]> git.proxmox.com Git - mirror_zfs.git/blob - module/spl/spl-generic.c
Add functions and macros as used upstream.
[mirror_zfs.git] / module / spl / spl-generic.c
1 /*****************************************************************************\
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
7 *
8 * This file is part of the SPL, Solaris Porting Layer.
9 * For details, see <http://zfsonlinux.org/>.
10 *
11 * The SPL is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
15 *
16 * The SPL is distributed in the hope that it will be useful, but WITHOUT
17 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 *****************************************************************************
24 * Solaris Porting Layer (SPL) Generic Implementation.
25 \*****************************************************************************/
26
27 #include <sys/sysmacros.h>
28 #include <sys/systeminfo.h>
29 #include <sys/vmsystm.h>
30 #include <sys/kobj.h>
31 #include <sys/kmem.h>
32 #include <sys/mutex.h>
33 #include <sys/rwlock.h>
34 #include <sys/taskq.h>
35 #include <sys/tsd.h>
36 #include <sys/zmod.h>
37 #include <sys/debug.h>
38 #include <sys/proc.h>
39 #include <sys/kstat.h>
40 #include <sys/utsname.h>
41 #include <sys/file.h>
42 #include <linux/kmod.h>
43 #include <linux/proc_compat.h>
44 #include <spl-debug.h>
45
46 #ifdef SS_DEBUG_SUBSYS
47 #undef SS_DEBUG_SUBSYS
48 #endif
49
50 #define SS_DEBUG_SUBSYS SS_GENERIC
51
52 char spl_version[32] = "SPL v" SPL_META_VERSION "-" SPL_META_RELEASE;
53 EXPORT_SYMBOL(spl_version);
54
55 unsigned long spl_hostid = 0;
56 EXPORT_SYMBOL(spl_hostid);
57 module_param(spl_hostid, ulong, 0644);
58 MODULE_PARM_DESC(spl_hostid, "The system hostid.");
59
60 proc_t p0 = { 0 };
61 EXPORT_SYMBOL(p0);
62
63 #ifndef HAVE_KALLSYMS_LOOKUP_NAME
64 DECLARE_WAIT_QUEUE_HEAD(spl_kallsyms_lookup_name_waitq);
65 kallsyms_lookup_name_t spl_kallsyms_lookup_name_fn = SYMBOL_POISON;
66 #endif
67
68 int
69 highbit(unsigned long i)
70 {
71 register int h = 1;
72 SENTRY;
73
74 if (i == 0)
75 SRETURN(0);
76 #if BITS_PER_LONG == 64
77 if (i & 0xffffffff00000000ul) {
78 h += 32; i >>= 32;
79 }
80 #endif
81 if (i & 0xffff0000) {
82 h += 16; i >>= 16;
83 }
84 if (i & 0xff00) {
85 h += 8; i >>= 8;
86 }
87 if (i & 0xf0) {
88 h += 4; i >>= 4;
89 }
90 if (i & 0xc) {
91 h += 2; i >>= 2;
92 }
93 if (i & 0x2) {
94 h += 1;
95 }
96 SRETURN(h);
97 }
98 EXPORT_SYMBOL(highbit);
99
100 int
101 highbit64(uint64_t i)
102 {
103 register int h = 1;
104 SENTRY;
105
106 if (i == 0)
107 SRETURN(0);
108 if (i & 0xffffffff00000000ull) {
109 h += 32; i >>= 32;
110 }
111 if (i & 0xffff0000) {
112 h += 16; i >>= 16;
113 }
114 if (i & 0xff00) {
115 h += 8; i >>= 8;
116 }
117 if (i & 0xf0) {
118 h += 4; i >>= 4;
119 }
120 if (i & 0xc) {
121 h += 2; i >>= 2;
122 }
123 if (i & 0x2) {
124 h += 1;
125 }
126 SRETURN(h);
127 }
128 EXPORT_SYMBOL(highbit64);
129
130 #if BITS_PER_LONG == 32
131 /*
132 * Support 64/64 => 64 division on a 32-bit platform. While the kernel
133 * provides a div64_u64() function for this we do not use it because the
134 * implementation is flawed. There are cases which return incorrect
135 * results as late as linux-2.6.35. Until this is fixed upstream the
136 * spl must provide its own implementation.
