]> git.proxmox.com Git - mirror_zfs.git/blob - lib/libzpool/kernel.c
Fix coverity defects: CID 147452, 147447, 147446
[mirror_zfs.git] / lib / libzpool / kernel.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
24 */
25
26 #include <assert.h>
27 #include <fcntl.h>
28 #include <poll.h>
29 #include <stdio.h>
30 #include <stdlib.h>
31 #include <string.h>
32 #include <zlib.h>
33 #include <libgen.h>
34 #include <sys/signal.h>
35 #include <sys/spa.h>
36 #include <sys/stat.h>
37 #include <sys/processor.h>
38 #include <sys/zfs_context.h>
39 #include <sys/rrwlock.h>
40 #include <sys/utsname.h>
41 #include <sys/time.h>
42 #include <sys/systeminfo.h>
43 #include <zfs_fletcher.h>
44 #include <sys/crypto/icp.h>
45
46 /*
47 * Emulation of kernel services in userland.
48 */
49
50 int aok;
51 uint64_t physmem;
52 vnode_t *rootdir = (vnode_t *)0xabcd1234;
53 char hw_serial[HW_HOSTID_LEN];
54 struct utsname hw_utsname;
55 vmem_t *zio_arena = NULL;
56
57 /* If set, all blocks read will be copied to the specified directory. */
58 char *vn_dumpdir = NULL;
59
60 /* this only exists to have its address taken */
61 struct proc p0;
62
63 /*
64 * =========================================================================
65 * threads
66 * =========================================================================
67 */
68
69 pthread_cond_t kthread_cond = PTHREAD_COND_INITIALIZER;
70 pthread_mutex_t kthread_lock = PTHREAD_MUTEX_INITIALIZER;
71 pthread_key_t kthread_key;
72 int kthread_nr = 0;
73
74 void
75 thread_init(void)
76 {
77 kthread_t *kt;
78
79 VERIFY3S(pthread_key_create(&kthread_key, NULL), ==, 0);
80
81 /* Create entry for primary kthread */
82 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
83 kt->t_tid = pthread_self();
84 kt->t_func = NULL;
85
86 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
87
88 /* Only the main thread should be running at the moment */
89 ASSERT3S(kthread_nr, ==, 0);
90 kthread_nr = 1;
91 }
92
93 void
94 thread_fini(void)
95 {
96 kthread_t *kt = curthread;
97
98 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
99 ASSERT3P(kt->t_func, ==, NULL);
100
101 umem_free(kt, sizeof (kthread_t));
102
103 /* Wait for all threads to exit via thread_exit() */
104 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
105
106 kthread_nr--; /* Main thread is exiting */
107
108 while (kthread_nr > 0)
109 VERIFY0(pthread_cond_wait(&kthread_cond, &kthread_lock));
110
111 ASSERT3S(kthread_nr, ==, 0);
112 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
113
114 VERIFY3S(pthread_key_delete(kthread_key), ==, 0);
115 }
116
117 kthread_t *
118 zk_thread_current(void)
119 {
120 kthread_t *kt = pthread_getspecific(kthread_key);
121
122 ASSERT3P(kt, !=, NULL);
123
124 return (kt);
125 }
126
127 void *
128 zk_thread_helper(void *arg)
129 {
130 kthread_t *kt = (kthread_t *) arg;
131
132 VERIFY3S(pthread_setspecific(kthread_key, kt), ==, 0);
133
134 VERIFY3S(pthread_mutex_lock(&kthread_lock), ==, 0);
135 kthread_nr++;
136 VERIFY3S(pthread_mutex_unlock(&kthread_lock), ==, 0);
137 (void) setpriority(PRIO_PROCESS, 0, kt->t_pri);
138
139 kt->t_tid = pthread_self();
140 ((thread_func_arg_t) kt->t_func)(kt->t_arg);
141
142 /* Unreachable, thread must exit with thread_exit() */
143 abort();
144
145 return (NULL);
146 }
147
148 kthread_t *
149 zk_thread_create(caddr_t stk, size_t stksize, thread_func_t func, void *arg,
150 size_t len, proc_t *pp, int state, pri_t pri, int detachstate)
151 {
152 kthread_t *kt;
153 pthread_attr_t attr;
154 char *stkstr;
155
156 ASSERT0(state & ~TS_RUN);
157
158 kt = umem_zalloc(sizeof (kthread_t), UMEM_NOFAIL);
159 kt->t_func = func;
160 kt->t_arg = arg;
161 kt->t_pri = pri;
162
163 VERIFY0(pthread_attr_init(&attr));
164 VERIFY0(pthread_attr_setdetachstate(&attr, detachstate));
165
166 /*
167 * We allow the default stack size in user space to be specified by
168 * setting the ZFS_STACK_SIZE environment variable. This allows us
169 * the convenience of observing and debugging stack overruns in
170 * user space. Explicitly specified stack sizes will be honored.
171 * The usage of ZFS_STACK_SIZE is discussed further in the
172 * ENVIRONMENT VARIABLES sections of the ztest(1) man page.
173 */
174 if (stksize == 0) {
175 stkstr = getenv("ZFS_STACK_SIZE");
176
177 if (stkstr == NULL)
178 stksize = TS_STACK_MAX;
179 else
180 stksize = MAX(atoi(stkstr), TS_STACK_MIN);
181 }
182
183 VERIFY3S(stksize, >, 0);
184 stksize = P2ROUNDUP(MAX(stksize, TS_STACK_MIN), PAGESIZE);
185 /*
186 * If this ever fails, it may be because the stack size is not a
187 * multiple of system page size.
