]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
Illumos 4891 - want zdb option to dump all metadata
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 #include <assert.h>
26 #include <fcntl.h>
27 #include <poll.h>
28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <zlib.h>
32 #include <libgen.h>
33 #include <sys/signal.h>
34 #include <sys/spa.h>
35 #include <sys/stat.h>
36 #include <sys/processor.h>
37 #include <sys/zfs_context.h>
38 #include <sys/rrwlock.h>
39 #include <sys/utsname.h>
40 #include <sys/time.h>
41 #include <sys/systeminfo.h>
42
43 /*
44 * Emulation of kernel services in userland.
45 */
46
47 int aok;
48 uint64_t physmem;
49 vnode_t *rootdir = (vnode_t *)0xabcd1234;
50 char hw_serial[HW_HOSTID_LEN];
51 struct utsname hw_utsname;
52 vmem_t *zio_arena = NULL;
53
54 /* If set, all blocks read will be copied to the specified directory. */
55 char *vn_dumpdir = NULL;
56
57 /* this only exists to have its address taken */
58 struct proc p0;
59
60 /*
61 * =========================================================================
62 * threads
63 * =========================================================================
64 */
65
66 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
67 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
68 pthread_key_t kthread_key;
69 int kthread_nr = 0;
70
71 static void
72 thread_init(void)
73 {
74 kthread_t *kt;
75
76 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
77
78 /* Create entry for primary kthread */
79 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
80 kt->t_tid = pthread_self();
81 kt->t_func = NULL;
82
83 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
84
85 /* Only the main thread should be running at the moment */
86 ASSERT3S(kthread_nr, ==, 0);
87 kthread_nr = 1;
88 }
89
90 static void
91 thread_fini(void)
92 {
93 kthread_t *kt = curthread;
94
95 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
96 ASSERT3P(kt->t_func, ==, NULL);
97
98 umem_free(kt, sizeof (kthread_t));
99
100 /* Wait for all threads to exit via thread_exit() */
101 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
102
103 kthread_nr--; /* Main thread is exiting */
104
105 while (kthread_nr > 0)
106 VERIFY3S(pthread_cond_wait(&kthread_cond, &kthread_lock), ==,
107 0);
108
109 ASSERT3S(kthread_nr, ==, 0);
110 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
111
112 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
113 }
114
115 kthread_t *
116 zk_thread_current(void)
117 {
118 kthread_t *kt = pthread_getspecific(kthread_key);
119
120 ASSERT3P(kt, !=, NULL);
121
122 return (kt);
123 }
124
125 void *
126 zk_thread_helper(void *arg)
127 {
128 kthread_t *kt = (kthread_t *) arg;
129
130 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
131
132 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
133 kthread_nr++;
134 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
135 (void) setpriority(PRIO_PROCESS, 0, kt->t_pri);
136
137 kt->t_tid = pthread_self();
138 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
139
140 /* Unreachable, thread must exit with thread_exit() */
141 abort();
142
143 return (NULL);
144 }
145
146 kthread_t *
147 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
148 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
149 {
150 kthread_t *kt;
151 pthread_attr_t attr;
152 char *stkstr;
153
154 ASSERT0(state & ~TS_RUN);
155
156 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
157 kt->t_func = func;
158 kt->t_arg = arg;
159 kt->t_pri = pri;
160
161 VERIFY0(pthread_attr_init(&attr));
162 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
163
164 /*
165 * We allow the default stack size in user space to be specified by
166 * setting the ZFS_STACK_SIZE environment variable. This allows us
167 * the convenience of observing and debugging stack overruns in
168 * user space. Explicitly specified stack sizes will be honored.