137 *
138 * This implementation is a slightly modified version of the algorithm
139 * proposed by the book 'Hacker's Delight'. The original source can be
140 * found here and is available for use without restriction.
141 *
142 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
143 */
144
145 /*
146 * Calculate number of leading of zeros for a 64-bit value.
147 */
148 static int
149 nlz64(uint64_t x) {
150 register int n = 0;
151
152 if (x == 0)
153 return 64;
154
155 if (x <= 0x00000000FFFFFFFFULL) {n = n + 32; x = x << 32;}
156 if (x <= 0x0000FFFFFFFFFFFFULL) {n = n + 16; x = x << 16;}
157 if (x <= 0x00FFFFFFFFFFFFFFULL) {n = n + 8; x = x << 8;}
158 if (x <= 0x0FFFFFFFFFFFFFFFULL) {n = n + 4; x = x << 4;}
159 if (x <= 0x3FFFFFFFFFFFFFFFULL) {n = n + 2; x = x << 2;}
160 if (x <= 0x7FFFFFFFFFFFFFFFULL) {n = n + 1;}
161
162 return n;
163 }
164
165 /*
166 * Newer kernels have a div_u64() function but we define our own
167 * to simplify portibility between kernel versions.
168 */
169 static inline uint64_t
170 __div_u64(uint64_t u, uint32_t v)
171 {
172 (void) do_div(u, v);
173 return u;
174 }
175
176 /*
177 * Implementation of 64-bit unsigned division for 32-bit machines.
178 *
179 * First the procedure takes care of the case in which the divisor is a
180 * 32-bit quantity. There are two subcases: (1) If the left half of the
181 * dividend is less than the divisor, one execution of do_div() is all that
182 * is required (overflow is not possible). (2) Otherwise it does two
183 * divisions, using the grade school method.
184 */
185 uint64_t
186 __udivdi3(uint64_t u, uint64_t v)
187 {
188 uint64_t u0, u1, v1, q0, q1, k;
189 int n;
190
191 if (v >> 32 == 0) { // If v < 2**32:
192 if (u >> 32 < v) { // If u/v cannot overflow,
193 return __div_u64(u, v); // just do one division.
194 } else { // If u/v would overflow:
195 u1 = u >> 32; // Break u into two halves.
196 u0 = u & 0xFFFFFFFF;
197 q1 = __div_u64(u1, v); // First quotient digit.
198 k = u1 - q1 * v; // First remainder, < v.
199 u0 += (k << 32);
200 q0 = __div_u64(u0, v); // Seconds quotient digit.
201 return (q1 << 32) + q0;
202 }
203 } else { // If v >= 2**32:
204 n = nlz64(v); // 0 <= n <= 31.
205 v1 = (v << n) >> 32; // Normalize divisor, MSB is 1.
206 u1 = u >> 1; // To ensure no overflow.
207 q1 = __div_u64(u1, v1); // Get quotient from
208 q0 = (q1 << n) >> 31; // Undo normalization and
209 // division of u by 2.
210 if (q0 != 0) // Make q0 correct or
211 q0 = q0 - 1; // too small by 1.
212 if ((u - q0 * v) >= v)
213 q0 = q0 + 1; // Now q0 is correct.
214
215 return q0;
216 }
217 }
218 EXPORT_SYMBOL(__udivdi3);
219
220 /*
221 * Implementation of 64-bit signed division for 32-bit machines.
222 */
223 int64_t
224 __divdi3(int64_t u, int64_t v)
225 {
226 int64_t q, t;
227 q = __udivdi3(abs64(u), abs64(v));
228 t = (u ^ v) >> 63; // If u, v have different
229 return (q ^ t) - t; // signs, negate q.
230 }
231 EXPORT_SYMBOL(__divdi3);
232
233 /*
234 * Implementation of 64-bit unsigned modulo for 32-bit machines.
