]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Fix error handling incallers of dbuf_hold_level()
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 typedef struct dbuf_hold_arg {
152 /* Function arguments */
153 dnode_t *dh_dn;
154 uint8_t dh_level;
155 uint64_t dh_blkid;
156 boolean_t dh_fail_sparse;
157 boolean_t dh_fail_uncached;
158 void *dh_tag;
159 dmu_buf_impl_t **dh_dbp;
160 /* Local variables */
161 dmu_buf_impl_t *dh_db;
162 dmu_buf_impl_t *dh_parent;
163 blkptr_t *dh_bp;
164 int dh_err;
165 dbuf_dirty_record_t *dh_dr;
166 } dbuf_hold_arg_t;
167
168 static dbuf_hold_arg_t *dbuf_hold_arg_create(dnode_t *dn, uint8_t level,
169 uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached,
170 void *tag, dmu_buf_impl_t **dbp);
171 static int dbuf_hold_impl_arg(dbuf_hold_arg_t *dh);
172 static void dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh);
173
174 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
175 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
176
177 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
178 dmu_buf_evict_func_t *evict_func_sync,
179 dmu_buf_evict_func_t *evict_func_async,
180 dmu_buf_t **clear_on_evict_dbufp);
181
182 /*
183 * Global data structures and functions for the dbuf cache.
184 */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t *cache;
226 zfs_refcount_t size;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 unsigned long dbuf_cache_max_bytes = 0;
232 unsigned long dbuf_metadata_cache_max_bytes = 0;
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 int dbuf_cache_shift = 5;
235 int dbuf_metadata_cache_shift = 6;
236
237 /*
238 * The LRU dbuf cache uses a three-stage eviction policy:
239 * - A low water marker designates when the dbuf eviction thread
240 * should stop evicting from the dbuf cache.
241 * - When we reach the maximum size (aka mid water mark), we
242 * signal the eviction thread to run.
243 * - The high water mark indicates when the eviction thread
244 * is unable to keep up with the incoming load and eviction must
245 * happen in the context of the calling thread.
246 *
247 * The dbuf cache:
248 * (max size)
249 * low water mid water hi water
250 * +----------------------------------------+----------+----------+
251 * | | | |
252 * | | | |
253 * | | | |
254 * | | | |
255 * +----------------------------------------+----------+----------+
256 * stop signal evict
257 * evicting eviction directly
258 * thread
259 *
260 * The high and low water marks indicate the operating range for the eviction
261 * thread. The low water mark is, by default, 90% of the total size of the
262 * cache and the high water mark is at 110% (both of these percentages can be
263 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
264 * respectively). The eviction thread will try to ensure that the cache remains
265 * within this range by waking up every second and checking if the cache is
266 * above the low water mark. The thread can also be woken up by callers adding
267 * elements into the cache if the cache is larger than the mid water (i.e max
268 * cache size). Once the eviction thread is woken up and eviction is required,
269 * it will continue evicting buffers until it's able to reduce the cache size
270 * to the low water mark. If the cache size continues to grow and hits the high
271 * water mark, then callers adding elements to the cache will begin to evict
272 * directly from the cache until the cache is no longer above the high water
273 * mark.
274 */
275
276 /*
277 * The percentage above and below the maximum cache size.
278 */
279 uint_t dbuf_cache_hiwater_pct = 10;
280 uint_t dbuf_cache_lowater_pct = 10;
281
282 /* ARGSUSED */
283 static int
284 dbuf_cons(void *vdb, void *unused, int kmflag)
285 {
286 dmu_buf_impl_t *db = vdb;
287 bzero(db, sizeof (dmu_buf_impl_t));
288
289 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
290 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
291 multilist_link_init(&db->db_cache_link);
292 zfs_refcount_create(&db->db_holds);
293
294 return (0);
295 }
296
297 /* ARGSUSED */
298 static void
299 dbuf_dest(void *vdb, void *unused)
300 {
301 dmu_buf_impl_t *db = vdb;
302 mutex_destroy(&db->db_mtx);
303 cv_destroy(&db->db_changed);
304 ASSERT(!multilist_link_active(&db->db_cache_link));
305 zfs_refcount_destroy(&db->db_holds);
306 }
307
308 /*
309 * dbuf hash table routines
310 */
311 static dbuf_hash_table_t dbuf_hash_table;
312
313 static uint64_t dbuf_hash_count;
314
315 /*
316 * We use Cityhash for this. It's fast, and has good hash properties without
317 * requiring any large static buffers.
