]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/brt.c
Provide macros for setting and getting blkptr birth times
[mirror_zfs.git] / module / zfs / brt.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2020, 2021, 2022 by Pawel Jakub Dawidek
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/brt.h>
31 #include <sys/brt_impl.h>
32 #include <sys/ddt.h>
33 #include <sys/bitmap.h>
34 #include <sys/zap.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/arc.h>
37 #include <sys/dsl_pool.h>
38 #include <sys/dsl_scan.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/kstat.h>
41 #include <sys/wmsum.h>
42
43 /*
44 * Block Cloning design.
45 *
46 * Block Cloning allows to manually clone a file (or a subset of its blocks)
47 * into another (or the same) file by just creating additional references to
48 * the data blocks without copying the data itself. Those references are kept
49 * in the Block Reference Tables (BRTs).
50 *
51 * In many ways this is similar to the existing deduplication, but there are
52 * some important differences:
53 *
54 * - Deduplication is automatic and Block Cloning is not - one has to use a
55 * dedicated system call(s) to clone the given file/blocks.
56 * - Deduplication keeps all data blocks in its table, even those referenced
57 * just once. Block Cloning creates an entry in its tables only when there
58 * are at least two references to the given data block. If the block was
59 * never explicitly cloned or the second to last reference was dropped,
60 * there will be neither space nor performance overhead.
61 * - Deduplication needs data to work - one needs to pass real data to the
62 * write(2) syscall, so hash can be calculated. Block Cloning doesn't require
63 * data, just block pointers to the data, so it is extremely fast, as we pay
64 * neither the cost of reading the data, nor the cost of writing the data -
65 * we operate exclusively on metadata.
66 * - If the D (dedup) bit is not set in the block pointer, it means that
67 * the block is not in the dedup table (DDT) and we won't consult the DDT
68 * when we need to free the block. Block Cloning must be consulted on every
69 * free, because we cannot modify the source BP (eg. by setting something
70 * similar to the D bit), thus we have no hint if the block is in the
71 * Block Reference Table (BRT), so we need to look into the BRT. There is
72 * an optimization in place that allows us to eliminate the majority of BRT
73 * lookups which is described below in the "Minimizing free penalty" section.
74 * - The BRT entry is much smaller than the DDT entry - for BRT we only store
75 * 64bit offset and 64bit reference counter.
76 * - Dedup keys are cryptographic hashes, so two blocks that are close to each
77 * other on disk are most likely in totally different parts of the DDT.
78 * The BRT entry keys are offsets into a single top-level VDEV, so data blocks
79 * from one file should have BRT entries close to each other.
80 * - Scrub will only do a single pass over a block that is referenced multiple
81 * times in the DDT. Unfortunately it is not currently (if at all) possible
82 * with Block Cloning and block referenced multiple times will be scrubbed
83 * multiple times. The new, sorted scrub should be able to eliminate
84 * duplicated reads given enough memory.
85 * - Deduplication requires cryptographically strong hash as a checksum or
86 * additional data verification. Block Cloning works with any checksum
87 * algorithm or even with checksumming disabled.
88 *
89 * As mentioned above, the BRT entries are much smaller than the DDT entries.
90 * To uniquely identify a block we just need its vdev id and offset. We also
91 * need to maintain a reference counter. The vdev id will often repeat, as there
92 * is a small number of top-level VDEVs and a large number of blocks stored in
93 * each VDEV. We take advantage of that to reduce the BRT entry size further by
94 * maintaining one BRT for each top-level VDEV, so we can then have only offset
95 * and counter as the BRT entry.
96 *
97 * Minimizing free penalty.
98 *
99 * Block Cloning allows creating additional references to any existing block.
100 * When we free a block there is no hint in the block pointer whether the block
101 * was cloned or not, so on each free we have to check if there is a
102 * corresponding entry in the BRT or not. If there is, we need to decrease
103 * the reference counter. Doing BRT lookup on every free can potentially be
104 * expensive by requiring additional I/Os if the BRT doesn't fit into memory.
105 * This is the main problem with deduplication, so we've learned our lesson and
106 * try not to repeat the same mistake here. How do we do that? We divide each
107 * top-level VDEV into 16MB regions. For each region we maintain a counter that
108 * is a sum of all the BRT entries that have offsets within the region. This
109 * creates the entries count array of 16bit numbers for each top-level VDEV.
110 * The entries count array is always kept in memory and updated on disk in the
111 * same transaction group as the BRT updates to keep everything in-sync. We can
112 * keep the array in memory, because it is very small. With 16MB regions and
113 * 1TB VDEV the array requires only 128kB of memory (we may decide to decrease
114 * the region size even further in the future). Now, when we want to free
115 * a block, we first consult the array. If the counter for the whole region is
116 * zero, there is no need to look for the BRT entry, as there isn't one for
117 * sure. If the counter for the region is greater than zero, only then we will
118 * do a BRT lookup and if an entry is found we will decrease the reference
119 * counter in the BRT entry and in the entry counters array.
120 *
121 * The entry counters array is small, but can potentially be larger for very
122 * large VDEVs or smaller regions. In this case we don't want to rewrite entire
123 * array on every change. We then divide the array into 32kB block and keep
124 * a bitmap of dirty blocks within a transaction group. When we sync the
125 * transaction group we can only update the parts of the entry counters array
126 * that were modified. Note: Keeping track of the dirty parts of the entry
127 * counters array is implemented, but updating only parts of the array on disk
128 * is not yet implemented - for now we will update entire array if there was
129 * any change.
130 *
131 * The implementation tries to be economic: if BRT is not used, or no longer
132 * used, there will be no entries in the MOS and no additional memory used (eg.
133 * the entry counters array is only allocated if needed).
134 *
135 * Interaction between Deduplication and Block Cloning.
136 *
137 * If both functionalities are in use, we could end up with a block that is
138 * referenced multiple times in both DDT and BRT. When we free one of the
139 * references we couldn't tell where it belongs, so we would have to decide
140 * what table takes the precedence: do we first clear DDT references or BRT
141 * references? To avoid this dilemma BRT cooperates with DDT - if a given block
142 * is being cloned using BRT and the BP has the D (dedup) bit set, BRT will
143 * lookup DDT entry instead and increase the counter there. No BRT entry
144 * will be created for a block which has the D (dedup) bit set.
145 * BRT may be more efficient for manual deduplication, but if the block is
146 * already in the DDT, then creating additional BRT entry would be less
147 * efficient. This clever idea was proposed by Allan Jude.
148 *
149 * Block Cloning across datasets.
150 *
151 * Block Cloning is not limited to cloning blocks within the same dataset.
152 * It is possible (and very useful) to clone blocks between different datasets.
153 * One use case is recovering files from snapshots. By cloning the files into
154 * dataset we need no additional storage. Without Block Cloning we would need
155 * additional space for those files.
156 * Another interesting use case is moving the files between datasets
157 * (copying the file content to the new dataset and removing the source file).
158 * In that case Block Cloning will only be used briefly, because the BRT entries
159 * will be removed when the source is removed.
160 * Block Cloning across encrypted datasets is supported as long as both
161 * datasets share the same master key (e.g. snapshots and clones)
162 *
163 * Block Cloning flow through ZFS layers.
164 *
165 * Note: Block Cloning can be used both for cloning file system blocks and ZVOL
166 * blocks. As of this writing no interface is implemented that allows for block
167 * cloning within a ZVOL.
168 * FreeBSD and Linux provides copy_file_range(2) system call and we will use it
169 * for blocking cloning.
170 *
171 * ssize_t
172 * copy_file_range(int infd, off_t *inoffp, int outfd, off_t *outoffp,
173 * size_t len, unsigned int flags);
174 *
175 * Even though offsets and length represent bytes, they have to be
176 * block-aligned or we will return an error so the upper layer can
177 * fallback to the generic mechanism that will just copy the data.
178 * Using copy_file_range(2) will call OS-independent zfs_clone_range() function.
179 * This function was implemented based on zfs_write(), but instead of writing
180 * the given data we first read block pointers using the new dmu_read_l0_bps()
181 * function from the source file. Once we have BPs from the source file we call
182 * the dmu_brt_clone() function on the destination file. This function
183 * allocates BPs for us. We iterate over all source BPs. If the given BP is
184 * a hole or an embedded block, we just copy BP as-is. If it points to a real
185 * data we place this BP on a BRT pending list using the brt_pending_add()
186 * function.
187 *
188 * We use this pending list to keep track of all BPs that got new references
189 * within this transaction group.