188 */
189 VERIFY0(pthread_attr_setstacksize(&attr, stksize));
190 VERIFY0(pthread_attr_setguardsize(&attr, PAGESIZE));
191
192 VERIFY0(pthread_create(&kt->t_tid, &attr, &zk_thread_helper, kt));
193 VERIFY0(pthread_attr_destroy(&attr));
194
195 return (kt);
196 }
197
198 void
199 zk_thread_exit(void)
200 {
201 kthread_t *kt = curthread;
202
203 ASSERT(pthread_equal(kt->t_tid, pthread_self()));
204
205 umem_free(kt, sizeof (kthread_t));
206
207 VERIFY0(pthread_mutex_lock(&kthread_lock));
208 kthread_nr--;
209 VERIFY0(pthread_mutex_unlock(&kthread_lock));
210
211 VERIFY0(pthread_cond_broadcast(&kthread_cond));
212 pthread_exit((void *)TS_MAGIC);
213 }
214
215 void
216 zk_thread_join(kt_did_t tid)
217 {
218 void *ret;
219
220 pthread_join((pthread_t)tid, &ret);
221 VERIFY3P(ret, ==, (void *)TS_MAGIC);
222 }
223
224 /*
225 * =========================================================================
226 * kstats
227 * =========================================================================
228 */
229 /*ARGSUSED*/
230 kstat_t *
231 kstat_create(const char *module, int instance, const char *name,
232 const char *class, uchar_t type, ulong_t ndata, uchar_t ks_flag)
233 {
234 return (NULL);
235 }
236
237 /*ARGSUSED*/
238 void
239 kstat_install(kstat_t *ksp)
240 {}
241
242 /*ARGSUSED*/
243 void
244 kstat_delete(kstat_t *ksp)
245 {}
246
247 /*ARGSUSED*/
248 void
249 kstat_waitq_enter(kstat_io_t *kiop)
250 {}
251
252 /*ARGSUSED*/
253 void
254 kstat_waitq_exit(kstat_io_t *kiop)
255 {}
256
257 /*ARGSUSED*/
258 void
259 kstat_runq_enter(kstat_io_t *kiop)
260 {}
261
262 /*ARGSUSED*/
263 void
264 kstat_runq_exit(kstat_io_t *kiop)
265 {}
266
267 /*ARGSUSED*/
268 void
269 kstat_waitq_to_runq(kstat_io_t *kiop)
270 {}
271
272 /*ARGSUSED*/
273 void
274 kstat_runq_back_to_waitq(kstat_io_t *kiop)
275 {}
276
277 void
278 kstat_set_raw_ops(kstat_t *ksp,
279 int (*headers)(char *buf, size_t size),
280 int (*data)(char *buf, size_t size, void *data),
281 void *(*addr)(kstat_t *ksp, loff_t index))
282 {}
283
284 /*
285 * =========================================================================
286 * mutexes
287 * =========================================================================
288 */
289
290 void
291 mutex_init(kmutex_t *mp, char *name, int type, void *cookie)
292 {
293 ASSERT3S(type, ==, MUTEX_DEFAULT);
294 ASSERT3P(cookie, ==, NULL);
295 mp->m_owner = MTX_INIT;
296 mp->m_magic = MTX_MAGIC;
297 VERIFY3S(pthread_mutex_init(&mp->m_lock, NULL), ==, 0);
298 }
299
300 void
301 mutex_destroy(kmutex_t *mp)
302 {
303 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
304 ASSERT3P(mp->m_owner, ==, MTX_INIT);
305 ASSERT0(pthread_mutex_destroy(&(mp)->m_lock));
306 mp->m_owner = MTX_DEST;
307 mp->m_magic = 0;
308 }
309
310 void
311 mutex_enter(kmutex_t *mp)
312 {
313 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
314 ASSERT3P(mp->m_owner, !=, MTX_DEST);
315 ASSERT3P(mp->m_owner, !=, curthread);
316 VERIFY3S(pthread_mutex_lock(&mp->m_lock), ==, 0);
317 ASSERT3P(mp->m_owner, ==, MTX_INIT);
318 mp->m_owner = curthread;
319 }
320
321 int
322 mutex_tryenter(kmutex_t *mp)
323 {
324 int err;
325 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
326 ASSERT3P(mp->m_owner, !=, MTX_DEST);
327 if (0 == (err = pthread_mutex_trylock(&mp->m_lock))) {
328 ASSERT3P(mp->m_owner, ==, MTX_INIT);
329 mp->m_owner = curthread;
330 return (1);
331 } else {
332 VERIFY3S(err, ==, EBUSY);
333 return (0);
334 }
335 }
336
337 void
338 mutex_exit(kmutex_t *mp)
339 {
340 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
341 ASSERT3P(mutex_owner(mp), ==, curthread);
342 mp->m_owner = MTX_INIT;
343 VERIFY3S(pthread_mutex_unlock(&mp->m_lock), ==, 0);
344 }
345
346 void *
347 mutex_owner(kmutex_t *mp)
348 {
349 ASSERT3U(mp->m_magic, ==, MTX_MAGIC);
350 return (mp->m_owner);
351 }
352
353 int
354 mutex_held(kmutex_t *mp)
355 {
356 return (mp->m_owner == curthread);
357 }
358
359 /*
360 * =========================================================================
361 * rwlocks
362 * =========================================================================
363 */
364
365 void
366 rw_init(krwlock_t *rwlp, char *name, int type, void *arg)
367 {
368 ASSERT3S(type, ==, RW_DEFAULT);
369 ASSERT3P(arg, ==, NULL);
370 VERIFY3S(pthread_rwlock_init(&rwlp->rw_lock, NULL), ==, 0);
371 rwlp->rw_owner = RW_INIT;
372 rwlp->rw_wr_owner = RW_INIT;
373 rwlp->rw_readers = 0;
374 rwlp->rw_magic = RW_MAGIC;
375 }
376
377 void
378 rw_destroy(krwlock_t *rwlp)
379 {
380 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
381 ASSERT(rwlp->rw_readers == 0 && rwlp->rw_wr_owner == RW_INIT);
382 VERIFY3S(pthread_rwlock_destroy(&rwlp->rw_lock), ==, 0);
383 rwlp->rw_magic = 0;
384 }
385
386 void
387 rw_enter(krwlock_t *rwlp, krw_t rw)
388 {
389 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
390 ASSERT3P(rwlp->rw_owner, !=, curthread);
391 ASSERT3P(rwlp->rw_wr_owner, !=, curthread);
392
