]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
lib/libzpool/kernel.c: Assert no owners in rw_destroy()
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <sys/signal.h>
33 #include <sys/spa.h>
34 #include <sys/stat.h>
35 #include <sys/processor.h>
36 #include <sys/zfs_context.h>
37 #include <sys/rrwlock.h>
38 #include <sys/utsname.h>
39 #include <sys/time.h>
40 #include <sys/systeminfo.h>
41
42 /*
43 * Emulation of kernel services in userland.
44 */
45
46 int aok;
47 uint64_t physmem;
48 vnode_t *rootdir = (vnode_t *)0xabcd1234;
49 char hw_serial[HW_HOSTID_LEN];
50
51 struct utsname utsname = {
52 "userland", "libzpool", "1", "1", "na"
53 };
54
55 /* this only exists to have its address taken */
56 struct proc p0;
57
58 /*
59 * =========================================================================
60 * threads
61 * =========================================================================
62 */
63
64 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
65 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
66 pthread_key_t kthread_key;
67 int kthread_nr = 0;
68
69 static void
70 thread_init(void)
71 {
72 kthread_t *kt;
73
74 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
75
76 /* Create entry for primary kthread */
77 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
78 kt->t_tid = pthread_self();
79 kt->t_func = NULL;
80
81 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
82
83 /* Only the main thread should be running at the moment */
84 ASSERT3S(kthread_nr, ==, 0);
85 kthread_nr = 1;
86 }
87
88 static void
89 thread_fini(void)
90 {
91 kthread_t *kt = curthread;
92
93 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
94 ASSERT3P(kt->t_func, ==, NULL);
95
96 umem_free(kt, sizeof (kthread_t));
97
98 /* Wait for all threads to exit via thread_exit() */
99 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
100
101 kthread_nr--; /* Main thread is exiting */
102
103 while (kthread_nr > 0)
104 VERIFY3S(pthread_cond_wait(&kthread_cond, &kthread_lock), ==,
105 0);
106
107 ASSERT3S(kthread_nr, ==, 0);
108 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
109
110 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
111 }
112
113 kthread_t *
114 zk_thread_current(void)
115 {
116 kthread_t *kt = pthread_getspecific(kthread_key);
117
118 ASSERT3P(kt, !=, NULL);
119
120 return (kt);
121 }
122
123 void *
124 zk_thread_helper(void *arg)
125 {
126 kthread_t *kt = (kthread_t *) arg;
127
128 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
129
130 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
131 kthread_nr++;
132 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
133
134 kt->t_tid = pthread_self();
135 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
136
137 /* Unreachable, thread must exit with thread_exit() */
138 abort();
139
140 return (NULL);
141 }
142
143 kthread_t *
144 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
145 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
146 {
147 kthread_t *kt;
148 pthread_attr_t attr;
149 size_t stack;
150
151 ASSERT3S(state & ~TS_RUN, ==, 0);
152
153 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
154 kt->t_func = func;
155 kt->t_arg = arg;
156
157 /*
158 * The Solaris kernel stack size is 24k for x86/x86_64.
159 * The Linux kernel stack size is 8k for x86/x86_64.
160 *
161 * We reduce the default stack size in userspace, to ensure
162 * we observe stack overruns in user space as well as in
163 * kernel space. In practice we can't set the userspace stack
164 * size to 8k because differences in stack usage between kernel
165 * space and userspace could lead to spurious stack overflows
166 * (especially when debugging is enabled). Nevertheless, we try
167 * to set it to the lowest value that works (currently 8k*4).
168 * PTHREAD_STACK_MIN is the minimum stack required for a NULL
169 * procedure in user space and is added in to the stack
170 * requirements.