318 */
319 static uint64_t
320 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
321 {
322 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
323 }
324
325 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
330
331 dmu_buf_impl_t *
332 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
333 {
334 dbuf_hash_table_t *h = &dbuf_hash_table;
335 uint64_t hv;
336 uint64_t idx;
337 dmu_buf_impl_t *db;
338
339 hv = dbuf_hash(os, obj, level, blkid);
340 idx = hv & h->hash_table_mask;
341
342 mutex_enter(DBUF_HASH_MUTEX(h, idx));
343 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 mutex_enter(&db->db_mtx);
346 if (db->db_state != DB_EVICTING) {
347 mutex_exit(DBUF_HASH_MUTEX(h, idx));
348 return (db);
349 }
350 mutex_exit(&db->db_mtx);
351 }
352 }
353 mutex_exit(DBUF_HASH_MUTEX(h, idx));
354 return (NULL);
355 }
356
357 static dmu_buf_impl_t *
358 dbuf_find_bonus(objset_t *os, uint64_t object)
359 {
360 dnode_t *dn;
361 dmu_buf_impl_t *db = NULL;
362
363 if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus != NULL) {
366 db = dn->dn_bonus;
367 mutex_enter(&db->db_mtx);
368 }
369 rw_exit(&dn->dn_struct_rwlock);
370 dnode_rele(dn, FTAG);
371 }
372 return (db);
373 }
374
375 /*
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
380 */
381 static dmu_buf_impl_t *
382 dbuf_hash_insert(dmu_buf_impl_t *db)
383 {
384 dbuf_hash_table_t *h = &dbuf_hash_table;
385 objset_t *os = db->db_objset;
386 uint64_t obj = db->db.db_object;
387 int level = db->db_level;
388 uint64_t blkid, hv, idx;
389 dmu_buf_impl_t *dbf;
390 uint32_t i;
391
392 blkid = db->db_blkid;
393 hv = dbuf_hash(os, obj, level, blkid);
394 idx = hv & h->hash_table_mask;
395
396 mutex_enter(DBUF_HASH_MUTEX(h, idx));
397 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 dbf = dbf->db_hash_next, i++) {
399 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 mutex_enter(&dbf->db_mtx);
401 if (dbf->db_state != DB_EVICTING) {
402 mutex_exit(DBUF_HASH_MUTEX(h, idx));
403 return (dbf);
404 }
405 mutex_exit(&dbf->db_mtx);
406 }
407 }
408
409 if (i > 0) {
410 DBUF_STAT_BUMP(hash_collisions);
411 if (i == 1)
412 DBUF_STAT_BUMP(hash_chains);
413
414 DBUF_STAT_MAX(hash_chain_max, i);
415 }
416
417 mutex_enter(&db->db_mtx);
418 db->db_hash_next = h->hash_table[idx];
419 h->hash_table[idx] = db;
420 mutex_exit(DBUF_HASH_MUTEX(h, idx));
421 atomic_inc_64(&dbuf_hash_count);
422 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
423
424 return (NULL);
425 }
426
427 /*
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
431 */
432 static boolean_t
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
434 {
435 DB_DNODE_ENTER(db);
436 dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 DB_DNODE_EXIT(db);
438
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type));
443
444 /*
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
447 */
448 if (zfs_refcount_count(
449 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_max_bytes) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459 }
460
461 /*
462 * Remove an entry from the hash table. It must be in the EVICTING state.
463 */
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
466 {
467 dbuf_hash_table_t *h = &dbuf_hash_table;
468 uint64_t hv, idx;
469 dmu_buf_impl_t *dbf, **dbp;
470
471 hv = dbuf_hash(db->db_objset, db->db.db_object,
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
475 /*
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_MUTEX > db_mtx.
478 */
479 ASSERT(zfs_refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
495 atomic_dec_64(&dbuf_hash_count);
496 }
497
498 typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
502
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505 {
506 #ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
519 holds = zfs_refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
532 if (db->db_user_immediate_evict == TRUE)
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537 #endif
538 }
539
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
542 {
543 dmu_buf_user_t *dbu = db->db_user;
544
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
547 if (dbu == NULL)
548 return;
549
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553 #ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
557
558 /*
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
567 */
568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
577 }
578
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
581 {
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596 }
597
598
599 /*
600 * This function *must* return indices evenly distributed between all
601 * sublists of the multilist. This is needed due to how the dbuf eviction
602 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
603 * distributed between all sublists and uses this assumption when
604 * deciding which sublist to evict from and how much to evict from it.
605 */
606 unsigned int
607 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
608 {
609 dmu_buf_impl_t *db = obj;
610
611 /*
612 * The assumption here, is the hash value for a given
613 * dmu_buf_impl_t will remain constant throughout it's lifetime
614 * (i.e. it's objset, object, level and blkid fields don't change).
615 * Thus, we don't need to store the dbuf's sublist index
616 * on insertion, as this index can be recalculated on removal.
617 *
618 * Also, the low order bits of the hash value are thought to be
619 * distributed evenly. Otherwise, in the case that the multilist
620 * has a power of two number of sublists, each sublists' usage
621 * would not be evenly distributed.
622 */
623 return (dbuf_hash(db->db_objset, db->db.db_object,
624 db->db_level, db->db_blkid) %
625 multilist_get_num_sublists(ml));
626 }
627
628 static inline unsigned long
629 dbuf_cache_target_bytes(void)
630 {
631 return MIN(dbuf_cache_max_bytes,
632 arc_target_bytes() >> dbuf_cache_shift);
633 }
634
635 static inline uint64_t
636 dbuf_cache_hiwater_bytes(void)
637 {
638 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
639 return (dbuf_cache_target +
640 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
641 }
642
643 static inline uint64_t
644 dbuf_cache_lowater_bytes(void)
645 {
646 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
647 return (dbuf_cache_target -
648 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
649 }
650
651 static inline boolean_t
652 dbuf_cache_above_hiwater(void)
653 {
654 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
655 dbuf_cache_hiwater_bytes());
656 }
657
658 static inline boolean_t
659 dbuf_cache_above_lowater(void)
660 {
661 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
662 dbuf_cache_lowater_bytes());
663 }
664
665 /*
666 * Evict the oldest eligible dbuf from the dbuf cache.
