]> git.proxmox.com Git - mirror_zfs.git/blob - module/os/linux/zfs/zvol_os.c
zvol_os: fix compile with blk-mq on Linux 4.x
[mirror_zfs.git] / module / os / linux / zfs / zvol_os.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23 */
24
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
40 #include <cityhash.h>
41
42 #include <linux/blkdev_compat.h>
43 #include <linux/task_io_accounting_ops.h>
44
45 #ifdef HAVE_BLK_MQ
46 #include <linux/blk-mq.h>
47 #endif
48
49 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
50 struct request *rq, boolean_t force_sync);
51
52 static unsigned int zvol_major = ZVOL_MAJOR;
53 static unsigned int zvol_request_sync = 0;
54 static unsigned int zvol_prefetch_bytes = (128 * 1024);
55 static unsigned long zvol_max_discard_blocks = 16384;
56
57 /*
58 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
59 * to utilize more threads for small files but may affect prefetch hits.
60 */
61 #define ZVOL_TASKQ_OFFSET_SHIFT 29
62
63 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
64 static unsigned int zvol_open_timeout_ms = 1000;
65 #endif
66
67 static unsigned int zvol_threads = 0;
68 #ifdef HAVE_BLK_MQ
69 static unsigned int zvol_blk_mq_threads = 0;
70 static unsigned int zvol_blk_mq_actual_threads;
71 static boolean_t zvol_use_blk_mq = B_FALSE;
72
73 /*
74 * The maximum number of volblocksize blocks to process per thread. Typically,
75 * write heavy workloads preform better with higher values here, and read
76 * heavy workloads preform better with lower values, but that's not a hard
77 * and fast rule. It's basically a knob to tune between "less overhead with
78 * less parallelism" and "more overhead, but more parallelism".
79 *
80 * '8' was chosen as a reasonable, balanced, default based off of sequential
81 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
82 */
83 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
84 #endif
85
86 static unsigned int zvol_num_taskqs = 0;
87
88 #ifndef BLKDEV_DEFAULT_RQ
89 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
90 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
91 #endif
92
93 /*
94 * Finalize our BIO or request.
95 */
96 #ifdef HAVE_BLK_MQ
97 #define END_IO(zv, bio, rq, error) do { \
98 if (bio) { \
99 BIO_END_IO(bio, error); \
100 } else { \
101 blk_mq_end_request(rq, errno_to_bi_status(error)); \
102 } \
103 } while (0)
104 #else
105 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
106 #endif
107
108 #ifdef HAVE_BLK_MQ
109 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
110 static unsigned int zvol_actual_blk_mq_queue_depth;
111 #endif
112
113 struct zvol_state_os {
114 struct gendisk *zvo_disk; /* generic disk */
115 struct request_queue *zvo_queue; /* request queue */
116 dev_t zvo_dev; /* device id */
117
118 #ifdef HAVE_BLK_MQ
119 struct blk_mq_tag_set tag_set;
120 #endif
121
122 /* Set from the global 'zvol_use_blk_mq' at zvol load */
123 boolean_t use_blk_mq;
124 };
125
126 typedef struct zv_taskq {
127 uint_t tqs_cnt;
128 taskq_t **tqs_taskq;
129 } zv_taskq_t;
130 static zv_taskq_t zvol_taskqs;
131 static struct ida zvol_ida;
132
133 typedef struct zv_request_stack {
134 zvol_state_t *zv;
135 struct bio *bio;
136 struct request *rq;
137 } zv_request_t;
138
139 typedef struct zv_work {
140 struct request *rq;
141 struct work_struct work;
142 } zv_work_t;
143
144 typedef struct zv_request_task {
145 zv_request_t zvr;
146 taskq_ent_t ent;
147 } zv_request_task_t;
148
149 static zv_request_task_t *
150 zv_request_task_create(zv_request_t zvr)
151 {
152 zv_request_task_t *task;
153 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
154 taskq_init_ent(&task->ent);
155 task->zvr = zvr;
156 return (task);
157 }
158
159 static void
160 zv_request_task_free(zv_request_task_t *task)
161 {
162 kmem_free(task, sizeof (*task));
163 }
164
165 #ifdef HAVE_BLK_MQ
166
167 /*
168 * This is called when a new block multiqueue request comes in. A request
169 * contains one or more BIOs.
170 */
171 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
172 const struct blk_mq_queue_data *bd)
173 {
174 struct request *rq = bd->rq;
175 zvol_state_t *zv = rq->q->queuedata;
176
177 /* Tell the kernel that we are starting to process this request */
178 blk_mq_start_request(rq);
179
180 if (blk_rq_is_passthrough(rq)) {
181 /* Skip non filesystem request */
182 blk_mq_end_request(rq, BLK_STS_IOERR);
183 return (BLK_STS_IOERR);
184 }
185
186 zvol_request_impl(zv, NULL, rq, 0);
187
188 /* Acknowledge to the kernel that we got this request */
189 return (BLK_STS_OK);
190 }
191
192 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
193 .queue_rq = zvol_mq_queue_rq,
194 };
195
196 /* Initialize our blk-mq struct */
197 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
198 {
199 struct zvol_state_os *zso = zv->zv_zso;
200
201 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
202
203 /* Initialize tag set. */
204 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
205 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
206 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
207 zso->tag_set.numa_node = NUMA_NO_NODE;
208 zso->tag_set.cmd_size = 0;
209
210 /*
211 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
212 * zvol_request_impl()
213 */
214 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
215 zso->tag_set.driver_data = zv;
216
217 return (blk_mq_alloc_tag_set(&zso->tag_set));
218 }
219 #endif /* HAVE_BLK_MQ */
220
221 /*
222 * Given a path, return TRUE if path is a ZVOL.
223 */
224 boolean_t
225 zvol_os_is_zvol(const char *path)
226 {
227 dev_t dev = 0;
228
229 if (vdev_lookup_bdev(path, &dev) != 0)
230 return (B_FALSE);
231
232 if (MAJOR(dev) == zvol_major)
233 return (B_TRUE);
234
235 return (B_FALSE);
236 }
237
238 static void
239 zvol_write(zv_request_t *zvr)
240 {
241 struct bio *bio = zvr->bio;
242 struct request *rq = zvr->rq;
243 int error = 0;
244 zfs_uio_t uio;
245 zvol_state_t *zv = zvr->zv;
246 struct request_queue *q;
247 struct gendisk *disk;
248 unsigned long start_time = 0;
249 boolean_t acct = B_FALSE;
250
251 ASSERT3P(zv, !=, NULL);
252 ASSERT3U(zv->zv_open_count, >, 0);
253 ASSERT3P(zv->zv_zilog, !=, NULL);
254
255 q = zv->zv_zso->zvo_queue;
256 disk = zv->zv_zso->zvo_disk;
257
258 /* bio marked as FLUSH need to flush before write */
259 if (io_is_flush(bio, rq))
260 zil_commit(zv->zv_zilog, ZVOL_OBJ);
261
262 /* Some requests are just for flush and nothing else. */
263 if (io_size(bio, rq) == 0) {
264 rw_exit(&zv->zv_suspend_lock);
265 END_IO(zv, bio, rq, 0);
266 return;
267 }
268
269 zfs_uio_bvec_init(&uio, bio, rq);
270
271 ssize_t start_resid = uio.uio_resid;
272
273 /*
274 * With use_blk_mq, accounting is done by blk_mq_start_request()
275 * and blk_mq_end_request(), so we can skip it here.