171 */
172
173 stack = PTHREAD_STACK_MIN + MAX(stksize, STACK_SIZE) * 4;
174
175 VERIFY3S(pthread_attr_init(&attr), ==, 0);
176 VERIFY3S(pthread_attr_setstacksize(&attr, stack), ==, 0);
177 VERIFY3S(pthread_attr_setguardsize(&attr, PAGESIZE), ==, 0);
178 VERIFY3S(pthread_attr_setdetachstate(&attr, detachstate), ==, 0);
179
180 VERIFY3S(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt),
181 ==, 0);
182
183 VERIFY3S(pthread_attr_destroy(&attr), ==, 0);
184
185 return (kt);
186 }
187
188 void
189 zk_thread_exit(void)
190 {
191 kthread_t *kt = curthread;
192
193 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
194
195 umem_free(kt, sizeof (kthread_t));
196
197 pthread_mutex_lock(&kthread_lock);
198 kthread_nr--;
199 pthread_mutex_unlock(&kthread_lock);
200
201 pthread_cond_broadcast(&kthread_cond);
202 pthread_exit((void *)TS_MAGIC);
203 }
204
205 void
206 zk_thread_join(kt_did_t tid)
207 {
208 void *ret;
209
210 pthread_join((pthread_t)tid, &ret);
211 VERIFY3P(ret, ==, (void *)TS_MAGIC);
212 }
213
214 /*
215 * =========================================================================
216 * kstats
217 * =========================================================================
218 */
219 /*ARGSUSED*/
220 kstat_t *
221 kstat_create(const char *module, int instance, const char *name,
222 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
223 {
224 return (NULL);
225 }
226
227 /*ARGSUSED*/
228 void
229 kstat_install(kstat_t *ksp)
230 {}
231
232 /*ARGSUSED*/
233 void
234 kstat_delete(kstat_t *ksp)
235 {}
236
237 /*ARGSUSED*/
238 void
239 kstat_waitq_enter(kstat_io_t *kiop)
240 {}
241
242 /*ARGSUSED*/
243 void
244 kstat_waitq_exit(kstat_io_t *kiop)
245 {}
246
247 /*ARGSUSED*/
248 void
249 kstat_runq_enter(kstat_io_t *kiop)
250 {}
251
252 /*ARGSUSED*/
253 void
254 kstat_runq_exit(kstat_io_t *kiop)
255 {}
256
257 /*ARGSUSED*/
258 void
259 kstat_waitq_to_runq(kstat_io_t *kiop)
260 {}
261
262 /*ARGSUSED*/
263 void
264 kstat_runq_back_to_waitq(kstat_io_t *kiop)
265 {}
266
267 void
268 kstat_set_raw_ops(kstat_t *ksp,
269 int (*headers)(char *buf, size_t size),
270 int (*data)(char *buf, size_t size, void *data),
271 void *(*addr)(kstat_t *ksp, loff_t index))
272 {}
273
274 /*
275 * =========================================================================
276 * mutexes
277 * =========================================================================
278 */
279
280 void
281 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
282 {
283 ASSERT3S(type, ==, MUTEX_DEFAULT);
284 ASSERT3P(cookie, ==, NULL);
285 mp->m_owner = MTX_INIT;
286 mp->m_magic = MTX_MAGIC;
287 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
288 }
289
290 void
291 mutex_destroy(kmutex_t *mp)
292 {
293 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
294 ASSERT3P(mp->m_owner, ==, MTX_INIT);
295 VERIFY3S(pthread_mutex_destroy(&(mp)->m_lock), ==, 0);
296 mp->m_owner = MTX_DEST;
297 mp->m_magic = 0;
298 }
299
300 void
301 mutex_enter(kmutex_t *mp)
302 {
303 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
304 ASSERT3P(mp->m_owner, !=, MTX_DEST);
305 ASSERT3P(mp->m_owner, !=, curthread);
306 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
307 ASSERT3P(mp->m_owner, ==, MTX_INIT);
308 mp->m_owner = curthread;
309 }
310
311 int
312 mutex_tryenter(kmutex_t *mp)
313 {
314 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
315 ASSERT3P(mp->m_owner, !=, MTX_DEST);
316 if (0 == pthread_mutex_trylock(&mp->m_lock)) {
317 ASSERT3P(mp->m_owner, ==, MTX_INIT);
318 mp->m_owner = curthread;
319 return (1);
320 } else {
321 return (0);
322 }
