]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
Update core ZFS code from build 121 to build 141.
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */
25
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/zmod.h>
38 #include <sys/utsname.h>
39 #include <sys/systeminfo.h>
40
41 /*
42 * Emulation of kernel services in userland.
43 */
44
45 int aok;
46 uint64_t physmem;
47 vnode_t *rootdir = (vnode_t *)0xabcd1234;
48 char hw_serial[HW_HOSTID_LEN];
49
50 struct utsname utsname = {
51 "userland", "libzpool", "1", "1", "na"
52 };
53
54 /* this only exists to have its address taken */
55 struct proc p0;
56
57 /*
58 * =========================================================================
59 * threads
60 * =========================================================================
61 */
62 /*ARGSUSED*/
63 kthread_t *
64 zk_thread_create(void (*func)(), void *arg)
65 {
66 thread_t tid;
67
68 VERIFY(thr_create(0, 0, (void *(*)(void *))func, arg, THR_DETACHED,
69 &tid) == 0);
70
71 return ((void *)(uintptr_t)tid);
72 }
73
74 /*
75 * =========================================================================
76 * kstats
77 * =========================================================================
78 */
79 /*ARGSUSED*/
80 kstat_t *
81 kstat_create(char *module, int instance, char *name, char *class,
82 uchar_t type, ulong_t ndata, uchar_t ks_flag)
83 {
84 return (NULL);
85 }
86
87 /*ARGSUSED*/
88 void
89 kstat_install(kstat_t *ksp)
90 {}
91
92 /*ARGSUSED*/
93 void
94 kstat_delete(kstat_t *ksp)
95 {}
96
97 /*
98 * =========================================================================
99 * mutexes
100 * =========================================================================
101 */
102 void
103 zmutex_init(kmutex_t *mp)
104 {
105 mp->m_owner = NULL;
106 mp->initialized = B_TRUE;
107 (void) _mutex_init(&mp->m_lock, USYNC_THREAD, NULL);
108 }
109
110 void
111 zmutex_destroy(kmutex_t *mp)
112 {
113 ASSERT(mp->initialized == B_TRUE);
114 ASSERT(mp->m_owner == NULL);
115 (void) _mutex_destroy(&(mp)->m_lock);
116 mp->m_owner = (void *)-1UL;
117 mp->initialized = B_FALSE;
118 }
119
120 void
121 mutex_enter(kmutex_t *mp)
122 {
123 ASSERT(mp->initialized == B_TRUE);
124 ASSERT(mp->m_owner != (void *)-1UL);
125 ASSERT(mp->m_owner != curthread);
126 VERIFY(mutex_lock(&mp->m_lock) == 0);
127 ASSERT(mp->m_owner == NULL);
128 mp->m_owner = curthread;
129 }
130
131 int
132 mutex_tryenter(kmutex_t *mp)
133 {
134 ASSERT(mp->initialized == B_TRUE);
135 ASSERT(mp->m_owner != (void *)-1UL);
136 if (0 == mutex_trylock(&mp->m_lock)) {
137 ASSERT(mp->m_owner == NULL);
138 mp->m_owner = curthread;
139 return (1);
140 } else {
141 return (0);
142 }
143 }
144
145 void
146 mutex_exit(kmutex_t *mp)
147 {
148 ASSERT(mp->initialized == B_TRUE);
149 ASSERT(mutex_owner(mp) == curthread);
150 mp->m_owner = NULL;
151 VERIFY(mutex_unlock(&mp->m_lock) == 0);
152 }
153
154 void *
155 mutex_owner(kmutex_t *mp)
156 {
157 ASSERT(mp->initialized == B_TRUE);
158 return (mp->m_owner);
159 }
160
161 /*
162 * =========================================================================
163 * rwlocks
164 * =========================================================================
165 */
166 /*ARGSUSED*/
167 void
168 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
169 {
170 rwlock_init(&rwlp->rw_lock, USYNC_THREAD, NULL);