190 *
191 * Some special cases to consider and how we address them:
192 * - The block we want to clone may have been created within the same
193 * transaction group that we are trying to clone. Such block has no BP
194 * allocated yet, so cannot be immediately cloned. We return EAGAIN.
195 * - The block we want to clone may have been modified within the same
196 * transaction group. We return EAGAIN.
197 * - A block may be cloned multiple times during one transaction group (that's
198 * why pending list is actually a tree and not an append-only list - this
199 * way we can figure out faster if this block is cloned for the first time
200 * in this txg or consecutive time).
201 * - A block may be cloned and freed within the same transaction group
202 * (see dbuf_undirty()).
203 * - A block may be cloned and within the same transaction group the clone
204 * can be cloned again (see dmu_read_l0_bps()).
205 * - A file might have been deleted, but the caller still has a file descriptor
206 * open to this file and clones it.
207 *
208 * When we free a block we have an additional step in the ZIO pipeline where we
209 * call the zio_brt_free() function. We then call the brt_entry_decref()
210 * that loads the corresponding BRT entry (if one exists) and decreases
211 * reference counter. If this is not the last reference we will stop ZIO
212 * pipeline here. If this is the last reference or the block is not in the
213 * BRT, we continue the pipeline and free the block as usual.
214 *
215 * At the beginning of spa_sync() where there can be no more block cloning,
216 * but before issuing frees we call brt_pending_apply(). This function applies
217 * all the new clones to the BRT table - we load BRT entries and update
218 * reference counters. To sync new BRT entries to disk, we use brt_sync()
219 * function. This function will sync all dirty per-top-level-vdev BRTs,
220 * the entry counters arrays, etc.
221 *
222 * Block Cloning and ZIL.
223 *
224 * Every clone operation is divided into chunks (similar to write) and each
225 * chunk is cloned in a separate transaction. The chunk size is determined by
226 * how many BPs we can fit into a single ZIL entry.
227 * Replaying clone operation is different from the regular clone operation,
228 * as when we log clone operations we cannot use the source object - it may
229 * reside on a different dataset, so we log BPs we want to clone.
230 * The ZIL is replayed when we mount the given dataset, not when the pool is
231 * imported. Taking this into account it is possible that the pool is imported
232 * without mounting datasets and the source dataset is destroyed before the
233 * destination dataset is mounted and its ZIL replayed.
234 * To address this situation we leverage zil_claim() mechanism where ZFS will
235 * parse all the ZILs on pool import. When we come across TX_CLONE_RANGE
236 * entries, we will bump reference counters for their BPs in the BRT. Then
237 * on mount and ZIL replay we bump the reference counters once more, while the
238 * first references are dropped during ZIL destroy by zil_free_clone_range().
239 * It is possible that after zil_claim() we never mount the destination, so
240 * we never replay its ZIL and just destroy it. In this case the only taken
241 * references will be dropped by zil_free_clone_range(), since the cloning is
242 * not going to ever take place.
243 */
244
245 static kmem_cache_t *brt_entry_cache;
246 static kmem_cache_t *brt_pending_entry_cache;
247
248 /*
249 * Enable/disable prefetching of BRT entries that we are going to modify.
250 */
251 int zfs_brt_prefetch = 1;
252
253 #ifdef ZFS_DEBUG
254 #define BRT_DEBUG(...) do { \
255 if ((zfs_flags & ZFS_DEBUG_BRT) != 0) { \
256 __dprintf(B_TRUE, __FILE__, __func__, __LINE__, __VA_ARGS__); \
257 } \
258 } while (0)
259 #else
260 #define BRT_DEBUG(...) do { } while (0)
261 #endif
262
263 int brt_zap_leaf_blockshift = 12;
264 int brt_zap_indirect_blockshift = 12;
265
266 static kstat_t *brt_ksp;
267
268 typedef struct brt_stats {
269 kstat_named_t brt_addref_entry_in_memory;
270 kstat_named_t brt_addref_entry_not_on_disk;
271 kstat_named_t brt_addref_entry_on_disk;
272 kstat_named_t brt_addref_entry_read_lost_race;
273 kstat_named_t brt_decref_entry_in_memory;
274 kstat_named_t brt_decref_entry_loaded_from_disk;
275 kstat_named_t brt_decref_entry_not_in_memory;
276 kstat_named_t brt_decref_entry_not_on_disk;
277 kstat_named_t brt_decref_entry_read_lost_race;
278 kstat_named_t brt_decref_entry_still_referenced;
279 kstat_named_t brt_decref_free_data_later;
280 kstat_named_t brt_decref_free_data_now;
281 kstat_named_t brt_decref_no_entry;
282 } brt_stats_t;
283
284 static brt_stats_t brt_stats = {
285 { "addref_entry_in_memory", KSTAT_DATA_UINT64 },
286 { "addref_entry_not_on_disk", KSTAT_DATA_UINT64 },
287 { "addref_entry_on_disk", KSTAT_DATA_UINT64 },
288 { "addref_entry_read_lost_race", KSTAT_DATA_UINT64 },
289 { "decref_entry_in_memory", KSTAT_DATA_UINT64 },
290 { "decref_entry_loaded_from_disk", KSTAT_DATA_UINT64 },
291 { "decref_entry_not_in_memory", KSTAT_DATA_UINT64 },
292 { "decref_entry_not_on_disk", KSTAT_DATA_UINT64 },
293 { "decref_entry_read_lost_race", KSTAT_DATA_UINT64 },
294 { "decref_entry_still_referenced", KSTAT_DATA_UINT64 },
295 { "decref_free_data_later", KSTAT_DATA_UINT64 },
296 { "decref_free_data_now", KSTAT_DATA_UINT64 },
297 { "decref_no_entry", KSTAT_DATA_UINT64 }
298 };
299
300 struct {
301 wmsum_t brt_addref_entry_in_memory;
302 wmsum_t brt_addref_entry_not_on_disk;
303 wmsum_t brt_addref_entry_on_disk;
304 wmsum_t brt_addref_entry_read_lost_race;
305 wmsum_t brt_decref_entry_in_memory;
306 wmsum_t brt_decref_entry_loaded_from_disk;
307 wmsum_t brt_decref_entry_not_in_memory;
308 wmsum_t brt_decref_entry_not_on_disk;
309 wmsum_t brt_decref_entry_read_lost_race;
310 wmsum_t brt_decref_entry_still_referenced;
311 wmsum_t brt_decref_free_data_later;
312 wmsum_t brt_decref_free_data_now;
313 wmsum_t brt_decref_no_entry;
314 } brt_sums;
315
316 #define BRTSTAT_BUMP(stat) wmsum_add(&brt_sums.stat, 1)
317
318 static int brt_entry_compare(const void *x1, const void *x2);
319 static int brt_pending_entry_compare(const void *x1, const void *x2);
320
321 static void
322 brt_rlock(brt_t *brt)
323 {
324 rw_enter(&brt->brt_lock, RW_READER);
325 }
326
327 static void
328 brt_wlock(brt_t *brt)
329 {
330 rw_enter(&brt->brt_lock, RW_WRITER);
331 }
332
333 static void
334 brt_unlock(brt_t *brt)
335 {
336 rw_exit(&brt->brt_lock);
337 }
338
339 static uint16_t
340 brt_vdev_entcount_get(const brt_vdev_t *brtvd, uint64_t idx)
341 {
342
343 ASSERT3U(idx, <, brtvd->bv_size);
344
345 if (unlikely(brtvd->bv_need_byteswap)) {
346 return (BSWAP_16(brtvd->bv_entcount[idx]));
347 } else {
348 return (brtvd->bv_entcount[idx]);
349 }
350 }
351
352 static void
353 brt_vdev_entcount_set(brt_vdev_t *brtvd, uint64_t idx, uint16_t entcnt)
354 {
355