393 if (rw == RW_READER) {
394 VERIFY3S(pthread_rwlock_rdlock(&rwlp->rw_lock), ==, 0);
395 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
396
397 atomic_inc_uint(&rwlp->rw_readers);
398 } else {
399 VERIFY3S(pthread_rwlock_wrlock(&rwlp->rw_lock), ==, 0);
400 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
401 ASSERT3U(rwlp->rw_readers, ==, 0);
402
403 rwlp->rw_wr_owner = curthread;
404 }
405
406 rwlp->rw_owner = curthread;
407 }
408
409 void
410 rw_exit(krwlock_t *rwlp)
411 {
412 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
413 ASSERT(RW_LOCK_HELD(rwlp));
414
415 if (RW_READ_HELD(rwlp))
416 atomic_dec_uint(&rwlp->rw_readers);
417 else
418 rwlp->rw_wr_owner = RW_INIT;
419
420 rwlp->rw_owner = RW_INIT;
421 VERIFY3S(pthread_rwlock_unlock(&rwlp->rw_lock), ==, 0);
422 }
423
424 int
425 rw_tryenter(krwlock_t *rwlp, krw_t rw)
426 {
427 int rv;
428
429 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
430
431 if (rw == RW_READER)
432 rv = pthread_rwlock_tryrdlock(&rwlp->rw_lock);
433 else
434 rv = pthread_rwlock_trywrlock(&rwlp->rw_lock);
435
436 if (rv == 0) {
437 ASSERT3P(rwlp->rw_wr_owner, ==, RW_INIT);
438
439 if (rw == RW_READER)
440 atomic_inc_uint(&rwlp->rw_readers);
441 else {
442 ASSERT3U(rwlp->rw_readers, ==, 0);
443 rwlp->rw_wr_owner = curthread;
444 }
445
446 rwlp->rw_owner = curthread;
447 return (1);
448 }
449
450 VERIFY3S(rv, ==, EBUSY);
451
452 return (0);
453 }
454
455 int
456 rw_tryupgrade(krwlock_t *rwlp)
457 {
458 ASSERT3U(rwlp->rw_magic, ==, RW_MAGIC);
459
460 return (0);
461 }
462
463 /*
464 * =========================================================================
465 * condition variables
466 * =========================================================================
467 */
468
469 void
470 cv_init(kcondvar_t *cv, char *name, int type, void *arg)
471 {
472 ASSERT3S(type, ==, CV_DEFAULT);
473 cv->cv_magic = CV_MAGIC;
474 VERIFY0(pthread_cond_init(&cv->cv, NULL));
475 }
476
477 void
478 cv_destroy(kcondvar_t *cv)
479 {
480 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
481 VERIFY0(pthread_cond_destroy(&cv->cv));
482 cv->cv_magic = 0;
483 }
484
485 void
486 cv_wait(kcondvar_t *cv, kmutex_t *mp)
487 {
488 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
489 ASSERT3P(mutex_owner(mp), ==, curthread);
490 mp->m_owner = MTX_INIT;
491 VERIFY0(pthread_cond_wait(&cv->cv, &mp->m_lock));
492 mp->m_owner = curthread;
493 }
494
495 clock_t
496 cv_timedwait(kcondvar_t *cv, kmutex_t *mp, clock_t abstime)
497 {
498 int error;
499 struct timeval tv;
500 timestruc_t ts;
501 clock_t delta;
502
503 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
504
505 delta = abstime - ddi_get_lbolt();
506 if (delta <= 0)
507 return (-1);
508
509 VERIFY(gettimeofday(&tv, NULL) == 0);
510
511 ts.tv_sec = tv.tv_sec + delta / hz;
512 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % hz) * (NANOSEC / hz);
513 if (ts.tv_nsec >= NANOSEC) {
514 ts.tv_sec++;
515 ts.tv_nsec -= NANOSEC;
516 }
517
518 ASSERT3P(mutex_owner(mp), ==, curthread);
519 mp->m_owner = MTX_INIT;
520 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
521 mp->m_owner = curthread;
522
523 if (error == ETIMEDOUT)
524 return (-1);
525
526 VERIFY0(error);
527
528 return (1);
529 }
530
531 /*ARGSUSED*/
532 clock_t
533 cv_timedwait_hires(kcondvar_t *cv, kmutex_t *mp, hrtime_t tim, hrtime_t res,
534 int flag)
535 {
536 int error;
537 struct timeval tv;
538 timestruc_t ts;
539 hrtime_t delta;
540
541 ASSERT(flag == 0 || flag == CALLOUT_FLAG_ABSOLUTE);
542
543 delta = tim;
544 if (flag & CALLOUT_FLAG_ABSOLUTE)
545 delta -= gethrtime();
546
547 if (delta <= 0)
548 return (-1);
549
550 VERIFY(gettimeofday(&tv, NULL) == 0);
551
552 ts.tv_sec = tv.tv_sec + delta / NANOSEC;
553 ts.tv_nsec = tv.tv_usec * NSEC_PER_USEC + (delta % NANOSEC);
554 if (ts.tv_nsec >= NANOSEC) {
555 ts.tv_sec++;
556 ts.tv_nsec -= NANOSEC;
557 }
558
559 ASSERT(mutex_owner(mp) == curthread);
560 mp->m_owner = MTX_INIT;
561 error = pthread_cond_timedwait(&cv->cv, &mp->m_lock, &ts);
562 mp->m_owner = curthread;
563
564 if (error == ETIMEDOUT)
565 return (-1);
566
567 VERIFY0(error);
568
569 return (1);
570 }
571
572 void
573 cv_signal(kcondvar_t *cv)
574 {
575 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
576 VERIFY0(pthread_cond_signal(&cv->cv));
577 }
578
579 void
580 cv_broadcast(kcondvar_t *cv)
581 {
582 ASSERT3U(cv->cv_magic, ==, CV_MAGIC);
583 VERIFY0(pthread_cond_broadcast(&cv->cv));
584 }
585
586 /*
587 * =========================================================================
588 * vnode operations
589 * =========================================================================
590 */
591 /*
592 * Note: for the xxxat() versions of these functions, we assume that the
593 * starting vp is always rootdir (which is true for spa_directory.c, the only
594 * ZFS consumer of these interfaces). We assert this is true, and then emulate
595 * them by adding '/' in front of the path.