323 }
324
325 void
326 mutex_exit(kmutex_t *mp)
327 {
328 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
329 ASSERT3P(mutex_owner(mp), ==, curthread);
330 mp->m_owner = MTX_INIT;
331 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
332 }
333
334 void *
335 mutex_owner(kmutex_t *mp)
336 {
337 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
338 return (mp->m_owner);
339 }
340
341 int
342 mutex_held(kmutex_t *mp)
343 {
344 return (mp->m_owner == curthread);
345 }
346
347 /*
348 * =========================================================================
349 * rwlocks
350 * =========================================================================
351 */
352
353 void
354 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
355 {
356 ASSERT3S(type, ==, RW_DEFAULT);
357 ASSERT3P(arg, ==, NULL);
358 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
359 rwlp->rw_owner = RW_INIT;
360 rwlp->rw_wr_owner = RW_INIT;
361 rwlp->rw_readers = 0;
362 rwlp->rw_magic = RW_MAGIC;
363 }
364
365 void
366 rw_destroy(krwlock_t *rwlp)
367 {
368 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
369 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
370 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
371 rwlp->rw_magic = 0;
372 }
373
374 void
375 rw_enter(krwlock_t *rwlp, krw_t rw)
376 {
377 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
378 ASSERT3P(rwlp->rw_owner, !=, curthread);
379 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
380
381 if (rw == RW_READER) {
382 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
383 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
384
385 atomic_inc_uint(&rwlp->rw_readers);
386 } else {
387 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
388 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
389 ASSERT3U(rwlp->rw_readers, ==, 0);
390
391 rwlp->rw_wr_owner = curthread;
392 }
393
394 rwlp->rw_owner = curthread;
395 }
396
397 void
398 rw_exit(krwlock_t *rwlp)
399 {
400 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
401 ASSERT(RW_LOCK_HELD(rwlp));
402
403 if (RW_READ_HELD(rwlp))
404 atomic_dec_uint(&rwlp->rw_readers);
405 else
406 rwlp->rw_wr_owner = RW_INIT;
407
408 rwlp->rw_owner = RW_INIT;
409 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
410 }
411
412 int
413 rw_tryenter(krwlock_t *rwlp, krw_t rw)
414 {
415 int rv;
416
417 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
418
419 if (rw == RW_READER)
420 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
421 else
422 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
423
424 if (rv == 0) {
425 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
426
427 if (rw == RW_READER)
428 atomic_inc_uint(&rwlp->rw_readers);
429 else {
430 ASSERT3U(rwlp->rw_readers, ==, 0);
431 rwlp->rw_wr_owner = curthread;
432 }
433
434 rwlp->rw_owner = curthread;
435 return (1);
436 }
437
438 VERIFY3S(rv, ==, EBUSY);
439
440 return (0);
441 }
442
443 int
444 rw_tryupgrade(krwlock_t *rwlp)
445 {
446 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
447
448 return (0);
449 }
450
451 /*
452 * =========================================================================
453 * condition variables
454 * =========================================================================
455 */
456
457 void
458 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
459 {
460 ASSERT3S(type, ==, CV_DEFAULT);
461 cv->cv_magic = CV_MAGIC;
462 VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0);
463 }
464
465 void
466 cv_destroy(kcondvar_t *cv)
467 {
468 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