276 */
277 if (bio) {
278 acct = blk_queue_io_stat(q);
279 if (acct) {
280 start_time = blk_generic_start_io_acct(q, disk, WRITE,
281 bio);
282 }
283 }
284
285 boolean_t sync =
286 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
287
288 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
289 uio.uio_loffset, uio.uio_resid, RL_WRITER);
290
291 uint64_t volsize = zv->zv_volsize;
292 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
293 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
294 uint64_t off = uio.uio_loffset;
295 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
296
297 if (bytes > volsize - off) /* don't write past the end */
298 bytes = volsize - off;
299
300 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
301
302 /* This will only fail for ENOSPC */
303 error = dmu_tx_assign(tx, TXG_WAIT);
304 if (error) {
305 dmu_tx_abort(tx);
306 break;
307 }
308 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
309 if (error == 0) {
310 zvol_log_write(zv, tx, off, bytes, sync);
311 }
312 dmu_tx_commit(tx);
313
314 if (error)
315 break;
316 }
317 zfs_rangelock_exit(lr);
318
319 int64_t nwritten = start_resid - uio.uio_resid;
320 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
321 task_io_account_write(nwritten);
322
323 if (sync)
324 zil_commit(zv->zv_zilog, ZVOL_OBJ);
325
326 rw_exit(&zv->zv_suspend_lock);
327
328 if (bio && acct) {
329 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
330 }
331
332 END_IO(zv, bio, rq, -error);
333 }
334
335 static void
336 zvol_write_task(void *arg)
337 {
338 zv_request_task_t *task = arg;
339 zvol_write(&task->zvr);
340 zv_request_task_free(task);
341 }
342
343 static void
344 zvol_discard(zv_request_t *zvr)
345 {
346 struct bio *bio = zvr->bio;
347 struct request *rq = zvr->rq;
348 zvol_state_t *zv = zvr->zv;
349 uint64_t start = io_offset(bio, rq);
350 uint64_t size = io_size(bio, rq);
351 uint64_t end = start + size;
352 boolean_t sync;
353 int error = 0;
354 dmu_tx_t *tx;
355 struct request_queue *q = zv->zv_zso->zvo_queue;
356 struct gendisk *disk = zv->zv_zso->zvo_disk;
357 unsigned long start_time = 0;
358 boolean_t acct = B_FALSE;
359
360 ASSERT3P(zv, !=, NULL);
361 ASSERT3U(zv->zv_open_count, >, 0);
362 ASSERT3P(zv->zv_zilog, !=, NULL);
363
364 if (bio) {
365 acct = blk_queue_io_stat(q);
366 if (acct) {
367 start_time = blk_generic_start_io_acct(q, disk, WRITE,
368 bio);
369 }
370 }
371
372 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
373
374 if (end > zv->zv_volsize) {
375 error = SET_ERROR(EIO);
376 goto unlock;
377 }
378
379 /*
380 * Align the request to volume block boundaries when a secure erase is
381 * not required. This will prevent dnode_free_range() from zeroing out
382 * the unaligned parts which is slow (read-modify-write) and useless
383 * since we are not freeing any space by doing so.
384 */
385 if (!io_is_secure_erase(bio, rq)) {
386 start = P2ROUNDUP(start, zv->zv_volblocksize);
387 end = P2ALIGN(end, zv->zv_volblocksize);
388 size = end - start;
389 }
390
391 if (start >= end)
392 goto unlock;
393
394 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
395 start, size, RL_WRITER);
396
397 tx = dmu_tx_create(zv->zv_objset);
398 dmu_tx_mark_netfree(tx);
399 error = dmu_tx_assign(tx, TXG_WAIT);
400 if (error != 0) {
401 dmu_tx_abort(tx);
402 } else {
403 zvol_log_truncate(zv, tx, start, size);
404 dmu_tx_commit(tx);
405 error = dmu_free_long_range(zv->zv_objset,
406 ZVOL_OBJ, start, size);
407 }
408 zfs_rangelock_exit(lr);
409
410 if (error == 0 && sync)
411 zil_commit(zv->zv_zilog, ZVOL_OBJ);
412
413 unlock:
414 rw_exit(&zv->zv_suspend_lock);
415
416 if (bio && acct) {
417 blk_generic_end_io_acct(q, disk, WRITE, bio,
418 start_time);
419 }
420
421 END_IO(zv, bio, rq, -error);
422 }
423
424 static void
425 zvol_discard_task(void *arg)
426 {
427 zv_request_task_t *task = arg;
428 zvol_discard(&task->zvr);
429 zv_request_task_free(task);
430 }
431
432 static void
433 zvol_read(zv_request_t *zvr)
434 {
435 struct bio *bio = zvr->bio;
436 struct request *rq = zvr->rq;
437 int error = 0;
438 zfs_uio_t uio;
439 boolean_t acct = B_FALSE;
440 zvol_state_t *zv = zvr->zv;
441 struct request_queue *q;
442 struct gendisk *disk;
443 unsigned long start_time = 0;
444
445 ASSERT3P(zv, !=, NULL);
446 ASSERT3U(zv->zv_open_count, >, 0);
447
448 zfs_uio_bvec_init(&uio, bio, rq);
449
450 q = zv->zv_zso->zvo_queue;
451 disk = zv->zv_zso->zvo_disk;
452
453 ssize_t start_resid = uio.uio_resid;
454
455 /*
456 * When blk-mq is being used, accounting is done by
457 * blk_mq_start_request() and blk_mq_end_request().
