]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/abd.c
abd: add page iterator
[mirror_zfs.git] / module / zfs / abd.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2014 by Chunwei Chen. All rights reserved.
23 * Copyright (c) 2019 by Delphix. All rights reserved.
24 */
25
26 /*
27 * ARC buffer data (ABD).
28 *
29 * ABDs are an abstract data structure for the ARC which can use two
30 * different ways of storing the underlying data:
31 *
32 * (a) Linear buffer. In this case, all the data in the ABD is stored in one
33 * contiguous buffer in memory (from a zio_[data_]buf_* kmem cache).
34 *
35 * +-------------------+
36 * | ABD (linear) |
37 * | abd_flags = ... |
38 * | abd_size = ... | +--------------------------------+
39 * | abd_buf ------------->| raw buffer of size abd_size |
40 * +-------------------+ +--------------------------------+
41 * no abd_chunks
42 *
43 * (b) Scattered buffer. In this case, the data in the ABD is split into
44 * equal-sized chunks (from the abd_chunk_cache kmem_cache), with pointers
45 * to the chunks recorded in an array at the end of the ABD structure.
46 *
47 * +-------------------+
48 * | ABD (scattered) |
49 * | abd_flags = ... |
50 * | abd_size = ... |
51 * | abd_offset = 0 | +-----------+
52 * | abd_chunks[0] ----------------------------->| chunk 0 |
53 * | abd_chunks[1] ---------------------+ +-----------+
54 * | ... | | +-----------+
55 * | abd_chunks[N-1] ---------+ +------->| chunk 1 |
56 * +-------------------+ | +-----------+
57 * | ...
58 * | +-----------+
59 * +----------------->| chunk N-1 |
60 * +-----------+
61 *
62 * In addition to directly allocating a linear or scattered ABD, it is also
63 * possible to create an ABD by requesting the "sub-ABD" starting at an offset
64 * within an existing ABD. In linear buffers this is simple (set abd_buf of
65 * the new ABD to the starting point within the original raw buffer), but
66 * scattered ABDs are a little more complex. The new ABD makes a copy of the
67 * relevant abd_chunks pointers (but not the underlying data). However, to
68 * provide arbitrary rather than only chunk-aligned starting offsets, it also
69 * tracks an abd_offset field which represents the starting point of the data
70 * within the first chunk in abd_chunks. For both linear and scattered ABDs,
71 * creating an offset ABD marks the original ABD as the offset's parent, and the
72 * original ABD's abd_children refcount is incremented. This data allows us to
73 * ensure the root ABD isn't deleted before its children.
74 *
75 * Most consumers should never need to know what type of ABD they're using --
76 * the ABD public API ensures that it's possible to transparently switch from
77 * using a linear ABD to a scattered one when doing so would be beneficial.
78 *
79 * If you need to use the data within an ABD directly, if you know it's linear
80 * (because you allocated it) you can use abd_to_buf() to access the underlying
81 * raw buffer. Otherwise, you should use one of the abd_borrow_buf* functions
82 * which will allocate a raw buffer if necessary. Use the abd_return_buf*
83 * functions to return any raw buffers that are no longer necessary when you're
84 * done using them.
85 *
86 * There are a variety of ABD APIs that implement basic buffer operations:
87 * compare, copy, read, write, and fill with zeroes. If you need a custom
88 * function which progressively accesses the whole ABD, use the abd_iterate_*
89 * functions.
90 *
91 * As an additional feature, linear and scatter ABD's can be stitched together
92 * by using the gang ABD type (abd_alloc_gang_abd()). This allows for
93 * multiple ABDs to be viewed as a singular ABD.
94 *
95 * It is possible to make all ABDs linear by setting zfs_abd_scatter_enabled to
96 * B_FALSE.
97 */
98
99 #include <sys/abd_impl.h>
100 #include <sys/param.h>
101 #include <sys/zio.h>
102 #include <sys/zfs_context.h>
103 #include <sys/zfs_znode.h>
104
105 /* see block comment above for description */
106 int zfs_abd_scatter_enabled = B_TRUE;
107
108 void
109 abd_verify(abd_t *abd)
110 {
111 #ifdef ZFS_DEBUG
112 ASSERT3U(abd->abd_size, <=, SPA_MAXBLOCKSIZE);
113 ASSERT3U(abd->abd_flags, ==, abd->abd_flags & (ABD_FLAG_LINEAR |
114 ABD_FLAG_OWNER | ABD_FLAG_META | ABD_FLAG_MULTI_ZONE |
115 ABD_FLAG_MULTI_CHUNK | ABD_FLAG_LINEAR_PAGE | ABD_FLAG_GANG |
116 ABD_FLAG_GANG_FREE | ABD_FLAG_ZEROS | ABD_FLAG_ALLOCD));
117 IMPLY(abd->abd_parent != NULL, !(abd->abd_flags & ABD_FLAG_OWNER));
118 IMPLY(abd->abd_flags & ABD_FLAG_META, abd->abd_flags & ABD_FLAG_OWNER);
119 if (abd_is_linear(abd)) {
120 ASSERT3U(abd->abd_size, >, 0);
121 ASSERT3P(ABD_LINEAR_BUF(abd), !=, NULL);
122 } else if (abd_is_gang(abd)) {
123 uint_t child_sizes = 0;
124 for (abd_t *cabd = list_head(&ABD_GANG(abd).abd_gang_chain);
125 cabd != NULL;
126 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
127 ASSERT(list_link_active(&cabd->abd_gang_link));
128 child_sizes += cabd->abd_size;
129 abd_verify(cabd);
130 }
131 ASSERT3U(abd->abd_size, ==, child_sizes);
132 } else {
133 ASSERT3U(abd->abd_size, >, 0);
134 abd_verify_scatter(abd);
135 }
136 #endif
137 }
138
139 static void
140 abd_init_struct(abd_t *abd)
141 {
142 list_link_init(&abd->abd_gang_link);
143 mutex_init(&abd->abd_mtx, NULL, MUTEX_DEFAULT, NULL);
144 abd->abd_flags = 0;
145 #ifdef ZFS_DEBUG
146 zfs_refcount_create(&abd->abd_children);
147 abd->abd_parent = NULL;
148 #endif
149 abd->abd_size = 0;
150 }
151
152 static void
153 abd_fini_struct(abd_t *abd)
154 {
155 mutex_destroy(&abd->abd_mtx);
156 ASSERT(!list_link_active(&abd->abd_gang_link));
157 #ifdef ZFS_DEBUG
158 zfs_refcount_destroy(&abd->abd_children);
159 #endif
160 }
161
162 abd_t *
163 abd_alloc_struct(size_t size)
164 {
165 abd_t *abd = abd_alloc_struct_impl(size);
166 abd_init_struct(abd);
167 abd->abd_flags |= ABD_FLAG_ALLOCD;
168 return (abd);
169 }
170
171 void
172 abd_free_struct(abd_t *abd)
173 {
174 abd_fini_struct(abd);
175 abd_free_struct_impl(abd);
176 }
177
178 /*
179 * Allocate an ABD, along with its own underlying data buffers. Use this if you
180 * don't care whether the ABD is linear or not.