356 ASSERT3U(idx, <, brtvd->bv_size);
357
358 if (unlikely(brtvd->bv_need_byteswap)) {
359 brtvd->bv_entcount[idx] = BSWAP_16(entcnt);
360 } else {
361 brtvd->bv_entcount[idx] = entcnt;
362 }
363 }
364
365 static void
366 brt_vdev_entcount_inc(brt_vdev_t *brtvd, uint64_t idx)
367 {
368 uint16_t entcnt;
369
370 ASSERT3U(idx, <, brtvd->bv_size);
371
372 entcnt = brt_vdev_entcount_get(brtvd, idx);
373 ASSERT(entcnt < UINT16_MAX);
374
375 brt_vdev_entcount_set(brtvd, idx, entcnt + 1);
376 }
377
378 static void
379 brt_vdev_entcount_dec(brt_vdev_t *brtvd, uint64_t idx)
380 {
381 uint16_t entcnt;
382
383 ASSERT3U(idx, <, brtvd->bv_size);
384
385 entcnt = brt_vdev_entcount_get(brtvd, idx);
386 ASSERT(entcnt > 0);
387
388 brt_vdev_entcount_set(brtvd, idx, entcnt - 1);
389 }
390
391 #ifdef ZFS_DEBUG
392 static void
393 brt_vdev_dump(brt_vdev_t *brtvd)
394 {
395 uint64_t idx;
396
397 zfs_dbgmsg(" BRT vdevid=%llu meta_dirty=%d entcount_dirty=%d "
398 "size=%llu totalcount=%llu nblocks=%llu bitmapsize=%zu\n",
399 (u_longlong_t)brtvd->bv_vdevid,
400 brtvd->bv_meta_dirty, brtvd->bv_entcount_dirty,
401 (u_longlong_t)brtvd->bv_size,
402 (u_longlong_t)brtvd->bv_totalcount,
403 (u_longlong_t)brtvd->bv_nblocks,
404 (size_t)BT_SIZEOFMAP(brtvd->bv_nblocks));
405 if (brtvd->bv_totalcount > 0) {
406 zfs_dbgmsg(" entcounts:");
407 for (idx = 0; idx < brtvd->bv_size; idx++) {
408 uint16_t entcnt = brt_vdev_entcount_get(brtvd, idx);
409 if (entcnt > 0) {
410 zfs_dbgmsg(" [%04llu] %hu",
411 (u_longlong_t)idx, entcnt);
412 }
413 }
414 }
415 if (brtvd->bv_entcount_dirty) {
416 char *bitmap;
417
418 bitmap = kmem_alloc(brtvd->bv_nblocks + 1, KM_SLEEP);
419 for (idx = 0; idx < brtvd->bv_nblocks; idx++) {
420 bitmap[idx] =
421 BT_TEST(brtvd->bv_bitmap, idx) ? 'x' : '.';
422 }
423 bitmap[idx] = '\0';
424 zfs_dbgmsg(" dirty: %s", bitmap);
425 kmem_free(bitmap, brtvd->bv_nblocks + 1);
426 }
427 }
428 #endif
429
430 static brt_vdev_t *
431 brt_vdev(brt_t *brt, uint64_t vdevid)
432 {
433 brt_vdev_t *brtvd;
434
435 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
436
437 if (vdevid < brt->brt_nvdevs) {
438 brtvd = &brt->brt_vdevs[vdevid];
439 } else {
440 brtvd = NULL;
441 }
442
443 return (brtvd);
444 }
445
446 static void
447 brt_vdev_create(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
448 {
449 char name[64];
450
451 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
452 ASSERT0(brtvd->bv_mos_brtvdev);
453 ASSERT0(brtvd->bv_mos_entries);
454 ASSERT(brtvd->bv_entcount != NULL);
455 ASSERT(brtvd->bv_size > 0);
456 ASSERT(brtvd->bv_bitmap != NULL);
457 ASSERT(brtvd->bv_nblocks > 0);
458
459 brtvd->bv_mos_entries = zap_create_flags(brt->brt_mos, 0,
460 ZAP_FLAG_HASH64 | ZAP_FLAG_UINT64_KEY, DMU_OTN_ZAP_METADATA,
461 brt_zap_leaf_blockshift, brt_zap_indirect_blockshift, DMU_OT_NONE,
462 0, tx);
463 VERIFY(brtvd->bv_mos_entries != 0);
464 BRT_DEBUG("MOS entries created, object=%llu",
465 (u_longlong_t)brtvd->bv_mos_entries);
466
467 /*
468 * We allocate DMU buffer to store the bv_entcount[] array.
469 * We will keep array size (bv_size) and cummulative count for all
470 * bv_entcount[]s (bv_totalcount) in the bonus buffer.
471 */
472 brtvd->bv_mos_brtvdev = dmu_object_alloc(brt->brt_mos,
473 DMU_OTN_UINT64_METADATA, BRT_BLOCKSIZE,
474 DMU_OTN_UINT64_METADATA, sizeof (brt_vdev_phys_t), tx);
475 VERIFY(brtvd->bv_mos_brtvdev != 0);
476 BRT_DEBUG("MOS BRT VDEV created, object=%llu",
477 (u_longlong_t)brtvd->bv_mos_brtvdev);
478
479 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
480 (u_longlong_t)brtvd->bv_vdevid);
481 VERIFY0(zap_add(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
482 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev, tx));
483 BRT_DEBUG("Pool directory object created, object=%s", name);
484
485 spa_feature_incr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
486 }
487
488 static void
489 brt_vdev_realloc(brt_t *brt, brt_vdev_t *brtvd)
490 {
491 vdev_t *vd;
492 uint16_t *entcount;
493 ulong_t *bitmap;
494 uint64_t nblocks, size;
495
496 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
497
498 spa_config_enter(brt->brt_spa, SCL_VDEV, FTAG, RW_READER);
499 vd = vdev_lookup_top(brt->brt_spa, brtvd->bv_vdevid);
500 size = (vdev_get_min_asize(vd) - 1) / brt->brt_rangesize + 1;
501 spa_config_exit(brt->brt_spa, SCL_VDEV, FTAG);
502
503 entcount = vmem_zalloc(sizeof (entcount[0]) * size, KM_SLEEP);
504 nblocks = BRT_RANGESIZE_TO_NBLOCKS(size);
505 bitmap = kmem_zalloc(BT_SIZEOFMAP(nblocks), KM_SLEEP);
506
507 if (!brtvd->bv_initiated) {
508 ASSERT0(brtvd->bv_size);
509 ASSERT(brtvd->bv_entcount == NULL);
510 ASSERT(brtvd->bv_bitmap == NULL);
511 ASSERT0(brtvd->bv_nblocks);
512
513 avl_create(&brtvd->bv_tree, brt_entry_compare,
514 sizeof (brt_entry_t), offsetof(brt_entry_t, bre_node));
515 } else {
516 ASSERT(brtvd->bv_size > 0);
517 ASSERT(brtvd->bv_entcount != NULL);
518 ASSERT(brtvd->bv_bitmap != NULL);
519 ASSERT(brtvd->bv_nblocks > 0);
520 /*
521 * TODO: Allow vdev shrinking. We only need to implement
522 * shrinking the on-disk BRT VDEV object.
523 * dmu_free_range(brt->brt_mos, brtvd->bv_mos_brtvdev, offset,
524 * size, tx);
525 */
526 ASSERT3U(brtvd->bv_size, <=, size);
527
528 memcpy(entcount, brtvd->bv_entcount,
529 sizeof (entcount[0]) * MIN(size, brtvd->bv_size));
530 memcpy(bitmap, brtvd->bv_bitmap, MIN(BT_SIZEOFMAP(nblocks),
531 BT_SIZEOFMAP(brtvd->bv_nblocks)));
532 vmem_free(brtvd->bv_entcount,
533 sizeof (entcount[0]) * brtvd->bv_size);
534 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
535 }
536
537 brtvd->bv_size = size;
538 brtvd->bv_entcount = entcount;
539 brtvd->bv_bitmap = bitmap;
540 brtvd->bv_nblocks = nblocks;
541 if (!brtvd->bv_initiated) {
542 brtvd->bv_need_byteswap = FALSE;
543 brtvd->bv_initiated = TRUE;
544 BRT_DEBUG("BRT VDEV %llu initiated.",
545 (u_longlong_t)brtvd->bv_vdevid);
546 }
547 }
548
549 static void
550 brt_vdev_load(brt_t *brt, brt_vdev_t *brtvd)
551 {
552 char name[64];
553 dmu_buf_t *db;
554 brt_vdev_phys_t *bvphys;
555 int error;
556
557 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
558 (u_longlong_t)brtvd->bv_vdevid);
559 error = zap_lookup(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name,
560 sizeof (uint64_t), 1, &brtvd->bv_mos_brtvdev);
561 if (error != 0)
562 return;
563 ASSERT(brtvd->bv_mos_brtvdev != 0);
564
565 error = dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db);
566 ASSERT0(error);
567 if (error != 0)
568 return;
569
570 bvphys = db->db_data;
571 if (brt->brt_rangesize == 0) {
572 brt->brt_rangesize = bvphys->bvp_rangesize;
573 } else {
574 ASSERT3U(brt->brt_rangesize, ==, bvphys->bvp_rangesize);
575 }
576
577 ASSERT(!brtvd->bv_initiated);
578 brt_vdev_realloc(brt, brtvd);
579
580 /* TODO: We don't support VDEV shrinking. */
581 ASSERT3U(bvphys->bvp_size, <=, brtvd->bv_size);
582
583 /*
584 * If VDEV grew, we will leave new bv_entcount[] entries zeroed out.