171 rwlp->rw_owner = NULL;
172 rwlp->initialized = B_TRUE;
173 }
174
175 void
176 rw_destroy(krwlock_t *rwlp)
177 {
178 rwlock_destroy(&rwlp->rw_lock);
179 rwlp->rw_owner = (void *)-1UL;
180 rwlp->initialized = B_FALSE;
181 }
182
183 void
184 rw_enter(krwlock_t *rwlp, krw_t rw)
185 {
186 ASSERT(!RW_LOCK_HELD(rwlp));
187 ASSERT(rwlp->initialized == B_TRUE);
188 ASSERT(rwlp->rw_owner != (void *)-1UL);
189 ASSERT(rwlp->rw_owner != curthread);
190
191 if (rw == RW_READER)
192 VERIFY(rw_rdlock(&rwlp->rw_lock) == 0);
193 else
194 VERIFY(rw_wrlock(&rwlp->rw_lock) == 0);
195
196 rwlp->rw_owner = curthread;
197 }
198
199 void
200 rw_exit(krwlock_t *rwlp)
201 {
202 ASSERT(rwlp->initialized == B_TRUE);
203 ASSERT(rwlp->rw_owner != (void *)-1UL);
204
205 rwlp->rw_owner = NULL;
206 VERIFY(rw_unlock(&rwlp->rw_lock) == 0);
207 }
208
209 int
210 rw_tryenter(krwlock_t *rwlp, krw_t rw)
211 {
212 int rv;
213
214 ASSERT(rwlp->initialized == B_TRUE);
215 ASSERT(rwlp->rw_owner != (void *)-1UL);
216
217 if (rw == RW_READER)
218 rv = rw_tryrdlock(&rwlp->rw_lock);
219 else
220 rv = rw_trywrlock(&rwlp->rw_lock);
221
222 if (rv == 0) {
223 rwlp->rw_owner = curthread;
224 return (1);
225 }
226
227 return (0);
228 }
229
230 /*ARGSUSED*/
231 int
232 rw_tryupgrade(krwlock_t *rwlp)
233 {
234 ASSERT(rwlp->initialized == B_TRUE);
235 ASSERT(rwlp->rw_owner != (void *)-1UL);
236
237 return (0);
238 }
239
240 /*
241 * =========================================================================
242 * condition variables
243 * =========================================================================
244 */
245 /*ARGSUSED*/
246 void
247 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
248 {
249 VERIFY(cond_init(cv, type, NULL) == 0);
250 }
251
252 void
253 cv_destroy(kcondvar_t *cv)
254 {
255 VERIFY(cond_destroy(cv) == 0);
256 }
257
258 void
259 cv_wait(kcondvar_t *cv, kmutex_t *mp)
260 {
261 ASSERT(mutex_owner(mp) == curthread);
262 mp->m_owner = NULL;
263 int ret = cond_wait(cv, &mp->m_lock);
264 VERIFY(ret == 0 || ret == EINTR);
265 mp->m_owner = curthread;
266 }
267
268 clock_t
269 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
270 {
271 int error;
272 timestruc_t ts;
273 clock_t delta;
274
275 top:
276 delta = abstime - ddi_get_lbolt();
277 if (delta <= 0)
278 return (-1);
279
280 ts.tv_sec = delta / hz;
281 ts.tv_nsec = (delta % hz) * (NANOSEC / hz);
282
283 ASSERT(mutex_owner(mp) == curthread);
284 mp->m_owner = NULL;
285 error = cond_reltimedwait(cv, &mp->m_lock, &ts);
286 mp->m_owner = curthread;
287
288 if (error == ETIME)
289 return (-1);
290
291 if (error == EINTR)
292 goto top;
293
294 ASSERT(error == 0);
295
296 return (1);
297 }
298
299 void
300 cv_signal(kcondvar_t *cv)
301 {
302 VERIFY(cond_signal(cv) == 0);
303 }
304
305 void
306 cv_broadcast(kcondvar_t *cv)
307 {
308 VERIFY(cond_broadcast(cv) == 0);
309 }
310
311 /*
312 * =========================================================================
313 * vnode operations
314 * =========================================================================
315 */
316 /*
317 * Note: for the xxxat() versions of these functions, we assume that the
318 * starting vp is always rootdir (which is true for spa_directory.c, the only
319 * ZFS consumer of these interfaces). We assert this is true, and then emulate
320 * them by adding '/' in front of the path.
