]> git.proxmox.com Git - mirror_zfs.git/blob - man/man5/zfs-module-parameters.5
abd_alloc should use scatter for >1K allocations
[mirror_zfs.git] / man / man5 / zfs-module-parameters.5
1 '\" te
2 .\" Copyright (c) 2013 by Turbo Fredriksson <turbo@bayour.com>. All rights reserved.
3 .\" Copyright (c) 2019 by Delphix. All rights reserved.
4 .\" Copyright (c) 2019 Datto Inc.
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" and Distribution License (the "License"). You may not use this file except
7 .\" in compliance with the License. You can obtain a copy of the license at
8 .\" usr/src/OPENSOLARIS.LICENSE or http://www.opensolaris.org/os/licensing.
9 .\"
10 .\" See the License for the specific language governing permissions and
11 .\" limitations under the License. When distributing Covered Code, include this
12 .\" CDDL HEADER in each file and include the License file at
13 .\" usr/src/OPENSOLARIS.LICENSE. If applicable, add the following below this
14 .\" CDDL HEADER, with the fields enclosed by brackets "[]" replaced with your
15 .\" own identifying information:
16 .\" Portions Copyright [yyyy] [name of copyright owner]
17 .TH ZFS-MODULE-PARAMETERS 5 "Feb 8, 2019"
18 .SH NAME
19 zfs\-module\-parameters \- ZFS module parameters
20 .SH DESCRIPTION
21 .sp
22 .LP
23 Description of the different parameters to the ZFS module.
24
25 .SS "Module parameters"
26 .sp
27 .LP
28
29 .sp
30 .ne 2
31 .na
32 \fBdbuf_cache_max_bytes\fR (ulong)
33 .ad
34 .RS 12n
35 Maximum size in bytes of the dbuf cache. When \fB0\fR this value will default
36 to \fB1/2^dbuf_cache_shift\fR (1/32) of the target ARC size, otherwise the
37 provided value in bytes will be used. The behavior of the dbuf cache and its
38 associated settings can be observed via the \fB/proc/spl/kstat/zfs/dbufstats\fR
39 kstat.
40 .sp
41 Default value: \fB0\fR.
42 .RE
43
44 .sp
45 .ne 2
46 .na
47 \fBdbuf_metadata_cache_max_bytes\fR (ulong)
48 .ad
49 .RS 12n
50 Maximum size in bytes of the metadata dbuf cache. When \fB0\fR this value will
51 default to \fB1/2^dbuf_cache_shift\fR (1/16) of the target ARC size, otherwise
52 the provided value in bytes will be used. The behavior of the metadata dbuf
53 cache and its associated settings can be observed via the
54 \fB/proc/spl/kstat/zfs/dbufstats\fR kstat.
55 .sp
56 Default value: \fB0\fR.
57 .RE
58
59 .sp
60 .ne 2
61 .na
62 \fBdbuf_cache_hiwater_pct\fR (uint)
63 .ad
64 .RS 12n
65 The percentage over \fBdbuf_cache_max_bytes\fR when dbufs must be evicted
66 directly.
67 .sp
68 Default value: \fB10\fR%.
69 .RE
70
71 .sp
72 .ne 2
73 .na
74 \fBdbuf_cache_lowater_pct\fR (uint)
75 .ad
76 .RS 12n
77 The percentage below \fBdbuf_cache_max_bytes\fR when the evict thread stops
78 evicting dbufs.
79 .sp
80 Default value: \fB10\fR%.
81 .RE
82
83 .sp
84 .ne 2
85 .na
86 \fBdbuf_cache_shift\fR (int)
87 .ad
88 .RS 12n
89 Set the size of the dbuf cache, \fBdbuf_cache_max_bytes\fR, to a log2 fraction
90 of the target arc size.
91 .sp
92 Default value: \fB5\fR.
93 .RE
94
95 .sp
96 .ne 2
97 .na
98 \fBdbuf_metadata_cache_shift\fR (int)
99 .ad
100 .RS 12n
101 Set the size of the dbuf metadata cache, \fBdbuf_metadata_cache_max_bytes\fR,
102 to a log2 fraction of the target arc size.
103 .sp
104 Default value: \fB6\fR.
105 .RE
106
107 .sp
108 .ne 2
109 .na
110 \fBignore_hole_birth\fR (int)
111 .ad
112 .RS 12n
113 When set, the hole_birth optimization will not be used, and all holes will
114 always be sent on zfs send. Useful if you suspect your datasets are affected
115 by a bug in hole_birth.
116 .sp
117 Use \fB1\fR for on (default) and \fB0\fR for off.
118 .RE
119
120 .sp
121 .ne 2
122 .na
123 \fBl2arc_feed_again\fR (int)
124 .ad
125 .RS 12n
126 Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as
127 fast as possible.
128 .sp
129 Use \fB1\fR for yes (default) and \fB0\fR to disable.
130 .RE
131
132 .sp
133 .ne 2
134 .na
135 \fBl2arc_feed_min_ms\fR (ulong)
136 .ad
137 .RS 12n
138 Min feed interval in milliseconds. Requires \fBl2arc_feed_again=1\fR and only
139 applicable in related situations.
140 .sp
141 Default value: \fB200\fR.
142 .RE
143
144 .sp
145 .ne 2
146 .na
147 \fBl2arc_feed_secs\fR (ulong)
148 .ad
149 .RS 12n
150 Seconds between L2ARC writing
151 .sp
152 Default value: \fB1\fR.
153 .RE
154
155 .sp
156 .ne 2
157 .na
158 \fBl2arc_headroom\fR (ulong)
159 .ad
160 .RS 12n
161 How far through the ARC lists to search for L2ARC cacheable content, expressed
162 as a multiplier of \fBl2arc_write_max\fR
163 .sp
164 Default value: \fB2\fR.
165 .RE
166
167 .sp
168 .ne 2
169 .na
170 \fBl2arc_headroom_boost\fR (ulong)
171 .ad
172 .RS 12n
173 Scales \fBl2arc_headroom\fR by this percentage when L2ARC contents are being
174 successfully compressed before writing. A value of 100 disables this feature.
175 .sp
176 Default value: \fB200\fR%.
177 .RE
178
179 .sp
180 .ne 2
181 .na
182 \fBl2arc_noprefetch\fR (int)
183 .ad
184 .RS 12n
185 Do not write buffers to L2ARC if they were prefetched but not used by
186 applications
187 .sp
188 Use \fB1\fR for yes (default) and \fB0\fR to disable.
189 .RE
190
191 .sp
192 .ne 2
193 .na
194 \fBl2arc_norw\fR (int)
195 .ad
196 .RS 12n
197 No reads during writes
198 .sp
199 Use \fB1\fR for yes and \fB0\fR for no (default).
200 .RE
201
202 .sp
203 .ne 2
204 .na
205 \fBl2arc_write_boost\fR (ulong)
206 .ad
207 .RS 12n
208 Cold L2ARC devices will have \fBl2arc_write_max\fR increased by this amount
209 while they remain cold.
210 .sp
211 Default value: \fB8,388,608\fR.
212 .RE
213
214 .sp
215 .ne 2
216 .na
217 \fBl2arc_write_max\fR (ulong)
218 .ad
219 .RS 12n
220 Max write bytes per interval
221 .sp
222 Default value: \fB8,388,608\fR.
223 .RE
224
225 .sp
226 .ne 2
227 .na
228 \fBmetaslab_aliquot\fR (ulong)
229 .ad
230 .RS 12n
231 Metaslab granularity, in bytes. This is roughly similar to what would be
232 referred to as the "stripe size" in traditional RAID arrays. In normal
233 operation, ZFS will try to write this amount of data to a top-level vdev
234 before moving on to the next one.
235 .sp
236 Default value: \fB524,288\fR.
237 .RE
238
239 .sp
240 .ne 2
241 .na
242 \fBmetaslab_bias_enabled\fR (int)
243 .ad
244 .RS 12n
245 Enable metaslab group biasing based on its vdev's over- or under-utilization
246 relative to the pool.
247 .sp
248 Use \fB1\fR for yes (default) and \fB0\fR for no.
249 .RE
250
251 .sp
252 .ne 2
253 .na
254 \fBmetaslab_force_ganging\fR (ulong)
255 .ad
256 .RS 12n
257 Make some blocks above a certain size be gang blocks. This option is used
258 by the test suite to facilitate testing.
259 .sp
260 Default value: \fB16,777,217\fR.
261 .RE
262
263 .sp
264 .ne 2
265 .na
266 \fBzfs_metaslab_segment_weight_enabled\fR (int)
267 .ad
268 .RS 12n
269 Enable/disable segment-based metaslab selection.
270 .sp
271 Use \fB1\fR for yes (default) and \fB0\fR for no.
272 .RE
273
274 .sp
275 .ne 2
276 .na
277 \fBzfs_metaslab_switch_threshold\fR (int)
278 .ad
279 .RS 12n
280 When using segment-based metaslab selection, continue allocating
281 from the active metaslab until \fBzfs_metaslab_switch_threshold\fR
282 worth of buckets have been exhausted.
283 .sp
284 Default value: \fB2\fR.
285 .RE
286
287 .sp
288 .ne 2
289 .na
290 \fBmetaslab_debug_load\fR (int)
291 .ad
292 .RS 12n
293 Load all metaslabs during pool import.
294 .sp
295 Use \fB1\fR for yes and \fB0\fR for no (default).
296 .RE
297
298 .sp
299 .ne 2
300 .na
301 \fBmetaslab_debug_unload\fR (int)
302 .ad
303 .RS 12n
304 Prevent metaslabs from being unloaded.
305 .sp
306 Use \fB1\fR for yes and \fB0\fR for no (default).
307 .RE
308
309 .sp
310 .ne 2
311 .na
312 \fBmetaslab_fragmentation_factor_enabled\fR (int)
313 .ad
314 .RS 12n
315 Enable use of the fragmentation metric in computing metaslab weights.
316 .sp
317 Use \fB1\fR for yes (default) and \fB0\fR for no.
318 .RE
319
320 .sp
321 .ne 2
322 .na
323 \fBzfs_vdev_default_ms_count\fR (int)
324 .ad
325 .RS 12n
326 When a vdev is added target this number of metaslabs per top-level vdev.
327 .sp
328 Default value: \fB200\fR.
329 .RE
330
331 .sp
332 .ne 2
333 .na
334 \fBzfs_vdev_min_ms_count\fR (int)
335 .ad
336 .RS 12n
337 Minimum number of metaslabs to create in a top-level vdev.
338 .sp
339 Default value: \fB16\fR.
340 .RE
341
342 .sp
343 .ne 2
344 .na
345 \fBvdev_ms_count_limit\fR (int)
346 .ad
347 .RS 12n
348 Practical upper limit of total metaslabs per top-level vdev.
349 .sp
350 Default value: \fB131,072\fR.
351 .RE
352
353 .sp
354 .ne 2
355 .na
356 \fBmetaslab_preload_enabled\fR (int)
357 .ad
358 .RS 12n
359 Enable metaslab group preloading.
360 .sp
361 Use \fB1\fR for yes (default) and \fB0\fR for no.
362 .RE
363
364 .sp
365 .ne 2
366 .na
367 \fBmetaslab_lba_weighting_enabled\fR (int)
368 .ad
369 .RS 12n
370 Give more weight to metaslabs with lower LBAs, assuming they have
371 greater bandwidth as is typically the case on a modern constant
372 angular velocity disk drive.
373 .sp
374 Use \fB1\fR for yes (default) and \fB0\fR for no.
375 .RE
376
377 .sp
378 .ne 2
379 .na
380 \fBspa_config_path\fR (charp)
381 .ad
382 .RS 12n
383 SPA config file
384 .sp
385 Default value: \fB/etc/zfs/zpool.cache\fR.
386 .RE
387
388 .sp
389 .ne 2
390 .na
391 \fBspa_asize_inflation\fR (int)
392 .ad
393 .RS 12n
394 Multiplication factor used to estimate actual disk consumption from the
395 size of data being written. The default value is a worst case estimate,
396 but lower values may be valid for a given pool depending on its
397 configuration. Pool administrators who understand the factors involved
398 may wish to specify a more realistic inflation factor, particularly if
399 they operate close to quota or capacity limits.
400 .sp
401 Default value: \fB24\fR.
402 .RE
403
404 .sp
405 .ne 2
406 .na
407 \fBspa_load_print_vdev_tree\fR (int)
408 .ad
409 .RS 12n
410 Whether to print the vdev tree in the debugging message buffer during pool import.
411 Use 0 to disable and 1 to enable.
412 .sp
413 Default value: \fB0\fR.
414 .RE
415
416 .sp
417 .ne 2
418 .na
419 \fBspa_load_verify_data\fR (int)
420 .ad
421 .RS 12n
422 Whether to traverse data blocks during an "extreme rewind" (\fB-X\fR)
423 import. Use 0 to disable and 1 to enable.