596 */
597
598 /*ARGSUSED*/
599 int
600 vn_open(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2, int x3)
601 {
602 int fd = -1;
603 int dump_fd = -1;
604 vnode_t *vp;
605 int old_umask = 0;
606 char *realpath;
607 struct stat64 st;
608 int err;
609
610 realpath = umem_alloc(MAXPATHLEN, UMEM_NOFAIL);
611
612 /*
613 * If we're accessing a real disk from userland, we need to use
614 * the character interface to avoid caching. This is particularly
615 * important if we're trying to look at a real in-kernel storage
616 * pool from userland, e.g. via zdb, because otherwise we won't
617 * see the changes occurring under the segmap cache.
618 * On the other hand, the stupid character device returns zero
619 * for its size. So -- gag -- we open the block device to get
620 * its size, and remember it for subsequent VOP_GETATTR().
621 */
622 #if defined(__sun__) || defined(__sun)
623 if (strncmp(path, "/dev/", 5) == 0) {
624 #else
625 if (0) {
626 #endif
627 char *dsk;
628 fd = open64(path, O_RDONLY);
629 if (fd == -1) {
630 err = errno;
631 free(realpath);
632 return (err);
633 }
634 if (fstat64(fd, &st) == -1) {
635 err = errno;
636 close(fd);
637 free(realpath);
638 return (err);
639 }
640 close(fd);
641 (void) sprintf(realpath, "%s", path);
642 dsk = strstr(path, "/dsk/");
643 if (dsk != NULL)
644 (void) sprintf(realpath + (dsk - path) + 1, "r%s",
645 dsk + 1);
646 } else {
647 (void) sprintf(realpath, "%s", path);
648 if (!(flags & FCREAT) && stat64(realpath, &st) == -1) {
649 err = errno;
650 free(realpath);
651 return (err);
652 }
653 }
654
655 if (!(flags & FCREAT) && S_ISBLK(st.st_mode)) {
656 #ifdef __linux__
657 flags |= O_DIRECT;
658 #endif
659 /* We shouldn't be writing to block devices in userspace */
660 VERIFY(!(flags & FWRITE));
661 }
662
663 if (flags & FCREAT)
664 old_umask = umask(0);
665
666 /*
667 * The construct 'flags - FREAD' conveniently maps combinations of
668 * FREAD and FWRITE to the corresponding O_RDONLY, O_WRONLY, and O_RDWR.
669 */
670 fd = open64(realpath, flags - FREAD, mode);
671 if (fd == -1) {
672 err = errno;
673 free(realpath);
674 return (err);
675 }
676
677 if (flags & FCREAT)
678 (void) umask(old_umask);
679
680 if (vn_dumpdir != NULL) {
681 char *dumppath = umem_zalloc(MAXPATHLEN, UMEM_NOFAIL);
682 (void) snprintf(dumppath, MAXPATHLEN,
683 "%s/%s", vn_dumpdir, basename(realpath));
684 dump_fd = open64(dumppath, O_CREAT | O_WRONLY, 0666);
685 umem_free(dumppath, MAXPATHLEN);
686 if (dump_fd == -1) {
687 err = errno;
688 free(realpath);
689 close(fd);
690 return (err);
691 }
692 } else {
693 dump_fd = -1;
694 }
695
696 free(realpath);
697
698 if (fstat64_blk(fd, &st) == -1) {
699 err = errno;
700 close(fd);
701 if (dump_fd != -1)
702 close(dump_fd);
703 return (err);
704 }
705
706 (void) fcntl(fd, F_SETFD, FD_CLOEXEC);
707
708 *vpp = vp = umem_zalloc(sizeof (vnode_t), UMEM_NOFAIL);
709
710 vp->v_fd = fd;
711 vp->v_size = st.st_size;
712 vp->v_path = spa_strdup(path);
713 vp->v_dump_fd = dump_fd;
714
715 return (0);
716 }
717
718 /*ARGSUSED*/
719 int
720 vn_openat(char *path, int x1, int flags, int mode, vnode_t **vpp, int x2,
721 int x3, vnode_t *startvp, int fd)
722 {
723 char *realpath = umem_alloc(strlen(path) + 2, UMEM_NOFAIL);
724 int ret;
725
726 ASSERT(startvp == rootdir);
727 (void) sprintf(realpath, "/%s", path);
728
729 /* fd ignored for now, need if want to simulate nbmand support */
730 ret = vn_open(realpath, x1, flags, mode, vpp, x2, x3);
731
732 umem_free(realpath, strlen(path) + 2);
733
734 return (ret);
735 }
736
737 /*ARGSUSED*/
738 int
739 vn_rdwr(int uio, vnode_t *vp, void *addr, ssize_t len, offset_t offset,
740 int x1, int x2, rlim64_t x3, void *x4, ssize_t *residp)
741 {
742 ssize_t rc, done = 0, split;
743
744 if (uio == UIO_READ) {
745 rc = pread64(vp->v_fd, addr, len, offset);
746 if (vp->v_dump_fd != -1 && rc != -1) {
747 int status;
748 status = pwrite64(vp->v_dump_fd, addr, rc, offset);
749 ASSERT(status != -1);
750 }
751 } else {
752 /*
753 * To simulate partial disk writes, we split writes into two
754 * system calls so that the process can be killed in between.