181 */
182 abd_t *
183 abd_alloc(size_t size, boolean_t is_metadata)
184 {
185 if (abd_size_alloc_linear(size))
186 return (abd_alloc_linear(size, is_metadata));
187
188 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
189
190 abd_t *abd = abd_alloc_struct(size);
191 abd->abd_flags |= ABD_FLAG_OWNER;
192 abd->abd_u.abd_scatter.abd_offset = 0;
193 abd_alloc_chunks(abd, size);
194
195 if (is_metadata) {
196 abd->abd_flags |= ABD_FLAG_META;
197 }
198 abd->abd_size = size;
199
200 abd_update_scatter_stats(abd, ABDSTAT_INCR);
201
202 return (abd);
203 }
204
205 /*
206 * Allocate an ABD that must be linear, along with its own underlying data
207 * buffer. Only use this when it would be very annoying to write your ABD
208 * consumer with a scattered ABD.
209 */
210 abd_t *
211 abd_alloc_linear(size_t size, boolean_t is_metadata)
212 {
213 abd_t *abd = abd_alloc_struct(0);
214
215 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
216
217 abd->abd_flags |= ABD_FLAG_LINEAR | ABD_FLAG_OWNER;
218 if (is_metadata) {
219 abd->abd_flags |= ABD_FLAG_META;
220 }
221 abd->abd_size = size;
222
223 if (is_metadata) {
224 ABD_LINEAR_BUF(abd) = zio_buf_alloc(size);
225 } else {
226 ABD_LINEAR_BUF(abd) = zio_data_buf_alloc(size);
227 }
228
229 abd_update_linear_stats(abd, ABDSTAT_INCR);
230
231 return (abd);
232 }
233
234 static void
235 abd_free_linear(abd_t *abd)
236 {
237 if (abd_is_linear_page(abd)) {
238 abd_free_linear_page(abd);
239 return;
240 }
241 if (abd->abd_flags & ABD_FLAG_META) {
242 zio_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
243 } else {
244 zio_data_buf_free(ABD_LINEAR_BUF(abd), abd->abd_size);
245 }
246
247 abd_update_linear_stats(abd, ABDSTAT_DECR);
248 }
249
250 static void
251 abd_free_gang(abd_t *abd)
252 {
253 ASSERT(abd_is_gang(abd));
254 abd_t *cabd;
255
256 while ((cabd = list_head(&ABD_GANG(abd).abd_gang_chain)) != NULL) {
257 /*
258 * We must acquire the child ABDs mutex to ensure that if it
259 * is being added to another gang ABD we will set the link
260 * as inactive when removing it from this gang ABD and before
261 * adding it to the other gang ABD.
262 */
263 mutex_enter(&cabd->abd_mtx);
264 ASSERT(list_link_active(&cabd->abd_gang_link));
265 list_remove(&ABD_GANG(abd).abd_gang_chain, cabd);
266 mutex_exit(&cabd->abd_mtx);
267 if (cabd->abd_flags & ABD_FLAG_GANG_FREE)
268 abd_free(cabd);
269 }
270 list_destroy(&ABD_GANG(abd).abd_gang_chain);
271 }
272
273 static void
274 abd_free_scatter(abd_t *abd)
275 {
276 abd_free_chunks(abd);
277 abd_update_scatter_stats(abd, ABDSTAT_DECR);
278 }
279
280 /*
281 * Free an ABD. Use with any kind of abd: those created with abd_alloc_*()
282 * and abd_get_*(), including abd_get_offset_struct().
283 *
284 * If the ABD was created with abd_alloc_*(), the underlying data
285 * (scatterlist or linear buffer) will also be freed. (Subject to ownership
286 * changes via abd_*_ownership_of_buf().)
287 *
288 * Unless the ABD was created with abd_get_offset_struct(), the abd_t will
289 * also be freed.