469 VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0);
470 cv->cv_magic = 0;
471 }
472
473 void
474 cv_wait(kcondvar_t *cv, kmutex_t *mp)
475 {
476 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
477 ASSERT3P(mutex_owner(mp), ==, curthread);
478 mp->m_owner = MTX_INIT;
479 int ret = pthread_cond_wait(&cv->cv, &mp->m_lock);
480 if (ret != 0)
481 VERIFY3S(ret, ==, EINTR);
482 mp->m_owner = curthread;
483 }
484
485 clock_t
486 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
487 {
488 int error;
489 struct timeval tv;
490 timestruc_t ts;
491 clock_t delta;
492
493 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
494
495 top:
496 delta = abstime - ddi_get_lbolt();
497 if (delta <= 0)
498 return (-1);
499
500 VERIFY(gettimeofday(&tv, NULL) == 0);
501
502 ts.tv_sec = tv.tv_sec + delta / hz;
503 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
504 if (ts.tv_nsec >= NANOSEC) {
505 ts.tv_sec++;
506 ts.tv_nsec -= NANOSEC;
507 }
508
509 ASSERT3P(mutex_owner(mp), ==, curthread);
510 mp->m_owner = MTX_INIT;
511 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
512 mp->m_owner = curthread;
513
514 if (error == ETIMEDOUT)
515 return (-1);
516
517 if (error == EINTR)
518 goto top;
519
520 VERIFY3S(error, ==, 0);
521
522 return (1);
523 }
524
525 /*ARGSUSED*/
526 clock_t
527 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
528 int flag)
529 {
530 int error;
531 timestruc_t ts;
532 hrtime_t delta;
533
534 ASSERT(flag == 0);
535
536 top:
537 delta = tim - gethrtime();
538 if (delta <= 0)
539 return (-1);
540
541 ts.tv_sec = delta / NANOSEC;
542 ts.tv_nsec = delta % NANOSEC;
543
544 ASSERT(mutex_owner(mp) == curthread);
545 mp->m_owner = NULL;
546 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
547 mp->m_owner = curthread;
548
549 if (error == ETIME)
550 return (-1);
551
552 if (error == EINTR)
553 goto top;
554
555 ASSERT(error == 0);
556
557 return (1);
558 }
559
560 void
561 cv_signal(kcondvar_t *cv)
562 {
563 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
564 VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0);
565 }
566
567 void
568 cv_broadcast(kcondvar_t *cv)
569 {
570 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
571 VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0);
572 }
573
574 /*
575 * =========================================================================
576 * vnode operations
577 * =========================================================================
578 */
579 /*
580 * Note: for the xxxat() versions of these functions, we assume that the
581 * starting vp is always rootdir (which is true for spa_directory.c, the only
582 * ZFS consumer of these interfaces). We assert this is true, and then emulate
583 * them by adding '/' in front of the path.
584 */
585
586 /*ARGSUSED*/
587 int
588 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
589 {
590 int fd;
591 vnode_t *vp;
592 int old_umask = 0;
593 char *realpath;
594 struct stat64 st;
595 int err;
596
597 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
598
599 /*
600 * If we're accessing a real disk from userland, we need to use
601 * the character interface to avoid caching. This is particularly
602 * important if we're trying to look at a real in-kernel storage
603 * pool from userland, e.g. via zdb, because otherwise we won't
604 * see the changes occurring under the segmap cache.
605 * On the other hand, the stupid character device returns zero
606 * for its size. So -- gag -- we open the block device to get
607 * its size, and remember it for subsequent VOP_GETATTR().