424
425 An extreme rewind import normally performs a full traversal of all
426 blocks in the pool for verification. If this parameter is set to 0,
427 the traversal skips non-metadata blocks. It can be toggled once the
428 import has started to stop or start the traversal of non-metadata blocks.
429 .sp
430 Default value: \fB1\fR.
431 .RE
432
433 .sp
434 .ne 2
435 .na
436 \fBspa_load_verify_metadata\fR (int)
437 .ad
438 .RS 12n
439 Whether to traverse blocks during an "extreme rewind" (\fB-X\fR)
440 pool import. Use 0 to disable and 1 to enable.
441
442 An extreme rewind import normally performs a full traversal of all
443 blocks in the pool for verification. If this parameter is set to 0,
444 the traversal is not performed. It can be toggled once the import has
445 started to stop or start the traversal.
446 .sp
447 Default value: \fB1\fR.
448 .RE
449
450 .sp
451 .ne 2
452 .na
453 \fBspa_load_verify_maxinflight\fR (int)
454 .ad
455 .RS 12n
456 Maximum concurrent I/Os during the traversal performed during an "extreme
457 rewind" (\fB-X\fR) pool import.
458 .sp
459 Default value: \fB10000\fR.
460 .RE
461
462 .sp
463 .ne 2
464 .na
465 \fBspa_slop_shift\fR (int)
466 .ad
467 .RS 12n
468 Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space
469 in the pool to be consumed. This ensures that we don't run the pool
470 completely out of space, due to unaccounted changes (e.g. to the MOS).
471 It also limits the worst-case time to allocate space. If we have
472 less than this amount of free space, most ZPL operations (e.g. write,
473 create) will return ENOSPC.
474 .sp
475 Default value: \fB5\fR.
476 .RE
477
478 .sp
479 .ne 2
480 .na
481 \fBvdev_removal_max_span\fR (int)
482 .ad
483 .RS 12n
484 During top-level vdev removal, chunks of data are copied from the vdev
485 which may include free space in order to trade bandwidth for IOPS.
486 This parameter determines the maximum span of free space (in bytes)
487 which will be included as "unnecessary" data in a chunk of copied data.
488
489 The default value here was chosen to align with
490 \fBzfs_vdev_read_gap_limit\fR, which is a similar concept when doing
491 regular reads (but there's no reason it has to be the same).
492 .sp
493 Default value: \fB32,768\fR.
494 .RE
495
496 .sp
497 .ne 2
498 .na
499 \fBzfetch_array_rd_sz\fR (ulong)
500 .ad
501 .RS 12n
502 If prefetching is enabled, disable prefetching for reads larger than this size.
503 .sp
504 Default value: \fB1,048,576\fR.
505 .RE
506
507 .sp
508 .ne 2
509 .na
510 \fBzfetch_max_distance\fR (uint)
511 .ad
512 .RS 12n
513 Max bytes to prefetch per stream (default 8MB).
514 .sp
515 Default value: \fB8,388,608\fR.
516 .RE
517
518 .sp
519 .ne 2
520 .na
521 \fBzfetch_max_streams\fR (uint)
522 .ad
523 .RS 12n
524 Max number of streams per zfetch (prefetch streams per file).
525 .sp
526 Default value: \fB8\fR.
527 .RE
528
529 .sp
530 .ne 2
531 .na
532 \fBzfetch_min_sec_reap\fR (uint)
533 .ad
534 .RS 12n
535 Min time before an active prefetch stream can be reclaimed
536 .sp
537 Default value: \fB2\fR.
538 .RE
539
540 .sp
541 .ne 2
542 .na
543 \fBzfs_abd_scatter_min_size\fR (uint)
544 .ad
545 .RS 12n
546 This is the minimum allocation size that will use scatter (page-based)
547 ABD's. Smaller allocations will use linear ABD's.
548 .sp
549 Default value: \fB1536\fR (512B and 1KB allocations will be linear).
550 .RE
551
552 .sp
553 .ne 2
554 .na
555 \fBzfs_arc_dnode_limit\fR (ulong)
556 .ad
557 .RS 12n
558 When the number of bytes consumed by dnodes in the ARC exceeds this number of
559 bytes, try to unpin some of it in response to demand for non-metadata. This
560 value acts as a ceiling to the amount of dnode metadata, and defaults to 0 which
561 indicates that a percent which is based on \fBzfs_arc_dnode_limit_percent\fR of
562 the ARC meta buffers that may be used for dnodes.
563
564 See also \fBzfs_arc_meta_prune\fR which serves a similar purpose but is used
565 when the amount of metadata in the ARC exceeds \fBzfs_arc_meta_limit\fR rather
566 than in response to overall demand for non-metadata.
567
568 .sp
569 Default value: \fB0\fR.
570 .RE
571
572 .sp
573 .ne 2
574 .na
575 \fBzfs_arc_dnode_limit_percent\fR (ulong)
576 .ad
577 .RS 12n
578 Percentage that can be consumed by dnodes of ARC meta buffers.
579 .sp
580 See also \fBzfs_arc_dnode_limit\fR which serves a similar purpose but has a
581 higher priority if set to nonzero value.
582 .sp
583 Default value: \fB10\fR%.
584 .RE
585
586 .sp
587 .ne 2
588 .na
589 \fBzfs_arc_dnode_reduce_percent\fR (ulong)
590 .ad
591 .RS 12n
592 Percentage of ARC dnodes to try to scan in response to demand for non-metadata
593 when the number of bytes consumed by dnodes exceeds \fBzfs_arc_dnode_limit\fR.
594
595 .sp
596 Default value: \fB10\fR% of the number of dnodes in the ARC.
597 .RE
598
599 .sp
600 .ne 2
601 .na
602 \fBzfs_arc_average_blocksize\fR (int)
603 .ad
604 .RS 12n
605 The ARC's buffer hash table is sized based on the assumption of an average
606 block size of \fBzfs_arc_average_blocksize\fR (default 8K). This works out
607 to roughly 1MB of hash table per 1GB of physical memory with 8-byte pointers.
608 For configurations with a known larger average block size this value can be
609 increased to reduce the memory footprint.
610
611 .sp
612 Default value: \fB8192\fR.
613 .RE
614
615 .sp
616 .ne 2
617 .na
618 \fBzfs_arc_evict_batch_limit\fR (int)
619 .ad
620 .RS 12n
621 Number ARC headers to evict per sub-list before proceeding to another sub-list.
622 This batch-style operation prevents entire sub-lists from being evicted at once
623 but comes at a cost of additional unlocking and locking.
624 .sp
625 Default value: \fB10\fR.
626 .RE
627
628 .sp
629 .ne 2
630 .na
631 \fBzfs_arc_grow_retry\fR (int)
632 .ad
633 .RS 12n
634 If set to a non zero value, it will replace the arc_grow_retry value with this value.
635 The arc_grow_retry value (default 5) is the number of seconds the ARC will wait before
636 trying to resume growth after a memory pressure event.
637 .sp
638 Default value: \fB0\fR.
639 .RE
640
641 .sp
642 .ne 2
643 .na
644 \fBzfs_arc_lotsfree_percent\fR (int)
645 .ad
646 .RS 12n
647 Throttle I/O when free system memory drops below this percentage of total
648 system memory. Setting this value to 0 will disable the throttle.
649 .sp
650 Default value: \fB10\fR%.
651 .RE
652
653 .sp
654 .ne 2
655 .na
656 \fBzfs_arc_max\fR (ulong)
657 .ad
658 .RS 12n
659 Max arc size of ARC in bytes. If set to 0 then it will consume 1/2 of system
660 RAM. This value must be at least 67108864 (64 megabytes).
661 .sp
662 This value can be changed dynamically with some caveats. It cannot be set back
663 to 0 while running and reducing it below the current ARC size will not cause
664 the ARC to shrink without memory pressure to induce shrinking.
665 .sp
666 Default value: \fB0\fR.
667 .RE
668
669 .sp
670 .ne 2
671 .na
672 \fBzfs_arc_meta_adjust_restarts\fR (ulong)
673 .ad
674 .RS 12n
675 The number of restart passes to make while scanning the ARC attempting
676 the free buffers in order to stay below the \fBzfs_arc_meta_limit\fR.
677 This value should not need to be tuned but is available to facilitate
678 performance analysis.
679 .sp
680 Default value: \fB4096\fR.
681 .RE
682
683 .sp
684 .ne 2
685 .na
686 \fBzfs_arc_meta_limit\fR (ulong)
687 .ad
688 .RS 12n
689 The maximum allowed size in bytes that meta data buffers are allowed to
690 consume in the ARC. When this limit is reached meta data buffers will
691 be reclaimed even if the overall arc_c_max has not been reached. This
692 value defaults to 0 which indicates that a percent which is based on
693 \fBzfs_arc_meta_limit_percent\fR of the ARC may be used for meta data.
694 .sp
695 This value my be changed dynamically except that it cannot be set back to 0
696 for a specific percent of the ARC; it must be set to an explicit value.
697 .sp
698 Default value: \fB0\fR.
699 .RE
700
701 .sp
702 .ne 2
703 .na
704 \fBzfs_arc_meta_limit_percent\fR (ulong)
705 .ad
706 .RS 12n
707 Percentage of ARC buffers that can be used for meta data.
708
709 See also \fBzfs_arc_meta_limit\fR which serves a similar purpose but has a
710 higher priority if set to nonzero value.
711
712 .sp
713 Default value: \fB75\fR%.
714 .RE
715
716 .sp
717 .ne 2
718 .na
719 \fBzfs_arc_meta_min\fR (ulong)
720 .ad
721 .RS 12n
722 The minimum allowed size in bytes that meta data buffers may consume in
723 the ARC. This value defaults to 0 which disables a floor on the amount
724 of the ARC devoted meta data.
725 .sp
726 Default value: \fB0\fR.
727 .RE
728
729 .sp
730 .ne 2
731 .na
732 \fBzfs_arc_meta_prune\fR (int)
733 .ad
734 .RS 12n
735 The number of dentries and inodes to be scanned looking for entries
736 which can be dropped. This may be required when the ARC reaches the
737 \fBzfs_arc_meta_limit\fR because dentries and inodes can pin buffers
738 in the ARC. Increasing this value will cause to dentry and inode caches
739 to be pruned more aggressively. Setting this value to 0 will disable
740 pruning the inode and dentry caches.
741 .sp
742 Default value: \fB10,000\fR.
743 .RE
744
745 .sp
746 .ne 2
747 .na
748 \fBzfs_arc_meta_strategy\fR (int)
749 .ad
750 .RS 12n
751 Define the strategy for ARC meta data buffer eviction (meta reclaim strategy).
752 A value of 0 (META_ONLY) will evict only the ARC meta data buffers.
753 A value of 1 (BALANCED) indicates that additional data buffers may be evicted if
754 that is required to in order to evict the required number of meta data buffers.
755 .sp
756 Default value: \fB1\fR.
757 .RE
758
759 .sp
760 .ne 2
761 .na
762 \fBzfs_arc_min\fR (ulong)
763 .ad
764 .RS 12n
765 Min arc size of ARC in bytes. If set to 0 then arc_c_min will default to
766 consuming the larger of 32M or 1/32 of total system memory.
767 .sp
768 Default value: \fB0\fR.
769 .RE
770
771 .sp
772 .ne 2
773 .na
774 \fBzfs_arc_min_prefetch_ms\fR (int)
775 .ad
776 .RS 12n
777 Minimum time prefetched blocks are locked in the ARC, specified in ms.
778 A value of \fB0\fR will default to 1000 ms.
779 .sp
780 Default value: \fB0\fR.
781 .RE
782
783 .sp
784 .ne 2
785 .na
786 \fBzfs_arc_min_prescient_prefetch_ms\fR (int)
787 .ad
788 .RS 12n
789 Minimum time "prescient prefetched" blocks are locked in the ARC, specified
790 in ms. These blocks are meant to be prefetched fairly aggresively ahead of
791 the code that may use them. A value of \fB0\fR will default to 6000 ms.
792 .sp
793 Default value: \fB0\fR.
794 .RE
795
796 .sp
797 .ne 2
798 .na
799 \fBzfs_max_missing_tvds\fR (int)
800 .ad
801 .RS 12n
802 Number of missing top-level vdevs which will be allowed during
803 pool import (only in read-only mode).
804 .sp
805 Default value: \fB0\fR
806 .RE
807
808 .sp
809 .ne 2
810 .na
811 \fBzfs_multilist_num_sublists\fR (int)
812 .ad
813 .RS 12n
814 To allow more fine-grained locking, each ARC state contains a series
815 of lists for both data and meta data objects. Locking is performed at
816 the level of these "sub-lists". This parameters controls the number of
817 sub-lists per ARC state, and also applies to other uses of the
818 multilist data structure.