290 */
291 void
292 abd_free(abd_t *abd)
293 {
294 if (abd == NULL)
295 return;
296
297 abd_verify(abd);
298 #ifdef ZFS_DEBUG
299 IMPLY(abd->abd_flags & ABD_FLAG_OWNER, abd->abd_parent == NULL);
300 #endif
301
302 if (abd_is_gang(abd)) {
303 abd_free_gang(abd);
304 } else if (abd_is_linear(abd)) {
305 if (abd->abd_flags & ABD_FLAG_OWNER)
306 abd_free_linear(abd);
307 } else {
308 if (abd->abd_flags & ABD_FLAG_OWNER)
309 abd_free_scatter(abd);
310 }
311
312 #ifdef ZFS_DEBUG
313 if (abd->abd_parent != NULL) {
314 (void) zfs_refcount_remove_many(&abd->abd_parent->abd_children,
315 abd->abd_size, abd);
316 }
317 #endif
318
319 abd_fini_struct(abd);
320 if (abd->abd_flags & ABD_FLAG_ALLOCD)
321 abd_free_struct_impl(abd);
322 }
323
324 /*
325 * Allocate an ABD of the same format (same metadata flag, same scatterize
326 * setting) as another ABD.
327 */
328 abd_t *
329 abd_alloc_sametype(abd_t *sabd, size_t size)
330 {
331 boolean_t is_metadata = (sabd->abd_flags & ABD_FLAG_META) != 0;
332 if (abd_is_linear(sabd) &&
333 !abd_is_linear_page(sabd)) {
334 return (abd_alloc_linear(size, is_metadata));
335 } else {
336 return (abd_alloc(size, is_metadata));
337 }
338 }
339
340 /*
341 * Create gang ABD that will be the head of a list of ABD's. This is used
342 * to "chain" scatter/gather lists together when constructing aggregated
343 * IO's. To free this abd, abd_free() must be called.
344 */
345 abd_t *
346 abd_alloc_gang(void)
347 {
348 abd_t *abd = abd_alloc_struct(0);
349 abd->abd_flags |= ABD_FLAG_GANG | ABD_FLAG_OWNER;
350 list_create(&ABD_GANG(abd).abd_gang_chain,
351 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
352 return (abd);
353 }
354
355 /*
356 * Add a child gang ABD to a parent gang ABDs chained list.
357 */
358 static void
359 abd_gang_add_gang(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
360 {
361 ASSERT(abd_is_gang(pabd));
362 ASSERT(abd_is_gang(cabd));
363
364 if (free_on_free) {
365 /*
366 * If the parent is responsible for freeing the child gang
367 * ABD we will just splice the child's children ABD list to
368 * the parent's list and immediately free the child gang ABD
369 * struct. The parent gang ABDs children from the child gang
370 * will retain all the free_on_free settings after being
371 * added to the parents list.
372 */
373 #ifdef ZFS_DEBUG
374 /*
375 * If cabd had abd_parent, we have to drop it here. We can't
376 * transfer it to pabd, nor we can clear abd_size leaving it.
377 */
378 if (cabd->abd_parent != NULL) {
379 (void) zfs_refcount_remove_many(
380 &cabd->abd_parent->abd_children,
381 cabd->abd_size, cabd);
382 cabd->abd_parent = NULL;
383 }
384 #endif
385 pabd->abd_size += cabd->abd_size;
386 cabd->abd_size = 0;
387 list_move_tail(&ABD_GANG(pabd).abd_gang_chain,
388 &ABD_GANG(cabd).abd_gang_chain);
389 ASSERT(list_is_empty(&ABD_GANG(cabd).abd_gang_chain));
390 abd_verify(pabd);
391 abd_free(cabd);
392 } else {
393 for (abd_t *child = list_head(&ABD_GANG(cabd).abd_gang_chain);
394 child != NULL;
395 child = list_next(&ABD_GANG(cabd).abd_gang_chain, child)) {
396 /*
397 * We always pass B_FALSE for free_on_free as it is the
398 * original child gang ABDs responsibility to determine
399 * if any of its child ABDs should be free'd on the call
400 * to abd_free().
401 */
402 abd_gang_add(pabd, child, B_FALSE);
403 }
404 abd_verify(pabd);
405 }
406 }
407
408 /*
409 * Add a child ABD to a gang ABD's chained list.
410 */
411 void
412 abd_gang_add(abd_t *pabd, abd_t *cabd, boolean_t free_on_free)
413 {
414 ASSERT(abd_is_gang(pabd));
415 abd_t *child_abd = NULL;
416
417 /*
418 * If the child being added is a gang ABD, we will add the
419 * child's ABDs to the parent gang ABD. This allows us to account
420 * for the offset correctly in the parent gang ABD.
421 */
422 if (abd_is_gang(cabd)) {
423 ASSERT(!list_link_active(&cabd->abd_gang_link));
424 return (abd_gang_add_gang(pabd, cabd, free_on_free));
425 }
426 ASSERT(!abd_is_gang(cabd));
427
428 /*
429 * In order to verify that an ABD is not already part of
430 * another gang ABD, we must lock the child ABD's abd_mtx
431 * to check its abd_gang_link status. We unlock the abd_mtx
432 * only after it is has been added to a gang ABD, which
433 * will update the abd_gang_link's status. See comment below
434 * for how an ABD can be in multiple gang ABD's simultaneously.
435 */
436 mutex_enter(&cabd->abd_mtx);
437 if (list_link_active(&cabd->abd_gang_link)) {
438 /*
439 * If the child ABD is already part of another
440 * gang ABD then we must allocate a new
441 * ABD to use a separate link. We mark the newly
442 * allocated ABD with ABD_FLAG_GANG_FREE, before
443 * adding it to the gang ABD's list, to make the
444 * gang ABD aware that it is responsible to call
445 * abd_free(). We use abd_get_offset() in order
446 * to just allocate a new ABD but avoid copying the
447 * data over into the newly allocated ABD.