169 * The usage of ZFS_STACK_SIZE is discussed further in the
170 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
171 */
172 if (stksize == 0) {
173 stkstr = getenv("ZFS_STACK_SIZE");
174
175 if (stkstr == NULL)
176 stksize = TS_STACK_MAX;
177 else
178 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
179 }
180
181 VERIFY3S(stksize, >, 0);
182 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
183 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
184 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
185
186 VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
187 VERIFY0(pthread_attr_destroy(&attr));
188
189 return (kt);
190 }
191
192 void
193 zk_thread_exit(void)
194 {
195 kthread_t *kt = curthread;
196
197 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
198
199 umem_free(kt, sizeof (kthread_t));
200
201 pthread_mutex_lock(&kthread_lock);
202 kthread_nr--;
203 pthread_mutex_unlock(&kthread_lock);
204
205 pthread_cond_broadcast(&kthread_cond);
206 pthread_exit((void *)TS_MAGIC);
207 }
208
209 void
210 zk_thread_join(kt_did_t tid)
211 {
212 void *ret;
213
214 pthread_join((pthread_t)tid, &ret);
215 VERIFY3P(ret, ==, (void *)TS_MAGIC);
216 }
217
218 /*
219 * =========================================================================
220 * kstats
221 * =========================================================================
222 */
223 /*ARGSUSED*/
224 kstat_t *
225 kstat_create(const char *module, int instance, const char *name,
226 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
227 {
228 return (NULL);
229 }
230
231 /*ARGSUSED*/
232 void
233 kstat_install(kstat_t *ksp)
234 {}
235
236 /*ARGSUSED*/
237 void
238 kstat_delete(kstat_t *ksp)
239 {}
240
241 /*ARGSUSED*/
242 void
243 kstat_waitq_enter(kstat_io_t *kiop)
244 {}
245
246 /*ARGSUSED*/
247 void
248 kstat_waitq_exit(kstat_io_t *kiop)
249 {}
250
251 /*ARGSUSED*/
252 void
253 kstat_runq_enter(kstat_io_t *kiop)
254 {}
255
256 /*ARGSUSED*/
257 void
258 kstat_runq_exit(kstat_io_t *kiop)
259 {}
260
261 /*ARGSUSED*/
262 void
263 kstat_waitq_to_runq(kstat_io_t *kiop)
264 {}
265
266 /*ARGSUSED*/
267 void
268 kstat_runq_back_to_waitq(kstat_io_t *kiop)
269 {}
270
271 void
272 kstat_set_raw_ops(kstat_t *ksp,
273 int (*headers)(char *buf, size_t size),
274 int (*data)(char *buf, size_t size, void *data),
275 void *(*addr)(kstat_t *ksp, loff_t index))
276 {}
277
278 /*
279 * =========================================================================
280 * mutexes
281 * =========================================================================
282 */
283
284 void
285 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
286 {
287 ASSERT3S(type, ==, MUTEX_DEFAULT);
288 ASSERT3P(cookie, ==, NULL);
289 mp->m_owner = MTX_INIT;
290 mp->m_magic = MTX_MAGIC;
291 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
292 }
293
294 void
295 mutex_destroy(kmutex_t *mp)
296 {
297 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
298 ASSERT3P(mp->m_owner, ==, MTX_INIT);
299 ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
300 mp->m_owner = MTX_DEST;
301 mp->m_magic = 0;
302 }
303
304 void
305 mutex_enter(kmutex_t *mp)
306 {
307 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
308 ASSERT3P(mp->m_owner, !=, MTX_DEST);
309 ASSERT3P(mp->m_owner, !=, curthread);
310 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
311 ASSERT3P(mp->m_owner, ==, MTX_INIT);
312 mp->m_owner = curthread;
313 }
314
315 int
316 mutex_tryenter(kmutex_t *mp)
317 {
318 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
319 ASSERT3P(mp->m_owner, !=, MTX_DEST);
320 if (0 == pthread_mutex_trylock(&mp->m_lock)) {
321 ASSERT3P(mp->m_owner, ==, MTX_INIT);
322 mp->m_owner = curthread;
323 return (1);
324 } else {
325 return (0);
326 }
327 }
328
329 void
330 mutex_exit(kmutex_t *mp)
331 {
332 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
333 ASSERT3P(mutex_owner(mp), ==, curthread);
334 mp->m_owner = MTX_INIT;
335 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
336 }
337
338 void *
339 mutex_owner(kmutex_t *mp)
340 {
341 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
342 return (mp->m_owner);