321 */
322
323 /*ARGSUSED*/
324 int
325 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
326 {
327 int fd;
328 vnode_t *vp;
329 int old_umask;
330 char realpath[MAXPATHLEN];
331 struct stat64 st;
332
333 /*
334 * If we're accessing a real disk from userland, we need to use
335 * the character interface to avoid caching. This is particularly
336 * important if we're trying to look at a real in-kernel storage
337 * pool from userland, e.g. via zdb, because otherwise we won't
338 * see the changes occurring under the segmap cache.
339 * On the other hand, the stupid character device returns zero
340 * for its size. So -- gag -- we open the block device to get
341 * its size, and remember it for subsequent VOP_GETATTR().
342 */
343 if (strncmp(path, "/dev/", 5) == 0) {
344 char *dsk;
345 fd = open64(path, O_RDONLY);
346 if (fd == -1)
347 return (errno);
348 if (fstat64(fd, &st) == -1) {
349 close(fd);
350 return (errno);
351 }
352 close(fd);
353 (void) sprintf(realpath, "%s", path);
354 dsk = strstr(path, "/dsk/");
355 if (dsk != NULL)
356 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
357 dsk + 1);
358 } else {
359 (void) sprintf(realpath, "%s", path);
360 if (!(flags & FCREAT) && stat64(realpath, &st) == -1)
361 return (errno);
362 }
363
364 if (flags & FCREAT)
365 old_umask = umask(0);
366
367 /*
368 * The construct 'flags - FREAD' conveniently maps combinations of
369 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
370 */
371 fd = open64(realpath, flags - FREAD, mode);
372
373 if (flags & FCREAT)
374 (void) umask(old_umask);
375
376 if (fd == -1)
377 return (errno);
378
379 if (fstat64(fd, &st) == -1) {
380 close(fd);
381 return (errno);
382 }
383
384 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
385
386 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
387
388 vp->v_fd = fd;
389 vp->v_size = st.st_size;
390 vp->v_path = spa_strdup(path);
391
392 return (0);
393 }
394
395 /*ARGSUSED*/
396 int
397 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
398 int x3, vnode_t *startvp, int fd)
399 {
400 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
401 int ret;
402
403 ASSERT(startvp == rootdir);
404 (void) sprintf(realpath, "/%s", path);
405
406 /* fd ignored for now, need if want to simulate nbmand support */
407 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
408
409 umem_free(realpath, strlen(path) + 2);
410
411 return (ret);
412 }
413
414 /*ARGSUSED*/
415 int
416 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
417 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
418 {
419 ssize_t iolen, split;
420
421 if (uio == UIO_READ) {
422 iolen = pread64(vp->v_fd, addr, len, offset);
423 } else {
424 /*
425 * To simulate partial disk writes, we split writes into two
426 * system calls so that the process can be killed in between.
427 */
428 split = (len > 0 ? rand() % len : 0);
429 iolen = pwrite64(vp->v_fd, addr, split, offset);
430 iolen += pwrite64(vp->v_fd, (char *)addr + split,
431 len - split, offset + split);
432 }
433
434 if (iolen == -1)
435 return (errno);
436 if (residp)
437 *residp = len - iolen;
438 else if (iolen != len)
439 return (EIO);
440 return (0);
441 }
442
443 void
444 vn_close(vnode_t *vp)
445 {
446 close(vp->v_fd);
447 spa_strfree(vp->v_path);
448 umem_free(vp, sizeof (vnode_t));
449 }
450
451 /*
452 * At a minimum we need to update the size since vdev_reopen()
453 * will no longer call vn_openat().