235 */
236 uint64_t
237 __umoddi3(uint64_t dividend, uint64_t divisor)
238 {
239 return (dividend - (divisor * __udivdi3(dividend, divisor)));
240 }
241 EXPORT_SYMBOL(__umoddi3);
242
243 #if defined(__arm) || defined(__arm__)
244 /*
245 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
246 *
247 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
248 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
249 * and the remainder in {r2, r3}. The return type is specifically left
250 * set to 'void' to ensure the compiler does not overwrite these registers
251 * during the return. All results are in registers as per ABI
252 */
253 void
254 __aeabi_uldivmod(uint64_t u, uint64_t v)
255 {
256 uint64_t res;
257 uint64_t mod;
258
259 res = __udivdi3(u, v);
260 mod = __umoddi3(u, v);
261 {
262 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
263 register uint32_t r1 asm("r1") = (res >> 32);
264 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
265 register uint32_t r3 asm("r3") = (mod >> 32);
266
267 asm volatile(""
268 : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
269 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
270
271 return; /* r0; */
272 }
273 }
274 EXPORT_SYMBOL(__aeabi_uldivmod);
275
276 void
277 __aeabi_ldivmod(int64_t u, int64_t v)
278 {
279 int64_t res;
280 uint64_t mod;
281
282 res = __divdi3(u, v);
283 mod = __umoddi3(u, v);
284 {
285 register uint32_t r0 asm("r0") = (res & 0xFFFFFFFF);
286 register uint32_t r1 asm("r1") = (res >> 32);
287 register uint32_t r2 asm("r2") = (mod & 0xFFFFFFFF);
288 register uint32_t r3 asm("r3") = (mod >> 32);
289
290 asm volatile(""
291 : "+r"(r0), "+r"(r1), "+r"(r2),"+r"(r3) /* output */
292 : "r"(r0), "r"(r1), "r"(r2), "r"(r3)); /* input */
293
294 return; /* r0; */
295 }
296 }
297 EXPORT_SYMBOL(__aeabi_ldivmod);
298 #endif /* __arm || __arm__ */
299 #endif /* BITS_PER_LONG */
300
301 /* NOTE: The strtoxx behavior is solely based on my reading of the Solaris
302 * ddi_strtol(9F) man page. I have not verified the behavior of these
303 * functions against their Solaris counterparts. It is possible that I
304 * may have misinterpreted the man page or the man page is incorrect.
305 */
306 int ddi_strtoul(const char *, char **, int, unsigned long *);
307 int ddi_strtol(const char *, char **, int, long *);
308 int ddi_strtoull(const char *, char **, int, unsigned long long *);
309 int ddi_strtoll(const char *, char **, int, long long *);
310
311 #define define_ddi_strtoux(type, valtype) \
312 int ddi_strtou##type(const char *str, char **endptr, \
313 int base, valtype *result) \
314 { \
315 valtype last_value, value = 0; \
316 char *ptr = (char *)str; \
317 int flag = 1, digit; \
318 \
319 if (strlen(ptr) == 0) \
320 return EINVAL; \
321 \
322 /* Auto-detect base based on prefix */ \
323 if (!base) { \
324 if (str[0] == '0') { \
325 if (tolower(str[1])=='x' && isxdigit(str[2])) { \
326 base = 16; /* hex */ \
327 ptr += 2; \
328 } else if (str[1] >= '0' && str[1] < 8) { \
329 base = 8; /* octal */ \
330 ptr += 1; \
331 } else { \
332 return EINVAL; \
333 } \
334 } else { \
335 base = 10; /* decimal */ \
336 } \
337 } \
338 \
339 while (1) { \
340 if (isdigit(*ptr)) \
341 digit = *ptr - '0'; \
342 else if (isalpha(*ptr)) \
343 digit = tolower(*ptr) - 'a' + 10; \
344 else \
345 break; \
346 \
347 if (digit >= base) \
348 break; \
349 \
350 last_value = value; \
351 value = value * base + digit; \
352 if (last_value > value) /* Overflow */ \