667 */
668 static void
669 dbuf_evict_one(void)
670 {
671 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
672 multilist_sublist_t *mls = multilist_sublist_lock(
673 dbuf_caches[DB_DBUF_CACHE].cache, idx);
674
675 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
676
677 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
678 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
679 db = multilist_sublist_prev(mls, db);
680 }
681
682 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
683 multilist_sublist_t *, mls);
684
685 if (db != NULL) {
686 multilist_sublist_remove(mls, db);
687 multilist_sublist_unlock(mls);
688 (void) zfs_refcount_remove_many(
689 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
690 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
691 DBUF_STAT_BUMPDOWN(cache_count);
692 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
693 db->db.db_size);
694 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
695 db->db_caching_status = DB_NO_CACHE;
696 dbuf_destroy(db);
697 DBUF_STAT_MAX(cache_size_bytes_max,
698 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
699 DBUF_STAT_BUMP(cache_total_evicts);
700 } else {
701 multilist_sublist_unlock(mls);
702 }
703 }
704
705 /*
706 * The dbuf evict thread is responsible for aging out dbufs from the
707 * cache. Once the cache has reached it's maximum size, dbufs are removed
708 * and destroyed. The eviction thread will continue running until the size
709 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
710 * out of the cache it is destroyed and becomes eligible for arc eviction.
711 */
712 /* ARGSUSED */
713 static void
714 dbuf_evict_thread(void *unused)
715 {
716 callb_cpr_t cpr;
717
718 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
719
720 mutex_enter(&dbuf_evict_lock);
721 while (!dbuf_evict_thread_exit) {
722 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
723 CALLB_CPR_SAFE_BEGIN(&cpr);
724 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
725 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
726 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
727 }
728 mutex_exit(&dbuf_evict_lock);
729
730 /*
731 * Keep evicting as long as we're above the low water mark
732 * for the cache. We do this without holding the locks to
733 * minimize lock contention.
734 */
735 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
736 dbuf_evict_one();
737 }
738
739 mutex_enter(&dbuf_evict_lock);
740 }
741
742 dbuf_evict_thread_exit = B_FALSE;
743 cv_broadcast(&dbuf_evict_cv);
744 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
745 thread_exit();
746 }
747
748 /*
749 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
750 * If the dbuf cache is at its high water mark, then evict a dbuf from the
751 * dbuf cache using the callers context.
752 */
753 static void
754 dbuf_evict_notify(void)
755 {
756 /*
757 * We check if we should evict without holding the dbuf_evict_lock,
758 * because it's OK to occasionally make the wrong decision here,
759 * and grabbing the lock results in massive lock contention.
760 */
761 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_target_bytes()) {
763 if (dbuf_cache_above_hiwater())
764 dbuf_evict_one();
765 cv_signal(&dbuf_evict_cv);
766 }
767 }
768
769 static int
770 dbuf_kstat_update(kstat_t *ksp, int rw)
771 {
772 dbuf_stats_t *ds = ksp->ks_data;
773
774 if (rw == KSTAT_WRITE) {
775 return (SET_ERROR(EACCES));
776 } else {
777 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
778 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
779 ds->cache_size_bytes.value.ui64 =
780 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
781 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
782 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
783 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
784 ds->hash_elements.value.ui64 = dbuf_hash_count;
785 }
786
787 return (0);
788 }
789
790 void
791 dbuf_init(void)
792 {
793 uint64_t hsize = 1ULL << 16;
794 dbuf_hash_table_t *h = &dbuf_hash_table;
795 int i;
796
797 /*
798 * The hash table is big enough to fill all of physical memory
799 * with an average block size of zfs_arc_average_blocksize (default 8K).
800 * By default, the table will take up
801 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
802 */
803 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
804 hsize <<= 1;
805
806 retry:
807 h->hash_table_mask = hsize - 1;
808 #if defined(_KERNEL)
809 /*
810 * Large allocations which do not require contiguous pages
811 * should be using vmem_alloc() in the linux kernel
812 */
813 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
814 #else
815 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
816 #endif
817 if (h->hash_table == NULL) {
818 /* XXX - we should really return an error instead of assert */
819 ASSERT(hsize > (1ULL << 10));
820 hsize >>= 1;
821 goto retry;
822 }
823
824 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
825 sizeof (dmu_buf_impl_t),
826 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
827
828 for (i = 0; i < DBUF_MUTEXES; i++)
829 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
830
831 dbuf_stats_init(h);
832
833 /*
834 * Setup the parameters for the dbuf caches. We set the sizes of the
835 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
836 * of the target size of the ARC. If the values has been specified as
837 * a module option and they're not greater than the target size of the
838 * ARC, then we honor that value.
839 */
840 if (dbuf_cache_max_bytes == 0 ||
841 dbuf_cache_max_bytes >= arc_target_bytes()) {
842 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
843 }
844 if (dbuf_metadata_cache_max_bytes == 0 ||
845 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
846 dbuf_metadata_cache_max_bytes =
847 arc_target_bytes() >> dbuf_metadata_cache_shift;
848 }
849
850 /*
851 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
852 * configuration is not required.