585 */
586 error = dmu_read(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
587 MIN(brtvd->bv_size, bvphys->bvp_size) * sizeof (uint16_t),
588 brtvd->bv_entcount, DMU_READ_NO_PREFETCH);
589 ASSERT0(error);
590
591 brtvd->bv_mos_entries = bvphys->bvp_mos_entries;
592 ASSERT(brtvd->bv_mos_entries != 0);
593 brtvd->bv_need_byteswap =
594 (bvphys->bvp_byteorder != BRT_NATIVE_BYTEORDER);
595 brtvd->bv_totalcount = bvphys->bvp_totalcount;
596 brtvd->bv_usedspace = bvphys->bvp_usedspace;
597 brtvd->bv_savedspace = bvphys->bvp_savedspace;
598 brt->brt_usedspace += brtvd->bv_usedspace;
599 brt->brt_savedspace += brtvd->bv_savedspace;
600
601 dmu_buf_rele(db, FTAG);
602
603 BRT_DEBUG("MOS BRT VDEV %s loaded: mos_brtvdev=%llu, mos_entries=%llu",
604 name, (u_longlong_t)brtvd->bv_mos_brtvdev,
605 (u_longlong_t)brtvd->bv_mos_entries);
606 }
607
608 static void
609 brt_vdev_dealloc(brt_t *brt, brt_vdev_t *brtvd)
610 {
611
612 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
613 ASSERT(brtvd->bv_initiated);
614
615 vmem_free(brtvd->bv_entcount, sizeof (uint16_t) * brtvd->bv_size);
616 brtvd->bv_entcount = NULL;
617 kmem_free(brtvd->bv_bitmap, BT_SIZEOFMAP(brtvd->bv_nblocks));
618 brtvd->bv_bitmap = NULL;
619 ASSERT0(avl_numnodes(&brtvd->bv_tree));
620 avl_destroy(&brtvd->bv_tree);
621
622 brtvd->bv_size = 0;
623 brtvd->bv_nblocks = 0;
624
625 brtvd->bv_initiated = FALSE;
626 BRT_DEBUG("BRT VDEV %llu deallocated.", (u_longlong_t)brtvd->bv_vdevid);
627 }
628
629 static void
630 brt_vdev_destroy(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
631 {
632 char name[64];
633 uint64_t count;
634 dmu_buf_t *db;
635 brt_vdev_phys_t *bvphys;
636
637 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
638 ASSERT(brtvd->bv_mos_brtvdev != 0);
639 ASSERT(brtvd->bv_mos_entries != 0);
640
641 VERIFY0(zap_count(brt->brt_mos, brtvd->bv_mos_entries, &count));
642 VERIFY0(count);
643 VERIFY0(zap_destroy(brt->brt_mos, brtvd->bv_mos_entries, tx));
644 BRT_DEBUG("MOS entries destroyed, object=%llu",
645 (u_longlong_t)brtvd->bv_mos_entries);
646 brtvd->bv_mos_entries = 0;
647
648 VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
649 bvphys = db->db_data;
650 ASSERT0(bvphys->bvp_totalcount);
651 ASSERT0(bvphys->bvp_usedspace);
652 ASSERT0(bvphys->bvp_savedspace);
653 dmu_buf_rele(db, FTAG);
654
655 VERIFY0(dmu_object_free(brt->brt_mos, brtvd->bv_mos_brtvdev, tx));
656 BRT_DEBUG("MOS BRT VDEV destroyed, object=%llu",
657 (u_longlong_t)brtvd->bv_mos_brtvdev);
658 brtvd->bv_mos_brtvdev = 0;
659
660 snprintf(name, sizeof (name), "%s%llu", BRT_OBJECT_VDEV_PREFIX,
661 (u_longlong_t)brtvd->bv_vdevid);
662 VERIFY0(zap_remove(brt->brt_mos, DMU_POOL_DIRECTORY_OBJECT, name, tx));
663 BRT_DEBUG("Pool directory object removed, object=%s", name);
664
665 brt_vdev_dealloc(brt, brtvd);
666
667 spa_feature_decr(brt->brt_spa, SPA_FEATURE_BLOCK_CLONING, tx);
668 }
669
670 static void
671 brt_vdevs_expand(brt_t *brt, uint64_t nvdevs)
672 {
673 brt_vdev_t *brtvd, *vdevs;
674 uint64_t vdevid;
675
676 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
677 ASSERT3U(nvdevs, >, brt->brt_nvdevs);
678
679 vdevs = kmem_zalloc(sizeof (vdevs[0]) * nvdevs, KM_SLEEP);
680 if (brt->brt_nvdevs > 0) {
681 ASSERT(brt->brt_vdevs != NULL);
682
683 memcpy(vdevs, brt->brt_vdevs,
684 sizeof (brt_vdev_t) * brt->brt_nvdevs);
685 kmem_free(brt->brt_vdevs,
686 sizeof (brt_vdev_t) * brt->brt_nvdevs);
687 }
688 for (vdevid = brt->brt_nvdevs; vdevid < nvdevs; vdevid++) {
689 brtvd = &vdevs[vdevid];
690
691 brtvd->bv_vdevid = vdevid;
692 brtvd->bv_initiated = FALSE;
693 }
694
695 BRT_DEBUG("BRT VDEVs expanded from %llu to %llu.",
696 (u_longlong_t)brt->brt_nvdevs, (u_longlong_t)nvdevs);
697
698 brt->brt_vdevs = vdevs;
699 brt->brt_nvdevs = nvdevs;
700 }
701
702 static boolean_t
703 brt_vdev_lookup(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre)
704 {
705 uint64_t idx;
706
707 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
708
709 idx = bre->bre_offset / brt->brt_rangesize;
710 if (brtvd->bv_entcount != NULL && idx < brtvd->bv_size) {
711 /* VDEV wasn't expanded. */
712 return (brt_vdev_entcount_get(brtvd, idx) > 0);
713 }
714
715 return (FALSE);
716 }
717
718 static void
719 brt_vdev_addref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
720 uint64_t dsize)
721 {
722 uint64_t idx;
723
724 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
725 ASSERT(brtvd != NULL);
726 ASSERT(brtvd->bv_entcount != NULL);
727
728 brt->brt_savedspace += dsize;
729 brtvd->bv_savedspace += dsize;
730 brtvd->bv_meta_dirty = TRUE;
731
732 if (bre->bre_refcount > 1) {
733 return;
734 }
735
736 brt->brt_usedspace += dsize;
737 brtvd->bv_usedspace += dsize;
738
739 idx = bre->bre_offset / brt->brt_rangesize;
740 if (idx >= brtvd->bv_size) {
741 /* VDEV has been expanded. */
742 brt_vdev_realloc(brt, brtvd);
743 }
744
745 ASSERT3U(idx, <, brtvd->bv_size);
746
747 brtvd->bv_totalcount++;
748 brt_vdev_entcount_inc(brtvd, idx);
749 brtvd->bv_entcount_dirty = TRUE;
750 idx = idx / BRT_BLOCKSIZE / 8;
751 BT_SET(brtvd->bv_bitmap, idx);
752
753 #ifdef ZFS_DEBUG
754 if (zfs_flags & ZFS_DEBUG_BRT)
755 brt_vdev_dump(brtvd);
756 #endif
757 }
758
759 static void
760 brt_vdev_decref(brt_t *brt, brt_vdev_t *brtvd, const brt_entry_t *bre,
761 uint64_t dsize)
762 {
763 uint64_t idx;
764
765 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
766 ASSERT(brtvd != NULL);
767 ASSERT(brtvd->bv_entcount != NULL);
768
769 brt->brt_savedspace -= dsize;
770 brtvd->bv_savedspace -= dsize;
771 brtvd->bv_meta_dirty = TRUE;
772
773 if (bre->bre_refcount > 0) {
774 return;
775 }
776
777 brt->brt_usedspace -= dsize;
778 brtvd->bv_usedspace -= dsize;
779
780 idx = bre->bre_offset / brt->brt_rangesize;
781 ASSERT3U(idx, <, brtvd->bv_size);
782
783 ASSERT(brtvd->bv_totalcount > 0);
784 brtvd->bv_totalcount--;
785 brt_vdev_entcount_dec(brtvd, idx);
786 brtvd->bv_entcount_dirty = TRUE;
787 idx = idx / BRT_BLOCKSIZE / 8;
788 BT_SET(brtvd->bv_bitmap, idx);
789
790 #ifdef ZFS_DEBUG
791 if (zfs_flags & ZFS_DEBUG_BRT)
792 brt_vdev_dump(brtvd);
793 #endif
794 }
795
796 static void
797 brt_vdev_sync(brt_t *brt, brt_vdev_t *brtvd, dmu_tx_t *tx)
798 {
799 dmu_buf_t *db;
800 brt_vdev_phys_t *bvphys;
801
802 ASSERT(brtvd->bv_meta_dirty);
803 ASSERT(brtvd->bv_mos_brtvdev != 0);
804 ASSERT(dmu_tx_is_syncing(tx));
805
806 VERIFY0(dmu_bonus_hold(brt->brt_mos, brtvd->bv_mos_brtvdev, FTAG, &db));
807
808 if (brtvd->bv_entcount_dirty) {
809 /*
810 * TODO: Walk brtvd->bv_bitmap and write only the dirty blocks.
