spa_t *spa);
1048 extern boolean_t spa_trust_config(spa_t *spa);
1049 extern uint64_t spa_missing_tvds_allowed(spa_t *spa);
1050 extern void spa_set_missing_tvds(spa_t *spa, uint64_t missing);
1051 extern boolean_t spa_top_vdevs_spacemap_addressable(spa_t *spa);
1052 extern boolean_t spa_multihost(spa_t *spa);
1053 extern unsigned long spa_get_hostid(void);
1054 extern void spa_activate_allocation_classes(spa_t *, dmu_tx_t *);
1055
1056 extern int spa_mode(spa_t *spa);
1057 extern uint64_t zfs_strtonum(const char *str, char **nptr);
1058
1059 extern char *spa_his_ievent_table[];
1060
1061 extern void spa_history_create_obj(spa_t *spa, dmu_tx_t *tx);
1062 extern int spa_history_get(spa_t *spa, uint64_t *offset, uint64_t *len_read,
1063 char *his_buf);
1064 extern int spa_history_log(spa_t *spa, const char *his_buf);
1065 extern int spa_history_log_nvl(spa_t *spa, nvlist_t *nvl);
1066 extern void spa_history_log_version(spa_t *spa, const char *operation,
1067 dmu_tx_t *tx);
1068 extern void spa_history_log_internal(spa_t *spa, const char *operation,
1069 dmu_tx_t *tx, const char *fmt, ...);
1070 extern void spa_history_log_internal_ds(struct dsl_dataset *ds, const char *op,
1071 dmu_tx_t *tx, const char *fmt, ...);
1072 extern void spa_history_log_internal_dd(dsl_dir_t *dd, const char *operation,
1073 dmu_tx_t *tx, const char *fmt, ...);
1074
1075 extern const char *spa_state_to_name(spa_t *spa);
1076
1077 /* error handling */
1078 struct zbookmark_phys;
1079 extern void spa_log_error(spa_t *spa, const zbookmark_phys_t *zb);
1080 extern void zfs_ereport_post(const char *class, spa_t *spa, vdev_t *vd,
1081 const zbookmark_phys_t *zb, zio_t *zio, uint64_t stateoroffset,
1082 uint64_t length);
1083 extern nvlist_t *zfs_event_create(spa_t *spa, vdev_t *vd, const char *type,
1084 const char *name, nvlist_t *aux);
1085 extern void zfs_post_remove(spa_t *spa, vdev_t *vd);
1086 extern void zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate);
1087 extern void zfs_post_autoreplace(spa_t *spa, vdev_t *vd);
1088 extern uint64_t spa_get_errlog_size(spa_t *spa);
1089 extern int spa_get_errlog(spa_t *spa, void *uaddr, size_t *count);
1090 extern void spa_errlog_rotate(spa_t *spa);
1091 extern void spa_errlog_drain(spa_t *spa);
1092 extern void spa_errlog_sync(spa_t *spa, uint64_t txg);
1093 extern void spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub);
1094
1095 /* vdev cache */
1096 extern void vdev_cache_stat_init(void);
1097 extern void vdev_cache_stat_fini(void);
1098
1099 /* vdev mirror */
1100 extern void vdev_mirror_stat_init(void);
1101 extern void vdev_mirror_stat_fini(void);
1102
1103 /* Initialization and termination */
1104 extern void spa_init(int flags);
1105 extern void spa_fini(void);
1106 extern void spa_boot_init(void);
1107
1108 /* properties */
1109 extern int spa_prop_set(spa_t *spa, nvlist_t *nvp);
1110 extern int spa_prop_get(spa_t *spa, nvlist_t **nvp);
1111 extern void spa_prop_clear_bootfs(spa_t *spa, uint64_t obj, dmu_tx_t *tx);
1112 extern void spa_configfile_set(spa_t *, nvlist_t *, boolean_t);
1113
1114 /* asynchronous event notification */
1115 extern void spa_event_notify(spa_t *spa, vdev_t *vdev, nvlist_t *hist_nvl,
1116 const char *name);
1117
1118 #ifdef ZFS_DEBUG
1119 #define dprintf_bp(bp, fmt, ...) do { \
1120 if (zfs_flags & ZFS_DEBUG_DPRINTF) { \
1121 char *__blkbuf = kmem_alloc(BP_SPRINTF_LEN, KM_SLEEP); \
1122 snprintf_blkptr(__blkbuf, BP_SPRINTF_LEN, (bp)); \
1123 dprintf(fmt " %s\n", __VA_ARGS__, __blkbuf); \
1124 kmem_free(__blkbuf, BP_SPRINTF_LEN); \
1125 } \
1126 _NOTE(CONSTCOND) } while (0)
1127 #else
1128 #define dprintf_bp(bp, fmt, ...)
1129 #endif
1130
1131 extern int spa_mode_global; /* mode, e.g. FREAD | FWRITE */
1132 extern int zfs_deadman_enabled;
1133 extern unsigned long zfs_deadman_synctime_ms;
1134 extern unsigned long zfs_deadman_ziotime_ms;
1135 extern unsigned long zfs_deadman_checktime_ms;
1136
1137 #ifdef __cplusplus
1138 }
1139 #endif
1140
1141 #endif /* _SYS_SPA_H */