454 */
455 int
456 fop_getattr(vnode_t *vp, vattr_t *vap)
457 {
458 struct stat64 st;
459
460 if (fstat64(vp->v_fd, &st) == -1) {
461 close(vp->v_fd);
462 return (errno);
463 }
464
465 vap->va_size = st.st_size;
466 return (0);
467 }
468
469 #ifdef ZFS_DEBUG
470
471 /*
472 * =========================================================================
473 * Figure out which debugging statements to print
474 * =========================================================================
475 */
476
477 static char *dprintf_string;
478 static int dprintf_print_all;
479
480 int
481 dprintf_find_string(const char *string)
482 {
483 char *tmp_str = dprintf_string;
484 int len = strlen(string);
485
486 /*
487 * Find out if this is a string we want to print.
488 * String format: file1.c,function_name1,file2.c,file3.c
489 */
490
491 while (tmp_str != NULL) {
492 if (strncmp(tmp_str, string, len) == 0 &&
493 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
494 return (1);
495 tmp_str = strchr(tmp_str, ',');
496 if (tmp_str != NULL)
497 tmp_str++; /* Get rid of , */
498 }
499 return (0);
500 }
501
502 void
503 dprintf_setup(int *argc, char **argv)
504 {
505 int i, j;
506
507 /*
508 * Debugging can be specified two ways: by setting the
509 * environment variable ZFS_DEBUG, or by including a
510 * "debug=..." argument on the command line. The command
511 * line setting overrides the environment variable.
512 */
513
514 for (i = 1; i < *argc; i++) {
515 int len = strlen("debug=");
516 /* First look for a command line argument */
517 if (strncmp("debug=", argv[i], len) == 0) {
518 dprintf_string = argv[i] + len;
519 /* Remove from args */
520 for (j = i; j < *argc; j++)
521 argv[j] = argv[j+1];
522 argv[j] = NULL;
523 (*argc)--;
524 }
525 }
526
527 if (dprintf_string == NULL) {
528 /* Look for ZFS_DEBUG environment variable */
529 dprintf_string = getenv("ZFS_DEBUG");
530 }
531
532 /*
533 * Are we just turning on all debugging?
534 */
535 if (dprintf_find_string("on"))
536 dprintf_print_all = 1;
537 }
538
539 /*
540 * =========================================================================
541 * debug printfs
542 * =========================================================================
543 */
544 void
545 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
546 {
547 const char *newfile;
548 va_list adx;
549
550 /*
551 * Get rid of annoying "../common/" prefix to filename.
552 */
553 newfile = strrchr(file, '/');
554 if (newfile != NULL) {
555 newfile = newfile + 1; /* Get rid of leading / */
556 } else {
557 newfile = file;
558 }
559
560 if (dprintf_print_all ||
561 dprintf_find_string(newfile) ||
562 dprintf_find_string(func)) {
563 /* Print out just the function name if requested */
564 flockfile(stdout);
565 if (dprintf_find_string("pid"))
566 (void) printf("%d ", getpid());
567 if (dprintf_find_string("tid"))
568 (void) printf("%u ", thr_self());
569 if (dprintf_find_string("cpu"))
570 (void) printf("%u ", getcpuid());
571 if (dprintf_find_string("time"))
572 (void) printf("%llu ", gethrtime());
573 if (dprintf_find_string("long"))
574 (void) printf("%s, line %d: ", newfile, line);
575 (void) printf("%s: ", func);
576 va_start(adx, fmt);
577 (void) vprintf(fmt, adx);
578 va_end(adx);
579 funlockfile(stdout);
580 }
581 }
582
583 #endif /* ZFS_DEBUG */
584
585 /*
586 * =========================================================================
587 * cmn_err() and panic()
588 * =========================================================================
589 */
590 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
591 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
592
593 void
594 vpanic(const char *fmt, va_list adx)
595 {
596 (void) fprintf(stderr, "error: ");
597 (void) vfprintf(stderr, fmt, adx);
598 (void) fprintf(stderr, "\n");
599
600 abort(); /* think of it as a "user-level crash dump" */
601 }
602
603 void
604 panic(const char *fmt, ...)