811 */
812 dmu_write(brt->brt_mos, brtvd->bv_mos_brtvdev, 0,
813 brtvd->bv_size * sizeof (brtvd->bv_entcount[0]),
814 brtvd->bv_entcount, tx);
815 memset(brtvd->bv_bitmap, 0, BT_SIZEOFMAP(brtvd->bv_nblocks));
816 brtvd->bv_entcount_dirty = FALSE;
817 }
818
819 dmu_buf_will_dirty(db, tx);
820 bvphys = db->db_data;
821 bvphys->bvp_mos_entries = brtvd->bv_mos_entries;
822 bvphys->bvp_size = brtvd->bv_size;
823 if (brtvd->bv_need_byteswap) {
824 bvphys->bvp_byteorder = BRT_NON_NATIVE_BYTEORDER;
825 } else {
826 bvphys->bvp_byteorder = BRT_NATIVE_BYTEORDER;
827 }
828 bvphys->bvp_totalcount = brtvd->bv_totalcount;
829 bvphys->bvp_rangesize = brt->brt_rangesize;
830 bvphys->bvp_usedspace = brtvd->bv_usedspace;
831 bvphys->bvp_savedspace = brtvd->bv_savedspace;
832 dmu_buf_rele(db, FTAG);
833
834 brtvd->bv_meta_dirty = FALSE;
835 }
836
837 static void
838 brt_vdevs_alloc(brt_t *brt, boolean_t load)
839 {
840 brt_vdev_t *brtvd;
841 uint64_t vdevid;
842
843 brt_wlock(brt);
844
845 brt_vdevs_expand(brt, brt->brt_spa->spa_root_vdev->vdev_children);
846
847 if (load) {
848 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
849 brtvd = &brt->brt_vdevs[vdevid];
850 ASSERT(brtvd->bv_entcount == NULL);
851
852 brt_vdev_load(brt, brtvd);
853 }
854 }
855
856 if (brt->brt_rangesize == 0) {
857 brt->brt_rangesize = BRT_RANGESIZE;
858 }
859
860 brt_unlock(brt);
861 }
862
863 static void
864 brt_vdevs_free(brt_t *brt)
865 {
866 brt_vdev_t *brtvd;
867 uint64_t vdevid;
868
869 brt_wlock(brt);
870
871 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
872 brtvd = &brt->brt_vdevs[vdevid];
873 if (brtvd->bv_initiated)
874 brt_vdev_dealloc(brt, brtvd);
875 }
876 kmem_free(brt->brt_vdevs, sizeof (brt_vdev_t) * brt->brt_nvdevs);
877
878 brt_unlock(brt);
879 }
880
881 static void
882 brt_entry_fill(const blkptr_t *bp, brt_entry_t *bre, uint64_t *vdevidp)
883 {
884
885 bre->bre_offset = DVA_GET_OFFSET(&bp->blk_dva[0]);
886 bre->bre_refcount = 0;
887
888 *vdevidp = DVA_GET_VDEV(&bp->blk_dva[0]);
889 }
890
891 static int
892 brt_entry_compare(const void *x1, const void *x2)
893 {
894 const brt_entry_t *bre1 = x1;
895 const brt_entry_t *bre2 = x2;
896
897 return (TREE_CMP(bre1->bre_offset, bre2->bre_offset));
898 }
899
900 static int
901 brt_entry_lookup(brt_t *brt, brt_vdev_t *brtvd, brt_entry_t *bre)
902 {
903 uint64_t mos_entries;
904 uint64_t one, physsize;
905 int error;
906
907 ASSERT(RW_LOCK_HELD(&brt->brt_lock));
908
909 if (!brt_vdev_lookup(brt, brtvd, bre))
910 return (SET_ERROR(ENOENT));
911
912 /*
913 * Remember mos_entries object number. After we reacquire the BRT lock,
914 * the brtvd pointer may be invalid.
915 */
916 mos_entries = brtvd->bv_mos_entries;
917 if (mos_entries == 0)
918 return (SET_ERROR(ENOENT));
919
920 brt_unlock(brt);
921
922 error = zap_length_uint64(brt->brt_mos, mos_entries, &bre->bre_offset,
923 BRT_KEY_WORDS, &one, &physsize);
924 if (error == 0) {
925 ASSERT3U(one, ==, 1);
926 ASSERT3U(physsize, ==, sizeof (bre->bre_refcount));
927
928 error = zap_lookup_uint64(brt->brt_mos, mos_entries,
929 &bre->bre_offset, BRT_KEY_WORDS, 1,
930 sizeof (bre->bre_refcount), &bre->bre_refcount);
931 BRT_DEBUG("ZAP lookup: object=%llu vdev=%llu offset=%llu "
932 "count=%llu error=%d", (u_longlong_t)mos_entries,
933 (u_longlong_t)brtvd->bv_vdevid,
934 (u_longlong_t)bre->bre_offset,
935 error == 0 ? (u_longlong_t)bre->bre_refcount : 0, error);
936 }
937
938 brt_wlock(brt);
939
940 return (error);
941 }
942
943 static void
944 brt_entry_prefetch(brt_t *brt, uint64_t vdevid, brt_entry_t *bre)
945 {
946 brt_vdev_t *brtvd;
947 uint64_t mos_entries = 0;
948
949 brt_rlock(brt);
950 brtvd = brt_vdev(brt, vdevid);
951 if (brtvd != NULL)
952 mos_entries = brtvd->bv_mos_entries;
953 brt_unlock(brt);
954
955 if (mos_entries == 0)
956 return;
957
958 (void) zap_prefetch_uint64(brt->brt_mos, mos_entries,
959 (uint64_t *)&bre->bre_offset, BRT_KEY_WORDS);
960 }
961
962 /*
963 * Return TRUE if we _can_ have BRT entry for this bp. It might be false
964 * positive, but gives us quick answer if we should look into BRT, which
965 * may require reads and thus will be more expensive.