819 .sp
820 Default value: \fB4\fR or the number of online CPUs, whichever is greater
821 .RE
822
823 .sp
824 .ne 2
825 .na
826 \fBzfs_arc_overflow_shift\fR (int)
827 .ad
828 .RS 12n
829 The ARC size is considered to be overflowing if it exceeds the current
830 ARC target size (arc_c) by a threshold determined by this parameter.
831 The threshold is calculated as a fraction of arc_c using the formula
832 "arc_c >> \fBzfs_arc_overflow_shift\fR".
833
834 The default value of 8 causes the ARC to be considered to be overflowing
835 if it exceeds the target size by 1/256th (0.3%) of the target size.
836
837 When the ARC is overflowing, new buffer allocations are stalled until
838 the reclaim thread catches up and the overflow condition no longer exists.
839 .sp
840 Default value: \fB8\fR.
841 .RE
842
843 .sp
844 .ne 2
845 .na
846
847 \fBzfs_arc_p_min_shift\fR (int)
848 .ad
849 .RS 12n
850 If set to a non zero value, this will update arc_p_min_shift (default 4)
851 with the new value.
852 arc_p_min_shift is used to shift of arc_c for calculating both min and max
853 max arc_p
854 .sp
855 Default value: \fB0\fR.
856 .RE
857
858 .sp
859 .ne 2
860 .na
861 \fBzfs_arc_p_dampener_disable\fR (int)
862 .ad
863 .RS 12n
864 Disable arc_p adapt dampener
865 .sp
866 Use \fB1\fR for yes (default) and \fB0\fR to disable.
867 .RE
868
869 .sp
870 .ne 2
871 .na
872 \fBzfs_arc_shrink_shift\fR (int)
873 .ad
874 .RS 12n
875 If set to a non zero value, this will update arc_shrink_shift (default 7)
876 with the new value.
877 .sp
878 Default value: \fB0\fR.
879 .RE
880
881 .sp
882 .ne 2
883 .na
884 \fBzfs_arc_pc_percent\fR (uint)
885 .ad
886 .RS 12n
887 Percent of pagecache to reclaim arc to
888
889 This tunable allows ZFS arc to play more nicely with the kernel's LRU
890 pagecache. It can guarantee that the arc size won't collapse under scanning
891 pressure on the pagecache, yet still allows arc to be reclaimed down to
892 zfs_arc_min if necessary. This value is specified as percent of pagecache
893 size (as measured by NR_FILE_PAGES) where that percent may exceed 100. This
894 only operates during memory pressure/reclaim.
895 .sp
896 Default value: \fB0\fR% (disabled).
897 .RE
898
899 .sp
900 .ne 2
901 .na
902 \fBzfs_arc_sys_free\fR (ulong)
903 .ad
904 .RS 12n
905 The target number of bytes the ARC should leave as free memory on the system.
906 Defaults to the larger of 1/64 of physical memory or 512K. Setting this
907 option to a non-zero value will override the default.
908 .sp
909 Default value: \fB0\fR.
910 .RE
911
912 .sp
913 .ne 2
914 .na
915 \fBzfs_autoimport_disable\fR (int)
916 .ad
917 .RS 12n
918 Disable pool import at module load by ignoring the cache file (typically \fB/etc/zfs/zpool.cache\fR).
919 .sp
920 Use \fB1\fR for yes (default) and \fB0\fR for no.
921 .RE
922
923 .sp
924 .ne 2
925 .na
926 \fBzfs_checksums_per_second\fR (int)
927 .ad
928 .RS 12n
929 Rate limit checksum events to this many per second. Note that this should
930 not be set below the zed thresholds (currently 10 checksums over 10 sec)
931 or else zed may not trigger any action.
932 .sp
933 Default value: 20
934 .RE
935
936 .sp
937 .ne 2
938 .na
939 \fBzfs_commit_timeout_pct\fR (int)
940 .ad
941 .RS 12n
942 This controls the amount of time that a ZIL block (lwb) will remain "open"
943 when it isn't "full", and it has a thread waiting for it to be committed to
944 stable storage. The timeout is scaled based on a percentage of the last lwb
945 latency to avoid significantly impacting the latency of each individual
946 transaction record (itx).
947 .sp
948 Default value: \fB5\fR%.
949 .RE
950
951 .sp
952 .ne 2
953 .na
954 \fBzfs_condense_indirect_vdevs_enable\fR (int)
955 .ad
956 .RS 12n
957 Enable condensing indirect vdev mappings. When set to a non-zero value,
958 attempt to condense indirect vdev mappings if the mapping uses more than
959 \fBzfs_condense_min_mapping_bytes\fR bytes of memory and if the obsolete
960 space map object uses more than \fBzfs_condense_max_obsolete_bytes\fR
961 bytes on-disk. The condensing process is an attempt to save memory by
962 removing obsolete mappings.
963 .sp
964 Default value: \fB1\fR.
965 .RE
966
967 .sp
968 .ne 2
969 .na
970 \fBzfs_condense_max_obsolete_bytes\fR (ulong)
971 .ad
972 .RS 12n
973 Only attempt to condense indirect vdev mappings if the on-disk size
974 of the obsolete space map object is greater than this number of bytes
975 (see \fBfBzfs_condense_indirect_vdevs_enable\fR).
976 .sp
977 Default value: \fB1,073,741,824\fR.
978 .RE
979
980 .sp
981 .ne 2
982 .na
983 \fBzfs_condense_min_mapping_bytes\fR (ulong)
984 .ad
985 .RS 12n
986 Minimum size vdev mapping to attempt to condense (see
987 \fBzfs_condense_indirect_vdevs_enable\fR).
988 .sp
989 Default value: \fB131,072\fR.
990 .RE
991
992 .sp
993 .ne 2
994 .na
995 \fBzfs_dbgmsg_enable\fR (int)
996 .ad
997 .RS 12n
998 Internally ZFS keeps a small log to facilitate debugging. By default the log
999 is disabled, to enable it set this option to 1. The contents of the log can
1000 be accessed by reading the /proc/spl/kstat/zfs/dbgmsg file. Writing 0 to
1001 this proc file clears the log.
1002 .sp
1003 Default value: \fB0\fR.
1004 .RE
1005
1006 .sp
1007 .ne 2
1008 .na
1009 \fBzfs_dbgmsg_maxsize\fR (int)
1010 .ad
1011 .RS 12n
1012 The maximum size in bytes of the internal ZFS debug log.
1013 .sp
1014 Default value: \fB4M\fR.
1015 .RE
1016
1017 .sp
1018 .ne 2
1019 .na
1020 \fBzfs_dbuf_state_index\fR (int)
1021 .ad
1022 .RS 12n
1023 This feature is currently unused. It is normally used for controlling what
1024 reporting is available under /proc/spl/kstat/zfs.
1025 .sp
1026 Default value: \fB0\fR.
1027 .RE
1028
1029 .sp
1030 .ne 2
1031 .na
1032 \fBzfs_deadman_enabled\fR (int)
1033 .ad
1034 .RS 12n
1035 When a pool sync operation takes longer than \fBzfs_deadman_synctime_ms\fR
1036 milliseconds, or when an individual I/O takes longer than
1037 \fBzfs_deadman_ziotime_ms\fR milliseconds, then the operation is considered to
1038 be "hung". If \fBzfs_deadman_enabled\fR is set then the deadman behavior is
1039 invoked as described by the \fBzfs_deadman_failmode\fR module option.
1040 By default the deadman is enabled and configured to \fBwait\fR which results
1041 in "hung" I/Os only being logged. The deadman is automatically disabled
1042 when a pool gets suspended.
1043 .sp
1044 Default value: \fB1\fR.
1045 .RE
1046
1047 .sp
1048 .ne 2
1049 .na
1050 \fBzfs_deadman_failmode\fR (charp)
1051 .ad
1052 .RS 12n
1053 Controls the failure behavior when the deadman detects a "hung" I/O. Valid
1054 values are \fBwait\fR, \fBcontinue\fR, and \fBpanic\fR.
1055 .sp
1056 \fBwait\fR - Wait for a "hung" I/O to complete. For each "hung" I/O a
1057 "deadman" event will be posted describing that I/O.
1058 .sp
1059 \fBcontinue\fR - Attempt to recover from a "hung" I/O by re-dispatching it
1060 to the I/O pipeline if possible.
1061 .sp
1062 \fBpanic\fR - Panic the system. This can be used to facilitate an automatic
1063 fail-over to a properly configured fail-over partner.
1064 .sp
1065 Default value: \fBwait\fR.
1066 .RE
1067
1068 .sp
1069 .ne 2
1070 .na
1071 \fBzfs_deadman_checktime_ms\fR (int)
1072 .ad
1073 .RS 12n
1074 Check time in milliseconds. This defines the frequency at which we check
1075 for hung I/O and potentially invoke the \fBzfs_deadman_failmode\fR behavior.
1076 .sp
1077 Default value: \fB60,000\fR.
1078 .RE
1079
1080 .sp
1081 .ne 2
1082 .na
1083 \fBzfs_deadman_synctime_ms\fR (ulong)
1084 .ad
1085 .RS 12n
1086 Interval in milliseconds after which the deadman is triggered and also
1087 the interval after which a pool sync operation is considered to be "hung".
1088 Once this limit is exceeded the deadman will be invoked every
1089 \fBzfs_deadman_checktime_ms\fR milliseconds until the pool sync completes.
1090 .sp
1091 Default value: \fB600,000\fR.
1092 .RE
1093
1094 .sp
1095 .ne 2
1096 .na
1097 \fBzfs_deadman_ziotime_ms\fR (ulong)
1098 .ad
1099 .RS 12n
1100 Interval in milliseconds after which the deadman is triggered and an
1101 individual I/O operation is considered to be "hung". As long as the I/O
1102 remains "hung" the deadman will be invoked every \fBzfs_deadman_checktime_ms\fR
1103 milliseconds until the I/O completes.
1104 .sp
1105 Default value: \fB300,000\fR.
1106 .RE
1107
1108 .sp
1109 .ne 2
1110 .na
1111 \fBzfs_dedup_prefetch\fR (int)
1112 .ad
1113 .RS 12n
1114 Enable prefetching dedup-ed blks
1115 .sp
1116 Use \fB1\fR for yes and \fB0\fR to disable (default).
1117 .RE
1118
1119 .sp
1120 .ne 2
1121 .na
1122 \fBzfs_delay_min_dirty_percent\fR (int)
1123 .ad
1124 .RS 12n
1125 Start to delay each transaction once there is this amount of dirty data,
1126 expressed as a percentage of \fBzfs_dirty_data_max\fR.
1127 This value should be >= zfs_vdev_async_write_active_max_dirty_percent.
1128 See the section "ZFS TRANSACTION DELAY".
1129 .sp
1130 Default value: \fB60\fR%.
1131 .RE
1132
1133 .sp
1134 .ne 2
1135 .na
1136 \fBzfs_delay_scale\fR (int)
1137 .ad
1138 .RS 12n
1139 This controls how quickly the transaction delay approaches infinity.
1140 Larger values cause longer delays for a given amount of dirty data.
1141 .sp
1142 For the smoothest delay, this value should be about 1 billion divided
1143 by the maximum number of operations per second. This will smoothly
1144 handle between 10x and 1/10th this number.
1145 .sp
1146 See the section "ZFS TRANSACTION DELAY".
1147 .sp
1148 Note: \fBzfs_delay_scale\fR * \fBzfs_dirty_data_max\fR must be < 2^64.
1149 .sp
1150 Default value: \fB500,000\fR.
1151 .RE
1152
1153 .sp
1154 .ne 2
1155 .na
1156 \fBzfs_slow_io_events_per_second\fR (int)
1157 .ad
1158 .RS 12n
1159 Rate limit delay zevents (which report slow I/Os) to this many per second.
1160 .sp
1161 Default value: 20
1162 .RE
1163
1164 .sp
1165 .ne 2
1166 .na
1167 \fBzfs_unlink_suspend_progress\fR (uint)
1168 .ad
1169 .RS 12n
1170 When enabled, files will not be asynchronously removed from the list of pending
1171 unlinks and the space they consume will be leaked. Once this option has been
1172 disabled and the dataset is remounted, the pending unlinks will be processed
1173 and the freed space returned to the pool.
1174 This option is used by the test suite to facilitate testing.
1175 .sp
1176 Uses \fB0\fR (default) to allow progress and \fB1\fR to pause progress.
1177 .RE
1178
1179 .sp
1180 .ne 2
1181 .na
1182 \fBzfs_delete_blocks\fR (ulong)
1183 .ad
1184 .RS 12n
1185 This is the used to define a large file for the purposes of delete. Files
1186 containing more than \fBzfs_delete_blocks\fR will be deleted asynchronously
1187 while smaller files are deleted synchronously. Decreasing this value will
1188 reduce the time spent in an unlink(2) system call at the expense of a longer
1189 delay before the freed space is available.