853 */
854 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
855
856 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
857 dbuf_caches[dcs].cache =
858 multilist_create(sizeof (dmu_buf_impl_t),
859 offsetof(dmu_buf_impl_t, db_cache_link),
860 dbuf_cache_multilist_index_func);
861 zfs_refcount_create(&dbuf_caches[dcs].size);
862 }
863
864 dbuf_evict_thread_exit = B_FALSE;
865 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
866 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
867 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
868 NULL, 0, &p0, TS_RUN, minclsyspri);
869
870 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
871 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
872 KSTAT_FLAG_VIRTUAL);
873 if (dbuf_ksp != NULL) {
874 dbuf_ksp->ks_data = &dbuf_stats;
875 dbuf_ksp->ks_update = dbuf_kstat_update;
876 kstat_install(dbuf_ksp);
877
878 for (i = 0; i < DN_MAX_LEVELS; i++) {
879 snprintf(dbuf_stats.cache_levels[i].name,
880 KSTAT_STRLEN, "cache_level_%d", i);
881 dbuf_stats.cache_levels[i].data_type =
882 KSTAT_DATA_UINT64;
883 snprintf(dbuf_stats.cache_levels_bytes[i].name,
884 KSTAT_STRLEN, "cache_level_%d_bytes", i);
885 dbuf_stats.cache_levels_bytes[i].data_type =
886 KSTAT_DATA_UINT64;
887 }
888 }
889 }
890
891 void
892 dbuf_fini(void)
893 {
894 dbuf_hash_table_t *h = &dbuf_hash_table;
895 int i;
896
897 dbuf_stats_destroy();
898
899 for (i = 0; i < DBUF_MUTEXES; i++)
900 mutex_destroy(&h->hash_mutexes[i]);
901 #if defined(_KERNEL)
902 /*
903 * Large allocations which do not require contiguous pages
904 * should be using vmem_free() in the linux kernel
905 */
906 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
907 #else
908 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
909 #endif
910 kmem_cache_destroy(dbuf_kmem_cache);
911 taskq_destroy(dbu_evict_taskq);
912
913 mutex_enter(&dbuf_evict_lock);
914 dbuf_evict_thread_exit = B_TRUE;
915 while (dbuf_evict_thread_exit) {
916 cv_signal(&dbuf_evict_cv);
917 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
918 }
919 mutex_exit(&dbuf_evict_lock);
920
921 mutex_destroy(&dbuf_evict_lock);
922 cv_destroy(&dbuf_evict_cv);
923
924 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
925 zfs_refcount_destroy(&dbuf_caches[dcs].size);
926 multilist_destroy(dbuf_caches[dcs].cache);
927 }
928
929 if (dbuf_ksp != NULL) {
930 kstat_delete(dbuf_ksp);
931 dbuf_ksp = NULL;
932 }
933 }
934
935 /*
936 * Other stuff.
937 */
938
939 #ifdef ZFS_DEBUG
940 static void
941 dbuf_verify(dmu_buf_impl_t *db)
942 {
943 dnode_t *dn;
944 dbuf_dirty_record_t *dr;
945
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947
948 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
949 return;
950
951 ASSERT(db->db_objset != NULL);
952 DB_DNODE_ENTER(db);
953 dn = DB_DNODE(db);
954 if (dn == NULL) {
955 ASSERT(db->db_parent == NULL);
956 ASSERT(db->db_blkptr == NULL);
957 } else {
958 ASSERT3U(db->db.db_object, ==, dn->dn_object);
959 ASSERT3P(db->db_objset, ==, dn->dn_objset);
960 ASSERT3U(db->db_level, <, dn->dn_nlevels);
961 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
962 db->db_blkid == DMU_SPILL_BLKID ||
963 !avl_is_empty(&dn->dn_dbufs));
964 }
965 if (db->db_blkid == DMU_BONUS_BLKID) {
966 ASSERT(dn != NULL);
967 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
968 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
969 } else if (db->db_blkid == DMU_SPILL_BLKID) {
970 ASSERT(dn != NULL);
971 ASSERT0(db->db.db_offset);
972 } else {
973 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
974 }
975
976 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
977 ASSERT(dr->dr_dbuf == db);
978
979 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
980 ASSERT(dr->dr_dbuf == db);
981
982 /*
983 * We can't assert that db_size matches dn_datablksz because it
984 * can be momentarily different when another thread is doing
985 * dnode_set_blksz().
986 */
987 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
988 dr = db->db_data_pending;
989 /*
990 * It should only be modified in syncing context, so
991 * make sure we only have one copy of the data.
992 */
993 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
994 }
995
996 /* verify db->db_blkptr */
997 if (db->db_blkptr) {
998 if (db->db_parent == dn->dn_dbuf) {
999 /* db is pointed to by the dnode */
1000 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1001 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1002 ASSERT(db->db_parent == NULL);
1003 else
1004 ASSERT(db->db_parent != NULL);
1005 if (db->db_blkid != DMU_SPILL_BLKID)
1006 ASSERT3P(db->db_blkptr, ==,
1007 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1008 } else {
1009 /* db is pointed to by an indirect block */
1010 ASSERTV(int epb = db->db_parent->db.db_size >>
1011 SPA_BLKPTRSHIFT);
1012 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1013 ASSERT3U(db->db_parent->db.db_object, ==,
1014 db->db.db_object);
1015 /*
1016 * dnode_grow_indblksz() can make this fail if we don't
1017 * have the struct_rwlock. XXX indblksz no longer
1018 * grows. safe to do this now?
1019 */
1020 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1021 ASSERT3P(db->db_blkptr, ==,
1022 ((blkptr_t *)db->db_parent->db.db_data +
1023 db->db_blkid % epb));
1024 }
1025 }
1026 }
1027 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1028 (db->db_buf == NULL || db->db_buf->b_data) &&
1029 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1030 db->db_state != DB_FILL && !dn->dn_free_txg) {
1031 /*
1032 * If the blkptr isn't set but they have nonzero data,
1033 * it had better be dirty, otherwise we'll lose that
1034 * data when we evict this buffer.
1035 *
1036 * There is an exception to this rule for indirect blocks; in
1037 * this case, if the indirect block is a hole, we fill in a few
1038 * fields on each of the child blocks (importantly, birth time)
1039 * to prevent hole birth times from being lost when you
1040 * partially fill in a hole.