343 }
344
345 int
346 mutex_held(kmutex_t *mp)
347 {
348 return (mp->m_owner == curthread);
349 }
350
351 /*
352 * =========================================================================
353 * rwlocks
354 * =========================================================================
355 */
356
357 void
358 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
359 {
360 ASSERT3S(type, ==, RW_DEFAULT);
361 ASSERT3P(arg, ==, NULL);
362 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
363 rwlp->rw_owner = RW_INIT;
364 rwlp->rw_wr_owner = RW_INIT;
365 rwlp->rw_readers = 0;
366 rwlp->rw_magic = RW_MAGIC;
367 }
368
369 void
370 rw_destroy(krwlock_t *rwlp)
371 {
372 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
373 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
374 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
375 rwlp->rw_magic = 0;
376 }
377
378 void
379 rw_enter(krwlock_t *rwlp, krw_t rw)
380 {
381 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
382 ASSERT3P(rwlp->rw_owner, !=, curthread);
383 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
384
385 if (rw == RW_READER) {
386 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
387 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
388
389 atomic_inc_uint(&rwlp->rw_readers);
390 } else {
391 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
392 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
393 ASSERT3U(rwlp->rw_readers, ==, 0);
394
395 rwlp->rw_wr_owner = curthread;
396 }
397
398 rwlp->rw_owner = curthread;
399 }
400
401 void
402 rw_exit(krwlock_t *rwlp)
403 {
404 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
405 ASSERT(RW_LOCK_HELD(rwlp));
406
407 if (RW_READ_HELD(rwlp))
408 atomic_dec_uint(&rwlp->rw_readers);
409 else
410 rwlp->rw_wr_owner = RW_INIT;
411
412 rwlp->rw_owner = RW_INIT;
413 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
414 }
415
416 int
417 rw_tryenter(krwlock_t *rwlp, krw_t rw)
418 {
419 int rv;
420
421 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
422
423 if (rw == RW_READER)
424 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
425 else
426 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
427
428 if (rv == 0) {
429 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
430
431 if (rw == RW_READER)
432 atomic_inc_uint(&rwlp->rw_readers);
433 else {
434 ASSERT3U(rwlp->rw_readers, ==, 0);
435 rwlp->rw_wr_owner = curthread;
436 }
437
438 rwlp->rw_owner = curthread;
439 return (1);
440 }
441
442 VERIFY3S(rv, ==, EBUSY);
443
444 return (0);
445 }
446
447 int
448 rw_tryupgrade(krwlock_t *rwlp)
449 {
450 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
451
452 return (0);
453 }
454
455 /*
456 * =========================================================================
457 * condition variables
458 * =========================================================================
459 */
460
461 void
462 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
463 {
464 ASSERT3S(type, ==, CV_DEFAULT);
465 cv->cv_magic = CV_MAGIC;
466 VERIFY3S(pthread_cond_init(&cv->cv, NULL), ==, 0);
467 }
468
469 void
470 cv_destroy(kcondvar_t *cv)
471 {
472 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
473 VERIFY3S(pthread_cond_destroy(&cv->cv), ==, 0);
474 cv->cv_magic = 0;
475 }
476
477 void
478 cv_wait(kcondvar_t *cv, kmutex_t *mp)
479 {
480 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
481 ASSERT3P(mutex_owner(mp), ==, curthread);
482 mp->m_owner = MTX_INIT;
483 int ret = pthread_cond_wait(&cv->cv, &mp->m_lock);
484 if (ret != 0)
485 VERIFY3S(ret, ==, EINTR);
486 mp->m_owner = curthread;
487 }
488
489 clock_t
490 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
491 {
492 int error;
493 struct timeval tv;
494 timestruc_t ts;
495 clock_t delta;
496
497 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
498
499 top:
500 delta = abstime - ddi_get_lbolt();
501 if (delta <= 0)
502 return (-1);
503
504 VERIFY(gettimeofday(&tv, NULL) == 0);
505
506 ts.tv_sec = tv.tv_sec + delta / hz;
507 ts.tv_nsec = tv.tv_usec * 1000 + (delta % hz) * (NANOSEC / hz);
508 if (ts.tv_nsec >= NANOSEC) {
509 ts.tv_sec++;