1190 .sp
1191 Default value: \fB20,480\fR.
1192 .RE
1193
1194 .sp
1195 .ne 2
1196 .na
1197 \fBzfs_dirty_data_max\fR (int)
1198 .ad
1199 .RS 12n
1200 Determines the dirty space limit in bytes. Once this limit is exceeded, new
1201 writes are halted until space frees up. This parameter takes precedence
1202 over \fBzfs_dirty_data_max_percent\fR.
1203 See the section "ZFS TRANSACTION DELAY".
1204 .sp
1205 Default value: \fB10\fR% of physical RAM, capped at \fBzfs_dirty_data_max_max\fR.
1206 .RE
1207
1208 .sp
1209 .ne 2
1210 .na
1211 \fBzfs_dirty_data_max_max\fR (int)
1212 .ad
1213 .RS 12n
1214 Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed in bytes.
1215 This limit is only enforced at module load time, and will be ignored if
1216 \fBzfs_dirty_data_max\fR is later changed. This parameter takes
1217 precedence over \fBzfs_dirty_data_max_max_percent\fR. See the section
1218 "ZFS TRANSACTION DELAY".
1219 .sp
1220 Default value: \fB25\fR% of physical RAM.
1221 .RE
1222
1223 .sp
1224 .ne 2
1225 .na
1226 \fBzfs_dirty_data_max_max_percent\fR (int)
1227 .ad
1228 .RS 12n
1229 Maximum allowable value of \fBzfs_dirty_data_max\fR, expressed as a
1230 percentage of physical RAM. This limit is only enforced at module load
1231 time, and will be ignored if \fBzfs_dirty_data_max\fR is later changed.
1232 The parameter \fBzfs_dirty_data_max_max\fR takes precedence over this
1233 one. See the section "ZFS TRANSACTION DELAY".
1234 .sp
1235 Default value: \fB25\fR%.
1236 .RE
1237
1238 .sp
1239 .ne 2
1240 .na
1241 \fBzfs_dirty_data_max_percent\fR (int)
1242 .ad
1243 .RS 12n
1244 Determines the dirty space limit, expressed as a percentage of all
1245 memory. Once this limit is exceeded, new writes are halted until space frees
1246 up. The parameter \fBzfs_dirty_data_max\fR takes precedence over this
1247 one. See the section "ZFS TRANSACTION DELAY".
1248 .sp
1249 Default value: \fB10\fR%, subject to \fBzfs_dirty_data_max_max\fR.
1250 .RE
1251
1252 .sp
1253 .ne 2
1254 .na
1255 \fBzfs_dirty_data_sync_percent\fR (int)
1256 .ad
1257 .RS 12n
1258 Start syncing out a transaction group if there's at least this much dirty data
1259 as a percentage of \fBzfs_dirty_data_max\fR. This should be less than
1260 \fBzfs_vdev_async_write_active_min_dirty_percent\fR.
1261 .sp
1262 Default value: \fB20\fR% of \fBzfs_dirty_data_max\fR.
1263 .RE
1264
1265 .sp
1266 .ne 2
1267 .na
1268 \fBzfs_fletcher_4_impl\fR (string)
1269 .ad
1270 .RS 12n
1271 Select a fletcher 4 implementation.
1272 .sp
1273 Supported selectors are: \fBfastest\fR, \fBscalar\fR, \fBsse2\fR, \fBssse3\fR,
1274 \fBavx2\fR, \fBavx512f\fR, and \fBaarch64_neon\fR.
1275 All of the selectors except \fBfastest\fR and \fBscalar\fR require instruction
1276 set extensions to be available and will only appear if ZFS detects that they are
1277 present at runtime. If multiple implementations of fletcher 4 are available,
1278 the \fBfastest\fR will be chosen using a micro benchmark. Selecting \fBscalar\fR
1279 results in the original, CPU based calculation, being used. Selecting any option
1280 other than \fBfastest\fR and \fBscalar\fR results in vector instructions from
1281 the respective CPU instruction set being used.
1282 .sp
1283 Default value: \fBfastest\fR.
1284 .RE
1285
1286 .sp
1287 .ne 2
1288 .na
1289 \fBzfs_free_bpobj_enabled\fR (int)
1290 .ad
1291 .RS 12n
1292 Enable/disable the processing of the free_bpobj object.
1293 .sp
1294 Default value: \fB1\fR.
1295 .RE
1296
1297 .sp
1298 .ne 2
1299 .na
1300 \fBzfs_async_block_max_blocks\fR (ulong)
1301 .ad
1302 .RS 12n
1303 Maximum number of blocks freed in a single txg.
1304 .sp
1305 Default value: \fB100,000\fR.
1306 .RE
1307
1308 .sp
1309 .ne 2
1310 .na
1311 \fBzfs_override_estimate_recordsize\fR (ulong)
1312 .ad
1313 .RS 12n
1314 Record size calculation override for zfs send estimates.
1315 .sp
1316 Default value: \fB0\fR.
1317 .RE
1318
1319 .sp
1320 .ne 2
1321 .na
1322 \fBzfs_vdev_async_read_max_active\fR (int)
1323 .ad
1324 .RS 12n
1325 Maximum asynchronous read I/Os active to each device.
1326 See the section "ZFS I/O SCHEDULER".
1327 .sp
1328 Default value: \fB3\fR.
1329 .RE
1330
1331 .sp
1332 .ne 2
1333 .na
1334 \fBzfs_vdev_async_read_min_active\fR (int)
1335 .ad
1336 .RS 12n
1337 Minimum asynchronous read I/Os active to each device.
1338 See the section "ZFS I/O SCHEDULER".
1339 .sp
1340 Default value: \fB1\fR.
1341 .RE
1342
1343 .sp
1344 .ne 2
1345 .na
1346 \fBzfs_vdev_async_write_active_max_dirty_percent\fR (int)
1347 .ad
1348 .RS 12n
1349 When the pool has more than
1350 \fBzfs_vdev_async_write_active_max_dirty_percent\fR dirty data, use
1351 \fBzfs_vdev_async_write_max_active\fR to limit active async writes. If
1352 the dirty data is between min and max, the active I/O limit is linearly
1353 interpolated. See the section "ZFS I/O SCHEDULER".
1354 .sp
1355 Default value: \fB60\fR%.
1356 .RE
1357
1358 .sp
1359 .ne 2
1360 .na
1361 \fBzfs_vdev_async_write_active_min_dirty_percent\fR (int)
1362 .ad
1363 .RS 12n
1364 When the pool has less than
1365 \fBzfs_vdev_async_write_active_min_dirty_percent\fR dirty data, use
1366 \fBzfs_vdev_async_write_min_active\fR to limit active async writes. If
1367 the dirty data is between min and max, the active I/O limit is linearly
1368 interpolated. See the section "ZFS I/O SCHEDULER".
1369 .sp
1370 Default value: \fB30\fR%.
1371 .RE
1372
1373 .sp
1374 .ne 2
1375 .na
1376 \fBzfs_vdev_async_write_max_active\fR (int)
1377 .ad
1378 .RS 12n
1379 Maximum asynchronous write I/Os active to each device.
1380 See the section "ZFS I/O SCHEDULER".
1381 .sp
1382 Default value: \fB10\fR.
1383 .RE
1384
1385 .sp
1386 .ne 2
1387 .na
1388 \fBzfs_vdev_async_write_min_active\fR (int)
1389 .ad
1390 .RS 12n
1391 Minimum asynchronous write I/Os active to each device.
1392 See the section "ZFS I/O SCHEDULER".
1393 .sp
1394 Lower values are associated with better latency on rotational media but poorer
1395 resilver performance. The default value of 2 was chosen as a compromise. A
1396 value of 3 has been shown to improve resilver performance further at a cost of
1397 further increasing latency.
1398 .sp
1399 Default value: \fB2\fR.
1400 .RE
1401
1402 .sp
1403 .ne 2
1404 .na
1405 \fBzfs_vdev_initializing_max_active\fR (int)
1406 .ad
1407 .RS 12n
1408 Maximum initializing I/Os active to each device.
1409 See the section "ZFS I/O SCHEDULER".
1410 .sp
1411 Default value: \fB1\fR.
1412 .RE
1413
1414 .sp
1415 .ne 2
1416 .na
1417 \fBzfs_vdev_initializing_min_active\fR (int)
1418 .ad
1419 .RS 12n
1420 Minimum initializing I/Os active to each device.
1421 See the section "ZFS I/O SCHEDULER".
1422 .sp
1423 Default value: \fB1\fR.
1424 .RE
1425
1426 .sp
1427 .ne 2
1428 .na
1429 \fBzfs_vdev_max_active\fR (int)
1430 .ad
1431 .RS 12n
1432 The maximum number of I/Os active to each device. Ideally, this will be >=
1433 the sum of each queue's max_active. It must be at least the sum of each
1434 queue's min_active. See the section "ZFS I/O SCHEDULER".
1435 .sp
1436 Default value: \fB1,000\fR.
1437 .RE
1438
1439 .sp
1440 .ne 2
1441 .na
1442 \fBzfs_vdev_removal_max_active\fR (int)
1443 .ad
1444 .RS 12n
1445 Maximum removal I/Os active to each device.
1446 See the section "ZFS I/O SCHEDULER".
1447 .sp
1448 Default value: \fB2\fR.
1449 .RE
1450
1451 .sp
1452 .ne 2
1453 .na
1454 \fBzfs_vdev_removal_min_active\fR (int)
1455 .ad
1456 .RS 12n
1457 Minimum removal I/Os active to each device.
1458 See the section "ZFS I/O SCHEDULER".
1459 .sp
1460 Default value: \fB1\fR.
1461 .RE
1462
1463 .sp
1464 .ne 2
1465 .na
1466 \fBzfs_vdev_scrub_max_active\fR (int)
1467 .ad
1468 .RS 12n
1469 Maximum scrub I/Os active to each device.
1470 See the section "ZFS I/O SCHEDULER".
1471 .sp
1472 Default value: \fB2\fR.
1473 .RE
1474
1475 .sp
1476 .ne 2
1477 .na
1478 \fBzfs_vdev_scrub_min_active\fR (int)
1479 .ad
1480 .RS 12n
1481 Minimum scrub I/Os active to each device.
1482 See the section "ZFS I/O SCHEDULER".
1483 .sp
1484 Default value: \fB1\fR.
1485 .RE
1486
1487 .sp
1488 .ne 2
1489 .na
1490 \fBzfs_vdev_sync_read_max_active\fR (int)
1491 .ad
1492 .RS 12n
1493 Maximum synchronous read I/Os active to each device.
1494 See the section "ZFS I/O SCHEDULER".
1495 .sp
1496 Default value: \fB10\fR.
1497 .RE
1498
1499 .sp
1500 .ne 2
1501 .na
1502 \fBzfs_vdev_sync_read_min_active\fR (int)
1503 .ad
1504 .RS 12n
1505 Minimum synchronous read I/Os active to each device.
1506 See the section "ZFS I/O SCHEDULER".
1507 .sp
1508 Default value: \fB10\fR.
1509 .RE
1510
1511 .sp
1512 .ne 2
1513 .na
1514 \fBzfs_vdev_sync_write_max_active\fR (int)
1515 .ad
1516 .RS 12n
1517 Maximum synchronous write I/Os active to each device.
1518 See the section "ZFS I/O SCHEDULER".
1519 .sp
1520 Default value: \fB10\fR.
1521 .RE
1522
1523 .sp
1524 .ne 2
1525 .na
1526 \fBzfs_vdev_sync_write_min_active\fR (int)
1527 .ad
1528 .RS 12n
1529 Minimum synchronous write I/Os active to each device.
1530 See the section "ZFS I/O SCHEDULER".
1531 .sp
1532 Default value: \fB10\fR.
1533 .RE
1534
1535 .sp
1536 .ne 2
1537 .na
1538 \fBzfs_vdev_queue_depth_pct\fR (int)
1539 .ad
1540 .RS 12n
1541 Maximum number of queued allocations per top-level vdev expressed as
1542 a percentage of \fBzfs_vdev_async_write_max_active\fR which allows the
1543 system to detect devices that are more capable of handling allocations
1544 and to allocate more blocks to those devices. It allows for dynamic
1545 allocation distribution when devices are imbalanced as fuller devices
1546 will tend to be slower than empty devices.
1547
1548 See also \fBzio_dva_throttle_enabled\fR.
1549 .sp
1550 Default value: \fB1000\fR%.
1551 .RE
1552
1553 .sp
1554 .ne 2
1555 .na
1556 \fBzfs_expire_snapshot\fR (int)
1557 .ad
1558 .RS 12n
1559 Seconds to expire .zfs/snapshot
1560 .sp
1561 Default value: \fB300\fR.
1562 .RE
1563
1564 .sp
1565 .ne 2
1566 .na
1567 \fBzfs_admin_snapshot\fR (int)
1568 .ad
1569 .RS 12n
1570 Allow the creation, removal, or renaming of entries in the .zfs/snapshot
1571 directory to cause the creation, destruction, or renaming of snapshots.