448 *
449 * An ABD may become part of multiple gang ABD's. For
450 * example, when writing ditto bocks, the same ABD
451 * is used to write 2 or 3 locations with 2 or 3
452 * zio_t's. Each of the zio's may be aggregated with
453 * different adjacent zio's. zio aggregation uses gang
454 * zio's, so the single ABD can become part of multiple
455 * gang zio's.
456 *
457 * The ASSERT below is to make sure that if
458 * free_on_free is passed as B_TRUE, the ABD can
459 * not be in multiple gang ABD's. The gang ABD
460 * can not be responsible for cleaning up the child
461 * ABD memory allocation if the ABD can be in
462 * multiple gang ABD's at one time.
463 */
464 ASSERT3B(free_on_free, ==, B_FALSE);
465 child_abd = abd_get_offset(cabd, 0);
466 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
467 } else {
468 child_abd = cabd;
469 if (free_on_free)
470 child_abd->abd_flags |= ABD_FLAG_GANG_FREE;
471 }
472 ASSERT3P(child_abd, !=, NULL);
473
474 list_insert_tail(&ABD_GANG(pabd).abd_gang_chain, child_abd);
475 mutex_exit(&cabd->abd_mtx);
476 pabd->abd_size += child_abd->abd_size;
477 }
478
479 /*
480 * Locate the ABD for the supplied offset in the gang ABD.
481 * Return a new offset relative to the returned ABD.
482 */
483 abd_t *
484 abd_gang_get_offset(abd_t *abd, size_t *off)
485 {
486 abd_t *cabd;
487
488 ASSERT(abd_is_gang(abd));
489 ASSERT3U(*off, <, abd->abd_size);
490 for (cabd = list_head(&ABD_GANG(abd).abd_gang_chain); cabd != NULL;
491 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd)) {
492 if (*off >= cabd->abd_size)
493 *off -= cabd->abd_size;
494 else
495 return (cabd);
496 }
497 VERIFY3P(cabd, !=, NULL);
498 return (cabd);
499 }
500
501 /*
502 * Allocate a new ABD, using the provided struct (if non-NULL, and if
503 * circumstances allow - otherwise allocate the struct). The returned ABD will
504 * point to offset off of sabd. It shares the underlying buffer data with sabd.
505 * Use abd_free() to free. sabd must not be freed while any derived ABDs exist.
506 */
507 static abd_t *
508 abd_get_offset_impl(abd_t *abd, abd_t *sabd, size_t off, size_t size)
509 {
510 abd_verify(sabd);
511 ASSERT3U(off + size, <=, sabd->abd_size);
512
513 if (abd_is_linear(sabd)) {
514 if (abd == NULL)
515 abd = abd_alloc_struct(0);
516 /*
517 * Even if this buf is filesystem metadata, we only track that
518 * if we own the underlying data buffer, which is not true in
519 * this case. Therefore, we don't ever use ABD_FLAG_META here.
520 */
521 abd->abd_flags |= ABD_FLAG_LINEAR;
522
523 ABD_LINEAR_BUF(abd) = (char *)ABD_LINEAR_BUF(sabd) + off;
524 } else if (abd_is_gang(sabd)) {
525 size_t left = size;
526 if (abd == NULL) {
527 abd = abd_alloc_gang();
528 } else {
529 abd->abd_flags |= ABD_FLAG_GANG;
530 list_create(&ABD_GANG(abd).abd_gang_chain,
531 sizeof (abd_t), offsetof(abd_t, abd_gang_link));
532 }
533
534 abd->abd_flags &= ~ABD_FLAG_OWNER;
535 for (abd_t *cabd = abd_gang_get_offset(sabd, &off);
536 cabd != NULL && left > 0;
537 cabd = list_next(&ABD_GANG(sabd).abd_gang_chain, cabd)) {
538 int csize = MIN(left, cabd->abd_size - off);
539
540 abd_t *nabd = abd_get_offset_size(cabd, off, csize);
541 abd_gang_add(abd, nabd, B_TRUE);
542 left -= csize;
543 off = 0;
544 }
545 ASSERT3U(left, ==, 0);
546 } else {
547 abd = abd_get_offset_scatter(abd, sabd, off, size);
548 }
549
550 ASSERT3P(abd, !=, NULL);
551 abd->abd_size = size;
552 #ifdef ZFS_DEBUG
553 abd->abd_parent = sabd;
554 (void) zfs_refcount_add_many(&sabd->abd_children, abd->abd_size, abd);
555 #endif
556 return (abd);
557 }
558
559 /*
560 * Like abd_get_offset_size(), but memory for the abd_t is provided by the
561 * caller. Using this routine can improve performance by avoiding the cost
562 * of allocating memory for the abd_t struct, and updating the abd stats.
563 * Usually, the provided abd is returned, but in some circumstances (FreeBSD,
564 * if sabd is scatter and size is more than 2 pages) a new abd_t may need to
565 * be allocated. Therefore callers should be careful to use the returned
566 * abd_t*.