510 ts.tv_nsec -= NANOSEC;
511 }
512
513 ASSERT3P(mutex_owner(mp), ==, curthread);
514 mp->m_owner = MTX_INIT;
515 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
516 mp->m_owner = curthread;
517
518 if (error == ETIMEDOUT)
519 return (-1);
520
521 if (error == EINTR)
522 goto top;
523
524 VERIFY3S(error, ==, 0);
525
526 return (1);
527 }
528
529 /*ARGSUSED*/
530 clock_t
531 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
532 int flag)
533 {
534 int error;
535 timestruc_t ts;
536 hrtime_t delta;
537
538 ASSERT(flag == 0);
539
540 top:
541 delta = tim - gethrtime();
542 if (delta <= 0)
543 return (-1);
544
545 ts.tv_sec = delta / NANOSEC;
546 ts.tv_nsec = delta % NANOSEC;
547
548 ASSERT(mutex_owner(mp) == curthread);
549 mp->m_owner = NULL;
550 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
551 mp->m_owner = curthread;
552
553 if (error == ETIME)
554 return (-1);
555
556 if (error == EINTR)
557 goto top;
558
559 ASSERT(error == 0);
560
561 return (1);
562 }
563
564 void
565 cv_signal(kcondvar_t *cv)
566 {
567 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
568 VERIFY3S(pthread_cond_signal(&cv->cv), ==, 0);
569 }
570
571 void
572 cv_broadcast(kcondvar_t *cv)
573 {
574 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
575 VERIFY3S(pthread_cond_broadcast(&cv->cv), ==, 0);
576 }
577
578 /*
579 * =========================================================================
580 * vnode operations
581 * =========================================================================
582 */
583 /*
584 * Note: for the xxxat() versions of these functions, we assume that the
585 * starting vp is always rootdir (which is true for spa_directory.c, the only
586 * ZFS consumer of these interfaces). We assert this is true, and then emulate
587 * them by adding '/' in front of the path.
588 */
589
590 /*ARGSUSED*/
591 int
592 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
593 {
594 int fd;
595 int dump_fd;
596 vnode_t *vp;
597 int old_umask = 0;
598 char *realpath;
599 struct stat64 st;
600 int err;
601
602 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
603
604 /*
605 * If we're accessing a real disk from userland, we need to use
606 * the character interface to avoid caching. This is particularly
607 * important if we're trying to look at a real in-kernel storage
608 * pool from userland, e.g. via zdb, because otherwise we won't
609 * see the changes occurring under the segmap cache.
610 * On the other hand, the stupid character device returns zero
611 * for its size. So -- gag -- we open the block device to get
612 * its size, and remember it for subsequent VOP_GETATTR().
613 */
614 #if defined(__sun__) || defined(__sun)
615 if (strncmp(path, "/dev/", 5) == 0) {
616 #else
617 if (0) {
618 #endif
619 char *dsk;
620 fd = open64(path, O_RDONLY);
621 if (fd == -1) {
622 err = errno;
623 free(realpath);
624 return (err);
625 }
626 if (fstat64(fd, &st) == -1) {
627 err = errno;
628 close(fd);
629 free(realpath);
630 return (err);
631 }
632 close(fd);
633 (void) sprintf(realpath, "%s", path);
634 dsk = strstr(path, "/dsk/");
635 if (dsk != NULL)
636 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
637 dsk + 1);
638 } else {
639 (void) sprintf(realpath, "%s", path);
640 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
641 err = errno;
642 free(realpath);
643 return (err);
644 }
645 }
646
647 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
648 #ifdef __linux__
649 flags |= O_DIRECT;
650 #endif
651 /* We shouldn't be writing to block devices in userspace */
652 VERIFY(!(flags & FWRITE));
653 }
654
655 if (flags & FCREAT)
656 old_umask = umask(0);
657
658 /*
659 * The construct 'flags - FREAD' conveniently maps combinations of
660 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
661 */
662 fd = open64(realpath, flags - FREAD, mode);
663 err = errno;
664
665 if (flags & FCREAT)
666 (void) umask(old_umask);
667
668 if (vn_dumpdir != NULL) {
669 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
670 (void) snprintf(dumppath, MAXPATHLEN,
671 "%s/%s", vn_dumpdir, basename(realpath));
672 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