608 */
609 #if defined(__sun__) || defined(__sun)
610 if (strncmp(path, "/dev/", 5) == 0) {
611 #else
612 if (0) {
613 #endif
614 char *dsk;
615 fd = open64(path, O_RDONLY);
616 if (fd == -1) {
617 err = errno;
618 free(realpath);
619 return (err);
620 }
621 if (fstat64(fd, &st) == -1) {
622 err = errno;
623 close(fd);
624 free(realpath);
625 return (err);
626 }
627 close(fd);
628 (void) sprintf(realpath, "%s", path);
629 dsk = strstr(path, "/dsk/");
630 if (dsk != NULL)
631 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
632 dsk + 1);
633 } else {
634 (void) sprintf(realpath, "%s", path);
635 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
636 err = errno;
637 free(realpath);
638 return (err);
639 }
640 }
641
642 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
643 #ifdef __linux__
644 flags |= O_DIRECT;
645 #endif
646 /* We shouldn't be writing to block devices in userspace */
647 VERIFY(!(flags & FWRITE));
648 }
649
650 if (flags & FCREAT)
651 old_umask = umask(0);
652
653 /*
654 * The construct 'flags - FREAD' conveniently maps combinations of
655 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
656 */
657 fd = open64(realpath, flags - FREAD, mode);
658 free(realpath);
659
660 if (flags & FCREAT)
661 (void) umask(old_umask);
662
663 if (fd == -1)
664 return (errno);
665
666 if (fstat64_blk(fd, &st) == -1) {
667 err = errno;
668 close(fd);
669 return (err);
670 }
671
672 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
673
674 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
675
676 vp->v_fd = fd;
677 vp->v_size = st.st_size;
678 vp->v_path = spa_strdup(path);
679
680 return (0);
681 }
682
683 /*ARGSUSED*/
684 int
685 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
686 int x3, vnode_t *startvp, int fd)
687 {
688 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
689 int ret;
690
691 ASSERT(startvp == rootdir);
692 (void) sprintf(realpath, "/%s", path);
693
694 /* fd ignored for now, need if want to simulate nbmand support */
695 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
696
697 umem_free(realpath, strlen(path) + 2);
698
699 return (ret);
700 }
701
702 /*ARGSUSED*/
703 int
704 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
705 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
706 {
707 ssize_t rc, done = 0, split;
708
709 if (uio == UIO_READ) {
710 rc = pread64(vp->v_fd, addr, len, offset);
711 } else {
712 /*
713 * To simulate partial disk writes, we split writes into two
714 * system calls so that the process can be killed in between.
715 */
716 int sectors = len >> SPA_MINBLOCKSHIFT;
717 split = (sectors > 0 ? rand() % sectors : 0) <<
718 SPA_MINBLOCKSHIFT;
719 rc = pwrite64(vp->v_fd, addr, split, offset);
720 if (rc != -1) {
721 done = rc;
722 rc = pwrite64(vp->v_fd, (char *)addr + split,
723 len - split, offset + split);
724 }
725 }
726
727 #ifdef __linux__
728 if (rc == -1 && errno == EINVAL) {
729 /*
730 * Under Linux, this most likely means an alignment issue
731 * (memory or disk) due to O_DIRECT, so we abort() in order to
732 * catch the offender.
733 */
734 abort();
735 }
736 #endif
737 if (rc == -1)
738 return (errno);
739
740 done += rc;
741
742 if (residp)
743 *residp = len - done;
744 else if (done != len)
745 return (EIO);
746 return (0);
747 }
748
749 void
750 vn_close(vnode_t *vp)
751 {
752 close(vp->v_fd);
753 spa_strfree(vp->v_path);
754 umem_free(vp, sizeof (vnode_t));
755 }
756
757 /*
758 * At a minimum we need to update the size since vdev_reopen()
759 * will no longer call vn_openat().
760 */
761 int
762 fop_getattr(vnode_t *vp, vattr_t *vap)
763 {
764 struct stat64 st;
765 int err;
766
767 if (fstat64_blk(vp->v_fd, &st) == -1) {
768 err = errno;
769 close(vp->v_fd);
770 return (err);
771 }
772
773 vap->va_size = st.st_size;
774 return (0);
775 }
776
777 /*
778 * =========================================================================
779 * Figure out which debugging statements to print
780 * =========================================================================
781 */
782
783 static char *dprintf_string;
784 static int dprintf_print_all;
785
786 int
787 dprintf_find_string(const char *string)
788 {
789 char *tmp_str = dprintf_string;
790 int len = strlen(string);
791
792 /*
793 * Find out if this is a string we want to print.