1041 */
1042 if (db->db_dirtycnt == 0) {
1043 if (db->db_level == 0) {
1044 uint64_t *buf = db->db.db_data;
1045 int i;
1046
1047 for (i = 0; i < db->db.db_size >> 3; i++) {
1048 ASSERT(buf[i] == 0);
1049 }
1050 } else {
1051 blkptr_t *bps = db->db.db_data;
1052 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1053 db->db.db_size);
1054 /*
1055 * We want to verify that all the blkptrs in the
1056 * indirect block are holes, but we may have
1057 * automatically set up a few fields for them.
1058 * We iterate through each blkptr and verify
1059 * they only have those fields set.
1060 */
1061 for (int i = 0;
1062 i < db->db.db_size / sizeof (blkptr_t);
1063 i++) {
1064 blkptr_t *bp = &bps[i];
1065 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1066 &bp->blk_cksum));
1067 ASSERT(
1068 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1069 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1070 DVA_IS_EMPTY(&bp->blk_dva[2]));
1071 ASSERT0(bp->blk_fill);
1072 ASSERT0(bp->blk_pad[0]);
1073 ASSERT0(bp->blk_pad[1]);
1074 ASSERT(!BP_IS_EMBEDDED(bp));
1075 ASSERT(BP_IS_HOLE(bp));
1076 ASSERT0(bp->blk_phys_birth);
1077 }
1078 }
1079 }
1080 }
1081 DB_DNODE_EXIT(db);
1082 }
1083 #endif
1084
1085 static void
1086 dbuf_clear_data(dmu_buf_impl_t *db)
1087 {
1088 ASSERT(MUTEX_HELD(&db->db_mtx));
1089 dbuf_evict_user(db);
1090 ASSERT3P(db->db_buf, ==, NULL);
1091 db->db.db_data = NULL;
1092 if (db->db_state != DB_NOFILL)
1093 db->db_state = DB_UNCACHED;
1094 }
1095
1096 static void
1097 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1098 {
1099 ASSERT(MUTEX_HELD(&db->db_mtx));
1100 ASSERT(buf != NULL);
1101
1102 db->db_buf = buf;
1103 ASSERT(buf->b_data != NULL);
1104 db->db.db_data = buf->b_data;
1105 }
1106
1107 /*
1108 * Loan out an arc_buf for read. Return the loaned arc_buf.
1109 */
1110 arc_buf_t *
1111 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1112 {
1113 arc_buf_t *abuf;
1114
1115 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1116 mutex_enter(&db->db_mtx);
1117 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1118 int blksz = db->db.db_size;
1119 spa_t *spa = db->db_objset->os_spa;
1120
1121 mutex_exit(&db->db_mtx);
1122 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1123 bcopy(db->db.db_data, abuf->b_data, blksz);
1124 } else {
1125 abuf = db->db_buf;
1126 arc_loan_inuse_buf(abuf, db);
1127 db->db_buf = NULL;
1128 dbuf_clear_data(db);
1129 mutex_exit(&db->db_mtx);
1130 }
1131 return (abuf);
1132 }
1133
1134 /*
1135 * Calculate which level n block references the data at the level 0 offset
1136 * provided.
1137 */
1138 uint64_t
1139 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1140 {
1141 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1142 /*
1143 * The level n blkid is equal to the level 0 blkid divided by
1144 * the number of level 0s in a level n block.
1145 *
1146 * The level 0 blkid is offset >> datablkshift =
1147 * offset / 2^datablkshift.
1148 *
1149 * The number of level 0s in a level n is the number of block
1150 * pointers in an indirect block, raised to the power of level.
1151 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1152 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1153 *
1154 * Thus, the level n blkid is: offset /
1155 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1156 * = offset / 2^(datablkshift + level *
1157 * (indblkshift - SPA_BLKPTRSHIFT))
1158 * = offset >> (datablkshift + level *
1159 * (indblkshift - SPA_BLKPTRSHIFT))
1160 */
1161
1162 const unsigned exp = dn->dn_datablkshift +
1163 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1164
1165 if (exp >= 8 * sizeof (offset)) {
1166 /* This only happens on the highest indirection level */
1167 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1168 return (0);
1169 }
1170
1171 ASSERT3U(exp, <, 8 * sizeof (offset));
1172
1173 return (offset >> exp);
1174 } else {
1175 ASSERT3U(offset, <, dn->dn_datablksz);
1176 return (0);
1177 }
1178 }
1179
1180 static void
1181 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1182 arc_buf_t *buf, void *vdb)
1183 {
1184 dmu_buf_impl_t *db = vdb;
1185
1186 mutex_enter(&db->db_mtx);
1187 ASSERT3U(db->db_state, ==, DB_READ);
1188 /*
1189 * All reads are synchronous, so we must have a hold on the dbuf
1190 */
1191 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1192 ASSERT(db->db_buf == NULL);
1193 ASSERT(db->db.db_data == NULL);
1194 if (buf == NULL) {
1195 /* i/o error */
1196 ASSERT(zio == NULL || zio->io_error != 0);
1197 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1198 ASSERT3P(db->db_buf, ==, NULL);
1199 db->db_state = DB_UNCACHED;
1200 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1201 /* freed in flight */
1202 ASSERT(zio == NULL || zio->io_error == 0);
1203 arc_release(buf, db);
1204 bzero(buf->b_data, db->db.db_size);
1205 arc_buf_freeze(buf);
1206 db->db_freed_in_flight = FALSE;
1207 dbuf_set_data(db, buf);
1208 db->db_state = DB_CACHED;
1209 } else {
1210 /* success */
1211 ASSERT(zio == NULL || zio->io_error == 0);
1212 dbuf_set_data(db, buf);
1213 db->db_state = DB_CACHED;
1214 }
1215 cv_broadcast(&db->db_changed);
1216 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1217 }
1218
1219
1220 /*
1221 * This function ensures that, when doing a decrypting read of a block,
1222 * we make sure we have decrypted the dnode associated with it. We must do
1223 * this so that we ensure we are fully authenticating the checksum-of-MACs
1224 * tree from the root of the objset down to this block. Indirect blocks are
1225 * always verified against their secure checksum-of-MACs assuming that the
1226 * dnode containing them is correct. Now that we are doing a decrypting read,
1227 * we can be sure that the key is loaded and verify that assumption. This is
1228 * especially important considering that we always read encrypted dnode
1229 * blocks as raw data (without verifying their MACs) to start, and
1230 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1231 */
1232 static int
1233 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1234 {
1235 int err = 0;
1236 objset_t *os = db->db_objset;
1237 arc_buf_t *dnode_abuf;
1238 dnode_t *dn;
1239 zbookmark_phys_t zb;
1240
1241 ASSERT(MUTEX_HELD(&db->db_mtx));
1242
1243 if (!os->os_encrypted || os->os_raw_receive ||
1244 (flags & DB_RF_NO_DECRYPT) != 0)
1245 return (0);
1246
1247 DB_DNODE_ENTER(db);
1248 dn = DB_DNODE(db);
1249 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1250
1251 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1252 DB_DNODE_EXIT(db);
1253 return (0);
1254 }
1255
1256 SET_BOOKMARK(&zb, dmu_objset_id(os),
1257 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1258 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1259
1260 /*
1261 * An error code of EACCES tells us that the key is still not
1262 * available. This is ok if we are only reading authenticated
1263 * (and therefore non-encrypted) blocks.