1572 When enabled this functionality works both locally and over NFS exports
1573 which have the 'no_root_squash' option set. This functionality is disabled
1574 by default.
1575 .sp
1576 Use \fB1\fR for yes and \fB0\fR for no (default).
1577 .RE
1578
1579 .sp
1580 .ne 2
1581 .na
1582 \fBzfs_flags\fR (int)
1583 .ad
1584 .RS 12n
1585 Set additional debugging flags. The following flags may be bitwise-or'd
1586 together.
1587 .sp
1588 .TS
1589 box;
1590 rB lB
1591 lB lB
1592 r l.
1593 Value Symbolic Name
1594 Description
1595 _
1596 1 ZFS_DEBUG_DPRINTF
1597 Enable dprintf entries in the debug log.
1598 _
1599 2 ZFS_DEBUG_DBUF_VERIFY *
1600 Enable extra dbuf verifications.
1601 _
1602 4 ZFS_DEBUG_DNODE_VERIFY *
1603 Enable extra dnode verifications.
1604 _
1605 8 ZFS_DEBUG_SNAPNAMES
1606 Enable snapshot name verification.
1607 _
1608 16 ZFS_DEBUG_MODIFY
1609 Check for illegally modified ARC buffers.
1610 _
1611 64 ZFS_DEBUG_ZIO_FREE
1612 Enable verification of block frees.
1613 _
1614 128 ZFS_DEBUG_HISTOGRAM_VERIFY
1615 Enable extra spacemap histogram verifications.
1616 _
1617 256 ZFS_DEBUG_METASLAB_VERIFY
1618 Verify space accounting on disk matches in-core range_trees.
1619 _
1620 512 ZFS_DEBUG_SET_ERROR
1621 Enable SET_ERROR and dprintf entries in the debug log.
1622 .TE
1623 .sp
1624 * Requires debug build.
1625 .sp
1626 Default value: \fB0\fR.
1627 .RE
1628
1629 .sp
1630 .ne 2
1631 .na
1632 \fBzfs_free_leak_on_eio\fR (int)
1633 .ad
1634 .RS 12n
1635 If destroy encounters an EIO while reading metadata (e.g. indirect
1636 blocks), space referenced by the missing metadata can not be freed.
1637 Normally this causes the background destroy to become "stalled", as
1638 it is unable to make forward progress. While in this stalled state,
1639 all remaining space to free from the error-encountering filesystem is
1640 "temporarily leaked". Set this flag to cause it to ignore the EIO,
1641 permanently leak the space from indirect blocks that can not be read,
1642 and continue to free everything else that it can.
1643
1644 The default, "stalling" behavior is useful if the storage partially
1645 fails (i.e. some but not all i/os fail), and then later recovers. In
1646 this case, we will be able to continue pool operations while it is
1647 partially failed, and when it recovers, we can continue to free the
1648 space, with no leaks. However, note that this case is actually
1649 fairly rare.
1650
1651 Typically pools either (a) fail completely (but perhaps temporarily,
1652 e.g. a top-level vdev going offline), or (b) have localized,
1653 permanent errors (e.g. disk returns the wrong data due to bit flip or
1654 firmware bug). In case (a), this setting does not matter because the
1655 pool will be suspended and the sync thread will not be able to make
1656 forward progress regardless. In case (b), because the error is
1657 permanent, the best we can do is leak the minimum amount of space,
1658 which is what setting this flag will do. Therefore, it is reasonable
1659 for this flag to normally be set, but we chose the more conservative
1660 approach of not setting it, so that there is no possibility of
1661 leaking space in the "partial temporary" failure case.
1662 .sp
1663 Default value: \fB0\fR.
1664 .RE
1665
1666 .sp
1667 .ne 2
1668 .na
1669 \fBzfs_free_min_time_ms\fR (int)
1670 .ad
1671 .RS 12n
1672 During a \fBzfs destroy\fR operation using \fBfeature@async_destroy\fR a minimum
1673 of this much time will be spent working on freeing blocks per txg.
1674 .sp
1675 Default value: \fB1,000\fR.
1676 .RE
1677
1678 .sp
1679 .ne 2
1680 .na
1681 \fBzfs_immediate_write_sz\fR (long)
1682 .ad
1683 .RS 12n
1684 Largest data block to write to zil. Larger blocks will be treated as if the
1685 dataset being written to had the property setting \fBlogbias=throughput\fR.
1686 .sp
1687 Default value: \fB32,768\fR.
1688 .RE
1689
1690 .sp
1691 .ne 2
1692 .na
1693 \fBzfs_initialize_value\fR (ulong)
1694 .ad
1695 .RS 12n
1696 Pattern written to vdev free space by \fBzpool initialize\fR.
1697 .sp
1698 Default value: \fB16,045,690,984,833,335,022\fR (0xdeadbeefdeadbeee).
1699 .RE
1700
1701 .sp
1702 .ne 2
1703 .na
1704 \fBzfs_lua_max_instrlimit\fR (ulong)
1705 .ad
1706 .RS 12n
1707 The maximum execution time limit that can be set for a ZFS channel program,
1708 specified as a number of Lua instructions.
1709 .sp
1710 Default value: \fB100,000,000\fR.
1711 .RE
1712
1713 .sp
1714 .ne 2
1715 .na
1716 \fBzfs_lua_max_memlimit\fR (ulong)
1717 .ad
1718 .RS 12n
1719 The maximum memory limit that can be set for a ZFS channel program, specified
1720 in bytes.
1721 .sp
1722 Default value: \fB104,857,600\fR.
1723 .RE
1724
1725 .sp
1726 .ne 2
1727 .na
1728 \fBzfs_max_dataset_nesting\fR (int)
1729 .ad
1730 .RS 12n
1731 The maximum depth of nested datasets. This value can be tuned temporarily to
1732 fix existing datasets that exceed the predefined limit.
1733 .sp
1734 Default value: \fB50\fR.
1735 .RE
1736
1737 .sp
1738 .ne 2
1739 .na
1740 \fBzfs_max_recordsize\fR (int)
1741 .ad
1742 .RS 12n
1743 We currently support block sizes from 512 bytes to 16MB. The benefits of
1744 larger blocks, and thus larger I/O, need to be weighed against the cost of
1745 COWing a giant block to modify one byte. Additionally, very large blocks
1746 can have an impact on i/o latency, and also potentially on the memory
1747 allocator. Therefore, we do not allow the recordsize to be set larger than
1748 zfs_max_recordsize (default 1MB). Larger blocks can be created by changing
1749 this tunable, and pools with larger blocks can always be imported and used,
1750 regardless of this setting.
1751 .sp
1752 Default value: \fB1,048,576\fR.
1753 .RE
1754
1755 .sp
1756 .ne 2
1757 .na
1758 \fBzfs_metaslab_fragmentation_threshold\fR (int)
1759 .ad
1760 .RS 12n
1761 Allow metaslabs to keep their active state as long as their fragmentation
1762 percentage is less than or equal to this value. An active metaslab that
1763 exceeds this threshold will no longer keep its active status allowing
1764 better metaslabs to be selected.
1765 .sp
1766 Default value: \fB70\fR.
1767 .RE
1768
1769 .sp
1770 .ne 2
1771 .na
1772 \fBzfs_mg_fragmentation_threshold\fR (int)
1773 .ad
1774 .RS 12n
1775 Metaslab groups are considered eligible for allocations if their
1776 fragmentation metric (measured as a percentage) is less than or equal to
1777 this value. If a metaslab group exceeds this threshold then it will be
1778 skipped unless all metaslab groups within the metaslab class have also
1779 crossed this threshold.
1780 .sp
1781 Default value: \fB85\fR.
1782 .RE
1783
1784 .sp
1785 .ne 2
1786 .na
1787 \fBzfs_mg_noalloc_threshold\fR (int)
1788 .ad
1789 .RS 12n
1790 Defines a threshold at which metaslab groups should be eligible for
1791 allocations. The value is expressed as a percentage of free space
1792 beyond which a metaslab group is always eligible for allocations.
1793 If a metaslab group's free space is less than or equal to the
1794 threshold, the allocator will avoid allocating to that group
1795 unless all groups in the pool have reached the threshold. Once all
1796 groups have reached the threshold, all groups are allowed to accept
1797 allocations. The default value of 0 disables the feature and causes
1798 all metaslab groups to be eligible for allocations.
1799
1800 This parameter allows one to deal with pools having heavily imbalanced
1801 vdevs such as would be the case when a new vdev has been added.
1802 Setting the threshold to a non-zero percentage will stop allocations
1803 from being made to vdevs that aren't filled to the specified percentage
1804 and allow lesser filled vdevs to acquire more allocations than they
1805 otherwise would under the old \fBzfs_mg_alloc_failures\fR facility.
1806 .sp
1807 Default value: \fB0\fR.
1808 .RE
1809
1810 .sp
1811 .ne 2
1812 .na
1813 \fBzfs_ddt_data_is_special\fR (int)
1814 .ad
1815 .RS 12n
1816 If enabled, ZFS will place DDT data into the special allocation class.
1817 .sp
1818 Default value: \fB1\fR.
1819 .RE
1820
1821 .sp
1822 .ne 2
1823 .na
1824 \fBzfs_user_indirect_is_special\fR (int)
1825 .ad
1826 .RS 12n
1827 If enabled, ZFS will place user data (both file and zvol) indirect blocks
1828 into the special allocation class.
1829 .sp
1830 Default value: \fB1\fR.
1831 .RE
1832
1833 .sp
1834 .ne 2
1835 .na
1836 \fBzfs_multihost_history\fR (int)
1837 .ad
1838 .RS 12n
1839 Historical statistics for the last N multihost updates will be available in
1840 \fB/proc/spl/kstat/zfs/<pool>/multihost\fR
1841 .sp
1842 Default value: \fB0\fR.
1843 .RE
1844
1845 .sp
1846 .ne 2
1847 .na
1848 \fBzfs_multihost_interval\fR (ulong)
1849 .ad
1850 .RS 12n
1851 Used to control the frequency of multihost writes which are performed when the
1852 \fBmultihost\fR pool property is on. This is one factor used to determine
1853 the length of the activity check during import.
1854 .sp
1855 The multihost write period is \fBzfs_multihost_interval / leaf-vdevs\fR milliseconds.
1856 This means that on average a multihost write will be issued for each leaf vdev every
1857 \fBzfs_multihost_interval\fR milliseconds. In practice, the observed period can
1858 vary with the I/O load and this observed value is the delay which is stored in
1859 the uberblock.
1860 .sp
1861 On import the activity check waits a minimum amount of time determined by
1862 \fBzfs_multihost_interval * zfs_multihost_import_intervals\fR. The activity
1863 check time may be further extended if the value of mmp delay found in the best
1864 uberblock indicates actual multihost updates happened at longer intervals than
1865 \fBzfs_multihost_interval\fR. A minimum value of \fB100ms\fR is enforced.
1866 .sp
1867 Default value: \fB1000\fR.
1868 .RE
1869
1870 .sp
1871 .ne 2
1872 .na
1873 \fBzfs_multihost_import_intervals\fR (uint)
1874 .ad
1875 .RS 12n
1876 Used to control the duration of the activity test on import. Smaller values of
1877 \fBzfs_multihost_import_intervals\fR will reduce the import time but increase
1878 the risk of failing to detect an active pool. The total activity check time is
1879 never allowed to drop below one second. A value of 0 is ignored and treated as
1880 if it was set to 1
1881 .sp
1882 Default value: \fB10\fR.
1883 .RE
1884
1885 .sp
1886 .ne 2
1887 .na
1888 \fBzfs_multihost_fail_intervals\fR (uint)
1889 .ad
1890 .RS 12n
1891 Controls the behavior of the pool when multihost write failures are detected.
1892 .sp
1893 When \fBzfs_multihost_fail_intervals = 0\fR then multihost write failures are ignored.
1894 The failures will still be reported to the ZED which depending on its
1895 configuration may take action such as suspending the pool or offlining a device.
1896 .sp
1897 When \fBzfs_multihost_fail_intervals > 0\fR then sequential multihost write failures
1898 will cause the pool to be suspended. This occurs when
1899 \fBzfs_multihost_fail_intervals * zfs_multihost_interval\fR milliseconds have
1900 passed since the last successful multihost write. This guarantees the activity test
1901 will see multihost writes if the pool is imported.
1902 .sp
1903 Default value: \fB5\fR.
1904 .RE
1905
1906 .sp
1907 .ne 2
1908 .na
1909 \fBzfs_no_scrub_io\fR (int)
1910 .ad
1911 .RS 12n
1912 Set for no scrub I/O. This results in scrubs not actually scrubbing data and
1913 simply doing a metadata crawl of the pool instead.