673 umem_free(dumppath, MAXPATHLEN);
674 if (dump_fd == -1) {
675 err = errno;
676 free(realpath);
677 close(fd);
678 return (err);
679 }
680 } else {
681 dump_fd = -1;
682 }
683
684 free(realpath);
685
686 if (fd == -1)
687 return (err);
688
689 if (fstat64_blk(fd, &st) == -1) {
690 err = errno;
691 close(fd);
692 return (err);
693 }
694
695 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
696
697 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
698
699 vp->v_fd = fd;
700 vp->v_size = st.st_size;
701 vp->v_path = spa_strdup(path);
702 vp->v_dump_fd = dump_fd;
703
704 return (0);
705 }
706
707 /*ARGSUSED*/
708 int
709 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
710 int x3, vnode_t *startvp, int fd)
711 {
712 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
713 int ret;
714
715 ASSERT(startvp == rootdir);
716 (void) sprintf(realpath, "/%s", path);
717
718 /* fd ignored for now, need if want to simulate nbmand support */
719 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
720
721 umem_free(realpath, strlen(path) + 2);
722
723 return (ret);
724 }
725
726 /*ARGSUSED*/
727 int
728 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
729 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
730 {
731 ssize_t rc, done = 0, split;
732
733 if (uio == UIO_READ) {
734 rc = pread64(vp->v_fd, addr, len, offset);
735 if (vp->v_dump_fd != -1) {
736 int status =
737 pwrite64(vp->v_dump_fd, addr, rc, offset);
738 ASSERT(status != -1);
739 }
740 } else {
741 /*
742 * To simulate partial disk writes, we split writes into two
743 * system calls so that the process can be killed in between.
744 */
745 int sectors = len >> SPA_MINBLOCKSHIFT;
746 split = (sectors > 0 ? rand() % sectors : 0) <<
747 SPA_MINBLOCKSHIFT;
748 rc = pwrite64(vp->v_fd, addr, split, offset);
749 if (rc != -1) {
750 done = rc;
751 rc = pwrite64(vp->v_fd, (char *)addr + split,
752 len - split, offset + split);
753 }
754 }
755
756 #ifdef __linux__
757 if (rc == -1 && errno == EINVAL) {
758 /*
759 * Under Linux, this most likely means an alignment issue
760 * (memory or disk) due to O_DIRECT, so we abort() in order to
761 * catch the offender.
762 */
763 abort();
764 }
765 #endif
766 if (rc == -1)
767 return (errno);
768
769 done += rc;
770
771 if (residp)
772 *residp = len - done;
773 else if (done != len)
774 return (EIO);
775 return (0);
776 }
777
778 void
779 vn_close(vnode_t *vp)
780 {
781 close(vp->v_fd);
782 if (vp->v_dump_fd != -1)
783 close(vp->v_dump_fd);
784 spa_strfree(vp->v_path);
785 umem_free(vp, sizeof (vnode_t));
786 }
787
788 /*
789 * At a minimum we need to update the size since vdev_reopen()
790 * will no longer call vn_openat().
791 */
792 int
793 fop_getattr(vnode_t *vp, vattr_t *vap)
794 {
795 struct stat64 st;
796 int err;
797
798 if (fstat64_blk(vp->v_fd, &st) == -1) {
799 err = errno;
800 close(vp->v_fd);
801 return (err);
802 }
803
804 vap->va_size = st.st_size;
805 return (0);
806 }
807
808 /*
809 * =========================================================================
810 * Figure out which debugging statements to print
811 * =========================================================================
812 */
813
814 static char *dprintf_string;
815 static int dprintf_print_all;
816
817 int
818 dprintf_find_string(const char *string)
819 {
820 char *tmp_str = dprintf_string;
821 int len = strlen(string);
822
823 /*
824 * Find out if this is a string we want to print.
825 * String format: file1.c,function_name1,file2.c,file3.c
826 */
827
828 while (tmp_str != NULL) {
829 if (strncmp(tmp_str, string, len) == 0 &&
830 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
831 return (1);
832 tmp_str = strchr(tmp_str, ',');
833 if (tmp_str != NULL)
834 tmp_str++; /* Get rid of , */
835 }
836 return (0);
837 }
838
839 void
840 dprintf_setup(int *argc, char **argv)
841 {
842 int i, j;
843
844 /*
845 * Debugging can be specified two ways: by setting the
846 * environment variable ZFS_DEBUG, or by including a
847 * "debug=..." argument on the command line. The command
848 * line setting overrides the environment variable.