458 */
459 if (bio) {
460 acct = blk_queue_io_stat(q);
461 if (acct)
462 start_time = blk_generic_start_io_acct(q, disk, READ,
463 bio);
464 }
465
466 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
467 uio.uio_loffset, uio.uio_resid, RL_READER);
468
469 uint64_t volsize = zv->zv_volsize;
470
471 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
472 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
473
474 /* don't read past the end */
475 if (bytes > volsize - uio.uio_loffset)
476 bytes = volsize - uio.uio_loffset;
477
478 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
479 if (error) {
480 /* convert checksum errors into IO errors */
481 if (error == ECKSUM)
482 error = SET_ERROR(EIO);
483 break;
484 }
485 }
486 zfs_rangelock_exit(lr);
487
488 int64_t nread = start_resid - uio.uio_resid;
489 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
490 task_io_account_read(nread);
491
492 rw_exit(&zv->zv_suspend_lock);
493
494 if (bio && acct) {
495 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
496 }
497
498 END_IO(zv, bio, rq, -error);
499 }
500
501 static void
502 zvol_read_task(void *arg)
503 {
504 zv_request_task_t *task = arg;
505 zvol_read(&task->zvr);
506 zv_request_task_free(task);
507 }
508
509
510 /*
511 * Process a BIO or request
512 *
513 * Either 'bio' or 'rq' should be set depending on if we are processing a
514 * bio or a request (both should not be set).
515 *
516 * force_sync: Set to 0 to defer processing to a background taskq
517 * Set to 1 to process data synchronously
518 */
519 static void
520 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
521 boolean_t force_sync)
522 {
523 fstrans_cookie_t cookie = spl_fstrans_mark();
524 uint64_t offset = io_offset(bio, rq);
525 uint64_t size = io_size(bio, rq);
526 int rw = io_data_dir(bio, rq);
527
528 if (zvol_request_sync || zv->zv_threading == B_FALSE)
529 force_sync = 1;
530
531 zv_request_t zvr = {
532 .zv = zv,
533 .bio = bio,
534 .rq = rq,
535 };
536
537 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
538 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
539 zv->zv_zso->zvo_disk->disk_name,
540 (long long unsigned)offset,
541 (long unsigned)size);
542
543 END_IO(zv, bio, rq, -SET_ERROR(EIO));
544 goto out;
545 }
546
547 zv_request_task_t *task;
548 zv_taskq_t *ztqs = &zvol_taskqs;
549 uint_t blk_mq_hw_queue = 0;
550 uint_t tq_idx;
551 uint_t taskq_hash;
552 #ifdef HAVE_BLK_MQ
553 if (rq)
554 #ifdef HAVE_BLK_MQ_RQ_HCTX
555 blk_mq_hw_queue = rq->mq_hctx->queue_num;
556 #else
557 blk_mq_hw_queue =
558 rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
559 #endif
560 #endif
561 taskq_hash = cityhash4((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
562 blk_mq_hw_queue, 0);
563 tq_idx = taskq_hash % ztqs->tqs_cnt;
564
565 if (rw == WRITE) {
566 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
567 END_IO(zv, bio, rq, -SET_ERROR(EROFS));
568 goto out;
569 }
570
571 /*
572 * Prevents the zvol from being suspended, or the ZIL being
573 * concurrently opened. Will be released after the i/o
574 * completes.
575 */
576 rw_enter(&zv->zv_suspend_lock, RW_READER);
577
578 /*
579 * Open a ZIL if this is the first time we have written to this
580 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
581 * than zv_state_lock so that we don't need to acquire an
582 * additional lock in this path.
583 */
584 if (zv->zv_zilog == NULL) {
585 rw_exit(&zv->zv_suspend_lock);
586 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
587 if (zv->zv_zilog == NULL) {
588 zv->zv_zilog = zil_open(zv->zv_objset,
589 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
590 zv->zv_flags |= ZVOL_WRITTEN_TO;
591 /* replay / destroy done in zvol_create_minor */
592 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
593 ZIL_REPLAY_NEEDED));
594 }
595 rw_downgrade(&zv->zv_suspend_lock);
596 }
597
598 /*
599 * We don't want this thread to be blocked waiting for i/o to
600 * complete, so we instead wait from a taskq callback. The
601 * i/o may be a ZIL write (via zil_commit()), or a read of an
602 * indirect block, or a read of a data block (if this is a
603 * partial-block write). We will indicate that the i/o is
604 * complete by calling END_IO() from the taskq callback.
605 *
606 * This design allows the calling thread to continue and
607 * initiate more concurrent operations by calling
608 * zvol_request() again. There are typically only a small
609 * number of threads available to call zvol_request() (e.g.
610 * one per iSCSI target), so keeping the latency of
611 * zvol_request() low is important for performance.
612 *
613 * The zvol_request_sync module parameter allows this
614 * behavior to be altered, for performance evaluation
615 * purposes. If the callback blocks, setting
616 * zvol_request_sync=1 will result in much worse performance.
617 *
618 * We can have up to zvol_threads concurrent i/o's being
619 * processed for all zvols on the system. This is typically
620 * a vast improvement over the zvol_request_sync=1 behavior
621 * of one i/o at a time per zvol. However, an even better
622 * design would be for zvol_request() to initiate the zio
623 * directly, and then be notified by the zio_done callback,
624 * which would call END_IO(). Unfortunately, the DMU/ZIL
625 * interfaces lack this functionality (they block waiting for
626 * the i/o to complete).
627 */
628 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
629 if (force_sync) {
630 zvol_discard(&zvr);
631 } else {
632 task = zv_request_task_create(zvr);
633 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
634 zvol_discard_task, task, 0, &task->ent);
635 }
636 } else {
637 if (force_sync) {
638 zvol_write(&zvr);
639 } else {
640 task = zv_request_task_create(zvr);
641 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
642 zvol_write_task, task, 0, &task->ent);
643 }
644 }
645 } else {
646 /*
647 * The SCST driver, and possibly others, may issue READ I/Os
648 * with a length of zero bytes. These empty I/Os contain no
649 * data and require no additional handling.
650 */
651 if (size == 0) {
652 END_IO(zv, bio, rq, 0);
653 goto out;
654 }
655
656 rw_enter(&zv->zv_suspend_lock, RW_READER);
657
658 /* See comment in WRITE case above. */
659 if (force_sync) {
660 zvol_read(&zvr);
661 } else {
662 task = zv_request_task_create(zvr);
663 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
664 zvol_read_task, task, 0, &task->ent);
665 }
666 }
667
668 out:
669 spl_fstrans_unmark(cookie);
670 }
671
672 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
673 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
674 static void
675 zvol_submit_bio(struct bio *bio)
676 #else
677 static blk_qc_t
678 zvol_submit_bio(struct bio *bio)
679 #endif
680 #else
681 static MAKE_REQUEST_FN_RET
682 zvol_request(struct request_queue *q, struct bio *bio)
683 #endif
684 {
685 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
686 #if defined(HAVE_BIO_BDEV_DISK)
687 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
688 #else
689 struct request_queue *q = bio->bi_disk->queue;
690 #endif
691 #endif
692 zvol_state_t *zv = q->queuedata;
693
694 zvol_request_impl(zv, bio, NULL, 0);
695 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
696 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
697 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
698 return (BLK_QC_T_NONE);
699 #endif
700 }
701
702 static int
703 #ifdef HAVE_BLK_MODE_T
704 zvol_open(struct gendisk *disk, blk_mode_t flag)
705 #else
706 zvol_open(struct block_device *bdev, fmode_t flag)
707 #endif
708 {
709 zvol_state_t *zv;
710 int error = 0;
711 boolean_t drop_suspend = B_FALSE;
712 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
713 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
714 hrtime_t start = gethrtime();
715
716 retry:
717 #endif
718 rw_enter(&zvol_state_lock, RW_READER);
719 /*
720 * Obtain a copy of private_data under the zvol_state_lock to make
721 * sure that either the result of zvol free code path setting
722 * disk->private_data to NULL is observed, or zvol_os_free()
723 * is not called on this zv because of the positive zv_open_count.