353 return ERANGE; \
354 \
355 flag = 1; \
356 ptr++; \
357 } \
358 \
359 if (flag) \
360 *result = value; \
361 \
362 if (endptr) \
363 *endptr = (char *)(flag ? ptr : str); \
364 \
365 return 0; \
366 } \
367
368 #define define_ddi_strtox(type, valtype) \
369 int ddi_strto##type(const char *str, char **endptr, \
370 int base, valtype *result) \
371 { \
372 int rc; \
373 \
374 if (*str == '-') { \
375 rc = ddi_strtou##type(str + 1, endptr, base, result); \
376 if (!rc) { \
377 if (*endptr == str + 1) \
378 *endptr = (char *)str; \
379 else \
380 *result = -*result; \
381 } \
382 } else { \
383 rc = ddi_strtou##type(str, endptr, base, result); \
384 } \
385 \
386 return rc; \
387 }
388
389 define_ddi_strtoux(l, unsigned long)
390 define_ddi_strtox(l, long)
391 define_ddi_strtoux(ll, unsigned long long)
392 define_ddi_strtox(ll, long long)
393
394 EXPORT_SYMBOL(ddi_strtoul);
395 EXPORT_SYMBOL(ddi_strtol);
396 EXPORT_SYMBOL(ddi_strtoll);
397 EXPORT_SYMBOL(ddi_strtoull);
398
399 int
400 ddi_copyin(const void *from, void *to, size_t len, int flags)
401 {
402 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
403 if (flags & FKIOCTL) {
404 memcpy(to, from, len);
405 return 0;
406 }
407
408 return copyin(from, to, len);
409 }
410 EXPORT_SYMBOL(ddi_copyin);
411
412 int
413 ddi_copyout(const void *from, void *to, size_t len, int flags)
414 {
415 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
416 if (flags & FKIOCTL) {
417 memcpy(to, from, len);
418 return 0;
419 }
420
421 return copyout(from, to, len);
422 }
423 EXPORT_SYMBOL(ddi_copyout);
424
425 #ifndef HAVE_PUT_TASK_STRUCT
426 /*
427 * This is only a stub function which should never be used. The SPL should
428 * never be putting away the last reference on a task structure so this will
429 * not be called. However, we still need to define it so the module does not
430 * have undefined symbol at load time. That all said if this impossible
431 * thing does somehow happen PANIC immediately so we know about it.
432 */
433 void
434 __put_task_struct(struct task_struct *t)
435 {
436 PANIC("Unexpectly put last reference on task %d\n", (int)t->pid);
437 }
438 EXPORT_SYMBOL(__put_task_struct);
439 #endif /* HAVE_PUT_TASK_STRUCT */
440
441 struct new_utsname *__utsname(void)
442 {
443 #ifdef HAVE_INIT_UTSNAME
444 return init_utsname();
445 #else
446 return &system_utsname;
447 #endif
448 }
449 EXPORT_SYMBOL(__utsname);
450
451
452 /*
453 * Read the unique system identifier from the /etc/hostid file.
454 *
455 * The behavior of /usr/bin/hostid on Linux systems with the
456 * regular eglibc and coreutils is:
457 *
458 * 1. Generate the value if the /etc/hostid file does not exist
459 * or if the /etc/hostid file is less than four bytes in size.
460 *
461 * 2. If the /etc/hostid file is at least 4 bytes, then return
462 * the first four bytes [0..3] in native endian order.
463 *
464 * 3. Always ignore bytes [4..] if they exist in the file.
465 *
466 * Only the first four bytes are significant, even on systems that
467 * have a 64-bit word size.
468 *
469 * See:
470 *
471 * eglibc: sysdeps/unix/sysv/linux/gethostid.c
472 * coreutils: src/hostid.c
473 *
474 * Notes:
475 *
476 * The /etc/hostid file on Solaris is a text file that often reads:
477 *
478 * # DO NOT EDIT
479 * "0123456789"
480 *
481 * Directly copying this file to Linux results in a constant
482 * hostid of 4f442023 because the default comment constitutes
483 * the first four bytes of the file.