1914 .sp
1915 Use \fB1\fR for yes and \fB0\fR for no (default).
1916 .RE
1917
1918 .sp
1919 .ne 2
1920 .na
1921 \fBzfs_no_scrub_prefetch\fR (int)
1922 .ad
1923 .RS 12n
1924 Set to disable block prefetching for scrubs.
1925 .sp
1926 Use \fB1\fR for yes and \fB0\fR for no (default).
1927 .RE
1928
1929 .sp
1930 .ne 2
1931 .na
1932 \fBzfs_nocacheflush\fR (int)
1933 .ad
1934 .RS 12n
1935 Disable cache flush operations on disks when writing. Setting this will
1936 cause pool corruption on power loss if a volatile out-of-order write cache
1937 is enabled.
1938 .sp
1939 Use \fB1\fR for yes and \fB0\fR for no (default).
1940 .RE
1941
1942 .sp
1943 .ne 2
1944 .na
1945 \fBzfs_nopwrite_enabled\fR (int)
1946 .ad
1947 .RS 12n
1948 Enable NOP writes
1949 .sp
1950 Use \fB1\fR for yes (default) and \fB0\fR to disable.
1951 .RE
1952
1953 .sp
1954 .ne 2
1955 .na
1956 \fBzfs_dmu_offset_next_sync\fR (int)
1957 .ad
1958 .RS 12n
1959 Enable forcing txg sync to find holes. When enabled forces ZFS to act
1960 like prior versions when SEEK_HOLE or SEEK_DATA flags are used, which
1961 when a dnode is dirty causes txg's to be synced so that this data can be
1962 found.
1963 .sp
1964 Use \fB1\fR for yes and \fB0\fR to disable (default).
1965 .RE
1966
1967 .sp
1968 .ne 2
1969 .na
1970 \fBzfs_pd_bytes_max\fR (int)
1971 .ad
1972 .RS 12n
1973 The number of bytes which should be prefetched during a pool traversal
1974 (eg: \fBzfs send\fR or other data crawling operations)
1975 .sp
1976 Default value: \fB52,428,800\fR.
1977 .RE
1978
1979 .sp
1980 .ne 2
1981 .na
1982 \fBzfs_per_txg_dirty_frees_percent \fR (ulong)
1983 .ad
1984 .RS 12n
1985 Tunable to control percentage of dirtied indirect blocks from frees allowed
1986 into one TXG. After this threshold is crossed, additional frees will wait until
1987 the next TXG.
1988 A value of zero will disable this throttle.
1989 .sp
1990 Default value: \fB5\fR, set to \fB0\fR to disable.
1991 .RE
1992
1993 .sp
1994 .ne 2
1995 .na
1996 \fBzfs_prefetch_disable\fR (int)
1997 .ad
1998 .RS 12n
1999 This tunable disables predictive prefetch. Note that it leaves "prescient"
2000 prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
2001 prescient prefetch never issues i/os that end up not being needed, so it
2002 can't hurt performance.
2003 .sp
2004 Use \fB1\fR for yes and \fB0\fR for no (default).
2005 .RE
2006
2007 .sp
2008 .ne 2
2009 .na
2010 \fBzfs_read_chunk_size\fR (long)
2011 .ad
2012 .RS 12n
2013 Bytes to read per chunk
2014 .sp
2015 Default value: \fB1,048,576\fR.
2016 .RE
2017
2018 .sp
2019 .ne 2
2020 .na
2021 \fBzfs_read_history\fR (int)
2022 .ad
2023 .RS 12n
2024 Historical statistics for the last N reads will be available in
2025 \fB/proc/spl/kstat/zfs/<pool>/reads\fR
2026 .sp
2027 Default value: \fB0\fR (no data is kept).
2028 .RE
2029
2030 .sp
2031 .ne 2
2032 .na
2033 \fBzfs_read_history_hits\fR (int)
2034 .ad
2035 .RS 12n
2036 Include cache hits in read history
2037 .sp
2038 Use \fB1\fR for yes and \fB0\fR for no (default).
2039 .RE
2040
2041 .sp
2042 .ne 2
2043 .na
2044 \fBzfs_reconstruct_indirect_combinations_max\fR (int)
2045 .ad
2046 .RS 12na
2047 If an indirect split block contains more than this many possible unique
2048 combinations when being reconstructed, consider it too computationally
2049 expensive to check them all. Instead, try at most
2050 \fBzfs_reconstruct_indirect_combinations_max\fR randomly-selected
2051 combinations each time the block is accessed. This allows all segment
2052 copies to participate fairly in the reconstruction when all combinations
2053 cannot be checked and prevents repeated use of one bad copy.
2054 .sp
2055 Default value: \fB4096\fR.
2056 .RE
2057
2058 .sp
2059 .ne 2
2060 .na
2061 \fBzfs_recover\fR (int)
2062 .ad
2063 .RS 12n
2064 Set to attempt to recover from fatal errors. This should only be used as a
2065 last resort, as it typically results in leaked space, or worse.
2066 .sp
2067 Use \fB1\fR for yes and \fB0\fR for no (default).
2068 .RE
2069
2070 .sp
2071 .ne 2
2072 .na
2073 \fBzfs_removal_ignore_errors\fR (int)
2074 .ad
2075 .RS 12n
2076 .sp
2077 Ignore hard IO errors during device removal. When set, if a device encounters
2078 a hard IO error during the removal process the removal will not be cancelled.
2079 This can result in a normally recoverable block becoming permanently damaged
2080 and is not recommended. This should only be used as a last resort when the
2081 pool cannot be returned to a healthy state prior to removing the device.
2082 .sp
2083 Default value: \fB0\fR.
2084 .RE
2085
2086 .sp
2087 .ne 2
2088 .na
2089 \fBzfs_resilver_min_time_ms\fR (int)
2090 .ad
2091 .RS 12n
2092 Resilvers are processed by the sync thread. While resilvering it will spend
2093 at least this much time working on a resilver between txg flushes.
2094 .sp
2095 Default value: \fB3,000\fR.
2096 .RE
2097
2098 .sp
2099 .ne 2
2100 .na
2101 \fBzfs_scan_ignore_errors\fR (int)
2102 .ad
2103 .RS 12n
2104 If set to a nonzero value, remove the DTL (dirty time list) upon
2105 completion of a pool scan (scrub) even if there were unrepairable
2106 errors. It is intended to be used during pool repair or recovery to
2107 stop resilvering when the pool is next imported.
2108 .sp
2109 Default value: \fB0\fR.
2110 .RE
2111
2112 .sp
2113 .ne 2
2114 .na
2115 \fBzfs_scrub_min_time_ms\fR (int)
2116 .ad
2117 .RS 12n
2118 Scrubs are processed by the sync thread. While scrubbing it will spend
2119 at least this much time working on a scrub between txg flushes.
2120 .sp
2121 Default value: \fB1,000\fR.
2122 .RE
2123
2124 .sp
2125 .ne 2
2126 .na
2127 \fBzfs_scan_checkpoint_intval\fR (int)
2128 .ad
2129 .RS 12n
2130 To preserve progress across reboots the sequential scan algorithm periodically
2131 needs to stop metadata scanning and issue all the verifications I/Os to disk.
2132 The frequency of this flushing is determined by the
2133 \fBzfs_scan_checkpoint_intval\fR tunable.
2134 .sp
2135 Default value: \fB7200\fR seconds (every 2 hours).
2136 .RE
2137
2138 .sp
2139 .ne 2
2140 .na
2141 \fBzfs_scan_fill_weight\fR (int)
2142 .ad
2143 .RS 12n
2144 This tunable affects how scrub and resilver I/O segments are ordered. A higher
2145 number indicates that we care more about how filled in a segment is, while a
2146 lower number indicates we care more about the size of the extent without
2147 considering the gaps within a segment. This value is only tunable upon module
2148 insertion. Changing the value afterwards will have no affect on scrub or
2149 resilver performance.
2150 .sp
2151 Default value: \fB3\fR.
2152 .RE
2153
2154 .sp
2155 .ne 2
2156 .na
2157 \fBzfs_scan_issue_strategy\fR (int)
2158 .ad
2159 .RS 12n
2160 Determines the order that data will be verified while scrubbing or resilvering.
2161 If set to \fB1\fR, data will be verified as sequentially as possible, given the
2162 amount of memory reserved for scrubbing (see \fBzfs_scan_mem_lim_fact\fR). This
2163 may improve scrub performance if the pool's data is very fragmented. If set to
2164 \fB2\fR, the largest mostly-contiguous chunk of found data will be verified
2165 first. By deferring scrubbing of small segments, we may later find adjacent data
2166 to coalesce and increase the segment size. If set to \fB0\fR, zfs will use
2167 strategy \fB1\fR during normal verification and strategy \fB2\fR while taking a
2168 checkpoint.
2169 .sp
2170 Default value: \fB0\fR.
2171 .RE
2172
2173 .sp
2174 .ne 2
2175 .na
2176 \fBzfs_scan_legacy\fR (int)
2177 .ad
2178 .RS 12n
2179 A value of 0 indicates that scrubs and resilvers will gather metadata in
2180 memory before issuing sequential I/O. A value of 1 indicates that the legacy
2181 algorithm will be used where I/O is initiated as soon as it is discovered.
2182 Changing this value to 0 will not affect scrubs or resilvers that are already
2183 in progress.
2184 .sp
2185 Default value: \fB0\fR.
2186 .RE
2187
2188 .sp
2189 .ne 2
2190 .na
2191 \fBzfs_scan_max_ext_gap\fR (int)
2192 .ad
2193 .RS 12n
2194 Indicates the largest gap in bytes between scrub / resilver I/Os that will still
2195 be considered sequential for sorting purposes. Changing this value will not
2196 affect scrubs or resilvers that are already in progress.
2197 .sp
2198 Default value: \fB2097152 (2 MB)\fR.
2199 .RE
2200
2201 .sp
2202 .ne 2
2203 .na
2204 \fBzfs_scan_mem_lim_fact\fR (int)
2205 .ad
2206 .RS 12n
2207 Maximum fraction of RAM used for I/O sorting by sequential scan algorithm.
2208 This tunable determines the hard limit for I/O sorting memory usage.
2209 When the hard limit is reached we stop scanning metadata and start issuing
2210 data verification I/O. This is done until we get below the soft limit.
2211 .sp
2212 Default value: \fB20\fR which is 5% of RAM (1/20).
2213 .RE
2214
2215 .sp
2216 .ne 2
2217 .na
2218 \fBzfs_scan_mem_lim_soft_fact\fR (int)
2219 .ad
2220 .RS 12n
2221 The fraction of the hard limit used to determined the soft limit for I/O sorting
2222 by the sequential scan algorithm. When we cross this limit from bellow no action
2223 is taken. When we cross this limit from above it is because we are issuing
2224 verification I/O. In this case (unless the metadata scan is done) we stop
2225 issuing verification I/O and start scanning metadata again until we get to the
2226 hard limit.
2227 .sp
2228 Default value: \fB20\fR which is 5% of the hard limit (1/20).
2229 .RE
2230
2231 .sp
2232 .ne 2
2233 .na
2234 \fBzfs_scan_vdev_limit\fR (int)
2235 .ad
2236 .RS 12n
2237 Maximum amount of data that can be concurrently issued at once for scrubs and
2238 resilvers per leaf device, given in bytes.
2239 .sp
2240 Default value: \fB41943040\fR.
2241 .RE
2242
2243 .sp
2244 .ne 2
2245 .na
2246 \fBzfs_send_corrupt_data\fR (int)
2247 .ad
2248 .RS 12n
2249 Allow sending of corrupt data (ignore read/checksum errors when sending data)
2250 .sp
2251 Use \fB1\fR for yes and \fB0\fR for no (default).
2252 .RE
2253
2254 .sp
2255 .ne 2
2256 .na
2257 \fBzfs_send_queue_length\fR (int)
2258 .ad
2259 .RS 12n
2260 The maximum number of bytes allowed in the \fBzfs send\fR queue. This value
2261 must be at least twice the maximum block size in use.
2262 .sp
2263 Default value: \fB16,777,216\fR.
2264 .RE
2265
2266 .sp
2267 .ne 2
2268 .na
2269 \fBzfs_recv_queue_length\fR (int)
2270 .ad
2271 .RS 12n
2272 .sp
2273 The maximum number of bytes allowed in the \fBzfs receive\fR queue. This value
2274 must be at least twice the maximum block size in use.
2275 .sp
2276 Default value: \fB16,777,216\fR.
2277 .RE
2278
2279 .sp
2280 .ne 2
2281 .na
2282 \fBzfs_sync_pass_deferred_free\fR (int)
2283 .ad
2284 .RS 12n
2285 Flushing of data to disk is done in passes. Defer frees starting in this pass
2286 .sp
2287 Default value: \fB2\fR.
2288 .RE
2289
2290 .sp
2291 .ne 2
2292 .na
2293 \fBzfs_spa_discard_memory_limit\fR (int)
2294 .ad
2295 .RS 12n
2296 Maximum memory used for prefetching a checkpoint's space map on each
2297 vdev while discarding the checkpoint.