724 */
725 #ifdef HAVE_BLK_MODE_T
726 zv = disk->private_data;
727 #else
728 zv = bdev->bd_disk->private_data;
729 #endif
730 if (zv == NULL) {
731 rw_exit(&zvol_state_lock);
732 return (SET_ERROR(-ENXIO));
733 }
734
735 mutex_enter(&zv->zv_state_lock);
736 /*
737 * Make sure zvol is not suspended during first open
738 * (hold zv_suspend_lock) and respect proper lock acquisition
739 * ordering - zv_suspend_lock before zv_state_lock
740 */
741 if (zv->zv_open_count == 0) {
742 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
743 mutex_exit(&zv->zv_state_lock);
744 rw_enter(&zv->zv_suspend_lock, RW_READER);
745 mutex_enter(&zv->zv_state_lock);
746 /* check to see if zv_suspend_lock is needed */
747 if (zv->zv_open_count != 0) {
748 rw_exit(&zv->zv_suspend_lock);
749 } else {
750 drop_suspend = B_TRUE;
751 }
752 } else {
753 drop_suspend = B_TRUE;
754 }
755 }
756 rw_exit(&zvol_state_lock);
757
758 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
759
760 if (zv->zv_open_count == 0) {
761 boolean_t drop_namespace = B_FALSE;
762
763 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
764
765 /*
766 * In all other call paths the spa_namespace_lock is taken
767 * before the bdev->bd_mutex lock. However, on open(2)
768 * the __blkdev_get() function calls fops->open() with the
769 * bdev->bd_mutex lock held. This can result in a deadlock
770 * when zvols from one pool are used as vdevs in another.
771 *
772 * To prevent a lock inversion deadlock we preemptively
773 * take the spa_namespace_lock. Normally the lock will not
774 * be contended and this is safe because spa_open_common()
775 * handles the case where the caller already holds the
776 * spa_namespace_lock.
777 *
778 * When the lock cannot be aquired after multiple retries
779 * this must be the vdev on zvol deadlock case and we have
780 * no choice but to return an error. For 5.12 and older
781 * kernels returning -ERESTARTSYS will result in the
782 * bdev->bd_mutex being dropped, then reacquired, and
783 * fops->open() being called again. This process can be
784 * repeated safely until both locks are acquired. For 5.13
785 * and newer the -ERESTARTSYS retry logic was removed from
786 * the kernel so the only option is to return the error for
787 * the caller to handle it.
788 */
789 if (!mutex_owned(&spa_namespace_lock)) {
790 if (!mutex_tryenter(&spa_namespace_lock)) {
791 mutex_exit(&zv->zv_state_lock);
792 rw_exit(&zv->zv_suspend_lock);
793
794 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
795 schedule();
796 return (SET_ERROR(-ERESTARTSYS));
797 #else
798 if ((gethrtime() - start) > timeout)
799 return (SET_ERROR(-ERESTARTSYS));
800
801 schedule_timeout(MSEC_TO_TICK(10));
802 goto retry;
803 #endif
804 } else {
805 drop_namespace = B_TRUE;
806 }
807 }
808
809 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
810
811 if (drop_namespace)
812 mutex_exit(&spa_namespace_lock);
813 }
814
815 if (error == 0) {
816 if ((blk_mode_is_open_write(flag)) &&
817 (zv->zv_flags & ZVOL_RDONLY)) {
818 if (zv->zv_open_count == 0)
819 zvol_last_close(zv);
820
821 error = SET_ERROR(-EROFS);
822 } else {
823 zv->zv_open_count++;
824 }
825 }
826
827 mutex_exit(&zv->zv_state_lock);
828 if (drop_suspend)
829 rw_exit(&zv->zv_suspend_lock);
830
831 if (error == 0)
832 #ifdef HAVE_BLK_MODE_T
833 disk_check_media_change(disk);
834 #else
835 zfs_check_media_change(bdev);
836 #endif
837
838 return (error);
839 }
840
841 static void
842 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
843 zvol_release(struct gendisk *disk)
844 #else
845 zvol_release(struct gendisk *disk, fmode_t unused)
846 #endif
847 {
848 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
849 (void) unused;
850 #endif
851 zvol_state_t *zv;
852 boolean_t drop_suspend = B_TRUE;
853
854 rw_enter(&zvol_state_lock, RW_READER);
855 zv = disk->private_data;
856
857 mutex_enter(&zv->zv_state_lock);
858 ASSERT3U(zv->zv_open_count, >, 0);
859 /*
860 * make sure zvol is not suspended during last close
861 * (hold zv_suspend_lock) and respect proper lock acquisition
862 * ordering - zv_suspend_lock before zv_state_lock
863 */
864 if (zv->zv_open_count == 1) {
865 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
866 mutex_exit(&zv->zv_state_lock);
867 rw_enter(&zv->zv_suspend_lock, RW_READER);
868 mutex_enter(&zv->zv_state_lock);
869 /* check to see if zv_suspend_lock is needed */
870 if (zv->zv_open_count != 1) {
871 rw_exit(&zv->zv_suspend_lock);
872 drop_suspend = B_FALSE;
873 }
874 }
875 } else {
876 drop_suspend = B_FALSE;
877 }
878 rw_exit(&zvol_state_lock);
879
880 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
881
882 zv->zv_open_count--;
883 if (zv->zv_open_count == 0) {
884 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
885 zvol_last_close(zv);
886 }
887
888 mutex_exit(&zv->zv_state_lock);
889
890 if (drop_suspend)
891 rw_exit(&zv->zv_suspend_lock);
892 }
893
894 static int
895 zvol_ioctl(struct block_device *bdev, fmode_t mode,
896 unsigned int cmd, unsigned long arg)
897 {
898 zvol_state_t *zv = bdev->bd_disk->private_data;
899 int error = 0;
900
901 ASSERT3U(zv->zv_open_count, >, 0);
902
903 switch (cmd) {
904 case BLKFLSBUF:
905 #ifdef HAVE_FSYNC_BDEV
906 fsync_bdev(bdev);
907 #elif defined(HAVE_SYNC_BLOCKDEV)
908 sync_blockdev(bdev);
909 #else
910 #error "Neither fsync_bdev() nor sync_blockdev() found"
911 #endif
912 invalidate_bdev(bdev);
913 rw_enter(&zv->zv_suspend_lock, RW_READER);
914
915 if (!(zv->zv_flags & ZVOL_RDONLY))
916 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
917
918 rw_exit(&zv->zv_suspend_lock);
919 break;
920
921 case BLKZNAME:
922 mutex_enter(&zv->zv_state_lock);
923 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
924 mutex_exit(&zv->zv_state_lock);
925 break;
926
927 default:
928 error = -ENOTTY;
929 break;
930 }
931
932 return (SET_ERROR(error));
933 }
934
935 #ifdef CONFIG_COMPAT
936 static int
937 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
938 unsigned cmd, unsigned long arg)