966 */
967 boolean_t
968 brt_maybe_exists(spa_t *spa, const blkptr_t *bp)
969 {
970 brt_t *brt = spa->spa_brt;
971 brt_vdev_t *brtvd;
972 brt_entry_t bre_search;
973 boolean_t mayexists = FALSE;
974 uint64_t vdevid;
975
976 brt_entry_fill(bp, &bre_search, &vdevid);
977
978 brt_rlock(brt);
979
980 brtvd = brt_vdev(brt, vdevid);
981 if (brtvd != NULL && brtvd->bv_initiated) {
982 if (!avl_is_empty(&brtvd->bv_tree) ||
983 brt_vdev_lookup(brt, brtvd, &bre_search)) {
984 mayexists = TRUE;
985 }
986 }
987
988 brt_unlock(brt);
989
990 return (mayexists);
991 }
992
993 uint64_t
994 brt_get_dspace(spa_t *spa)
995 {
996 brt_t *brt = spa->spa_brt;
997
998 if (brt == NULL)
999 return (0);
1000
1001 return (brt->brt_savedspace);
1002 }
1003
1004 uint64_t
1005 brt_get_used(spa_t *spa)
1006 {
1007 brt_t *brt = spa->spa_brt;
1008
1009 if (brt == NULL)
1010 return (0);
1011
1012 return (brt->brt_usedspace);
1013 }
1014
1015 uint64_t
1016 brt_get_saved(spa_t *spa)
1017 {
1018 brt_t *brt = spa->spa_brt;
1019
1020 if (brt == NULL)
1021 return (0);
1022
1023 return (brt->brt_savedspace);
1024 }
1025
1026 uint64_t
1027 brt_get_ratio(spa_t *spa)
1028 {
1029 brt_t *brt = spa->spa_brt;
1030
1031 if (brt->brt_usedspace == 0)
1032 return (100);
1033
1034 return ((brt->brt_usedspace + brt->brt_savedspace) * 100 /
1035 brt->brt_usedspace);
1036 }
1037
1038 static int
1039 brt_kstats_update(kstat_t *ksp, int rw)
1040 {
1041 brt_stats_t *bs = ksp->ks_data;
1042
1043 if (rw == KSTAT_WRITE)
1044 return (EACCES);
1045
1046 bs->brt_addref_entry_in_memory.value.ui64 =
1047 wmsum_value(&brt_sums.brt_addref_entry_in_memory);
1048 bs->brt_addref_entry_not_on_disk.value.ui64 =
1049 wmsum_value(&brt_sums.brt_addref_entry_not_on_disk);
1050 bs->brt_addref_entry_on_disk.value.ui64 =
1051 wmsum_value(&brt_sums.brt_addref_entry_on_disk);
1052 bs->brt_addref_entry_read_lost_race.value.ui64 =
1053 wmsum_value(&brt_sums.brt_addref_entry_read_lost_race);
1054 bs->brt_decref_entry_in_memory.value.ui64 =
1055 wmsum_value(&brt_sums.brt_decref_entry_in_memory);
1056 bs->brt_decref_entry_loaded_from_disk.value.ui64 =
1057 wmsum_value(&brt_sums.brt_decref_entry_loaded_from_disk);
1058 bs->brt_decref_entry_not_in_memory.value.ui64 =
1059 wmsum_value(&brt_sums.brt_decref_entry_not_in_memory);
1060 bs->brt_decref_entry_not_on_disk.value.ui64 =
1061 wmsum_value(&brt_sums.brt_decref_entry_not_on_disk);
1062 bs->brt_decref_entry_read_lost_race.value.ui64 =
1063 wmsum_value(&brt_sums.brt_decref_entry_read_lost_race);
1064 bs->brt_decref_entry_still_referenced.value.ui64 =
1065 wmsum_value(&brt_sums.brt_decref_entry_still_referenced);
1066 bs->brt_decref_free_data_later.value.ui64 =
1067 wmsum_value(&brt_sums.brt_decref_free_data_later);
1068 bs->brt_decref_free_data_now.value.ui64 =
1069 wmsum_value(&brt_sums.brt_decref_free_data_now);
1070 bs->brt_decref_no_entry.value.ui64 =
1071 wmsum_value(&brt_sums.brt_decref_no_entry);
1072
1073 return (0);
1074 }
1075
1076 static void
1077 brt_stat_init(void)
1078 {
1079
1080 wmsum_init(&brt_sums.brt_addref_entry_in_memory, 0);
1081 wmsum_init(&brt_sums.brt_addref_entry_not_on_disk, 0);
1082 wmsum_init(&brt_sums.brt_addref_entry_on_disk, 0);
1083 wmsum_init(&brt_sums.brt_addref_entry_read_lost_race, 0);
1084 wmsum_init(&brt_sums.brt_decref_entry_in_memory, 0);
1085 wmsum_init(&brt_sums.brt_decref_entry_loaded_from_disk, 0);
1086 wmsum_init(&brt_sums.brt_decref_entry_not_in_memory, 0);
1087 wmsum_init(&brt_sums.brt_decref_entry_not_on_disk, 0);
1088 wmsum_init(&brt_sums.brt_decref_entry_read_lost_race, 0);
1089 wmsum_init(&brt_sums.brt_decref_entry_still_referenced, 0);
1090 wmsum_init(&brt_sums.brt_decref_free_data_later, 0);
1091 wmsum_init(&brt_sums.brt_decref_free_data_now, 0);
1092 wmsum_init(&brt_sums.brt_decref_no_entry, 0);
1093
1094 brt_ksp = kstat_create("zfs", 0, "brtstats", "misc", KSTAT_TYPE_NAMED,
1095 sizeof (brt_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
1096 if (brt_ksp != NULL) {
1097 brt_ksp->ks_data = &brt_stats;
1098 brt_ksp->ks_update = brt_kstats_update;
1099 kstat_install(brt_ksp);
1100 }
1101 }
1102
1103 static void
1104 brt_stat_fini(void)
1105 {
1106 if (brt_ksp != NULL) {
1107 kstat_delete(brt_ksp);
1108 brt_ksp = NULL;
1109 }
1110
1111 wmsum_fini(&brt_sums.brt_addref_entry_in_memory);
1112 wmsum_fini(&brt_sums.brt_addref_entry_not_on_disk);
1113 wmsum_fini(&brt_sums.brt_addref_entry_on_disk);
1114 wmsum_fini(&brt_sums.brt_addref_entry_read_lost_race);
1115 wmsum_fini(&brt_sums.brt_decref_entry_in_memory);
1116 wmsum_fini(&brt_sums.brt_decref_entry_loaded_from_disk);
1117 wmsum_fini(&brt_sums.brt_decref_entry_not_in_memory);
1118 wmsum_fini(&brt_sums.brt_decref_entry_not_on_disk);
1119 wmsum_fini(&brt_sums.brt_decref_entry_read_lost_race);
1120 wmsum_fini(&brt_sums.brt_decref_entry_still_referenced);
1121 wmsum_fini(&brt_sums.brt_decref_free_data_later);
1122 wmsum_fini(&brt_sums.brt_decref_free_data_now);
1123 wmsum_fini(&brt_sums.brt_decref_no_entry);
1124 }
1125
1126 void
1127 brt_init(void)
1128 {
1129 brt_entry_cache = kmem_cache_create("brt_entry_cache",
1130 sizeof (brt_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1131 brt_pending_entry_cache = kmem_cache_create("brt_pending_entry_cache",
1132 sizeof (brt_pending_entry_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
1133
1134 brt_stat_init();
1135 }
1136
1137 void
1138 brt_fini(void)
1139 {
1140 brt_stat_fini();
1141
1142 kmem_cache_destroy(brt_entry_cache);
1143 kmem_cache_destroy(brt_pending_entry_cache);
1144 }
1145
1146 static brt_entry_t *
1147 brt_entry_alloc(const brt_entry_t *bre_init)
1148 {
1149 brt_entry_t *bre;
1150
1151 bre = kmem_cache_alloc(brt_entry_cache, KM_SLEEP);
1152 bre->bre_offset = bre_init->bre_offset;
1153 bre->bre_refcount = bre_init->bre_refcount;
1154
1155 return (bre);
1156 }
1157
1158 static void
1159 brt_entry_free(brt_entry_t *bre)
1160 {
1161
1162 kmem_cache_free(brt_entry_cache, bre);
1163 }
1164
1165 static void
1166 brt_entry_addref(brt_t *brt, const blkptr_t *bp)
1167 {
1168 brt_vdev_t *brtvd;
1169 brt_entry_t *bre, *racebre;
1170 brt_entry_t bre_search;
1171 avl_index_t where;
1172 uint64_t vdevid;
1173 int error;
1174
1175 ASSERT(!RW_WRITE_HELD(&brt->brt_lock));
1176
1177 brt_entry_fill(bp, &bre_search, &vdevid);
1178
1179 brt_wlock(brt);
1180
1181 brtvd = brt_vdev(brt, vdevid);
1182 if (brtvd == NULL) {
1183 ASSERT3U(vdevid, >=, brt->brt_nvdevs);
1184
1185 /* New VDEV was added. */
1186 brt_vdevs_expand(brt, vdevid + 1);
1187 brtvd = brt_vdev(brt, vdevid);
1188 }
1189 ASSERT(brtvd != NULL);
1190 if (!brtvd->bv_initiated)
1191 brt_vdev_realloc(brt, brtvd);
1192
1193 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1194 if (bre != NULL) {
1195 BRTSTAT_BUMP(brt_addref_entry_in_memory);
1196 } else {
1197 /*
1198 * brt_entry_lookup() may drop the BRT (read) lock and
1199 * reacquire it (write).
1200 */
1201 error = brt_entry_lookup(brt, brtvd, &bre_search);
1202 /* bre_search now contains correct bre_refcount */
1203 ASSERT(error == 0 || error == ENOENT);
1204 if (error == 0)
1205 BRTSTAT_BUMP(brt_addref_entry_on_disk);
1206 else
1207 BRTSTAT_BUMP(brt_addref_entry_not_on_disk);
1208 /*
1209 * When the BRT lock was dropped, brt_vdevs[] may have been
1210 * expanded and reallocated, we need to update brtvd's pointer.