2298 .sp
2299 Default value: \fB16,777,216\fR.
2300 .RE
2301
2302 .sp
2303 .ne 2
2304 .na
2305 \fBzfs_sync_pass_dont_compress\fR (int)
2306 .ad
2307 .RS 12n
2308 Don't compress starting in this pass
2309 .sp
2310 Default value: \fB5\fR.
2311 .RE
2312
2313 .sp
2314 .ne 2
2315 .na
2316 \fBzfs_sync_pass_rewrite\fR (int)
2317 .ad
2318 .RS 12n
2319 Rewrite new block pointers starting in this pass
2320 .sp
2321 Default value: \fB2\fR.
2322 .RE
2323
2324 .sp
2325 .ne 2
2326 .na
2327 \fBzfs_sync_taskq_batch_pct\fR (int)
2328 .ad
2329 .RS 12n
2330 This controls the number of threads used by the dp_sync_taskq. The default
2331 value of 75% will create a maximum of one thread per cpu.
2332 .sp
2333 Default value: \fB75\fR%.
2334 .RE
2335
2336 .sp
2337 .ne 2
2338 .na
2339 \fBzfs_txg_history\fR (int)
2340 .ad
2341 .RS 12n
2342 Historical statistics for the last N txgs will be available in
2343 \fB/proc/spl/kstat/zfs/<pool>/txgs\fR
2344 .sp
2345 Default value: \fB0\fR.
2346 .RE
2347
2348 .sp
2349 .ne 2
2350 .na
2351 \fBzfs_txg_timeout\fR (int)
2352 .ad
2353 .RS 12n
2354 Flush dirty data to disk at least every N seconds (maximum txg duration)
2355 .sp
2356 Default value: \fB5\fR.
2357 .RE
2358
2359 .sp
2360 .ne 2
2361 .na
2362 \fBzfs_vdev_aggregation_limit\fR (int)
2363 .ad
2364 .RS 12n
2365 Max vdev I/O aggregation size
2366 .sp
2367 Default value: \fB131,072\fR.
2368 .RE
2369
2370 .sp
2371 .ne 2
2372 .na
2373 \fBzfs_vdev_cache_bshift\fR (int)
2374 .ad
2375 .RS 12n
2376 Shift size to inflate reads too
2377 .sp
2378 Default value: \fB16\fR (effectively 65536).
2379 .RE
2380
2381 .sp
2382 .ne 2
2383 .na
2384 \fBzfs_vdev_cache_max\fR (int)
2385 .ad
2386 .RS 12n
2387 Inflate reads smaller than this value to meet the \fBzfs_vdev_cache_bshift\fR
2388 size (default 64k).
2389 .sp
2390 Default value: \fB16384\fR.
2391 .RE
2392
2393 .sp
2394 .ne 2
2395 .na
2396 \fBzfs_vdev_cache_size\fR (int)
2397 .ad
2398 .RS 12n
2399 Total size of the per-disk cache in bytes.
2400 .sp
2401 Currently this feature is disabled as it has been found to not be helpful
2402 for performance and in some cases harmful.
2403 .sp
2404 Default value: \fB0\fR.
2405 .RE
2406
2407 .sp
2408 .ne 2
2409 .na
2410 \fBzfs_vdev_mirror_rotating_inc\fR (int)
2411 .ad
2412 .RS 12n
2413 A number by which the balancing algorithm increments the load calculation for
2414 the purpose of selecting the least busy mirror member when an I/O immediately
2415 follows its predecessor on rotational vdevs for the purpose of making decisions
2416 based on load.
2417 .sp
2418 Default value: \fB0\fR.
2419 .RE
2420
2421 .sp
2422 .ne 2
2423 .na
2424 \fBzfs_vdev_mirror_rotating_seek_inc\fR (int)
2425 .ad
2426 .RS 12n
2427 A number by which the balancing algorithm increments the load calculation for
2428 the purpose of selecting the least busy mirror member when an I/O lacks
2429 locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
2430 this that are not immediately following the previous I/O are incremented by
2431 half.
2432 .sp
2433 Default value: \fB5\fR.
2434 .RE
2435
2436 .sp
2437 .ne 2
2438 .na
2439 \fBzfs_vdev_mirror_rotating_seek_offset\fR (int)
2440 .ad
2441 .RS 12n
2442 The maximum distance for the last queued I/O in which the balancing algorithm
2443 considers an I/O to have locality.
2444 See the section "ZFS I/O SCHEDULER".
2445 .sp
2446 Default value: \fB1048576\fR.
2447 .RE
2448
2449 .sp
2450 .ne 2
2451 .na
2452 \fBzfs_vdev_mirror_non_rotating_inc\fR (int)
2453 .ad
2454 .RS 12n
2455 A number by which the balancing algorithm increments the load calculation for
2456 the purpose of selecting the least busy mirror member on non-rotational vdevs
2457 when I/Os do not immediately follow one another.
2458 .sp
2459 Default value: \fB0\fR.
2460 .RE
2461
2462 .sp
2463 .ne 2
2464 .na
2465 \fBzfs_vdev_mirror_non_rotating_seek_inc\fR (int)
2466 .ad
2467 .RS 12n
2468 A number by which the balancing algorithm increments the load calculation for
2469 the purpose of selecting the least busy mirror member when an I/O lacks
2470 locality as defined by the zfs_vdev_mirror_rotating_seek_offset. I/Os within
2471 this that are not immediately following the previous I/O are incremented by
2472 half.
2473 .sp
2474 Default value: \fB1\fR.
2475 .RE
2476
2477 .sp
2478 .ne 2
2479 .na
2480 \fBzfs_vdev_read_gap_limit\fR (int)
2481 .ad
2482 .RS 12n
2483 Aggregate read I/O operations if the gap on-disk between them is within this
2484 threshold.
2485 .sp
2486 Default value: \fB32,768\fR.
2487 .RE
2488
2489 .sp
2490 .ne 2
2491 .na
2492 \fBzfs_vdev_scheduler\fR (charp)
2493 .ad
2494 .RS 12n
2495 Set the Linux I/O scheduler on whole disk vdevs to this scheduler. Valid options
2496 are noop, cfq, bfq & deadline
2497 .sp
2498 Default value: \fBnoop\fR.
2499 .RE
2500
2501 .sp
2502 .ne 2
2503 .na
2504 \fBzfs_vdev_write_gap_limit\fR (int)
2505 .ad
2506 .RS 12n
2507 Aggregate write I/O over gap
2508 .sp
2509 Default value: \fB4,096\fR.
2510 .RE
2511
2512 .sp
2513 .ne 2
2514 .na
2515 \fBzfs_vdev_raidz_impl\fR (string)
2516 .ad
2517 .RS 12n
2518 Parameter for selecting raidz parity implementation to use.
2519
2520 Options marked (always) below may be selected on module load as they are
2521 supported on all systems.
2522 The remaining options may only be set after the module is loaded, as they
2523 are available only if the implementations are compiled in and supported
2524 on the running system.
2525
2526 Once the module is loaded, the content of
2527 /sys/module/zfs/parameters/zfs_vdev_raidz_impl will show available options
2528 with the currently selected one enclosed in [].
2529 Possible options are:
2530 fastest - (always) implementation selected using built-in benchmark
2531 original - (always) original raidz implementation
2532 scalar - (always) scalar raidz implementation
2533 sse2 - implementation using SSE2 instruction set (64bit x86 only)
2534 ssse3 - implementation using SSSE3 instruction set (64bit x86 only)
2535 avx2 - implementation using AVX2 instruction set (64bit x86 only)
2536 avx512f - implementation using AVX512F instruction set (64bit x86 only)
2537 avx512bw - implementation using AVX512F & AVX512BW instruction sets (64bit x86 only)
2538 aarch64_neon - implementation using NEON (Aarch64/64 bit ARMv8 only)
2539 aarch64_neonx2 - implementation using NEON with more unrolling (Aarch64/64 bit ARMv8 only)
2540 .sp
2541 Default value: \fBfastest\fR.
2542 .RE
2543
2544 .sp
2545 .ne 2
2546 .na
2547 \fBzfs_zevent_cols\fR (int)
2548 .ad
2549 .RS 12n
2550 When zevents are logged to the console use this as the word wrap width.
2551 .sp
2552 Default value: \fB80\fR.
2553 .RE
2554
2555 .sp
2556 .ne 2
2557 .na
2558 \fBzfs_zevent_console\fR (int)
2559 .ad
2560 .RS 12n
2561 Log events to the console
2562 .sp
2563 Use \fB1\fR for yes and \fB0\fR for no (default).
2564 .RE
2565
2566 .sp
2567 .ne 2
2568 .na
2569 \fBzfs_zevent_len_max\fR (int)
2570 .ad
2571 .RS 12n
2572 Max event queue length. A value of 0 will result in a calculated value which
2573 increases with the number of CPUs in the system (minimum 64 events). Events
2574 in the queue can be viewed with the \fBzpool events\fR command.
2575 .sp
2576 Default value: \fB0\fR.
2577 .RE
2578
2579 .sp
2580 .ne 2
2581 .na
2582 \fBzfs_zil_clean_taskq_maxalloc\fR (int)
2583 .ad
2584 .RS 12n
2585 The maximum number of taskq entries that are allowed to be cached. When this
2586 limit is exceeded transaction records (itxs) will be cleaned synchronously.
2587 .sp
2588 Default value: \fB1048576\fR.
2589 .RE
2590
2591 .sp
2592 .ne 2
2593 .na
2594 \fBzfs_zil_clean_taskq_minalloc\fR (int)
2595 .ad
2596 .RS 12n
2597 The number of taskq entries that are pre-populated when the taskq is first
2598 created and are immediately available for use.
2599 .sp
2600 Default value: \fB1024\fR.
2601 .RE
2602
2603 .sp
2604 .ne 2
2605 .na
2606 \fBzfs_zil_clean_taskq_nthr_pct\fR (int)
2607 .ad
2608 .RS 12n
2609 This controls the number of threads used by the dp_zil_clean_taskq. The default
2610 value of 100% will create a maximum of one thread per cpu.
2611 .sp
2612 Default value: \fB100\fR%.
2613 .RE
2614
2615 .sp
2616 .ne 2
2617 .na
2618 \fBzil_nocacheflush\fR (int)
2619 .ad
2620 .RS 12n
2621 Disable the cache flush commands that are normally sent to the disk(s) by
2622 the ZIL after an LWB write has completed. Setting this will cause ZIL
2623 corruption on power loss if a volatile out-of-order write cache is enabled.
2624 .sp
2625 Use \fB1\fR for yes and \fB0\fR for no (default).
2626 .RE
2627
2628 .sp
2629 .ne 2
2630 .na
2631 \fBzil_replay_disable\fR (int)
2632 .ad
2633 .RS 12n
2634 Disable intent logging replay. Can be disabled for recovery from corrupted
2635 ZIL
2636 .sp
2637 Use \fB1\fR for yes and \fB0\fR for no (default).
2638 .RE
2639
2640 .sp
2641 .ne 2
2642 .na
2643 \fBzil_slog_bulk\fR (ulong)
2644 .ad
2645 .RS 12n
2646 Limit SLOG write size per commit executed with synchronous priority.
2647 Any writes above that will be executed with lower (asynchronous) priority
2648 to limit potential SLOG device abuse by single active ZIL writer.
2649 .sp
2650 Default value: \fB786,432\fR.
2651 .RE
2652
2653 .sp
2654 .ne 2
2655 .na
2656 \fBzio_deadman_log_all\fR (int)
2657 .ad
2658 .RS 12n
2659 If non-zero, the zio deadman will produce debugging messages (see
2660 \fBzfs_dbgmsg_enable\fR) for all zios, rather than only for leaf
2661 zios possessing a vdev. This is meant to be used by developers to gain
2662 diagnostic information for hang conditions which don't involve a mutex
2663 or other locking primitive; typically conditions in which a thread in
2664 the zio pipeline is looping indefinitely.
2665 .sp
2666 Default value: \fB0\fR.
2667 .RE
2668
2669 .sp
2670 .ne 2
2671 .na
2672 \fBzio_decompress_fail_fraction\fR (int)
2673 .ad
2674 .RS 12n
2675 If non-zero, this value represents the denominator of the probability that zfs
2676 should induce a decompression failure. For instance, for a 5% decompression
2677 failure rate, this value should be set to 20.
2678 .sp
2679 Default value: \fB0\fR.
2680 .RE
2681
2682 .sp
2683 .ne 2
2684 .na
2685 \fBzio_slow_io_ms\fR (int)
2686 .ad
2687 .RS 12n
2688 When an I/O operation takes more than \fBzio_slow_io_ms\fR milliseconds to
2689 complete is marked as a slow I/O. Each slow I/O causes a delay zevent. Slow
2690 I/O counters can be seen with "zpool status -s".
2691
2692 .sp
2693 Default value: \fB30,000\fR.
2694 .RE
2695
2696 .sp
2697 .ne 2
2698 .na
2699 \fBzio_dva_throttle_enabled\fR (int)
2700 .ad
2701 .RS 12n
2702 Throttle block allocations in the I/O pipeline. This allows for
2703 dynamic allocation distribution when devices are imbalanced.