939 {
940 return (zvol_ioctl(bdev, mode, cmd, arg));
941 }
942 #else
943 #define zvol_compat_ioctl NULL
944 #endif
945
946 static unsigned int
947 zvol_check_events(struct gendisk *disk, unsigned int clearing)
948 {
949 unsigned int mask = 0;
950
951 rw_enter(&zvol_state_lock, RW_READER);
952
953 zvol_state_t *zv = disk->private_data;
954 if (zv != NULL) {
955 mutex_enter(&zv->zv_state_lock);
956 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
957 zv->zv_changed = 0;
958 mutex_exit(&zv->zv_state_lock);
959 }
960
961 rw_exit(&zvol_state_lock);
962
963 return (mask);
964 }
965
966 static int
967 zvol_revalidate_disk(struct gendisk *disk)
968 {
969 rw_enter(&zvol_state_lock, RW_READER);
970
971 zvol_state_t *zv = disk->private_data;
972 if (zv != NULL) {
973 mutex_enter(&zv->zv_state_lock);
974 set_capacity(zv->zv_zso->zvo_disk,
975 zv->zv_volsize >> SECTOR_BITS);
976 mutex_exit(&zv->zv_state_lock);
977 }
978
979 rw_exit(&zvol_state_lock);
980
981 return (0);
982 }
983
984 int
985 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
986 {
987 struct gendisk *disk = zv->zv_zso->zvo_disk;
988
989 #if defined(HAVE_REVALIDATE_DISK_SIZE)
990 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
991 #elif defined(HAVE_REVALIDATE_DISK)
992 revalidate_disk(disk);
993 #else
994 zvol_revalidate_disk(disk);
995 #endif
996 return (0);
997 }
998
999 void
1000 zvol_os_clear_private(zvol_state_t *zv)
1001 {
1002 /*
1003 * Cleared while holding zvol_state_lock as a writer
1004 * which will prevent zvol_open() from opening it.
1005 */
1006 zv->zv_zso->zvo_disk->private_data = NULL;
1007 }
1008
1009 /*
1010 * Provide a simple virtual geometry for legacy compatibility. For devices
1011 * smaller than 1 MiB a small head and sector count is used to allow very
1012 * tiny devices. For devices over 1 Mib a standard head and sector count
1013 * is used to keep the cylinders count reasonable.
1014 */
1015 static int
1016 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1017 {
1018 zvol_state_t *zv = bdev->bd_disk->private_data;
1019 sector_t sectors;
1020
1021 ASSERT3U(zv->zv_open_count, >, 0);
1022
1023 sectors = get_capacity(zv->zv_zso->zvo_disk);
1024
1025 if (sectors > 2048) {
1026 geo->heads = 16;
1027 geo->sectors = 63;
1028 } else {
1029 geo->heads = 2;
1030 geo->sectors = 4;
1031 }
1032
1033 geo->start = 0;
1034 geo->cylinders = sectors / (geo->heads * geo->sectors);
1035
1036 return (0);
1037 }
1038
1039 /*
1040 * Why have two separate block_device_operations structs?
1041 *
1042 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
1043 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1044 * can't just change submit_bio dynamically at runtime. So just create two
1045 * separate structs to get around this.
1046 */
1047 static const struct block_device_operations zvol_ops_blk_mq = {
1048 .open = zvol_open,
1049 .release = zvol_release,
1050 .ioctl = zvol_ioctl,
1051 .compat_ioctl = zvol_compat_ioctl,
1052 .check_events = zvol_check_events,
1053 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1054 .revalidate_disk = zvol_revalidate_disk,
1055 #endif
1056 .getgeo = zvol_getgeo,
1057 .owner = THIS_MODULE,
1058 };
1059
1060 static const struct block_device_operations zvol_ops = {
1061 .open = zvol_open,
1062 .release = zvol_release,
1063 .ioctl = zvol_ioctl,
1064 .compat_ioctl = zvol_compat_ioctl,
1065 .check_events = zvol_check_events,
1066 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1067 .revalidate_disk = zvol_revalidate_disk,
1068 #endif
1069 .getgeo = zvol_getgeo,
1070 .owner = THIS_MODULE,
1071 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1072 .submit_bio = zvol_submit_bio,
1073 #endif
1074 };
1075
1076 static int
1077 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1078 {
1079 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1080 #if defined(HAVE_BLK_ALLOC_DISK)
1081 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1082 if (zso->zvo_disk == NULL)
1083 return (1);
1084
1085 zso->zvo_disk->minors = ZVOL_MINORS;
1086 zso->zvo_queue = zso->zvo_disk->queue;
1087 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1088 struct gendisk *disk = blk_alloc_disk(NULL, NUMA_NO_NODE);
1089 if (IS_ERR(disk)) {
1090 zso->zvo_disk = NULL;
1091 return (1);
1092 }
1093
1094 zso->zvo_disk = disk;
1095 zso->zvo_disk->minors = ZVOL_MINORS;
1096 zso->zvo_queue = zso->zvo_disk->queue;
1097 #else
1098 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1099 if (zso->zvo_queue == NULL)
1100 return (1);
1101
1102 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1103 if (zso->zvo_disk == NULL) {
1104 blk_cleanup_queue(zso->zvo_queue);
1105 return (1);
1106 }
1107
1108 zso->zvo_disk->queue = zso->zvo_queue;
1109 #endif /* HAVE_BLK_ALLOC_DISK */
1110 #else
1111 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1112 if (zso->zvo_queue == NULL)
1113 return (1);
1114
1115 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1116 if (zso->zvo_disk == NULL) {
1117 blk_cleanup_queue(zso->zvo_queue);
1118 return (1);
1119 }
1120
1121 zso->zvo_disk->queue = zso->zvo_queue;
1122 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1123 return (0);
1124
1125 }
1126
1127 static int
1128 zvol_alloc_blk_mq(zvol_state_t *zv)
1129 {
1130 #ifdef HAVE_BLK_MQ
1131 struct zvol_state_os *zso = zv->zv_zso;
1132
1133 /* Allocate our blk-mq tag_set */
1134 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1135 return (1);
1136
1137 #if defined(HAVE_BLK_ALLOC_DISK)
1138 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1139 if (zso->zvo_disk == NULL) {
1140 blk_mq_free_tag_set(&zso->tag_set);
1141 return (1);
1142 }
1143 zso->zvo_queue = zso->zvo_disk->queue;
1144 zso->zvo_disk->minors = ZVOL_MINORS;
1145 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1146 struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, NULL, zv);
1147 if (IS_ERR(disk)) {
1148 zso->zvo_disk = NULL;
1149 blk_mq_free_tag_set(&zso->tag_set);
1150 return (1);
1151 }
1152