1264 */
1265 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1266 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1267 (db->db_blkid == DMU_BONUS_BLKID &&
1268 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1269 err = 0;
1270
1271 DB_DNODE_EXIT(db);
1272
1273 return (err);
1274 }
1275
1276 static int
1277 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1278 {
1279 dnode_t *dn;
1280 zbookmark_phys_t zb;
1281 uint32_t aflags = ARC_FLAG_NOWAIT;
1282 int err, zio_flags = 0;
1283
1284 DB_DNODE_ENTER(db);
1285 dn = DB_DNODE(db);
1286 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1287 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1288 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1289 ASSERT(MUTEX_HELD(&db->db_mtx));
1290 ASSERT(db->db_state == DB_UNCACHED);
1291 ASSERT(db->db_buf == NULL);
1292
1293 if (db->db_blkid == DMU_BONUS_BLKID) {
1294 /*
1295 * The bonus length stored in the dnode may be less than
1296 * the maximum available space in the bonus buffer.
1297 */
1298 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1299 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1300
1301 /* if the underlying dnode block is encrypted, decrypt it */
1302 err = dbuf_read_verify_dnode_crypt(db, flags);
1303 if (err != 0) {
1304 DB_DNODE_EXIT(db);
1305 mutex_exit(&db->db_mtx);
1306 return (err);
1307 }
1308
1309 ASSERT3U(bonuslen, <=, db->db.db_size);
1310 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1311 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1312 if (bonuslen < max_bonuslen)
1313 bzero(db->db.db_data, max_bonuslen);
1314 if (bonuslen)
1315 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1316 DB_DNODE_EXIT(db);
1317 db->db_state = DB_CACHED;
1318 mutex_exit(&db->db_mtx);
1319 return (0);
1320 }
1321
1322 /*
1323 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1324 * processes the delete record and clears the bp while we are waiting
1325 * for the dn_mtx (resulting in a "no" from block_freed).
1326 */
1327 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1328 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1329 BP_IS_HOLE(db->db_blkptr)))) {
1330 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1331
1332 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1333 db->db.db_size));
1334 bzero(db->db.db_data, db->db.db_size);
1335
1336 if (db->db_blkptr != NULL && db->db_level > 0 &&
1337 BP_IS_HOLE(db->db_blkptr) &&
1338 db->db_blkptr->blk_birth != 0) {
1339 blkptr_t *bps = db->db.db_data;
1340 for (int i = 0; i < ((1 <<
1341 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1342 i++) {
1343 blkptr_t *bp = &bps[i];
1344 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1345 1 << dn->dn_indblkshift);
1346 BP_SET_LSIZE(bp,
1347 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1348 dn->dn_datablksz :
1349 BP_GET_LSIZE(db->db_blkptr));
1350 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1351 BP_SET_LEVEL(bp,
1352 BP_GET_LEVEL(db->db_blkptr) - 1);
1353 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1354 }
1355 }
1356 DB_DNODE_EXIT(db);
1357 db->db_state = DB_CACHED;
1358 mutex_exit(&db->db_mtx);
1359 return (0);
1360 }
1361
1362
1363 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1364 db->db.db_object, db->db_level, db->db_blkid);
1365
1366 /*
1367 * All bps of an encrypted os should have the encryption bit set.
1368 * If this is not true it indicates tampering and we report an error.
1369 */
1370 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1371 spa_log_error(db->db_objset->os_spa, &zb);
1372 zfs_panic_recover("unencrypted block in encrypted "
1373 "object set %llu", dmu_objset_id(db->db_objset));
1374 DB_DNODE_EXIT(db);
1375 mutex_exit(&db->db_mtx);
1376 return (SET_ERROR(EIO));
1377 }
1378
1379 err = dbuf_read_verify_dnode_crypt(db, flags);
1380 if (err != 0) {
1381 DB_DNODE_EXIT(db);
1382 mutex_exit(&db->db_mtx);
1383 return (err);
1384 }
1385
1386 DB_DNODE_EXIT(db);
1387
1388 db->db_state = DB_READ;
1389 mutex_exit(&db->db_mtx);
1390
1391 if (DBUF_IS_L2CACHEABLE(db))
1392 aflags |= ARC_FLAG_L2CACHE;
1393
1394 dbuf_add_ref(db, NULL);
1395
1396 zio_flags = (flags & DB_RF_CANFAIL) ?