605 {
606 va_list adx;
607
608 va_start(adx, fmt);
609 vpanic(fmt, adx);
610 va_end(adx);
611 }
612
613 void
614 vcmn_err(int ce, const char *fmt, va_list adx)
615 {
616 if (ce == CE_PANIC)
617 vpanic(fmt, adx);
618 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
619 (void) fprintf(stderr, "%s", ce_prefix[ce]);
620 (void) vfprintf(stderr, fmt, adx);
621 (void) fprintf(stderr, "%s", ce_suffix[ce]);
622 }
623 }
624
625 /*PRINTFLIKE2*/
626 void
627 cmn_err(int ce, const char *fmt, ...)
628 {
629 va_list adx;
630
631 va_start(adx, fmt);
632 vcmn_err(ce, fmt, adx);
633 va_end(adx);
634 }
635
636 /*
637 * =========================================================================
638 * kobj interfaces
639 * =========================================================================
640 */
641 struct _buf *
642 kobj_open_file(char *name)
643 {
644 struct _buf *file;
645 vnode_t *vp;
646
647 /* set vp as the _fd field of the file */
648 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
649 -1) != 0)
650 return ((void *)-1UL);
651
652 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
653 file->_fd = (intptr_t)vp;
654 return (file);
655 }
656
657 int
658 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
659 {
660 ssize_t resid;
661
662 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
663 UIO_SYSSPACE, 0, 0, 0, &resid);
664
665 return (size - resid);
666 }
667
668 void
669 kobj_close_file(struct _buf *file)
670 {
671 vn_close((vnode_t *)file->_fd);
672 umem_free(file, sizeof (struct _buf));
673 }
674
675 int
676 kobj_get_filesize(struct _buf *file, uint64_t *size)
677 {
678 struct stat64 st;
679 vnode_t *vp = (vnode_t *)file->_fd;
680
681 if (fstat64(vp->v_fd, &st) == -1) {
682 vn_close(vp);
683 return (errno);
684 }
685 *size = st.st_size;
686 return (0);
687 }
688
689 /*
690 * =========================================================================
691 * misc routines
692 * =========================================================================
693 */
694
695 void
696 delay(clock_t ticks)
697 {
698 poll(0, 0, ticks * (1000 / hz));
699 }
700
701 /*
702 * Find highest one bit set.
703 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
704 * High order bit is 31 (or 63 in _LP64 kernel).
705 */
706 int
707 highbit(ulong_t i)
708 {
709 register int h = 1;
710
711 if (i == 0)
712 return (0);
713 #ifdef _LP64
714 if (i & 0xffffffff00000000ul) {
715 h += 32; i >>= 32;
716 }
717 #endif
718 if (i & 0xffff0000) {
719 h += 16; i >>= 16;
720 }
721 if (i & 0xff00) {
722 h += 8; i >>= 8;
723 }
724 if (i & 0xf0) {
725 h += 4; i >>= 4;
726 }
727 if (i & 0xc) {
728 h += 2; i >>= 2;
729 }
730 if (i & 0x2) {
731 h += 1;
732 }
733 return (h);
734 }
735
736 static int random_fd = -1, urandom_fd = -1;
737
738 static int
739 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
740 {
741 size_t resid = len;
742 ssize_t bytes;
743
744 ASSERT(fd != -1);
745
746 while (resid != 0) {
747 bytes = read(fd, ptr, resid);
748 ASSERT3S(bytes, >=, 0);
749 ptr += bytes;
750 resid -= bytes;
751 }
752
753 return (0);
754 }
755
756 int
757 random_get_bytes(uint8_t *ptr, size_t len)
758 {
759 return (random_get_bytes_common(ptr, len, random_fd));
760 }
761
762 int
763 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
764 {
765 return (random_get_bytes_common(ptr, len, urandom_fd));
766 }
767
768 int
769 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