1153 zso->zvo_disk = disk;
1154 zso->zvo_queue = zso->zvo_disk->queue;
1155 zso->zvo_disk->minors = ZVOL_MINORS;
1156 #else
1157 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1158 if (zso->zvo_disk == NULL) {
1159 blk_cleanup_queue(zso->zvo_queue);
1160 blk_mq_free_tag_set(&zso->tag_set);
1161 return (1);
1162 }
1163 /* Allocate queue */
1164 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1165 if (IS_ERR(zso->zvo_queue)) {
1166 blk_mq_free_tag_set(&zso->tag_set);
1167 return (1);
1168 }
1169
1170 /* Our queue is now created, assign it to our disk */
1171 zso->zvo_disk->queue = zso->zvo_queue;
1172
1173 #endif
1174 #endif
1175 return (0);
1176 }
1177
1178 /*
1179 * Allocate memory for a new zvol_state_t and setup the required
1180 * request queue and generic disk structures for the block device.
1181 */
1182 static zvol_state_t *
1183 zvol_alloc(dev_t dev, const char *name)
1184 {
1185 zvol_state_t *zv;
1186 struct zvol_state_os *zso;
1187 uint64_t volmode;
1188 int ret;
1189
1190 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1191 return (NULL);
1192
1193 if (volmode == ZFS_VOLMODE_DEFAULT)
1194 volmode = zvol_volmode;
1195
1196 if (volmode == ZFS_VOLMODE_NONE)
1197 return (NULL);
1198
1199 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1200 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1201 zv->zv_zso = zso;
1202 zv->zv_volmode = volmode;
1203
1204 list_link_init(&zv->zv_next);
1205 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1206
1207 #ifdef HAVE_BLK_MQ
1208 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1209 #endif
1210
1211 /*
1212 * The block layer has 3 interfaces for getting BIOs:
1213 *
1214 * 1. blk-mq request queues (new)
1215 * 2. submit_bio() (oldest)
1216 * 3. regular request queues (old).
1217 *
1218 * Each of those interfaces has two permutations:
1219 *
1220 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1221 * both the disk and its queue (5.14 kernel or newer)
1222 *
1223 * b) We don't have blk_*alloc_disk(), and have to allocate the
1224 * disk and the queue separately. (5.13 kernel or older)
1225 */
1226 if (zv->zv_zso->use_blk_mq) {
1227 ret = zvol_alloc_blk_mq(zv);
1228 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1229 } else {
1230 ret = zvol_alloc_non_blk_mq(zso);
1231 zso->zvo_disk->fops = &zvol_ops;
1232 }
1233 if (ret != 0)
1234 goto out_kmem;
1235
1236 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1237
1238 /* Limit read-ahead to a single page to prevent over-prefetching. */
1239 blk_queue_set_read_ahead(zso->zvo_queue, 1);
1240
1241 if (!zv->zv_zso->use_blk_mq) {
1242 /* Disable write merging in favor of the ZIO pipeline. */
1243 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1244 }
1245
1246 /* Enable /proc/diskstats */
1247 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1248
1249 zso->zvo_queue->queuedata = zv;
1250 zso->zvo_dev = dev;
1251 zv->zv_open_count = 0;
1252 strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
1253
1254 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1255 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1256
1257 zso->zvo_disk->major = zvol_major;
1258 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1259
1260 /*
1261 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1262 * This is accomplished by limiting the number of minors for the
1263 * device to one and explicitly disabling partition scanning.
1264 */
1265 if (volmode == ZFS_VOLMODE_DEV) {
1266 zso->zvo_disk->minors = 1;
1267 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1268 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1269 }
1270
1271 zso->zvo_disk->first_minor = (dev & MINORMASK);
1272 zso->zvo_disk->private_data = zv;
1273 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1274 ZVOL_DEV_NAME, (dev & MINORMASK));
1275
1276 return (zv);
1277
1278 out_kmem:
1279 kmem_free(zso, sizeof (struct zvol_state_os));
1280 kmem_free(zv, sizeof (zvol_state_t));
1281 return (NULL);
1282 }
1283
1284 /*
1285 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1286 * At this time, the structure is not opened by anyone, is taken off
1287 * the zvol_state_list, and has its private data set to NULL.
1288 * The zvol_state_lock is dropped.
1289 *
1290 * This function may take many milliseconds to complete (e.g. we've seen
1291 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1292 * "del_gendisk". Thus, consumers need to be careful to account for this
1293 * latency when calling this function.
1294 */
1295 void
1296 zvol_os_free(zvol_state_t *zv)
1297 {
1298
1299 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1300 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1301 ASSERT0(zv->zv_open_count);
1302 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1303
1304 rw_destroy(&zv->zv_suspend_lock);
1305 zfs_rangelock_fini(&zv->zv_rangelock);
1306
1307 del_gendisk(zv->zv_zso->zvo_disk);
1308 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1309 (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
1310 #if defined(HAVE_BLK_CLEANUP_DISK)
1311 blk_cleanup_disk(zv->zv_zso->zvo_disk);
1312 #else
1313 put_disk(zv->zv_zso->zvo_disk);
1314 #endif
1315 #else
1316 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1317 put_disk(zv->zv_zso->zvo_disk);
1318 #endif
1319
1320 #ifdef HAVE_BLK_MQ
1321 if (zv->zv_zso->use_blk_mq)
1322 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1323 #endif
1324
1325 ida_simple_remove(&zvol_ida,
1326 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1327
1328 mutex_destroy(&zv->zv_state_lock);
1329 dataset_kstats_destroy(&zv->zv_kstat);
1330
1331 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1332 kmem_free(zv, sizeof (zvol_state_t));
1333 }
1334
1335 void
1336 zvol_wait_close(zvol_state_t *zv)
1337 {
1338 }
1339
1340 /*
1341 * Create a block device minor node and setup the linkage between it
1342 * and the specified volume. Once this function returns the block
1343 * device is live and ready for use.