567 */
568 abd_t *
569 abd_get_offset_struct(abd_t *abd, abd_t *sabd, size_t off, size_t size)
570 {
571 abd_t *result;
572 abd_init_struct(abd);
573 result = abd_get_offset_impl(abd, sabd, off, size);
574 if (result != abd)
575 abd_fini_struct(abd);
576 return (result);
577 }
578
579 abd_t *
580 abd_get_offset(abd_t *sabd, size_t off)
581 {
582 size_t size = sabd->abd_size > off ? sabd->abd_size - off : 0;
583 VERIFY3U(size, >, 0);
584 return (abd_get_offset_impl(NULL, sabd, off, size));
585 }
586
587 abd_t *
588 abd_get_offset_size(abd_t *sabd, size_t off, size_t size)
589 {
590 ASSERT3U(off + size, <=, sabd->abd_size);
591 return (abd_get_offset_impl(NULL, sabd, off, size));
592 }
593
594 /*
595 * Return a size scatter ABD containing only zeros.
596 */
597 abd_t *
598 abd_get_zeros(size_t size)
599 {
600 ASSERT3P(abd_zero_scatter, !=, NULL);
601 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
602 return (abd_get_offset_size(abd_zero_scatter, 0, size));
603 }
604
605 /*
606 * Allocate a linear ABD structure for buf.
607 */
608 abd_t *
609 abd_get_from_buf(void *buf, size_t size)
610 {
611 abd_t *abd = abd_alloc_struct(0);
612
613 VERIFY3U(size, <=, SPA_MAXBLOCKSIZE);
614
615 /*
616 * Even if this buf is filesystem metadata, we only track that if we
617 * own the underlying data buffer, which is not true in this case.
618 * Therefore, we don't ever use ABD_FLAG_META here.
619 */
620 abd->abd_flags |= ABD_FLAG_LINEAR;
621 abd->abd_size = size;
622
623 ABD_LINEAR_BUF(abd) = buf;
624
625 return (abd);
626 }
627
628 /*
629 * Get the raw buffer associated with a linear ABD.
630 */
631 void *
632 abd_to_buf(abd_t *abd)
633 {
634 ASSERT(abd_is_linear(abd));
635 abd_verify(abd);
636 return (ABD_LINEAR_BUF(abd));
637 }
638
639 /*
640 * Borrow a raw buffer from an ABD without copying the contents of the ABD
641 * into the buffer. If the ABD is scattered, this will allocate a raw buffer
642 * whose contents are undefined. To copy over the existing data in the ABD, use
643 * abd_borrow_buf_copy() instead.
644 */
645 void *
646 abd_borrow_buf(abd_t *abd, size_t n)
647 {
648 void *buf;
649 abd_verify(abd);
650 ASSERT3U(abd->abd_size, >=, n);
651 if (abd_is_linear(abd)) {
652 buf = abd_to_buf(abd);
653 } else {
654 buf = zio_buf_alloc(n);
655 }
656 #ifdef ZFS_DEBUG
657 (void) zfs_refcount_add_many(&abd->abd_children, n, buf);
658 #endif
659 return (buf);
660 }
661
662 void *
663 abd_borrow_buf_copy(abd_t *abd, size_t n)
664 {
665 void *buf = abd_borrow_buf(abd, n);
666 if (!abd_is_linear(abd)) {
667 abd_copy_to_buf(buf, abd, n);
668 }
669 return (buf);
670 }
671
672 /*
673 * Return a borrowed raw buffer to an ABD. If the ABD is scattered, this will
674 * not change the contents of the ABD and will ASSERT that you didn't modify
675 * the buffer since it was borrowed. If you want any changes you made to buf to
676 * be copied back to abd, use abd_return_buf_copy() instead.
677 */
678 void
679 abd_return_buf(abd_t *abd, void *buf, size_t n)
680 {
681 abd_verify(abd);
682 ASSERT3U(abd->abd_size, >=, n);
683 #ifdef ZFS_DEBUG
684 (void) zfs_refcount_remove_many(&abd->abd_children, n, buf);
685 #endif
686 if (abd_is_linear(abd)) {
687 ASSERT3P(buf, ==, abd_to_buf(abd));
688 } else {
689 ASSERT0(abd_cmp_buf(abd, buf, n));
690 zio_buf_free(buf, n);
691 }
692 }
693
694 void
695 abd_return_buf_copy(abd_t *abd, void *buf, size_t n)
696 {
697 if (!abd_is_linear(abd)) {
698 abd_copy_from_buf(abd, buf, n);
699 }
700 abd_return_buf(abd, buf, n);
701 }
702
703 void
704 abd_release_ownership_of_buf(abd_t *abd)
705 {
706 ASSERT(abd_is_linear(abd));
707 ASSERT(abd->abd_flags & ABD_FLAG_OWNER);
708
709 /*
710 * abd_free() needs to handle LINEAR_PAGE ABD's specially.
711 * Since that flag does not survive the
712 * abd_release_ownership_of_buf() -> abd_get_from_buf() ->
713 * abd_take_ownership_of_buf() sequence, we don't allow releasing
714 * these "linear but not zio_[data_]buf_alloc()'ed" ABD's.
715 */
716 ASSERT(!abd_is_linear_page(abd));
717
718 abd_verify(abd);
719
720 abd->abd_flags &= ~ABD_FLAG_OWNER;
721 /* Disable this flag since we no longer own the data buffer */
722 abd->abd_flags &= ~ABD_FLAG_META;
723
724 abd_update_linear_stats(abd, ABDSTAT_DECR);
725 }
726
727
728 /*
729 * Give this ABD ownership of the buffer that it's storing. Can only be used on
730 * linear ABDs which were allocated via abd_get_from_buf(), or ones allocated
731 * with abd_alloc_linear() which subsequently released ownership of their buf
732 * with abd_release_ownership_of_buf().