755 */
756 int sectors = len >> SPA_MINBLOCKSHIFT;
757 split = (sectors > 0 ? rand() % sectors : 0) <<
758 SPA_MINBLOCKSHIFT;
759 rc = pwrite64(vp->v_fd, addr, split, offset);
760 if (rc != -1) {
761 done = rc;
762 rc = pwrite64(vp->v_fd, (char *)addr + split,
763 len - split, offset + split);
764 }
765 }
766
767 #ifdef __linux__
768 if (rc == -1 && errno == EINVAL) {
769 /*
770 * Under Linux, this most likely means an alignment issue
771 * (memory or disk) due to O_DIRECT, so we abort() in order to
772 * catch the offender.
773 */
774 abort();
775 }
776 #endif
777 if (rc == -1)
778 return (errno);
779
780 done += rc;
781
782 if (residp)
783 *residp = len - done;
784 else if (done != len)
785 return (EIO);
786 return (0);
787 }
788
789 void
790 vn_close(vnode_t *vp)
791 {
792 close(vp->v_fd);
793 if (vp->v_dump_fd != -1)
794 close(vp->v_dump_fd);
795 spa_strfree(vp->v_path);
796 umem_free(vp, sizeof (vnode_t));
797 }
798
799 /*
800 * At a minimum we need to update the size since vdev_reopen()
801 * will no longer call vn_openat().
802 */
803 int
804 fop_getattr(vnode_t *vp, vattr_t *vap)
805 {
806 struct stat64 st;
807 int err;
808
809 if (fstat64_blk(vp->v_fd, &st) == -1) {
810 err = errno;
811 close(vp->v_fd);
812 return (err);
813 }
814
815 vap->va_size = st.st_size;
816 return (0);
817 }
818
819 /*
820 * =========================================================================
821 * Figure out which debugging statements to print
822 * =========================================================================
823 */
824
825 static char *dprintf_string;
826 static int dprintf_print_all;
827
828 int
829 dprintf_find_string(const char *string)
830 {
831 char *tmp_str = dprintf_string;
832 int len = strlen(string);
833
834 /*
835 * Find out if this is a string we want to print.
836 * String format: file1.c,function_name1,file2.c,file3.c
837 */
838
839 while (tmp_str != NULL) {
840 if (strncmp(tmp_str, string, len) == 0 &&
841 (tmp_str[len] == ',' || tmp_str[len] == '\0'))
842 return (1);
843 tmp_str = strchr(tmp_str, ',');
844 if (tmp_str != NULL)
845 tmp_str++; /* Get rid of , */
846 }
847 return (0);
848 }
849
850 void
851 dprintf_setup(int *argc, char **argv)
852 {
853 int i, j;
854
855 /*
856 * Debugging can be specified two ways: by setting the
857 * environment variable ZFS_DEBUG, or by including a
858 * "debug=..." argument on the command line. The command
859 * line setting overrides the environment variable.
860 */
861
862 for (i = 1; i < *argc; i++) {
863 int len = strlen("debug=");
864 /* First look for a command line argument */
865 if (strncmp("debug=", argv[i], len) == 0) {
866 dprintf_string = argv[i] + len;
867 /* Remove from args */
868 for (j = i; j < *argc; j++)
869 argv[j] = argv[j+1];
870 argv[j] = NULL;
871 (*argc)--;
872 }
873 }
874
875 if (dprintf_string == NULL) {
876 /* Look for ZFS_DEBUG environment variable */
877 dprintf_string = getenv("ZFS_DEBUG");
878 }
879
880 /*
881 * Are we just turning on all debugging?
882 */
883 if (dprintf_find_string("on"))
884 dprintf_print_all = 1;
885
886 if (dprintf_string != NULL)
887 zfs_flags |= ZFS_DEBUG_DPRINTF;
888 }
889
890 /*
891 * =========================================================================
892 * debug printfs
893 * =========================================================================
894 */
895 void
896 __dprintf(const char *file, const char *func, int line, const char *fmt, ...)
897 {
898 const char *newfile;
899 va_list adx;
900
901 /*
902 * Get rid of annoying "../common/" prefix to filename.