1344 */
1345 int
1346 zvol_os_create_minor(const char *name)
1347 {
1348 zvol_state_t *zv;
1349 objset_t *os;
1350 dmu_object_info_t *doi;
1351 uint64_t volsize;
1352 uint64_t len;
1353 unsigned minor = 0;
1354 int error = 0;
1355 int idx;
1356 uint64_t hash = zvol_name_hash(name);
1357 uint64_t volthreading;
1358 bool replayed_zil = B_FALSE;
1359
1360 if (zvol_inhibit_dev)
1361 return (0);
1362
1363 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1364 if (idx < 0)
1365 return (SET_ERROR(-idx));
1366 minor = idx << ZVOL_MINOR_BITS;
1367 if (MINOR(minor) != minor) {
1368 /* too many partitions can cause an overflow */
1369 zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1370 name, minor, MINOR(minor));
1371 ida_simple_remove(&zvol_ida, idx);
1372 return (SET_ERROR(EINVAL));
1373 }
1374
1375 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1376 if (zv) {
1377 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1378 mutex_exit(&zv->zv_state_lock);
1379 ida_simple_remove(&zvol_ida, idx);
1380 return (SET_ERROR(EEXIST));
1381 }
1382
1383 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1384
1385 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1386 if (error)
1387 goto out_doi;
1388
1389 error = dmu_object_info(os, ZVOL_OBJ, doi);
1390 if (error)
1391 goto out_dmu_objset_disown;
1392
1393 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1394 if (error)
1395 goto out_dmu_objset_disown;
1396
1397 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1398 if (zv == NULL) {
1399 error = SET_ERROR(EAGAIN);
1400 goto out_dmu_objset_disown;
1401 }
1402 zv->zv_hash = hash;
1403
1404 if (dmu_objset_is_snapshot(os))
1405 zv->zv_flags |= ZVOL_RDONLY;
1406
1407 zv->zv_volblocksize = doi->doi_data_block_size;
1408 zv->zv_volsize = volsize;
1409 zv->zv_objset = os;
1410
1411 /* Default */
1412 zv->zv_threading = B_TRUE;
1413 if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1414 == 0)
1415 zv->zv_threading = volthreading;
1416
1417 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1418
1419 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1420 (DMU_MAX_ACCESS / 4) >> 9);
1421
1422 if (zv->zv_zso->use_blk_mq) {
1423 /*
1424 * IO requests can be really big (1MB). When an IO request
1425 * comes in, it is passed off to zvol_read() or zvol_write()
1426 * in a new thread, where it is chunked up into 'volblocksize'
1427 * sized pieces and processed. So for example, if the request
1428 * is a 1MB write and your volblocksize is 128k, one zvol_write
1429 * thread will take that request and sequentially do ten 128k
1430 * IOs. This is due to the fact that the thread needs to lock
1431 * each volblocksize sized block. So you might be wondering:
1432 * "instead of passing the whole 1MB request to one thread,
1433 * why not pass ten individual 128k chunks to ten threads and
1434 * process the whole write in parallel?" The short answer is
1435 * that there's a sweet spot number of chunks that balances
1436 * the greater parallelism with the added overhead of more
1437 * threads. The sweet spot can be different depending on if you
1438 * have a read or write heavy workload. Writes typically want
1439 * high chunk counts while reads typically want lower ones. On
1440 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1441 * configuration, with volblocksize=8k, the sweet spot for good
1442 * sequential reads and writes was at 8 chunks.
1443 */
1444
1445 /*
1446 * Below we tell the kernel how big we want our requests
1447 * to be. You would think that blk_queue_io_opt() would be
1448 * used to do this since it is used to "set optimal request
1449 * size for the queue", but that doesn't seem to do
1450 * anything - the kernel still gives you huge requests
1451 * with tons of little PAGE_SIZE segments contained within it.
1452 *
1453 * Knowing that the kernel will just give you PAGE_SIZE segments
1454 * no matter what, you can say "ok, I want PAGE_SIZE byte
1455 * segments, and I want 'N' of them per request", where N is
1456 * the correct number of segments for the volblocksize and
1457 * number of chunks you want.
1458 */
1459 #ifdef HAVE_BLK_MQ
1460 if (zvol_blk_mq_blocks_per_thread != 0) {
1461 unsigned int chunks;
1462 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1463
1464 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1465 PAGE_SIZE);
1466 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1467 (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1468 } else {
1469 /*
1470 * Special case: zvol_blk_mq_blocks_per_thread = 0
1471 * Max everything out.
1472 */
1473 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1474 UINT16_MAX);
1475 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1476 UINT_MAX);
1477 }
1478 #endif
1479 } else {
1480 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1481 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1482 }
1483
1484 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1485 zv->zv_volblocksize);
1486 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1487 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1488 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1489 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1490 zv->zv_volblocksize);
1491 #ifdef QUEUE_FLAG_DISCARD
1492 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1493 #endif
1494 #ifdef QUEUE_FLAG_NONROT
1495 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1496 #endif
1497 #ifdef QUEUE_FLAG_ADD_RANDOM
1498 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1499 #endif
1500 /* This flag was introduced in kernel version 4.12. */
1501 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1502 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1503 #endif
1504
1505 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1506 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1507 if (error)
1508 goto out_dmu_objset_disown;
1509 ASSERT3P(zv->zv_zilog, ==, NULL);
1510 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1511 if (spa_writeable(dmu_objset_spa(os))) {
1512 if (zil_replay_disable)
1513 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1514 else
1515 replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1516 }
1517 if (replayed_zil)
1518 zil_close(zv->zv_zilog);
1519 zv->zv_zilog = NULL;
1520
1521 /*
1522 * When udev detects the addition of the device it will immediately
1523 * invoke blkid(8) to determine the type of content on the device.
1524 * Prefetching the blocks commonly scanned by blkid(8) will speed
1525 * up this process.
1526 */
1527 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1528 if (len > 0) {
1529 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1530 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1531 ZIO_PRIORITY_SYNC_READ);
1532 }
1533
1534 zv->zv_objset = NULL;
1535 out_dmu_objset_disown:
1536 dmu_objset_disown(os, B_TRUE, FTAG);
1537 out_doi:
1538 kmem_free(doi, sizeof (dmu_object_info_t));
1539
1540 /*
1541 * Keep in mind that once add_disk() is called, the zvol is
1542 * announced to the world, and zvol_open()/zvol_release() can
1543 * be called at any time. Incidentally, add_disk() itself calls
1544 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1545 * directly as well.