484 *
485 */
486
487 char *spl_hostid_path = HW_HOSTID_PATH;
488 module_param(spl_hostid_path, charp, 0444);
489 MODULE_PARM_DESC(spl_hostid_path, "The system hostid file (/etc/hostid)");
490
491 static int
492 hostid_read(void)
493 {
494 int result;
495 uint64_t size;
496 struct _buf *file;
497 uint32_t hostid = 0;
498
499 file = kobj_open_file(spl_hostid_path);
500
501 if (file == (struct _buf *)-1)
502 return -1;
503
504 result = kobj_get_filesize(file, &size);
505
506 if (result != 0) {
507 printk(KERN_WARNING
508 "SPL: kobj_get_filesize returned %i on %s\n",
509 result, spl_hostid_path);
510 kobj_close_file(file);
511 return -2;
512 }
513
514 if (size < sizeof(HW_HOSTID_MASK)) {
515 printk(KERN_WARNING
516 "SPL: Ignoring the %s file because it is %llu bytes; "
517 "expecting %lu bytes instead.\n", spl_hostid_path,
518 size, (unsigned long)sizeof(HW_HOSTID_MASK));
519 kobj_close_file(file);
520 return -3;
521 }
522
523 /* Read directly into the variable like eglibc does. */
524 /* Short reads are okay; native behavior is preserved. */
525 result = kobj_read_file(file, (char *)&hostid, sizeof(hostid), 0);
526
527 if (result < 0) {
528 printk(KERN_WARNING
529 "SPL: kobj_read_file returned %i on %s\n",
530 result, spl_hostid_path);
531 kobj_close_file(file);
532 return -4;
533 }
534
535 /* Mask down to 32 bits like coreutils does. */
536 spl_hostid = hostid & HW_HOSTID_MASK;
537 kobj_close_file(file);
538 return 0;
539 }
540
541 uint32_t
542 zone_get_hostid(void *zone)
543 {
544 static int first = 1;
545
546 /* Only the global zone is supported */
547 ASSERT(zone == NULL);
548
549 if (first) {
550 first = 0;
551
552 /*
553 * Get the hostid if it was not passed as a module parameter.
554 * Try reading the /etc/hostid file directly.
555 */
556 if (hostid_read())
557 spl_hostid = 0;
558
559 printk(KERN_NOTICE "SPL: using hostid 0x%08x\n",
560 (unsigned int) spl_hostid);
561 }
562
563 return spl_hostid;
564 }
565 EXPORT_SYMBOL(zone_get_hostid);
566
567 #ifndef HAVE_KALLSYMS_LOOKUP_NAME
568 /*
569 * The kallsyms_lookup_name() kernel function is not an exported symbol in
570 * Linux 2.6.19 through 2.6.32 inclusive.
571 *
572 * This function replaces the functionality by performing an upcall to user
573 * space where /proc/kallsyms is consulted for the requested address.
574 *
575 */
576
577 #define GET_KALLSYMS_ADDR_CMD \
578 "exec 0</dev/null " \
579 " 1>/proc/sys/kernel/spl/kallsyms_lookup_name " \
580 " 2>/dev/null; " \
581 "awk '{ if ( $3 == \"kallsyms_lookup_name\" ) { print $1 } }' " \
582 " /proc/kallsyms "
583
584 static int
585 set_kallsyms_lookup_name(void)
586 {
587 char *argv[] = { "/bin/sh",
588 "-c",
589 GET_KALLSYMS_ADDR_CMD,
590 NULL };
591 char *envp[] = { "HOME=/",
592 "TERM=linux",
593 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
594 NULL };
595 int rc;
596
597 rc = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
598
599 /*
600 * Due to I/O buffering the helper may return successfully before
601 * the proc handler has a chance to execute. To catch this case
602 * wait up to 1 second to verify spl_kallsyms_lookup_name_fn was
603 * updated to a non SYMBOL_POISON value.