1397 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1398
1399 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1400 zio_flags |= ZIO_FLAG_RAW;
1401
1402 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1403 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1404 &aflags, &zb);
1405
1406 return (err);
1407 }
1408
1409 /*
1410 * This is our just-in-time copy function. It makes a copy of buffers that
1411 * have been modified in a previous transaction group before we access them in
1412 * the current active group.
1413 *
1414 * This function is used in three places: when we are dirtying a buffer for the
1415 * first time in a txg, when we are freeing a range in a dnode that includes
1416 * this buffer, and when we are accessing a buffer which was received compressed
1417 * and later referenced in a WRITE_BYREF record.
1418 *
1419 * Note that when we are called from dbuf_free_range() we do not put a hold on
1420 * the buffer, we just traverse the active dbuf list for the dnode.
1421 */
1422 static void
1423 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1424 {
1425 dbuf_dirty_record_t *dr = db->db_last_dirty;
1426
1427 ASSERT(MUTEX_HELD(&db->db_mtx));
1428 ASSERT(db->db.db_data != NULL);
1429 ASSERT(db->db_level == 0);
1430 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1431
1432 if (dr == NULL ||
1433 (dr->dt.dl.dr_data !=
1434 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1435 return;
1436
1437 /*
1438 * If the last dirty record for this dbuf has not yet synced
1439 * and its referencing the dbuf data, either:
1440 * reset the reference to point to a new copy,
1441 * or (if there a no active holders)
1442 * just null out the current db_data pointer.
1443 */
1444 ASSERT3U(dr->dr_txg, >=, txg - 2);
1445 if (db->db_blkid == DMU_BONUS_BLKID) {
1446 dnode_t *dn = DB_DNODE(db);
1447 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1448 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1449 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1450 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1451 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1452 dnode_t *dn = DB_DNODE(db);
1453 int size = arc_buf_size(db->db_buf);
1454 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1455 spa_t *spa = db->db_objset->os_spa;
1456 enum zio_compress compress_type =
1457 arc_get_compression(db->db_buf);
1458
1459 if (arc_is_encrypted(db->db_buf)) {
1460 boolean_t byteorder;
1461 uint8_t salt[ZIO_DATA_SALT_LEN];
1462 uint8_t iv[ZIO_DATA_IV_LEN];
1463 uint8_t mac[ZIO_DATA_MAC_LEN];
1464
1465 arc_get_raw_params(db->db_buf, &byteorder, salt,
1466 iv, mac);
1467 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1468 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1469 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1470 compress_type);
1471 } else if (compress_type != ZIO_COMPRESS_OFF) {
1472 ASSERT3U(type, ==, ARC_BUFC_DATA);
1473 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1474 size, arc_buf_lsize(db->db_buf), compress_type);
1475 } else {
1476 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1477 }
1478 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1479 } else {
1480 db->db_buf = NULL;
1481 dbuf_clear_data(db);
1482 }
1483 }
1484
1485 int
1486 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1487 {
1488 int err = 0;
1489 boolean_t prefetch;
1490 dnode_t *dn;
1491
1492 /*
1493 * We don't have to hold the mutex to check db_state because it
1494 * can't be freed while we have a hold on the buffer.
1495 */
1496 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1497
1498 if (db->db_state == DB_NOFILL)
1499 return (SET_ERROR(EIO));
1500
1501 DB_DNODE_ENTER(db);
1502 dn = DB_DNODE(db);
1503 if ((flags & DB_RF_HAVESTRUCT) == 0)
1504 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1505
1506 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1507 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1508 DBUF_IS_CACHEABLE(db);
1509
1510 mutex_enter(&db->db_mtx);
1511 if (db->db_state == DB_CACHED) {
1512 spa_t *spa = dn->dn_objset->os_spa;
1513
1514 /*
1515 * Ensure that this block's dnode has been decrypted if
1516 * the caller has requested decrypted data.
1517 */
1518 err = dbuf_read_verify_dnode_crypt(db, flags);
1519
1520 /*
1521 * If the arc buf is compressed or encrypted and the caller
1522 * requested uncompressed data, we need to untransform it
1523 * before returning. We also call arc_untransform() on any
1524 * unauthenticated blocks, which will verify their MAC if
1525 * the key is now available.
1526 */
1527 if (err == 0 && db->db_buf != NULL &&
1528 (flags & DB_RF_NO_DECRYPT) == 0 &&
1529 (arc_is_encrypted(db->db_buf) ||
1530 arc_is_unauthenticated(db->db_buf) ||
1531 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1532 zbookmark_phys_t zb;
1533
1534 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1535 db->db.db_object, db->db_level, db->db_blkid);
1536 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1537 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1538 dbuf_set_data(db, db->db_buf);
1539 }
1540 mutex_exit(&db->db_mtx);
1541 if (err == 0 && prefetch)
1542 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1543 if ((flags & DB_RF_HAVESTRUCT) == 0)
1544 rw_exit(&dn->dn_struct_rwlock);
1545 DB_DNODE_EXIT(db);
1546 DBUF_STAT_BUMP(hash_hits);
1547 } else if (db->db_state == DB_UNCACHED) {
1548 spa_t *spa = dn->dn_objset->os_spa;
1549 boolean_t need_wait = B_FALSE;
1550
1551 if (zio == NULL &&
1552 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1553 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1554 need_wait = B_TRUE;
1555 }
1556 err = dbuf_read_impl(db, zio, flags);
1557
1558 /* dbuf_read_impl has dropped db_mtx for us */
1559
1560 if (!err && prefetch)
1561 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1562
1563 if ((flags & DB_RF_HAVESTRUCT) == 0)
1564 rw_exit(&dn->dn_struct_rwlock);
1565 DB_DNODE_EXIT(db);
1566 DBUF_STAT_BUMP(hash_misses);
1567
1568 /*
1569 * If we created a zio_root we must execute it to avoid
1570 * leaking it, even if it isn't attached to any work due
1571 * to an error in dbuf_read_impl().