1546 */
1547 if (error == 0) {
1548 rw_enter(&zvol_state_lock, RW_WRITER);
1549 zvol_insert(zv);
1550 rw_exit(&zvol_state_lock);
1551 #ifdef HAVE_ADD_DISK_RET
1552 error = add_disk(zv->zv_zso->zvo_disk);
1553 #else
1554 add_disk(zv->zv_zso->zvo_disk);
1555 #endif
1556 } else {
1557 ida_simple_remove(&zvol_ida, idx);
1558 }
1559
1560 return (error);
1561 }
1562
1563 void
1564 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1565 {
1566 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1567
1568 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1569 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1570
1571 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1572
1573 /* move to new hashtable entry */
1574 zv->zv_hash = zvol_name_hash(zv->zv_name);
1575 hlist_del(&zv->zv_hlink);
1576 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1577
1578 /*
1579 * The block device's read-only state is briefly changed causing
1580 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1581 * the name change and fixes the symlinks. This does not change
1582 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1583 * changes. This would normally be done using kobject_uevent() but
1584 * that is a GPL-only symbol which is why we need this workaround.
1585 */
1586 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1587 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1588
1589 dataset_kstats_rename(&zv->zv_kstat, newname);
1590 }
1591
1592 void
1593 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1594 {
1595
1596 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1597 }
1598
1599 void
1600 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1601 {
1602
1603 set_capacity(zv->zv_zso->zvo_disk, capacity);
1604 }
1605
1606 int
1607 zvol_init(void)
1608 {
1609 int error;
1610
1611 /*
1612 * zvol_threads is the module param the user passes in.
1613 *
1614 * zvol_actual_threads is what we use internally, since the user can
1615 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1616 */
1617 static unsigned int zvol_actual_threads;
1618
1619 if (zvol_threads == 0) {
1620 /*
1621 * See dde9380a1 for why 32 was chosen here. This should
1622 * probably be refined to be some multiple of the number
1623 * of CPUs.
1624 */
1625 zvol_actual_threads = MAX(num_online_cpus(), 32);
1626 } else {
1627 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1628 }
1629
1630 /*
1631 * Use atleast 32 zvol_threads but for many core system,
1632 * prefer 6 threads per taskq, but no more taskqs
1633 * than threads in them on large systems.
1634 *
1635 * taskq total
1636 * cpus taskqs threads threads
1637 * ------- ------- ------- -------
1638 * 1 1 32 32
1639 * 2 1 32 32
1640 * 4 1 32 32
1641 * 8 2 16 32
1642 * 16 3 11 33
1643 * 32 5 7 35
1644 * 64 8 8 64
1645 * 128 11 12 132
1646 * 256 16 16 256
1647 */
1648 zv_taskq_t *ztqs = &zvol_taskqs;
1649 uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
1650 if (num_tqs == 0) {
1651 num_tqs = 1 + num_online_cpus() / 6;
1652 while (num_tqs * num_tqs > zvol_actual_threads)
1653 num_tqs--;
1654 }
1655 uint_t per_tq_thread = zvol_actual_threads / num_tqs;
1656 if (per_tq_thread * num_tqs < zvol_actual_threads)
1657 per_tq_thread++;
1658 ztqs->tqs_cnt = num_tqs;
1659 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
1660 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1661 if (error) {
1662 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
1663 ztqs->tqs_taskq = NULL;
1664 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1665 return (error);
1666 }
1667
1668 #ifdef HAVE_BLK_MQ
1669 if (zvol_blk_mq_queue_depth == 0) {
1670 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1671 } else {
1672 zvol_actual_blk_mq_queue_depth =
1673 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1674 }
1675
1676 if (zvol_blk_mq_threads == 0) {
1677 zvol_blk_mq_actual_threads = num_online_cpus();
1678 } else {
1679 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1680 1024);
1681 }
1682 #endif
1683 for (uint_t i = 0; i < num_tqs; i++) {
1684 char name[32];
1685 (void) snprintf(name, sizeof (name), "%s_tq-%u",
1686 ZVOL_DRIVER, i);
1687 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
1688 maxclsyspri, per_tq_thread, INT_MAX,
1689 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1690 if (ztqs->tqs_taskq[i] == NULL) {
1691 for (int j = i - 1; j >= 0; j--)
1692 taskq_destroy(ztqs->tqs_taskq[j]);
1693 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1694 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1695 sizeof (taskq_t *));
1696 ztqs->tqs_taskq = NULL;
1697 return (-ENOMEM);
1698 }
1699 }
1700
1701 zvol_init_impl();
1702 ida_init(&zvol_ida);
1703 return (0);
1704 }
1705
1706 void
1707 zvol_fini(void)
1708 {
1709 zv_taskq_t *ztqs = &zvol_taskqs;
1710 zvol_fini_impl();
1711 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1712
1713 if (ztqs->tqs_taskq == NULL) {
1714 ASSERT3U(ztqs->tqs_cnt, ==, 0);
1715 } else {
1716 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
1717 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
1718 taskq_destroy(ztqs->tqs_taskq[i]);
1719 }
1720 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1721 sizeof (taskq_t *));
1722 ztqs->tqs_taskq = NULL;
1723 }
1724
1725 ida_destroy(&zvol_ida);
1726 }
1727
1728 /* BEGIN CSTYLED */
1729 module_param(zvol_inhibit_dev, uint, 0644);
1730 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1731
1732 module_param(zvol_major, uint, 0444);
1733 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1734
1735 module_param(zvol_threads, uint, 0444);
1736 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1737 "to 0 to use all active CPUs");
1738
1739 module_param(zvol_request_sync, uint, 0644);
1740 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1741
1742 module_param(zvol_max_discard_blocks, ulong, 0444);
1743 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1744
1745 module_param(zvol_num_taskqs, uint, 0444);
1746 MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
1747
1748 module_param(zvol_prefetch_bytes, uint, 0644);
1749 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1750
1751 module_param(zvol_volmode, uint, 0644);
1752 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1753
1754 #ifdef HAVE_BLK_MQ
1755 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1756 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1757
1758 module_param(zvol_use_blk_mq, uint, 0644);
1759 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1760
1761 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1762 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1763 "Process volblocksize blocks per thread");
1764 #endif
1765
1766 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1767 module_param(zvol_open_timeout_ms, uint, 0644);
1768 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1769 #endif
1770
1771 /* END CSTYLED */