1211 */
1212 brtvd = brt_vdev(brt, vdevid);
1213 ASSERT(brtvd != NULL);
1214
1215 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1216 if (racebre == NULL) {
1217 bre = brt_entry_alloc(&bre_search);
1218 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
1219 avl_insert(&brtvd->bv_tree, bre, where);
1220 brt->brt_nentries++;
1221 } else {
1222 /*
1223 * The entry was added when the BRT lock was dropped in
1224 * brt_entry_lookup().
1225 */
1226 BRTSTAT_BUMP(brt_addref_entry_read_lost_race);
1227 bre = racebre;
1228 }
1229 }
1230 bre->bre_refcount++;
1231 brt_vdev_addref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
1232
1233 brt_unlock(brt);
1234 }
1235
1236 /* Return TRUE if block should be freed immediately. */
1237 boolean_t
1238 brt_entry_decref(spa_t *spa, const blkptr_t *bp)
1239 {
1240 brt_t *brt = spa->spa_brt;
1241 brt_vdev_t *brtvd;
1242 brt_entry_t *bre, *racebre;
1243 brt_entry_t bre_search;
1244 avl_index_t where;
1245 uint64_t vdevid;
1246 int error;
1247
1248 brt_entry_fill(bp, &bre_search, &vdevid);
1249
1250 brt_wlock(brt);
1251
1252 brtvd = brt_vdev(brt, vdevid);
1253 ASSERT(brtvd != NULL);
1254
1255 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1256 if (bre != NULL) {
1257 BRTSTAT_BUMP(brt_decref_entry_in_memory);
1258 goto out;
1259 } else {
1260 BRTSTAT_BUMP(brt_decref_entry_not_in_memory);
1261 }
1262
1263 /*
1264 * brt_entry_lookup() may drop the BRT lock and reacquire it.
1265 */
1266 error = brt_entry_lookup(brt, brtvd, &bre_search);
1267 /* bre_search now contains correct bre_refcount */
1268 ASSERT(error == 0 || error == ENOENT);
1269 /*
1270 * When the BRT lock was dropped, brt_vdevs[] may have been expanded
1271 * and reallocated, we need to update brtvd's pointer.
1272 */
1273 brtvd = brt_vdev(brt, vdevid);
1274 ASSERT(brtvd != NULL);
1275
1276 if (error == ENOENT) {
1277 BRTSTAT_BUMP(brt_decref_entry_not_on_disk);
1278 bre = NULL;
1279 goto out;
1280 }
1281
1282 racebre = avl_find(&brtvd->bv_tree, &bre_search, &where);
1283 if (racebre != NULL) {
1284 /*
1285 * The entry was added when the BRT lock was dropped in
1286 * brt_entry_lookup().
1287 */
1288 BRTSTAT_BUMP(brt_decref_entry_read_lost_race);
1289 bre = racebre;
1290 goto out;
1291 }
1292
1293 BRTSTAT_BUMP(brt_decref_entry_loaded_from_disk);
1294 bre = brt_entry_alloc(&bre_search);
1295 ASSERT(RW_WRITE_HELD(&brt->brt_lock));
1296 avl_insert(&brtvd->bv_tree, bre, where);
1297 brt->brt_nentries++;
1298
1299 out:
1300 if (bre == NULL) {
1301 /*
1302 * This is a free of a regular (not cloned) block.
1303 */
1304 brt_unlock(brt);
1305 BRTSTAT_BUMP(brt_decref_no_entry);
1306 return (B_TRUE);
1307 }
1308 if (bre->bre_refcount == 0) {
1309 brt_unlock(brt);
1310 BRTSTAT_BUMP(brt_decref_free_data_now);
1311 return (B_TRUE);
1312 }
1313
1314 ASSERT(bre->bre_refcount > 0);
1315 bre->bre_refcount--;
1316 if (bre->bre_refcount == 0)
1317 BRTSTAT_BUMP(brt_decref_free_data_later);
1318 else
1319 BRTSTAT_BUMP(brt_decref_entry_still_referenced);
1320 brt_vdev_decref(brt, brtvd, bre, bp_get_dsize(brt->brt_spa, bp));
1321
1322 brt_unlock(brt);
1323
1324 return (B_FALSE);
1325 }
1326
1327 uint64_t
1328 brt_entry_get_refcount(spa_t *spa, const blkptr_t *bp)
1329 {
1330 brt_t *brt = spa->spa_brt;
1331 brt_vdev_t *brtvd;
1332 brt_entry_t bre_search, *bre;
1333 uint64_t vdevid, refcnt;
1334 int error;
1335
1336 brt_entry_fill(bp, &bre_search, &vdevid);
1337
1338 brt_rlock(brt);
1339
1340 brtvd = brt_vdev(brt, vdevid);
1341 ASSERT(brtvd != NULL);
1342
1343 bre = avl_find(&brtvd->bv_tree, &bre_search, NULL);
1344 if (bre == NULL) {
1345 error = brt_entry_lookup(brt, brtvd, &bre_search);
1346 ASSERT(error == 0 || error == ENOENT);
1347 if (error == ENOENT)
1348 refcnt = 0;
1349 else
1350 refcnt = bre_search.bre_refcount;
1351 } else
1352 refcnt = bre->bre_refcount;
1353
1354 brt_unlock(brt);
1355 return (refcnt);
1356 }
1357
1358 static void
1359 brt_prefetch(brt_t *brt, const blkptr_t *bp)
1360 {
1361 brt_entry_t bre;
1362 uint64_t vdevid;
1363
1364 ASSERT(bp != NULL);
1365
1366 if (!zfs_brt_prefetch)
1367 return;
1368
1369 brt_entry_fill(bp, &bre, &vdevid);
1370
1371 brt_entry_prefetch(brt, vdevid, &bre);
1372 }
1373
1374 static int
1375 brt_pending_entry_compare(const void *x1, const void *x2)
1376 {
1377 const brt_pending_entry_t *bpe1 = x1, *bpe2 = x2;
1378 const blkptr_t *bp1 = &bpe1->bpe_bp, *bp2 = &bpe2->bpe_bp;
1379 int cmp;
1380
1381 cmp = TREE_CMP(DVA_GET_VDEV(&bp1->blk_dva[0]),
1382 DVA_GET_VDEV(&bp2->blk_dva[0]));
1383 if (cmp == 0) {
1384 cmp = TREE_CMP(DVA_GET_OFFSET(&bp1->blk_dva[0]),
1385 DVA_GET_OFFSET(&bp2->blk_dva[0]));
1386 if (unlikely(cmp == 0)) {
1387 cmp = TREE_CMP(BP_GET_BIRTH(bp1), BP_GET_BIRTH(bp2));
1388 }
1389 }
1390
1391 return (cmp);
1392 }
1393
1394 void
1395 brt_pending_add(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1396 {
1397 brt_t *brt;
1398 avl_tree_t *pending_tree;
1399 kmutex_t *pending_lock;
1400 brt_pending_entry_t *bpe, *newbpe;
1401 avl_index_t where;
1402 uint64_t txg;
1403
1404 brt = spa->spa_brt;
1405 txg = dmu_tx_get_txg(tx);
1406 ASSERT3U(txg, !=, 0);
1407 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1408 pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
1409
1410 newbpe = kmem_cache_alloc(brt_pending_entry_cache, KM_SLEEP);
1411 newbpe->bpe_bp = *bp;
1412 newbpe->bpe_count = 1;
1413
1414 mutex_enter(pending_lock);
1415
1416 bpe = avl_find(pending_tree, newbpe, &where);
1417 if (bpe == NULL) {
1418 avl_insert(pending_tree, newbpe, where);
1419 newbpe = NULL;
1420 } else {
1421 bpe->bpe_count++;
1422 }
1423
1424 mutex_exit(pending_lock);
1425
1426 if (newbpe != NULL) {
1427 ASSERT(bpe != NULL);
1428 ASSERT(bpe != newbpe);
1429 kmem_cache_free(brt_pending_entry_cache, newbpe);
1430 } else {
1431 ASSERT(bpe == NULL);
1432
1433 /* Prefetch BRT entry for the syncing context. */
1434 brt_prefetch(brt, bp);
1435 }
1436 }
1437
1438 void
1439 brt_pending_remove(spa_t *spa, const blkptr_t *bp, dmu_tx_t *tx)
1440 {
1441 brt_t *brt;
1442 avl_tree_t *pending_tree;
1443 kmutex_t *pending_lock;
1444 brt_pending_entry_t *bpe, bpe_search;
1445 uint64_t txg;
1446
1447 brt = spa->spa_brt;
1448 txg = dmu_tx_get_txg(tx);
1449 ASSERT3U(txg, !=, 0);
1450 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1451 pending_lock = &brt->brt_pending_lock[txg & TXG_MASK];
1452
1453 bpe_search.bpe_bp = *bp;
1454
1455 mutex_enter(pending_lock);
1456
1457 bpe = avl_find(pending_tree, &bpe_search, NULL);
1458 /* I believe we should always find bpe when this function is called. */
1459 if (bpe != NULL) {
1460 ASSERT(bpe->bpe_count > 0);
1461
1462 bpe->bpe_count--;
1463 if (bpe->bpe_count == 0) {
1464 avl_remove(pending_tree, bpe);
1465 kmem_cache_free(brt_pending_entry_cache, bpe);
1466 }
1467 }
1468
1469 mutex_exit(pending_lock);
1470 }
1471
1472 void
1473 brt_pending_apply(spa_t *spa, uint64_t txg)
1474 {
1475 brt_t *brt = spa->spa_brt;
1476 brt_pending_entry_t *bpe;
1477 avl_tree_t *pending_tree;
1478 void *c;
1479
1480 ASSERT3U(txg, !=, 0);
1481
1482 /*
1483 * We are in syncing context, so no other brt_pending_tree accesses
1484 * are possible for the TXG. Don't need to acquire brt_pending_lock.