733 */
734 void
735 abd_take_ownership_of_buf(abd_t *abd, boolean_t is_metadata)
736 {
737 ASSERT(abd_is_linear(abd));
738 ASSERT(!(abd->abd_flags & ABD_FLAG_OWNER));
739 abd_verify(abd);
740
741 abd->abd_flags |= ABD_FLAG_OWNER;
742 if (is_metadata) {
743 abd->abd_flags |= ABD_FLAG_META;
744 }
745
746 abd_update_linear_stats(abd, ABDSTAT_INCR);
747 }
748
749 /*
750 * Initializes an abd_iter based on whether the abd is a gang ABD
751 * or just a single ABD.
752 */
753 static inline abd_t *
754 abd_init_abd_iter(abd_t *abd, struct abd_iter *aiter, size_t off)
755 {
756 abd_t *cabd = NULL;
757
758 if (abd_is_gang(abd)) {
759 cabd = abd_gang_get_offset(abd, &off);
760 if (cabd) {
761 abd_iter_init(aiter, cabd);
762 abd_iter_advance(aiter, off);
763 }
764 } else {
765 abd_iter_init(aiter, abd);
766 abd_iter_advance(aiter, off);
767 }
768 return (cabd);
769 }
770
771 /*
772 * Advances an abd_iter. We have to be careful with gang ABD as
773 * advancing could mean that we are at the end of a particular ABD and
774 * must grab the ABD in the gang ABD's list.
775 */
776 static inline abd_t *
777 abd_advance_abd_iter(abd_t *abd, abd_t *cabd, struct abd_iter *aiter,
778 size_t len)
779 {
780 abd_iter_advance(aiter, len);
781 if (abd_is_gang(abd) && abd_iter_at_end(aiter)) {
782 ASSERT3P(cabd, !=, NULL);
783 cabd = list_next(&ABD_GANG(abd).abd_gang_chain, cabd);
784 if (cabd) {
785 abd_iter_init(aiter, cabd);
786 abd_iter_advance(aiter, 0);
787 }
788 }
789 return (cabd);
790 }
791
792 int
793 abd_iterate_func(abd_t *abd, size_t off, size_t size,
794 abd_iter_func_t *func, void *private)
795 {
796 struct abd_iter aiter;
797 int ret = 0;
798
799 if (size == 0)
800 return (0);
801
802 abd_verify(abd);
803 ASSERT3U(off + size, <=, abd->abd_size);
804
805 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
806
807 while (size > 0) {
808 IMPLY(abd_is_gang(abd), c_abd != NULL);
809
810 abd_iter_map(&aiter);
811
812 size_t len = MIN(aiter.iter_mapsize, size);
813 ASSERT3U(len, >, 0);
814
815 ret = func(aiter.iter_mapaddr, len, private);
816
817 abd_iter_unmap(&aiter);
818
819 if (ret != 0)
820 break;
821
822 size -= len;
823 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
824 }
825
826 return (ret);
827 }
828
829 #if defined(__linux__) && defined(_KERNEL)
830 int
831 abd_iterate_page_func(abd_t *abd, size_t off, size_t size,
832 abd_iter_page_func_t *func, void *private)
833 {
834 struct abd_iter aiter;
835 int ret = 0;
836
837 if (size == 0)
838 return (0);
839
840 abd_verify(abd);
841 ASSERT3U(off + size, <=, abd->abd_size);
842
843 abd_t *c_abd = abd_init_abd_iter(abd, &aiter, off);
844
845 while (size > 0) {
846 IMPLY(abd_is_gang(abd), c_abd != NULL);
847
848 abd_iter_page(&aiter);
849
850 size_t len = MIN(aiter.iter_page_dsize, size);
851 ASSERT3U(len, >, 0);
852
853 ret = func(aiter.iter_page, aiter.iter_page_doff,
854 len, private);
855
856 aiter.iter_page = NULL;
857 aiter.iter_page_doff = 0;
858 aiter.iter_page_dsize = 0;
859
860 if (ret != 0)
861 break;
862
863 size -= len;
864 c_abd = abd_advance_abd_iter(abd, c_abd, &aiter, len);
865 }
866
867 return (ret);
868 }
869 #endif
870
871 struct buf_arg {
872 void *arg_buf;
873 };
874
875 static int
876 abd_copy_to_buf_off_cb(void *buf, size_t size, void *private)
877 {
878 struct buf_arg *ba_ptr = private;
879
880 (void) memcpy(ba_ptr->arg_buf, buf, size);
881 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
882
883 return (0);
884 }
885
886 /*
887 * Copy abd to buf. (off is the offset in abd.)
888 */
889 void
890 abd_copy_to_buf_off(void *buf, abd_t *abd, size_t off, size_t size)
891 {
892 struct buf_arg ba_ptr = { buf };
893
894 (void) abd_iterate_func(abd, off, size, abd_copy_to_buf_off_cb,
895 &ba_ptr);
896 }
897
898 static int
899 abd_cmp_buf_off_cb(void *buf, size_t size, void *private)
900 {
901 int ret;
902 struct buf_arg *ba_ptr = private;
903
904 ret = memcmp(buf, ba_ptr->arg_buf, size);
905 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
906
907 return (ret);
908 }
909
910 /*
911 * Compare the contents of abd to buf. (off is the offset in abd.)