2704 When enabled, the maximum number of pending allocations per top-level vdev
2705 is limited by \fBzfs_vdev_queue_depth_pct\fR.
2706 .sp
2707 Default value: \fB1\fR.
2708 .RE
2709
2710 .sp
2711 .ne 2
2712 .na
2713 \fBzio_requeue_io_start_cut_in_line\fR (int)
2714 .ad
2715 .RS 12n
2716 Prioritize requeued I/O
2717 .sp
2718 Default value: \fB0\fR.
2719 .RE
2720
2721 .sp
2722 .ne 2
2723 .na
2724 \fBzio_taskq_batch_pct\fR (uint)
2725 .ad
2726 .RS 12n
2727 Percentage of online CPUs (or CPU cores, etc) which will run a worker thread
2728 for I/O. These workers are responsible for I/O work such as compression and
2729 checksum calculations. Fractional number of CPUs will be rounded down.
2730 .sp
2731 The default value of 75 was chosen to avoid using all CPUs which can result in
2732 latency issues and inconsistent application performance, especially when high
2733 compression is enabled.
2734 .sp
2735 Default value: \fB75\fR.
2736 .RE
2737
2738 .sp
2739 .ne 2
2740 .na
2741 \fBzvol_inhibit_dev\fR (uint)
2742 .ad
2743 .RS 12n
2744 Do not create zvol device nodes. This may slightly improve startup time on
2745 systems with a very large number of zvols.
2746 .sp
2747 Use \fB1\fR for yes and \fB0\fR for no (default).
2748 .RE
2749
2750 .sp
2751 .ne 2
2752 .na
2753 \fBzvol_major\fR (uint)
2754 .ad
2755 .RS 12n
2756 Major number for zvol block devices
2757 .sp
2758 Default value: \fB230\fR.
2759 .RE
2760
2761 .sp
2762 .ne 2
2763 .na
2764 \fBzvol_max_discard_blocks\fR (ulong)
2765 .ad
2766 .RS 12n
2767 Discard (aka TRIM) operations done on zvols will be done in batches of this
2768 many blocks, where block size is determined by the \fBvolblocksize\fR property
2769 of a zvol.
2770 .sp
2771 Default value: \fB16,384\fR.
2772 .RE
2773
2774 .sp
2775 .ne 2
2776 .na
2777 \fBzvol_prefetch_bytes\fR (uint)
2778 .ad
2779 .RS 12n
2780 When adding a zvol to the system prefetch \fBzvol_prefetch_bytes\fR
2781 from the start and end of the volume. Prefetching these regions
2782 of the volume is desirable because they are likely to be accessed
2783 immediately by \fBblkid(8)\fR or by the kernel scanning for a partition
2784 table.
2785 .sp
2786 Default value: \fB131,072\fR.
2787 .RE
2788
2789 .sp
2790 .ne 2
2791 .na
2792 \fBzvol_request_sync\fR (uint)
2793 .ad
2794 .RS 12n
2795 When processing I/O requests for a zvol submit them synchronously. This
2796 effectively limits the queue depth to 1 for each I/O submitter. When set
2797 to 0 requests are handled asynchronously by a thread pool. The number of
2798 requests which can be handled concurrently is controller by \fBzvol_threads\fR.
2799 .sp
2800 Default value: \fB0\fR.
2801 .RE
2802
2803 .sp
2804 .ne 2
2805 .na
2806 \fBzvol_threads\fR (uint)
2807 .ad
2808 .RS 12n
2809 Max number of threads which can handle zvol I/O requests concurrently.
2810 .sp
2811 Default value: \fB32\fR.
2812 .RE
2813
2814 .sp
2815 .ne 2
2816 .na
2817 \fBzvol_volmode\fR (uint)
2818 .ad
2819 .RS 12n
2820 Defines zvol block devices behaviour when \fBvolmode\fR is set to \fBdefault\fR.
2821 Valid values are \fB1\fR (full), \fB2\fR (dev) and \fB3\fR (none).
2822 .sp
2823 Default value: \fB1\fR.
2824 .RE
2825
2826 .sp
2827 .ne 2
2828 .na
2829 \fBzfs_qat_disable\fR (int)
2830 .ad
2831 .RS 12n
2832 This tunable disables qat hardware acceleration for gzip compression and.
2833 AES-GCM encryption. It is available only if qat acceleration is compiled in
2834 and the qat driver is present.
2835 .sp
2836 Use \fB1\fR for yes and \fB0\fR for no (default).
2837 .RE
2838
2839 .SH ZFS I/O SCHEDULER
2840 ZFS issues I/O operations to leaf vdevs to satisfy and complete I/Os.
2841 The I/O scheduler determines when and in what order those operations are
2842 issued. The I/O scheduler divides operations into five I/O classes
2843 prioritized in the following order: sync read, sync write, async read,
2844 async write, and scrub/resilver. Each queue defines the minimum and
2845 maximum number of concurrent operations that may be issued to the
2846 device. In addition, the device has an aggregate maximum,
2847 \fBzfs_vdev_max_active\fR. Note that the sum of the per-queue minimums
2848 must not exceed the aggregate maximum. If the sum of the per-queue
2849 maximums exceeds the aggregate maximum, then the number of active I/Os
2850 may reach \fBzfs_vdev_max_active\fR, in which case no further I/Os will
2851 be issued regardless of whether all per-queue minimums have been met.
2852 .sp
2853 For many physical devices, throughput increases with the number of
2854 concurrent operations, but latency typically suffers. Further, physical
2855 devices typically have a limit at which more concurrent operations have no
2856 effect on throughput or can actually cause it to decrease.
2857 .sp
2858 The scheduler selects the next operation to issue by first looking for an
2859 I/O class whose minimum has not been satisfied. Once all are satisfied and
2860 the aggregate maximum has not been hit, the scheduler looks for classes
2861 whose maximum has not been satisfied. Iteration through the I/O classes is
2862 done in the order specified above. No further operations are issued if the
2863 aggregate maximum number of concurrent operations has been hit or if there
2864 are no operations queued for an I/O class that has not hit its maximum.
2865 Every time an I/O is queued or an operation completes, the I/O scheduler
2866 looks for new operations to issue.
2867 .sp
2868 In general, smaller max_active's will lead to lower latency of synchronous
2869 operations. Larger max_active's may lead to higher overall throughput,
2870 depending on underlying storage.
2871 .sp
2872 The ratio of the queues' max_actives determines the balance of performance
2873 between reads, writes, and scrubs. E.g., increasing
2874 \fBzfs_vdev_scrub_max_active\fR will cause the scrub or resilver to complete
2875 more quickly, but reads and writes to have higher latency and lower throughput.
2876 .sp
2877 All I/O classes have a fixed maximum number of outstanding operations
2878 except for the async write class. Asynchronous writes represent the data
2879 that is committed to stable storage during the syncing stage for
2880 transaction groups. Transaction groups enter the syncing state
2881 periodically so the number of queued async writes will quickly burst up
2882 and then bleed down to zero. Rather than servicing them as quickly as
2883 possible, the I/O scheduler changes the maximum number of active async
2884 write I/Os according to the amount of dirty data in the pool. Since
2885 both throughput and latency typically increase with the number of
2886 concurrent operations issued to physical devices, reducing the
2887 burstiness in the number of concurrent operations also stabilizes the
2888 response time of operations from other -- and in particular synchronous
2889 -- queues. In broad strokes, the I/O scheduler will issue more
2890 concurrent operations from the async write queue as there's more dirty
2891 data in the pool.
2892 .sp
2893 Async Writes
2894 .sp
2895 The number of concurrent operations issued for the async write I/O class
2896 follows a piece-wise linear function defined by a few adjustable points.
2897 .nf
2898
2899 | o---------| <-- zfs_vdev_async_write_max_active
2900 ^ | /^ |
2901 | | / | |
2902 active | / | |
2903 I/O | / | |
2904 count | / | |
2905 | / | |
2906 |-------o | | <-- zfs_vdev_async_write_min_active
2907 0|_______^______|_________|
2908 0% | | 100% of zfs_dirty_data_max
2909 | |
2910 | `-- zfs_vdev_async_write_active_max_dirty_percent
2911 `--------- zfs_vdev_async_write_active_min_dirty_percent
2912
2913 .fi
2914 Until the amount of dirty data exceeds a minimum percentage of the dirty
2915 data allowed in the pool, the I/O scheduler will limit the number of
2916 concurrent operations to the minimum. As that threshold is crossed, the
2917 number of concurrent operations issued increases linearly to the maximum at
2918 the specified maximum percentage of the dirty data allowed in the pool.
2919 .sp
2920 Ideally, the amount of dirty data on a busy pool will stay in the sloped
2921 part of the function between \fBzfs_vdev_async_write_active_min_dirty_percent\fR
2922 and \fBzfs_vdev_async_write_active_max_dirty_percent\fR. If it exceeds the
2923 maximum percentage, this indicates that the rate of incoming data is
2924 greater than the rate that the backend storage can handle. In this case, we
2925 must further throttle incoming writes, as described in the next section.
2926
2927 .SH ZFS TRANSACTION DELAY
2928 We delay transactions when we've determined that the backend storage
2929 isn't able to accommodate the rate of incoming writes.
2930 .sp
2931 If there is already a transaction waiting, we delay relative to when
2932 that transaction will finish waiting. This way the calculated delay time
2933 is independent of the number of threads concurrently executing
2934 transactions.
2935 .sp
2936 If we are the only waiter, wait relative to when the transaction
2937 started, rather than the current time. This credits the transaction for
2938 "time already served", e.g. reading indirect blocks.
2939 .sp
2940 The minimum time for a transaction to take is calculated as:
2941 .nf
2942 min_time = zfs_delay_scale * (dirty - min) / (max - dirty)
2943 min_time is then capped at 100 milliseconds.
2944 .fi
2945 .sp
2946 The delay has two degrees of freedom that can be adjusted via tunables. The
2947 percentage of dirty data at which we start to delay is defined by
2948 \fBzfs_delay_min_dirty_percent\fR. This should typically be at or above
2949 \fBzfs_vdev_async_write_active_max_dirty_percent\fR so that we only start to
2950 delay after writing at full speed has failed to keep up with the incoming write
2951 rate. The scale of the curve is defined by \fBzfs_delay_scale\fR. Roughly speaking,
2952 this variable determines the amount of delay at the midpoint of the curve.
2953 .sp
2954 .nf
2955 delay
2956 10ms +-------------------------------------------------------------*+
2957 | *|
2958 9ms + *+
2959 | *|
2960 8ms + *+
2961 | * |
2962 7ms + * +
2963 | * |
2964 6ms + * +
2965 | * |
2966 5ms + * +
2967 | * |
2968 4ms + * +
2969 | * |
2970 3ms + * +
2971 | * |
2972 2ms + (midpoint) * +
2973 | | ** |
2974 1ms + v *** +
2975 | zfs_delay_scale ----------> ******** |
2976 0 +-------------------------------------*********----------------+
2977 0% <- zfs_dirty_data_max -> 100%
2978 .fi
2979 .sp
2980 Note that since the delay is added to the outstanding time remaining on the
2981 most recent transaction, the delay is effectively the inverse of IOPS.
2982 Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
2983 was chosen such that small changes in the amount of accumulated dirty data
2984 in the first 3/4 of the curve yield relatively small differences in the
2985 amount of delay.
2986 .sp
2987 The effects can be easier to understand when the amount of delay is
2988 represented on a log scale:
2989 .sp
2990 .nf
2991 delay
2992 100ms +-------------------------------------------------------------++
2993 + +
2994 | |
2995 + *+
2996 10ms + *+
2997 + ** +
2998 | (midpoint) ** |
2999 + | ** +
3000 1ms + v **** +
3001 + zfs_delay_scale ----------> ***** +
3002 | **** |
3003 + **** +
3004 100us + ** +
3005 + * +
3006 | * |
3007 + * +
3008 10us + * +
3009 + +
3010 | |
3011 + +
3012 +--------------------------------------------------------------+
3013 0% <- zfs_dirty_data_max -> 100%
3014 .fi
3015 .sp
3016 Note here that only as the amount of dirty data approaches its limit does
3017 the delay start to increase rapidly. The goal of a properly tuned system
3018 should be to keep the amount of dirty data out of that range by first
3019 ensuring that the appropriate limits are set for the I/O scheduler to reach
3020 optimal throughput on the backend storage, and then by changing the value
3021 of \fBzfs_delay_scale\fR to increase the steepness of the curve.