903 */
904 newfile = strrchr(file, '/');
905 if (newfile != NULL) {
906 newfile = newfile + 1; /* Get rid of leading / */
907 } else {
908 newfile = file;
909 }
910
911 if (dprintf_print_all ||
912 dprintf_find_string(newfile) ||
913 dprintf_find_string(func)) {
914 /* Print out just the function name if requested */
915 flockfile(stdout);
916 if (dprintf_find_string("pid"))
917 (void) printf("%d ", getpid());
918 if (dprintf_find_string("tid"))
919 (void) printf("%u ", (uint_t) pthread_self());
920 if (dprintf_find_string("cpu"))
921 (void) printf("%u ", getcpuid());
922 if (dprintf_find_string("time"))
923 (void) printf("%llu ", gethrtime());
924 if (dprintf_find_string("long"))
925 (void) printf("%s, line %d: ", newfile, line);
926 (void) printf("%s: ", func);
927 va_start(adx, fmt);
928 (void) vprintf(fmt, adx);
929 va_end(adx);
930 funlockfile(stdout);
931 }
932 }
933
934 /*
935 * =========================================================================
936 * cmn_err() and panic()
937 * =========================================================================
938 */
939 static char ce_prefix[CE_IGNORE][10] = { "", "NOTICE: ", "WARNING: ", "" };
940 static char ce_suffix[CE_IGNORE][2] = { "", "\n", "\n", "" };
941
942 void
943 vpanic(const char *fmt, va_list adx)
944 {
945 (void) fprintf(stderr, "error: ");
946 (void) vfprintf(stderr, fmt, adx);
947 (void) fprintf(stderr, "\n");
948
949 abort(); /* think of it as a "user-level crash dump" */
950 }
951
952 void
953 panic(const char *fmt, ...)
954 {
955 va_list adx;
956
957 va_start(adx, fmt);
958 vpanic(fmt, adx);
959 va_end(adx);
960 }
961
962 void
963 vcmn_err(int ce, const char *fmt, va_list adx)
964 {
965 if (ce == CE_PANIC)
966 vpanic(fmt, adx);
967 if (ce != CE_NOTE) { /* suppress noise in userland stress testing */
968 (void) fprintf(stderr, "%s", ce_prefix[ce]);
969 (void) vfprintf(stderr, fmt, adx);
970 (void) fprintf(stderr, "%s", ce_suffix[ce]);
971 }
972 }
973
974 /*PRINTFLIKE2*/
975 void
976 cmn_err(int ce, const char *fmt, ...)
977 {
978 va_list adx;
979
980 va_start(adx, fmt);
981 vcmn_err(ce, fmt, adx);
982 va_end(adx);
983 }
984
985 /*
986 * =========================================================================
987 * kobj interfaces
988 * =========================================================================
989 */
990 struct _buf *
991 kobj_open_file(char *name)
992 {
993 struct _buf *file;
994 vnode_t *vp;
995
996 /* set vp as the _fd field of the file */
997 if (vn_openat(name, UIO_SYSSPACE, FREAD, 0, &vp, 0, 0, rootdir,
998 -1) != 0)
999 return ((void *)-1UL);
1000
1001 file = umem_zalloc(sizeof (struct _buf), UMEM_NOFAIL);
1002 file->_fd = (intptr_t)vp;
1003 return (file);
1004 }
1005
1006 int
1007 kobj_read_file(struct _buf *file, char *buf, unsigned size, unsigned off)
1008 {
1009 ssize_t resid = 0;
1010
1011 if (vn_rdwr(UIO_READ, (vnode_t *)file->_fd, buf, size, (offset_t)off,
1012 UIO_SYSSPACE, 0, 0, 0, &resid) != 0)
1013 return (-1);
1014
1015 return (size - resid);
1016 }
1017
1018 void
1019 kobj_close_file(struct _buf *file)
1020 {
1021 vn_close((vnode_t *)file->_fd);
1022 umem_free(file, sizeof (struct _buf));
1023 }
1024
1025 int
1026 kobj_get_filesize(struct _buf *file, uint64_t *size)
1027 {
1028 struct stat64 st;
1029 vnode_t *vp = (vnode_t *)file->_fd;
1030
1031 if (fstat64(vp->v_fd, &st) == -1) {
1032 vn_close(vp);
1033 return (errno);
1034 }
1035 *size = st.st_size;
1036 return (0);
1037 }
1038
1039 /*
1040 * =========================================================================
1041 * misc routines
1042 * =========================================================================
1043 */
1044
1045 void
1046 delay(clock_t ticks)
1047 {
1048 (void) poll(0, 0, ticks * (1000 / hz));
1049 }
1050
1051 /*
1052 * Find highest one bit set.
1053 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1054 * High order bit is 31 (or 63 in _LP64 kernel).
1055 */
1056 int
1057 highbit64(uint64_t i)
1058 {
1059 register int h = 1;
1060
1061 if (i == 0)
1062 return (0);
1063 if (i & 0xffffffff00000000ULL) {
1064 h += 32; i >>= 32;
1065 }
1066 if (i & 0xffff0000) {
1067 h += 16; i >>= 16;
1068 }
1069 if (i & 0xff00) {
1070 h += 8; i >>= 8;
1071 }
1072 if (i & 0xf0) {
1073 h += 4; i >>= 4;
1074 }
1075 if (i & 0xc) {
1076 h += 2; i >>= 2;
1077 }
1078 if (i & 0x2) {
1079 h += 1;
1080 }
1081 return (h);
1082 }
1083
1084 /*
1085 * Find lowest one bit set.
1086 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
1087 * This is basically a reimplementation of ffsll(), which is GNU specific.