794 * String format: file1.c,function_name1,file2.c,file3.c
795 */
796
797 while (tmp_str != NULL) {
798 if (strncmp(tmp_str, string, len) == 0 &&
799 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
800 return (1);
801 tmp_str = strchr(tmp_str, ',');
802 if (tmp_str != NULL)
803 tmp_str++; /* Get rid of , */
804 }
805 return (0);
806 }
807
808 void
809 dprintf_setup(int *argc, char **argv)
810 {
811 int i, j;
812
813 /*
814 * Debugging can be specified two ways: by setting the
815 * environment variable ZFS_DEBUG, or by including a
816 * "debug=..." argument on the command line. The command
817 * line setting overrides the environment variable.
818 */
819
820 for (i = 1; i < *argc; i++) {
821 int len = strlen("debug=");
822 /* First look for a command line argument */
823 if (strncmp("debug=", argv[i], len) == 0) {
824 dprintf_string = argv[i] + len;
825 /* Remove from args */
826 for (j = i; j < *argc; j++)
827 argv[j] = argv[j+1];
828 argv[j] = NULL;
829 (*argc)--;
830 }
831 }
832
833 if (dprintf_string == NULL) {
834 /* Look for ZFS_DEBUG environment variable */
835 dprintf_string = getenv("ZFS_DEBUG");
836 }
837
838 /*
839 * Are we just turning on all debugging?
840 */
841 if (dprintf_find_string("on"))
842 dprintf_print_all = 1;
843 }
844
845 /*
846 * =========================================================================
847 * debug printfs
848 * =========================================================================
849 */
850 void
851 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
852 {
853 const char *newfile;
854 va_list adx;
855
856 /*
857 * Get rid of annoying "../common/" prefix to filename.
858 */
859 newfile = strrchr(file, '/');
860 if (newfile != NULL) {
861 newfile = newfile + 1; /* Get rid of leading / */
862 } else {
863 newfile = file;
864 }
865
866 if (dprintf_print_all ||
867 dprintf_find_string(newfile) ||
868 dprintf_find_string(func)) {
869 /* Print out just the function name if requested */
870 flockfile(stdout);
871 if (dprintf_find_string("pid"))
872 (void) printf("%d ", getpid());
873 if (dprintf_find_string("tid"))
874 (void) printf("%u ", (uint_t) pthread_self());
875 if (dprintf_find_string("cpu"))
876 (void) printf("%u ", getcpuid());
877 if (dprintf_find_string("time"))
878 (void) printf("%llu ", gethrtime());
879 if (dprintf_find_string("long"))
880 (void) printf("%s, line %d: ", newfile, line);
881 (void) printf("%s: ", func);
882 va_start(adx, fmt);
883 (void) vprintf(fmt, adx);
884 va_end(adx);
885 funlockfile(stdout);
886 }
887 }
888
889 /*
890 * =========================================================================
891 * cmn_err() and panic()
892 * =========================================================================
893 */
894 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
895 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
896
897 void
898 vpanic(const char *fmt, va_list adx)
899 {
900 (void) fprintf(stderr, "error: ");
901 (void) vfprintf(stderr, fmt, adx);
902 (void) fprintf(stderr, "\n");
903
904 abort(); /* think of it as a "user-level crash dump" */
905 }
906
907 void
908 panic(const char *fmt, ...)
909 {
910 va_list adx;
911
912 va_start(adx, fmt);
913 vpanic(fmt, adx);
914 va_end(adx);
915 }
916
917 void
918 vcmn_err(int ce, const char *fmt, va_list adx)
919 {
920 if (ce == CE_PANIC)
921 vpanic(fmt, adx);
922 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
923 (void) fprintf(stderr, "%s", ce_prefix[ce]);
924 (void) vfprintf(stderr, fmt, adx);
925 (void) fprintf(stderr, "%s", ce_suffix[ce]);
926 }
927 }
928
929 /*PRINTFLIKE2*/
930 void
931 cmn_err(int ce, const char *fmt, ...)