849 */
850
851 for (i = 1; i < *argc; i++) {
852 int len = strlen("debug=");
853 /* First look for a command line argument */
854 if (strncmp("debug=", argv[i], len) == 0) {
855 dprintf_string = argv[i] + len;
856 /* Remove from args */
857 for (j = i; j < *argc; j++)
858 argv[j] = argv[j+1];
859 argv[j] = NULL;
860 (*argc)--;
861 }
862 }
863
864 if (dprintf_string == NULL) {
865 /* Look for ZFS_DEBUG environment variable */
866 dprintf_string = getenv("ZFS_DEBUG");
867 }
868
869 /*
870 * Are we just turning on all debugging?
871 */
872 if (dprintf_find_string("on"))
873 dprintf_print_all = 1;
874
875 if (dprintf_string != NULL)
876 zfs_flags |= ZFS_DEBUG_DPRINTF;
877 }
878
879 /*
880 * =========================================================================
881 * debug printfs
882 * =========================================================================
883 */
884 void
885 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
886 {
887 const char *newfile;
888 va_list adx;
889
890 /*
891 * Get rid of annoying "../common/" prefix to filename.
892 */
893 newfile = strrchr(file, '/');
894 if (newfile != NULL) {
895 newfile = newfile + 1; /* Get rid of leading / */
896 } else {
897 newfile = file;
898 }
899
900 if (dprintf_print_all ||
901 dprintf_find_string(newfile) ||
902 dprintf_find_string(func)) {
903 /* Print out just the function name if requested */
904 flockfile(stdout);
905 if (dprintf_find_string("pid"))
906 (void) printf("%d ", getpid());
907 if (dprintf_find_string("tid"))
908 (void) printf("%u ", (uint_t) pthread_self());
909 if (dprintf_find_string("cpu"))
910 (void) printf("%u ", getcpuid());
911 if (dprintf_find_string("time"))
912 (void) printf("%llu ", gethrtime());
913 if (dprintf_find_string("long"))
914 (void) printf("%s, line %d: ", newfile, line);
915 (void) printf("%s: ", func);
916 va_start(adx, fmt);
917 (void) vprintf(fmt, adx);
918 va_end(adx);
919 funlockfile(stdout);
920 }
921 }
922
923 /*
924 * =========================================================================
925 * cmn_err() and panic()
926 * =========================================================================
927 */
928 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
929 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
930
931 void
932 vpanic(const char *fmt, va_list adx)
933 {
934 (void) fprintf(stderr, "error: ");
935 (void) vfprintf(stderr, fmt, adx);
936 (void) fprintf(stderr, "\n");
937
938 abort(); /* think of it as a "user-level crash dump" */
939 }
940
941 void
942 panic(const char *fmt, ...)
943 {
944 va_list adx;
945
946 va_start(adx, fmt);
947 vpanic(fmt, adx);
948 va_end(adx);
949 }
950
951 void
952 vcmn_err(int ce, const char *fmt, va_list adx)
953 {
954 if (ce == CE_PANIC)
955 vpanic(fmt, adx);
956 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
957 (void) fprintf(stderr, "%s", ce_prefix[ce]);
958 (void) vfprintf(stderr, fmt, adx);
959 (void) fprintf(stderr, "%s", ce_suffix[ce]);
960 }
961 }
962
963 /*PRINTFLIKE2*/
964 void
965 cmn_err(int ce, const char *fmt, ...)