1485 */
1486 pending_tree = &brt->brt_pending_tree[txg & TXG_MASK];
1487
1488 c = NULL;
1489 while ((bpe = avl_destroy_nodes(pending_tree, &c)) != NULL) {
1490 boolean_t added_to_ddt;
1491
1492 for (int i = 0; i < bpe->bpe_count; i++) {
1493 /*
1494 * If the block has DEDUP bit set, it means that it
1495 * already exists in the DEDUP table, so we can just
1496 * use that instead of creating new entry in
1497 * the BRT table.
1498 */
1499 if (BP_GET_DEDUP(&bpe->bpe_bp)) {
1500 added_to_ddt = ddt_addref(spa, &bpe->bpe_bp);
1501 } else {
1502 added_to_ddt = B_FALSE;
1503 }
1504 if (!added_to_ddt)
1505 brt_entry_addref(brt, &bpe->bpe_bp);
1506 }
1507
1508 kmem_cache_free(brt_pending_entry_cache, bpe);
1509 }
1510 }
1511
1512 static void
1513 brt_sync_entry(dnode_t *dn, brt_entry_t *bre, dmu_tx_t *tx)
1514 {
1515 if (bre->bre_refcount == 0) {
1516 int error = zap_remove_uint64_by_dnode(dn, &bre->bre_offset,
1517 BRT_KEY_WORDS, tx);
1518 VERIFY(error == 0 || error == ENOENT);
1519 } else {
1520 VERIFY0(zap_update_uint64_by_dnode(dn, &bre->bre_offset,
1521 BRT_KEY_WORDS, 1, sizeof (bre->bre_refcount),
1522 &bre->bre_refcount, tx));
1523 }
1524 }
1525
1526 static void
1527 brt_sync_table(brt_t *brt, dmu_tx_t *tx)
1528 {
1529 brt_vdev_t *brtvd;
1530 brt_entry_t *bre;
1531 dnode_t *dn;
1532 uint64_t vdevid;
1533 void *c;
1534
1535 brt_wlock(brt);
1536
1537 for (vdevid = 0; vdevid < brt->brt_nvdevs; vdevid++) {
1538 brtvd = &brt->brt_vdevs[vdevid];
1539
1540 if (!brtvd->bv_initiated)
1541 continue;
1542
1543 if (!brtvd->bv_meta_dirty) {
1544 ASSERT(!brtvd->bv_entcount_dirty);
1545 ASSERT0(avl_numnodes(&brtvd->bv_tree));
1546 continue;
1547 }
1548
1549 ASSERT(!brtvd->bv_entcount_dirty ||
1550 avl_numnodes(&brtvd->bv_tree) != 0);
1551
1552 if (brtvd->bv_mos_brtvdev == 0)
1553 brt_vdev_create(brt, brtvd, tx);
1554
1555 VERIFY0(dnode_hold(brt->brt_mos, brtvd->bv_mos_entries,
1556 FTAG, &dn));
1557
1558 c = NULL;
1559 while ((bre = avl_destroy_nodes(&brtvd->bv_tree, &c)) != NULL) {
1560 brt_sync_entry(dn, bre, tx);
1561 brt_entry_free(bre);
1562 ASSERT(brt->brt_nentries > 0);
1563 brt->brt_nentries--;
1564 }
1565
1566 dnode_rele(dn, FTAG);
1567
1568 brt_vdev_sync(brt, brtvd, tx);
1569
1570 if (brtvd->bv_totalcount == 0)
1571 brt_vdev_destroy(brt, brtvd, tx);
1572 }
1573
1574 ASSERT0(brt->brt_nentries);
1575
1576 brt_unlock(brt);
1577 }
1578
1579 void
1580 brt_sync(spa_t *spa, uint64_t txg)
1581 {
1582 dmu_tx_t *tx;
1583 brt_t *brt;
1584
1585 ASSERT(spa_syncing_txg(spa) == txg);
1586
1587 brt = spa->spa_brt;
1588 brt_rlock(brt);
1589 if (brt->brt_nentries == 0) {
1590 /* No changes. */
1591 brt_unlock(brt);
1592 return;
1593 }
1594 brt_unlock(brt);
1595
1596 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1597
1598 brt_sync_table(brt, tx);
1599
1600 dmu_tx_commit(tx);
1601 }
1602
1603 static void
1604 brt_table_alloc(brt_t *brt)
1605 {
1606
1607 for (int i = 0; i < TXG_SIZE; i++) {
1608 avl_create(&brt->brt_pending_tree[i],
1609 brt_pending_entry_compare,
1610 sizeof (brt_pending_entry_t),
1611 offsetof(brt_pending_entry_t, bpe_node));
1612 mutex_init(&brt->brt_pending_lock[i], NULL, MUTEX_DEFAULT,
1613 NULL);
1614 }
1615 }
1616
1617 static void
1618 brt_table_free(brt_t *brt)
1619 {
1620
1621 for (int i = 0; i < TXG_SIZE; i++) {
1622 ASSERT(avl_is_empty(&brt->brt_pending_tree[i]));
1623
1624 avl_destroy(&brt->brt_pending_tree[i]);
1625 mutex_destroy(&brt->brt_pending_lock[i]);
1626 }
1627 }
1628
1629 static void
1630 brt_alloc(spa_t *spa)
1631 {
1632 brt_t *brt;
1633
1634 ASSERT(spa->spa_brt == NULL);
1635
1636 brt = kmem_zalloc(sizeof (*brt), KM_SLEEP);
1637 rw_init(&brt->brt_lock, NULL, RW_DEFAULT, NULL);
1638 brt->brt_spa = spa;
1639 brt->brt_rangesize = 0;
1640 brt->brt_nentries = 0;
1641 brt->brt_vdevs = NULL;
1642 brt->brt_nvdevs = 0;
1643 brt_table_alloc(brt);
1644
1645 spa->spa_brt = brt;
1646 }
1647
1648 void
1649 brt_create(spa_t *spa)
1650 {
1651
1652 brt_alloc(spa);
1653 brt_vdevs_alloc(spa->spa_brt, B_FALSE);
1654 }
1655
1656 int
1657 brt_load(spa_t *spa)
1658 {
1659
1660 brt_alloc(spa);
1661 brt_vdevs_alloc(spa->spa_brt, B_TRUE);
1662
1663 return (0);
1664 }
1665
1666 void
1667 brt_unload(spa_t *spa)
1668 {
1669 brt_t *brt = spa->spa_brt;
1670
1671 if (brt == NULL)
1672 return;
1673
1674 brt_vdevs_free(brt);
1675 brt_table_free(brt);
1676 rw_destroy(&brt->brt_lock);
1677 kmem_free(brt, sizeof (*brt));
1678 spa->spa_brt = NULL;
1679 }
1680
1681 /* BEGIN CSTYLED */
1682 ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, prefetch, INT, ZMOD_RW,
1683 "Enable prefetching of BRT entries");
1684 #ifdef ZFS_BRT_DEBUG
1685 ZFS_MODULE_PARAM(zfs_brt, zfs_brt_, debug, INT, ZMOD_RW, "BRT debug");
1686 #endif
1687 /* END CSTYLED */