932 {
933 va_list adx;
934
935 va_start(adx, fmt);
936 vcmn_err(ce, fmt, adx);
937 va_end(adx);
938 }
939
940 /*
941 * =========================================================================
942 * kobj interfaces
943 * =========================================================================
944 */
945 struct _buf *
946 kobj_open_file(char *name)
947 {
948 struct _buf *file;
949 vnode_t *vp;
950
951 /* set vp as the _fd field of the file */
952 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
953 -1) != 0)
954 return ((void *)-1UL);
955
956 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
957 file->_fd = (intptr_t)vp;
958 return (file);
959 }
960
961 int
962 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
963 {
964 ssize_t resid;
965
966 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
967 UIO_SYSSPACE, 0, 0, 0, &resid);
968
969 return (size - resid);
970 }
971
972 void
973 kobj_close_file(struct _buf *file)
974 {
975 vn_close((vnode_t *)file->_fd);
976 umem_free(file, sizeof (struct _buf));
977 }
978
979 int
980 kobj_get_filesize(struct _buf *file, uint64_t *size)
981 {
982 struct stat64 st;
983 vnode_t *vp = (vnode_t *)file->_fd;
984
985 if (fstat64(vp->v_fd, &st) == -1) {
986 vn_close(vp);
987 return (errno);
988 }
989 *size = st.st_size;
990 return (0);
991 }
992
993 /*
994 * =========================================================================
995 * misc routines
996 * =========================================================================
997 */
998
999 void
1000 delay(clock_t ticks)
1001 {
1002 poll(0, 0, ticks * (1000 / hz));
1003 }
1004
1005 /*
1006 * Find highest one bit set.
1007 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1008 * High order bit is 31 (or 63 in _LP64 kernel).
1009 */
1010 int
1011 highbit64(uint64_t i)
1012 {
1013 register int h = 1;
1014
1015 if (i == 0)
1016 return (0);
1017 if (i & 0xffffffff00000000ULL) {
1018 h += 32; i >>= 32;
1019 }
1020 if (i & 0xffff0000) {
1021 h += 16; i >>= 16;
1022 }
1023 if (i & 0xff00) {
1024 h += 8; i >>= 8;
1025 }
1026 if (i & 0xf0) {
1027 h += 4; i >>= 4;
1028 }
1029 if (i & 0xc) {
1030 h += 2; i >>= 2;
1031 }
1032 if (i & 0x2) {
1033 h += 1;
1034 }
1035 return (h);
1036 }
1037
1038 static int random_fd = -1, urandom_fd = -1;
1039
1040 static int
1041 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1042 {
1043 size_t resid = len;
1044 ssize_t bytes;
1045
1046 ASSERT(fd != -1);
1047
1048 while (resid != 0) {
1049 bytes = read(fd, ptr, resid);
1050 ASSERT3S(bytes, >=, 0);
1051 ptr += bytes;
1052 resid -= bytes;
1053 }
1054
1055 return (0);
1056 }
1057
1058 int
1059 random_get_bytes(uint8_t *ptr, size_t len)
1060 {
1061 return (random_get_bytes_common(ptr, len, random_fd));
1062 }
1063
1064 int
1065 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1066 {
1067 return (random_get_bytes_common(ptr, len, urandom_fd));
1068 }
1069
1070 int
1071 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1072 {
1073 char *end;
1074
1075 *result = strtoul(hw_serial, &end, base);
1076 if (*result == 0)
1077 return (errno);
1078 return (0);
1079 }
1080
1081 int
1082 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1083 {
1084 char *end;
1085
1086 *result = strtoull(str, &end, base);
1087 if (*result == 0)
1088 return (errno);
1089 return (0);
1090 }
1091
1092 /*
1093 * =========================================================================