1088 */
1089 int
1090 lowbit64(uint64_t i)
1091 {
1092 register int h = 64;
1093 if (i == 0)
1094 return (0);
1095
1096 if (i & 0x00000000ffffffffULL)
1097 h -= 32;
1098 else
1099 i >>= 32;
1100
1101 if (i & 0x0000ffff)
1102 h -= 16;
1103 else
1104 i >>= 16;
1105
1106 if (i & 0x00ff)
1107 h -= 8;
1108 else
1109 i >>= 8;
1110
1111 if (i & 0x0f)
1112 h -= 4;
1113 else
1114 i >>= 4;
1115
1116 if (i & 0x3)
1117 h -= 2;
1118 else
1119 i >>= 2;
1120
1121 if (i & 0x1)
1122 h -= 1;
1123
1124 return (h);
1125 }
1126
1127 /*
1128 * Find highest one bit set.
1129 * Returns bit number + 1 of highest bit that is set, otherwise returns 0.
1130 * High order bit is 31 (or 63 in _LP64 kernel).
1131 */
1132 int
1133 highbit(ulong_t i)
1134 {
1135 register int h = 1;
1136
1137 if (i == 0)
1138 return (0);
1139 #ifdef _LP64
1140 if (i & 0xffffffff00000000ul) {
1141 h += 32; i >>= 32;
1142 }
1143 #endif
1144 if (i & 0xffff0000) {
1145 h += 16; i >>= 16;
1146 }
1147 if (i & 0xff00) {
1148 h += 8; i >>= 8;
1149 }
1150 if (i & 0xf0) {
1151 h += 4; i >>= 4;
1152 }
1153 if (i & 0xc) {
1154 h += 2; i >>= 2;
1155 }
1156 if (i & 0x2) {
1157 h += 1;
1158 }
1159 return (h);
1160 }
1161
1162 /*
1163 * Find lowest one bit set.
1164 * Returns bit number + 1 of lowest bit that is set, otherwise returns 0.
1165 * Low order bit is 0.
1166 */
1167 int
1168 lowbit(ulong_t i)
1169 {
1170 register int h = 1;
1171
1172 if (i == 0)
1173 return (0);
1174
1175 #ifdef _LP64
1176 if (!(i & 0xffffffff)) {
1177 h += 32; i >>= 32;
1178 }
1179 #endif
1180 if (!(i & 0xffff)) {
1181 h += 16; i >>= 16;
1182 }
1183 if (!(i & 0xff)) {
1184 h += 8; i >>= 8;
1185 }
1186 if (!(i & 0xf)) {
1187 h += 4; i >>= 4;
1188 }
1189 if (!(i & 0x3)) {
1190 h += 2; i >>= 2;
1191 }
1192 if (!(i & 0x1)) {
1193 h += 1;
1194 }
1195 return (h);
1196 }
1197
1198 static int random_fd = -1, urandom_fd = -1;
1199
1200 void
1201 random_init(void)
1202 {
1203 VERIFY((random_fd = open("/dev/random", O_RDONLY)) != -1);
1204 VERIFY((urandom_fd = open("/dev/urandom", O_RDONLY)) != -1);
1205 }
1206
1207 void
1208 random_fini(void)
1209 {
1210 close(random_fd);
1211 close(urandom_fd);
1212
1213 random_fd = -1;
1214 urandom_fd = -1;
1215 }
1216
1217 static int
1218 random_get_bytes_common(uint8_t *ptr, size_t len, int fd)
1219 {
1220 size_t resid = len;
1221 ssize_t bytes;
1222
1223 ASSERT(fd != -1);
1224
1225 while (resid != 0) {
1226 bytes = read(fd, ptr, resid);
1227 ASSERT3S(bytes, >=, 0);
1228 ptr += bytes;
1229 resid -= bytes;
1230 }
1231
1232 return (0);
1233 }
1234
1235 int
1236 random_get_bytes(uint8_t *ptr, size_t len)
1237 {
1238 return (random_get_bytes_common(ptr, len, random_fd));
1239 }
1240
1241 int
1242 random_get_pseudo_bytes(uint8_t *ptr, size_t len)
1243 {
1244 return (random_get_bytes_common(ptr, len, urandom_fd));
1245 }
1246
1247 int
1248 ddi_strtoul(const char *hw_serial, char **nptr, int base, unsigned long *result)
1249 {
1250 char *end;
1251
1252 *result = strtoul(hw_serial, &end, base);
1253 if (*result == 0)
1254 return (errno);
1255 return (0);
1256 }
1257
1258 int
1259 ddi_strtoull(const char *str, char **nptr, int base, u_longlong_t *result)
1260 {
1261 char *end;
1262
1263 *result = strtoull(str, &end, base);
1264 if (*result == 0)
1265 return (errno);
1266 return (0);
1267 }
1268
1269 utsname_t *
1270 utsname(void)
1271 {
1272 return (&hw_utsname);
1273 }
1274
1275 /*
1276 * =========================================================================
1277 * kernel emulation setup & teardown
1278 * =========================================================================
1279 */
1280 static int
1281 umem_out_of_memory(void)
1282 {
1283 char errmsg[] = "out of memory -- generating core dump\n";
1284
1285 (void) fprintf(stderr, "%s", errmsg);
1286 abort();
1287 return (0);
1288 }
1289
1290 static unsigned long
1291 get_spl_hostid(void)
1292 {
1293 FILE *f;
1294 unsigned long hostid;
1295
1296 f = fopen("/sys/module/spl/parameters/spl_hostid", "r");
1297 if (!f)
1298 return (0);
1299 if (fscanf(f, "%lu", &hostid) != 1)
1300 hostid = 0;
1301 fclose(f);
1302 return (hostid & 0xffffffff);