912 */
913 int
914 abd_cmp_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
915 {
916 struct buf_arg ba_ptr = { (void *) buf };
917
918 return (abd_iterate_func(abd, off, size, abd_cmp_buf_off_cb, &ba_ptr));
919 }
920
921 static int
922 abd_copy_from_buf_off_cb(void *buf, size_t size, void *private)
923 {
924 struct buf_arg *ba_ptr = private;
925
926 (void) memcpy(buf, ba_ptr->arg_buf, size);
927 ba_ptr->arg_buf = (char *)ba_ptr->arg_buf + size;
928
929 return (0);
930 }
931
932 /*
933 * Copy from buf to abd. (off is the offset in abd.)
934 */
935 void
936 abd_copy_from_buf_off(abd_t *abd, const void *buf, size_t off, size_t size)
937 {
938 struct buf_arg ba_ptr = { (void *) buf };
939
940 (void) abd_iterate_func(abd, off, size, abd_copy_from_buf_off_cb,
941 &ba_ptr);
942 }
943
944 static int
945 abd_zero_off_cb(void *buf, size_t size, void *private)
946 {
947 (void) private;
948 (void) memset(buf, 0, size);
949 return (0);
950 }
951
952 /*
953 * Zero out the abd from a particular offset to the end.
954 */
955 void
956 abd_zero_off(abd_t *abd, size_t off, size_t size)
957 {
958 (void) abd_iterate_func(abd, off, size, abd_zero_off_cb, NULL);
959 }
960
961 /*
962 * Iterate over two ABDs and call func incrementally on the two ABDs' data in
963 * equal-sized chunks (passed to func as raw buffers). func could be called many
964 * times during this iteration.
965 */
966 int
967 abd_iterate_func2(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff,
968 size_t size, abd_iter_func2_t *func, void *private)
969 {
970 int ret = 0;
971 struct abd_iter daiter, saiter;
972 abd_t *c_dabd, *c_sabd;
973
974 if (size == 0)
975 return (0);
976
977 abd_verify(dabd);
978 abd_verify(sabd);
979
980 ASSERT3U(doff + size, <=, dabd->abd_size);
981 ASSERT3U(soff + size, <=, sabd->abd_size);
982
983 c_dabd = abd_init_abd_iter(dabd, &daiter, doff);
984 c_sabd = abd_init_abd_iter(sabd, &saiter, soff);
985
986 while (size > 0) {
987 IMPLY(abd_is_gang(dabd), c_dabd != NULL);
988 IMPLY(abd_is_gang(sabd), c_sabd != NULL);
989
990 abd_iter_map(&daiter);
991 abd_iter_map(&saiter);
992
993 size_t dlen = MIN(daiter.iter_mapsize, size);
994 size_t slen = MIN(saiter.iter_mapsize, size);
995 size_t len = MIN(dlen, slen);
996 ASSERT(dlen > 0 || slen > 0);
997
998 ret = func(daiter.iter_mapaddr, saiter.iter_mapaddr, len,
999 private);
1000
1001 abd_iter_unmap(&saiter);
1002 abd_iter_unmap(&daiter);
1003
1004 if (ret != 0)
1005 break;
1006
1007 size -= len;
1008 c_dabd =
1009 abd_advance_abd_iter(dabd, c_dabd, &daiter, len);
1010 c_sabd =
1011 abd_advance_abd_iter(sabd, c_sabd, &saiter, len);
1012 }
1013
1014 return (ret);
1015 }
1016
1017 static int
1018 abd_copy_off_cb(void *dbuf, void *sbuf, size_t size, void *private)
1019 {
1020 (void) private;
1021 (void) memcpy(dbuf, sbuf, size);
1022 return (0);
1023 }
1024
1025 /*
1026 * Copy from sabd to dabd starting from soff and doff.
1027 */
1028 void
1029 abd_copy_off(abd_t *dabd, abd_t *sabd, size_t doff, size_t soff, size_t size)
1030 {
1031 (void) abd_iterate_func2(dabd, sabd, doff, soff, size,
1032 abd_copy_off_cb, NULL);
1033 }
1034
1035 static int
1036 abd_cmp_cb(void *bufa, void *bufb, size_t size, void *private)
1037 {
1038 (void) private;
1039 return (memcmp(bufa, bufb, size));
1040 }
1041
1042 /*
1043 * Compares the contents of two ABDs.
1044 */
1045 int
1046 abd_cmp(abd_t *dabd, abd_t *sabd)
1047 {
1048 ASSERT3U(dabd->abd_size, ==, sabd->abd_size);
1049 return (abd_iterate_func2(dabd, sabd, 0, 0, dabd->abd_size,
1050 abd_cmp_cb, NULL));
1051 }
1052
1053 /*
1054 * Iterate over code ABDs and a data ABD and call @func_raidz_gen.