604 */
605 if (rc == 0) {
606 rc = wait_event_timeout(spl_kallsyms_lookup_name_waitq,
607 spl_kallsyms_lookup_name_fn != SYMBOL_POISON, HZ);
608 if (rc == 0)
609 rc = -ETIMEDOUT;
610 else if (spl_kallsyms_lookup_name_fn == SYMBOL_POISON)
611 rc = -EFAULT;
612 else
613 rc = 0;
614 }
615
616 if (rc)
617 printk("SPL: Failed user helper '%s %s %s', rc = %d\n",
618 argv[0], argv[1], argv[2], rc);
619
620 return rc;
621 }
622 #endif
623
624 static int
625 __init spl_init(void)
626 {
627 int rc = 0;
628
629 if ((rc = spl_debug_init()))
630 return rc;
631
632 if ((rc = spl_kmem_init()))
633 SGOTO(out1, rc);
634
635 if ((rc = spl_mutex_init()))
636 SGOTO(out2, rc);
637
638 if ((rc = spl_rw_init()))
639 SGOTO(out3, rc);
640
641 if ((rc = spl_taskq_init()))
642 SGOTO(out4, rc);
643
644 if ((rc = spl_vn_init()))
645 SGOTO(out5, rc);
646
647 if ((rc = spl_proc_init()))
648 SGOTO(out6, rc);
649
650 if ((rc = spl_kstat_init()))
651 SGOTO(out7, rc);
652
653 if ((rc = spl_tsd_init()))
654 SGOTO(out8, rc);
655
656 if ((rc = spl_zlib_init()))
657 SGOTO(out9, rc);
658
659 #ifndef HAVE_KALLSYMS_LOOKUP_NAME
660 if ((rc = set_kallsyms_lookup_name()))
661 SGOTO(out10, rc = -EADDRNOTAVAIL);
662 #endif /* HAVE_KALLSYMS_LOOKUP_NAME */
663
664 if ((rc = spl_kmem_init_kallsyms_lookup()))
665 SGOTO(out10, rc);
666
667 if ((rc = spl_vn_init_kallsyms_lookup()))
668 SGOTO(out10, rc);
669
670 printk(KERN_NOTICE "SPL: Loaded module v%s-%s%s\n", SPL_META_VERSION,
671 SPL_META_RELEASE, SPL_DEBUG_STR);
672 SRETURN(rc);
673 out10:
674 spl_zlib_fini();
675 out9:
676 spl_tsd_fini();
677 out8:
678 spl_kstat_fini();
679 out7:
680 spl_proc_fini();
681 out6:
682 spl_vn_fini();
683 out5:
684 spl_taskq_fini();
685 out4:
686 spl_rw_fini();
687 out3:
688 spl_mutex_fini();
689 out2:
690 spl_kmem_fini();
691 out1:
692 spl_debug_fini();
693
694 printk(KERN_NOTICE "SPL: Failed to Load Solaris Porting Layer "
695 "v%s-%s%s, rc = %d\n", SPL_META_VERSION, SPL_META_RELEASE,
696 SPL_DEBUG_STR, rc);
697 return rc;
698 }
699
700 static void
701 spl_fini(void)
702 {
703 SENTRY;
704
705 printk(KERN_NOTICE "SPL: Unloaded module v%s-%s%s\n",
706 SPL_META_VERSION, SPL_META_RELEASE, SPL_DEBUG_STR);
707 spl_zlib_fini();
708 spl_tsd_fini();
709 spl_kstat_fini();
710 spl_proc_fini();
711 spl_vn_fini();
712 spl_taskq_fini();
713 spl_rw_fini();
714 spl_mutex_fini();
715 spl_kmem_fini();
716 spl_debug_fini();
717 }
718
719 /* Called when a dependent module is loaded */
720 void
721 spl_setup(void)
722 {
723 int rc;
724
725 /*
726 * At module load time the pwd is set to '/' on a Solaris system.
727 * On a Linux system will be set to whatever directory the caller
728 * was in when executing insmod/modprobe.
729 */
730 rc = vn_set_pwd("/");
731 if (rc)
732 printk("SPL: Warning unable to set pwd to '/': %d\n", rc);
733 }
734 EXPORT_SYMBOL(spl_setup);
735
736 /* Called when a dependent module is unloaded */
737 void
738 spl_cleanup(void)
739 {
740 }
741 EXPORT_SYMBOL(spl_cleanup);
742
743 module_init(spl_init);
744 module_exit(spl_fini);
745
746 MODULE_AUTHOR("Lawrence Livermore National Labs");
747 MODULE_DESCRIPTION("Solaris Porting Layer");
748 MODULE_LICENSE("GPL");
749 MODULE_VERSION(SPL_META_VERSION "-" SPL_META_RELEASE);