966 {
967 va_list adx;
968
969 va_start(adx, fmt);
970 vcmn_err(ce, fmt, adx);
971 va_end(adx);
972 }
973
974 /*
975 * =========================================================================
976 * kobj interfaces
977 * =========================================================================
978 */
979 struct _buf *
980 kobj_open_file(char *name)
981 {
982 struct _buf *file;
983 vnode_t *vp;
984
985 /* set vp as the _fd field of the file */
986 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
987 -1) != 0)
988 return ((void *)-1UL);
989
990 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
991 file->_fd = (intptr_t)vp;
992 return (file);
993 }
994
995 int
996 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
997 {
998 ssize_t resid;
999
1000 vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
1001 UIO_SYSSPACE, 0, 0, 0, &resid);
1002
1003 return (size - resid);
1004 }
1005
1006 void
1007 kobj_close_file(struct _buf *file)
1008 {
1009 vn_close((vnode_t *)file->_fd);
1010 umem_free(file, sizeof (struct _buf));
1011 }
1012
1013 int
1014 kobj_get_filesize(struct _buf *file, uint64_t *size)
1015 {
1016 struct stat64 st;
1017 vnode_t *vp = (vnode_t *)file->_fd;
1018
1019 if (fstat64(vp->v_fd, &st) == -1) {
1020 vn_close(vp);
1021 return (errno);
1022 }
1023 *size = st.st_size;
1024 return (0);
1025 }
1026
1027 /*
1028 * =========================================================================
1029 * misc routines
1030 * =========================================================================
1031 */
1032
1033 void
1034 delay(clock_t ticks)
1035 {
1036 poll(0, 0, ticks * (1000 / hz));
1037 }
1038
1039 /*
1040 * Find highest one bit set.
1041 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1042 * High order bit is 31 (or 63 in _LP64 kernel).
1043 */
1044 int
1045 highbit64(uint64_t i)
1046 {
1047 register int h = 1;
1048
1049 if (i == 0)
1050 return (0);
1051 if (i & 0xffffffff00000000ULL) {
1052 h += 32; i >>= 32;
1053 }
1054 if (i & 0xffff0000) {
1055 h += 16; i >>= 16;
1056 }
1057 if (i & 0xff00) {
1058 h += 8; i >>= 8;
1059 }
1060 if (i & 0xf0) {
1061 h += 4; i >>= 4;
1062 }
1063 if (i & 0xc) {
1064 h += 2; i >>= 2;
1065 }
1066 if (i & 0x2) {
1067 h += 1;
1068 }
1069 return (h);
1070 }
1071
1072 static int random_fd = -1, urandom_fd = -1;
1073
1074 static int
1075 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1076 {
1077 size_t resid = len;
1078 ssize_t bytes;
1079
1080 ASSERT(fd != -1);
1081
1082 while (resid != 0) {
1083 bytes = read(fd, ptr, resid);
1084 ASSERT3S(bytes, >=, 0);
1085 ptr += bytes;
1086 resid -= bytes;
1087 }
1088
1089 return (0);
1090 }
1091
1092 int
1093 random_get_bytes(uint8_t *ptr, size_t len)
1094 {
1095 return (random_get_bytes_common(ptr, len, random_fd));
1096 }
1097
1098 int
1099 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1100 {
1101 return (random_get_bytes_common(ptr, len, urandom_fd));
1102 }
1103
1104 int
1105 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1106 {
1107 char *end;
1108
1109 *result = strtoul(hw_serial, &end, base);
1110 if (*result == 0)
1111 return (errno);
1112 return (0);
1113 }
1114
1115 int
1116 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1117 {
1118 char *end;
1119
1120 *result = strtoull(str, &end, base);
1121 if (*result == 0)
1122 return (errno);
1123 return (0);
1124 }
1125
1126 utsname_t *
1127 utsname(void)
1128 {
1129 return (&hw_utsname);
1130 }
1131
1132 /*
1133 * =========================================================================
1134 * kernel emulation setup & teardown
1135 * =========================================================================
1136 */
1137 static int
1138 umem_out_of_memory(void)
1139 {
1140 char errmsg[] = "out of memory -- generating core dump\n";
1141
1142 (void) fprintf(stderr, "%s", errmsg);
1143 abort();
1144 return (0);
1145 }
1146
1147 static unsigned long