1303 }
1304
1305 unsigned long
1306 get_system_hostid(void)
1307 {
1308 unsigned long system_hostid = get_spl_hostid();
1309 if (system_hostid == 0)
1310 system_hostid = gethostid() & 0xffffffff;
1311 return (system_hostid);
1312 }
1313
1314 void
1315 kernel_init(int mode)
1316 {
1317 extern uint_t rrw_tsd_key;
1318
1319 umem_nofail_callback(umem_out_of_memory);
1320
1321 physmem = sysconf(_SC_PHYS_PAGES);
1322
1323 dprintf("physmem = %llu pages (%.2f GB)\n", physmem,
1324 (double)physmem * sysconf(_SC_PAGE_SIZE) / (1ULL << 30));
1325
1326 (void) snprintf(hw_serial, sizeof (hw_serial), "%ld",
1327 (mode & FWRITE) ? get_system_hostid() : 0);
1328
1329 random_init();
1330
1331 VERIFY0(uname(&hw_utsname));
1332
1333 thread_init();
1334 system_taskq_init();
1335 icp_init();
1336
1337 spa_init(mode);
1338
1339 fletcher_4_init();
1340
1341 tsd_create(&rrw_tsd_key, rrw_tsd_destroy);
1342 }
1343
1344 void
1345 kernel_fini(void)
1346 {
1347 fletcher_4_fini();
1348 spa_fini();
1349
1350 icp_fini();
1351 system_taskq_fini();
1352 thread_fini();
1353
1354 random_fini();
1355 }
1356
1357 uid_t
1358 crgetuid(cred_t *cr)
1359 {
1360 return (0);
1361 }
1362
1363 uid_t
1364 crgetruid(cred_t *cr)
1365 {
1366 return (0);
1367 }
1368
1369 gid_t
1370 crgetgid(cred_t *cr)
1371 {
1372 return (0);
1373 }
1374
1375 int
1376 crgetngroups(cred_t *cr)
1377 {
1378 return (0);
1379 }
1380
1381 gid_t *
1382 crgetgroups(cred_t *cr)
1383 {
1384 return (NULL);
1385 }
1386
1387 int
1388 zfs_secpolicy_snapshot_perms(const char *name, cred_t *cr)
1389 {
1390 return (0);
1391 }
1392
1393 int
1394 zfs_secpolicy_rename_perms(const char *from, const char *to, cred_t *cr)
1395 {
1396 return (0);
1397 }
1398
1399 int
1400 zfs_secpolicy_destroy_perms(const char *name, cred_t *cr)
1401 {
1402 return (0);
1403 }
1404
1405 int
1406 secpolicy_zfs(const cred_t *cr)
1407 {
1408 return (0);
1409 }
1410
1411 ksiddomain_t *
1412 ksid_lookupdomain(const char *dom)
1413 {
1414 ksiddomain_t *kd;
1415
1416 kd = umem_zalloc(sizeof (ksiddomain_t), UMEM_NOFAIL);
1417 kd->kd_name = spa_strdup(dom);
1418 return (kd);
1419 }
1420
1421 void
1422 ksiddomain_rele(ksiddomain_t *ksid)
1423 {
1424 spa_strfree(ksid->kd_name);
1425 umem_free(ksid, sizeof (ksiddomain_t));
1426 }
1427
1428 char *
1429 kmem_vasprintf(const char *fmt, va_list adx)
1430 {
1431 char *buf = NULL;
1432 va_list adx_copy;
1433
1434 va_copy(adx_copy, adx);
1435 VERIFY(vasprintf(&buf, fmt, adx_copy) != -1);
1436 va_end(adx_copy);
1437
1438 return (buf);
1439 }
1440
1441 char *
1442 kmem_asprintf(const char *fmt, ...)
1443 {
1444 char *buf = NULL;
1445 va_list adx;
1446
1447 va_start(adx, fmt);
1448 VERIFY(vasprintf(&buf, fmt, adx) != -1);
1449 va_end(adx);
1450
1451 return (buf);
1452 }
1453
1454 /* ARGSUSED */
1455 int
1456 zfs_onexit_fd_hold(int fd, minor_t *minorp)
1457 {
1458 *minorp = 0;
1459 return (0);
1460 }
1461
1462 /* ARGSUSED */
1463 void
1464 zfs_onexit_fd_rele(int fd)
1465 {
1466 }
1467
1468 /* ARGSUSED */
1469 int
1470 zfs_onexit_add_cb(minor_t minor, void (*func)(void *), void *data,
1471 uint64_t *action_handle)
1472 {
1473 return (0);
1474 }
1475
1476 /* ARGSUSED */
1477 int
1478 zfs_onexit_del_cb(minor_t minor, uint64_t action_handle, boolean_t fire)
1479 {
1480 return (0);
1481 }
1482
1483 /* ARGSUSED */
1484 int
1485 zfs_onexit_cb_data(minor_t minor, uint64_t action_handle, void **data)
1486 {
1487 return (0);
1488 }
1489
1490 fstrans_cookie_t
1491 spl_fstrans_mark(void)
1492 {
1493 return ((fstrans_cookie_t) 0);
1494 }
1495
1496 void
1497 spl_fstrans_unmark(fstrans_cookie_t cookie)
1498 {
1499 }
1500
1501 int
1502 spl_fstrans_check(void)
1503 {
1504 return (0);
1505 }
1506
1507 void *zvol_tag = "zvol_tag";
1508
1509 void
1510 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
1511 {
1512 }
1513
1514 void
1515 zvol_remove_minor(spa_t *spa, const char *name, boolean_t async)
1516 {
1517 }
1518
1519 void
1520 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1521 {
1522 }
1523
1524 void
1525 zvol_rename_minors(spa_t *spa, const char *oldname, const char *newname,
1526 boolean_t async)
1527 {
1528 }