1094 * kernel emulation setup & teardown
1095 * =========================================================================
1096 */
1097 static int
1098 umem_out_of_memory(void)
1099 {
1100 char errmsg[] = "out of memory -- generating core dump\n";
1101
1102 (void) fprintf(stderr, "%s", errmsg);
1103 abort();
1104 return (0);
1105 }
1106
1107 void
1108 kernel_init(int mode)
1109 {
1110 extern uint_t rrw_tsd_key;
1111
1112 umem_nofail_callback(umem_out_of_memory);
1113
1114 physmem = sysconf(_SC_PHYS_PAGES);
1115
1116 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1117 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1118
1119 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1120 (mode & FWRITE) ? gethostid() : 0);
1121
1122 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1123 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1124
1125 thread_init();
1126 system_taskq_init();
1127
1128 spa_init(mode);
1129
1130 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1131 }
1132
1133 void
1134 kernel_fini(void)
1135 {
1136 spa_fini();
1137
1138 system_taskq_fini();
1139 thread_fini();
1140
1141 close(random_fd);
1142 close(urandom_fd);
1143
1144 random_fd = -1;
1145 urandom_fd = -1;
1146 }
1147
1148 uid_t
1149 crgetuid(cred_t *cr)
1150 {
1151 return (0);
1152 }
1153
1154 uid_t
1155 crgetruid(cred_t *cr)
1156 {
1157 return (0);
1158 }
1159
1160 gid_t
1161 crgetgid(cred_t *cr)
1162 {
1163 return (0);
1164 }
1165
1166 int
1167 crgetngroups(cred_t *cr)
1168 {
1169 return (0);
1170 }
1171
1172 gid_t *
1173 crgetgroups(cred_t *cr)
1174 {
1175 return (NULL);
1176 }
1177
1178 int
1179 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1180 {
1181 return (0);
1182 }
1183
1184 int
1185 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1186 {
1187 return (0);
1188 }
1189
1190 int
1191 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1192 {
1193 return (0);
1194 }
1195
1196 ksiddomain_t *
1197 ksid_lookupdomain(const char *dom)
1198 {
1199 ksiddomain_t *kd;
1200
1201 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1202 kd->kd_name = spa_strdup(dom);
1203 return (kd);
1204 }
1205
1206 void
1207 ksiddomain_rele(ksiddomain_t *ksid)
1208 {
1209 spa_strfree(ksid->kd_name);
1210 umem_free(ksid, sizeof (ksiddomain_t));
1211 }
1212
1213 char *
1214 kmem_vasprintf(const char *fmt, va_list adx)
1215 {
1216 char *buf = NULL;
1217 va_list adx_copy;
1218
1219 va_copy(adx_copy, adx);
1220 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1221 va_end(adx_copy);
1222
1223 return (buf);
1224 }
1225
1226 char *
1227 kmem_asprintf(const char *fmt, ...)
1228 {
1229 char *buf = NULL;
1230 va_list adx;
1231
1232 va_start(adx, fmt);
1233 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1234 va_end(adx);
1235
1236 return (buf);
1237 }
1238
1239 /* ARGSUSED */
1240 int
1241 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1242 {
1243 *minorp = 0;
1244 return (0);
1245 }
1246
1247 /* ARGSUSED */
1248 void
1249 zfs_onexit_fd_rele(int fd)
1250 {
1251 }
1252
1253 /* ARGSUSED */
1254 int
1255 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1256 uint64_t *action_handle)
1257 {
1258 return (0);
1259 }
1260
1261 /* ARGSUSED */
1262 int
1263 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1264 {
1265 return (0);
1266 }
1267
1268 /* ARGSUSED */
1269 int
1270 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1271 {
1272 return (0);
1273 }