1148 get_spl_hostid(void)
1149 {
1150 FILE *f;
1151 unsigned long hostid;
1152
1153 f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
1154 if (!f)
1155 return (0);
1156 if (fscanf(f, "%lu", &hostid) != 1)
1157 hostid = 0;
1158 fclose(f);
1159 return (hostid & 0xffffffff);
1160 }
1161
1162 unsigned long
1163 get_system_hostid(void)
1164 {
1165 unsigned long system_hostid = get_spl_hostid();
1166 if (system_hostid == 0)
1167 system_hostid = gethostid() & 0xffffffff;
1168 return (system_hostid);
1169 }
1170
1171 void
1172 kernel_init(int mode)
1173 {
1174 extern uint_t rrw_tsd_key;
1175
1176 umem_nofail_callback(umem_out_of_memory);
1177
1178 physmem = sysconf(_SC_PHYS_PAGES);
1179
1180 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1181 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1182
1183 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1184 (mode & FWRITE) ? get_system_hostid() : 0);
1185
1186 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1187 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1188 VERIFY0(uname(&hw_utsname));
1189
1190 thread_init();
1191 system_taskq_init();
1192
1193 spa_init(mode);
1194
1195 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1196 }
1197
1198 void
1199 kernel_fini(void)
1200 {
1201 spa_fini();
1202
1203 system_taskq_fini();
1204 thread_fini();
1205
1206 close(random_fd);
1207 close(urandom_fd);
1208
1209 random_fd = -1;
1210 urandom_fd = -1;
1211 }
1212
1213 uid_t
1214 crgetuid(cred_t *cr)
1215 {
1216 return (0);
1217 }
1218
1219 uid_t
1220 crgetruid(cred_t *cr)
1221 {
1222 return (0);
1223 }
1224
1225 gid_t
1226 crgetgid(cred_t *cr)
1227 {
1228 return (0);
1229 }
1230
1231 int
1232 crgetngroups(cred_t *cr)
1233 {
1234 return (0);
1235 }
1236
1237 gid_t *
1238 crgetgroups(cred_t *cr)
1239 {
1240 return (NULL);
1241 }
1242
1243 int
1244 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1245 {
1246 return (0);
1247 }
1248
1249 int
1250 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1251 {
1252 return (0);
1253 }
1254
1255 int
1256 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1257 {
1258 return (0);
1259 }
1260
1261 ksiddomain_t *
1262 ksid_lookupdomain(const char *dom)
1263 {
1264 ksiddomain_t *kd;
1265
1266 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1267 kd->kd_name = spa_strdup(dom);
1268 return (kd);
1269 }
1270
1271 void
1272 ksiddomain_rele(ksiddomain_t *ksid)
1273 {
1274 spa_strfree(ksid->kd_name);
1275 umem_free(ksid, sizeof (ksiddomain_t));
1276 }
1277
1278 char *
1279 kmem_vasprintf(const char *fmt, va_list adx)
1280 {
1281 char *buf = NULL;
1282 va_list adx_copy;
1283
1284 va_copy(adx_copy, adx);
1285 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1286 va_end(adx_copy);
1287
1288 return (buf);
1289 }
1290
1291 char *
1292 kmem_asprintf(const char *fmt, ...)
1293 {
1294 char *buf = NULL;
1295 va_list adx;
1296
1297 va_start(adx, fmt);
1298 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1299 va_end(adx);
1300
1301 return (buf);
1302 }
1303
1304 /* ARGSUSED */
1305 int
1306 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1307 {
1308 *minorp = 0;
1309 return (0);
1310 }
1311
1312 /* ARGSUSED */
1313 void
1314 zfs_onexit_fd_rele(int fd)
1315 {
1316 }
1317
1318 /* ARGSUSED */
1319 int
1320 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1321 uint64_t *action_handle)
1322 {
1323 return (0);
1324 }
1325
1326 /* ARGSUSED */
1327 int
1328 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1329 {
1330 return (0);
1331 }
1332
1333 /* ARGSUSED */
1334 int
1335 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1336 {
1337 return (0);
1338 }
1339
1340 fstrans_cookie_t
1341 spl_fstrans_mark(void)
1342 {
1343 return ((fstrans_cookie_t) 0);
1344 }
1345
1346 void
1347 spl_fstrans_unmark(fstrans_cookie_t cookie)
1348 {
1349 }
1350
1351 int
1352 spl_fstrans_check(void)
1353 {
1354 return (0);
1355 }