1055 *
1056 * @cabds parity ABDs, must have equal size
1057 * @dabd data ABD. Can be NULL (in this case @dsize = 0)
1058 * @func_raidz_gen should be implemented so that its behaviour
1059 * is the same when taking linear and when taking scatter
1060 */
1061 void
1062 abd_raidz_gen_iterate(abd_t **cabds, abd_t *dabd, size_t off,
1063 size_t csize, size_t dsize, const unsigned parity,
1064 void (*func_raidz_gen)(void **, const void *, size_t, size_t))
1065 {
1066 int i;
1067 size_t len, dlen;
1068 struct abd_iter caiters[3];
1069 struct abd_iter daiter;
1070 void *caddrs[3], *daddr;
1071 unsigned long flags __maybe_unused = 0;
1072 abd_t *c_cabds[3];
1073 abd_t *c_dabd = NULL;
1074
1075 ASSERT3U(parity, <=, 3);
1076 for (i = 0; i < parity; i++) {
1077 abd_verify(cabds[i]);
1078 ASSERT3U(off + csize, <=, cabds[i]->abd_size);
1079 c_cabds[i] = abd_init_abd_iter(cabds[i], &caiters[i], off);
1080 }
1081
1082 if (dsize > 0) {
1083 ASSERT(dabd);
1084 abd_verify(dabd);
1085 ASSERT3U(off + dsize, <=, dabd->abd_size);
1086 c_dabd = abd_init_abd_iter(dabd, &daiter, off);
1087 }
1088
1089 abd_enter_critical(flags);
1090 while (csize > 0) {
1091 len = csize;
1092 for (i = 0; i < parity; i++) {
1093 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1094 abd_iter_map(&caiters[i]);
1095 caddrs[i] = caiters[i].iter_mapaddr;
1096 len = MIN(caiters[i].iter_mapsize, len);
1097 }
1098
1099 if (dsize > 0) {
1100 IMPLY(abd_is_gang(dabd), c_dabd != NULL);
1101 abd_iter_map(&daiter);
1102 daddr = daiter.iter_mapaddr;
1103 len = MIN(daiter.iter_mapsize, len);
1104 dlen = len;
1105 } else {
1106 daddr = NULL;
1107 dlen = 0;
1108 }
1109
1110 /* must be progressive */
1111 ASSERT3U(len, >, 0);
1112 /*
1113 * The iterated function likely will not do well if each
1114 * segment except the last one is not multiple of 512 (raidz).
1115 */
1116 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1117
1118 func_raidz_gen(caddrs, daddr, len, dlen);
1119
1120 for (i = parity-1; i >= 0; i--) {
1121 abd_iter_unmap(&caiters[i]);
1122 c_cabds[i] =
1123 abd_advance_abd_iter(cabds[i], c_cabds[i],
1124 &caiters[i], len);
1125 }
1126
1127 if (dsize > 0) {
1128 abd_iter_unmap(&daiter);
1129 c_dabd =
1130 abd_advance_abd_iter(dabd, c_dabd, &daiter,
1131 dlen);
1132 dsize -= dlen;
1133 }
1134
1135 csize -= len;
1136 }
1137 abd_exit_critical(flags);
1138 }
1139
1140 /*
1141 * Iterate over code ABDs and data reconstruction target ABDs and call
1142 * @func_raidz_rec. Function maps at most 6 pages atomically.
1143 *
1144 * @cabds parity ABDs, must have equal size
1145 * @tabds rec target ABDs, at most 3
1146 * @tsize size of data target columns
1147 * @func_raidz_rec expects syndrome data in target columns. Function
1148 * reconstructs data and overwrites target columns.
1149 */
1150 void
1151 abd_raidz_rec_iterate(abd_t **cabds, abd_t **tabds,
1152 size_t tsize, const unsigned parity,
1153 void (*func_raidz_rec)(void **t, const size_t tsize, void **c,
1154 const unsigned *mul),
1155 const unsigned *mul)
1156 {
1157 int i;
1158 size_t len;
1159 struct abd_iter citers[3];
1160 struct abd_iter xiters[3];
1161 void *caddrs[3], *xaddrs[3];
1162 unsigned long flags __maybe_unused = 0;
1163 abd_t *c_cabds[3];
1164 abd_t *c_tabds[3];
1165
1166 ASSERT3U(parity, <=, 3);
1167
1168 for (i = 0; i < parity; i++) {
1169 abd_verify(cabds[i]);
1170 abd_verify(tabds[i]);
1171 ASSERT3U(tsize, <=, cabds[i]->abd_size);
1172 ASSERT3U(tsize, <=, tabds[i]->abd_size);
1173 c_cabds[i] =
1174 abd_init_abd_iter(cabds[i], &citers[i], 0);
1175 c_tabds[i] =
1176 abd_init_abd_iter(tabds[i], &xiters[i], 0);
1177 }
1178
1179 abd_enter_critical(flags);
1180 while (tsize > 0) {
1181 len = tsize;
1182 for (i = 0; i < parity; i++) {
1183 IMPLY(abd_is_gang(cabds[i]), c_cabds[i] != NULL);
1184 IMPLY(abd_is_gang(tabds[i]), c_tabds[i] != NULL);
1185 abd_iter_map(&citers[i]);
1186 abd_iter_map(&xiters[i]);
1187 caddrs[i] = citers[i].iter_mapaddr;
1188 xaddrs[i] = xiters[i].iter_mapaddr;
1189 len = MIN(citers[i].iter_mapsize, len);
1190 len = MIN(xiters[i].iter_mapsize, len);
1191 }
1192
1193 /* must be progressive */
1194 ASSERT3S(len, >, 0);
1195 /*
1196 * The iterated function likely will not do well if each
1197 * segment except the last one is not multiple of 512 (raidz).
1198 */
1199 ASSERT3U(((uint64_t)len & 511ULL), ==, 0);
1200
1201 func_raidz_rec(xaddrs, len, caddrs, mul);
1202
1203 for (i = parity-1; i >= 0; i--) {
1204 abd_iter_unmap(&xiters[i]);
1205 abd_iter_unmap(&citers[i]);
1206 c_tabds[i] =
1207 abd_advance_abd_iter(tabds[i], c_tabds[i],
1208 &xiters[i], len);
1209 c_cabds[i] =
1210 abd_advance_abd_iter(cabds[i], c_cabds[i],
1211 &citers[i], len);
1212 }
1213
1214 tsize -= len;
1215 ASSERT3S(tsize, >=, 0);
1216 }
1217 abd_exit_critical(flags);
1218 }