770 {
771 char *end;
772
773 *result = strtoul(hw_serial, &end, base);
774 if (*result == 0)
775 return (errno);
776 return (0);
777 }
778
779 int
780 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
781 {
782 char *end;
783
784 *result = strtoull(str, &end, base);
785 if (*result == 0)
786 return (errno);
787 return (0);
788 }
789
790 /*
791 * =========================================================================
792 * kernel emulation setup & teardown
793 * =========================================================================
794 */
795 static int
796 umem_out_of_memory(void)
797 {
798 char errmsg[] = "out of memory -- generating core dump\n";
799
800 write(fileno(stderr), errmsg, sizeof (errmsg));
801 abort();
802 return (0);
803 }
804
805 void
806 kernel_init(int mode)
807 {
808 umem_nofail_callback(umem_out_of_memory);
809
810 physmem = sysconf(_SC_PHYS_PAGES);
811
812 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
813 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
814
815 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
816 (mode & FWRITE) ? gethostid() : 0);
817
818 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
819 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
820
821 system_taskq_init();
822
823 spa_init(mode);
824 }
825
826 void
827 kernel_fini(void)
828 {
829 spa_fini();
830
831 system_taskq_fini();
832
833 close(random_fd);
834 close(urandom_fd);
835
836 random_fd = -1;
837 urandom_fd = -1;
838 }
839
840 int
841 z_uncompress(void *dst, size_t *dstlen, const void *src, size_t srclen)
842 {
843 int ret;
844 uLongf len = *dstlen;
845
846 if ((ret = uncompress(dst, &len, src, srclen)) == Z_OK)
847 *dstlen = (size_t)len;
848
849 return (ret);
850 }
851
852 int
853 z_compress_level(void *dst, size_t *dstlen, const void *src, size_t srclen,
854 int level)
855 {
856 int ret;
857 uLongf len = *dstlen;
858
859 if ((ret = compress2(dst, &len, src, srclen, level)) == Z_OK)
860 *dstlen = (size_t)len;
861
862 return (ret);
863 }
864
865 uid_t
866 crgetuid(cred_t *cr)
867 {
868 return (0);
869 }
870
871 gid_t
872 crgetgid(cred_t *cr)
873 {
874 return (0);
875 }
876
877 int
878 crgetngroups(cred_t *cr)
879 {
880 return (0);
881 }
882
883 gid_t *
884 crgetgroups(cred_t *cr)
885 {
886 return (NULL);
887 }
888
889 int
890 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
891 {
892 return (0);
893 }
894
895 int
896 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
897 {
898 return (0);
899 }
900
901 int
902 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
903 {
904 return (0);
905 }
906
907 ksiddomain_t *
908 ksid_lookupdomain(const char *dom)
909 {
910 ksiddomain_t *kd;
911
912 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
913 kd->kd_name = spa_strdup(dom);
914 return (kd);
915 }
916
917 void
918 ksiddomain_rele(ksiddomain_t *ksid)
919 {
920 spa_strfree(ksid->kd_name);
921 umem_free(ksid, sizeof (ksiddomain_t));
922 }
923
924 /*
925 * Do not change the length of the returned string; it must be freed
926 * with strfree().
927 */
928 char *
929 kmem_asprintf(const char *fmt, ...)
930 {
931 int size;
932 va_list adx;
933 char *buf;
934
935 va_start(adx, fmt);
936 size = vsnprintf(NULL, 0, fmt, adx) + 1;
937 va_end(adx);
938
939 buf = kmem_alloc(size, KM_SLEEP);
940
941 va_start(adx, fmt);
942 size = vsnprintf(buf, size, fmt, adx);
943 va_end(adx);
944
945 return (buf);
946 }