1572 */
1573 if (need_wait) {
1574 if (err == 0)
1575 err = zio_wait(zio);
1576 else
1577 VERIFY0(zio_wait(zio));
1578 }
1579 } else {
1580 /*
1581 * Another reader came in while the dbuf was in flight
1582 * between UNCACHED and CACHED. Either a writer will finish
1583 * writing the buffer (sending the dbuf to CACHED) or the
1584 * first reader's request will reach the read_done callback
1585 * and send the dbuf to CACHED. Otherwise, a failure
1586 * occurred and the dbuf went to UNCACHED.
1587 */
1588 mutex_exit(&db->db_mtx);
1589 if (prefetch)
1590 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1591 if ((flags & DB_RF_HAVESTRUCT) == 0)
1592 rw_exit(&dn->dn_struct_rwlock);
1593 DB_DNODE_EXIT(db);
1594 DBUF_STAT_BUMP(hash_misses);
1595
1596 /* Skip the wait per the caller's request. */
1597 mutex_enter(&db->db_mtx);
1598 if ((flags & DB_RF_NEVERWAIT) == 0) {
1599 while (db->db_state == DB_READ ||
1600 db->db_state == DB_FILL) {
1601 ASSERT(db->db_state == DB_READ ||
1602 (flags & DB_RF_HAVESTRUCT) == 0);
1603 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1604 db, zio_t *, zio);
1605 cv_wait(&db->db_changed, &db->db_mtx);
1606 }
1607 if (db->db_state == DB_UNCACHED)
1608 err = SET_ERROR(EIO);
1609 }
1610 mutex_exit(&db->db_mtx);
1611 }
1612
1613 return (err);
1614 }
1615
1616 static void
1617 dbuf_noread(dmu_buf_impl_t *db)
1618 {
1619 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1620 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1621 mutex_enter(&db->db_mtx);
1622 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1623 cv_wait(&db->db_changed, &db->db_mtx);
1624 if (db->db_state == DB_UNCACHED) {
1625 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1626 spa_t *spa = db->db_objset->os_spa;
1627
1628 ASSERT(db->db_buf == NULL);
1629 ASSERT(db->db.db_data == NULL);
1630 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1631 db->db_state = DB_FILL;
1632 } else if (db->db_state == DB_NOFILL) {
1633 dbuf_clear_data(db);
1634 } else {
1635 ASSERT3U(db->db_state, ==, DB_CACHED);
1636 }
1637 mutex_exit(&db->db_mtx);
1638 }
1639
1640 void
1641 dbuf_unoverride(dbuf_dirty_record_t *dr)
1642 {
1643 dmu_buf_impl_t *db = dr->dr_dbuf;
1644 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1645 uint64_t txg = dr->dr_txg;
1646
1647 ASSERT(MUTEX_HELD(&db->db_mtx));
1648 /*
1649 * This assert is valid because dmu_sync() expects to be called by
1650 * a zilog's get_data while holding a range lock. This call only
1651 * comes from dbuf_dirty() callers who must also hold a range lock.
1652 */
1653 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1654 ASSERT(db->db_level == 0);
1655
1656 if (db->db_blkid == DMU_BONUS_BLKID ||
1657 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1658 return;
1659
1660 ASSERT(db->db_data_pending != dr);
1661
1662 /* free this block */
1663 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1664 zio_free(db->db_objset->os_spa, txg, bp);
1665
1666 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1667 dr->dt.dl.dr_nopwrite = B_FALSE;
1668 dr->dt.dl.dr_has_raw_params = B_FALSE;
1669
1670 /*
1671 * Release the already-written buffer, so we leave it in
1672 * a consistent dirty state. Note that all callers are
1673 * modifying the buffer, so they will immediately do
1674 * another (redundant) arc_release(). Therefore, leave
1675 * the buf thawed to save the effort of freezing &
1676 * immediately re-thawing it.
1677 */
1678 arc_release(dr->dt.dl.dr_data, db);
1679 }
1680
1681 /*
1682 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1683 * data blocks in the free range, so that any future readers will find
1684 * empty blocks.
1685 */
1686 void
1687 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1688 dmu_tx_t *tx)
1689 {
1690 dmu_buf_impl_t *db_search;
1691 dmu_buf_impl_t *db, *db_next;
1692 uint64_t txg = tx->tx_txg;
1693 avl_index_t where;
1694
1695 if (end_blkid > dn->dn_maxblkid &&
1696 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1697 end_blkid = dn->dn_maxblkid;
1698 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1699
1700 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1701 db_search->db_level = 0;
1702 db_search->db_blkid = start_blkid;
1703 db_search->db_state = DB_SEARCH;
1704
1705 mutex_enter(&dn->dn_dbufs_mtx);
1706 db = avl_find(&dn->dn_dbufs, db_search, &where);
1707 ASSERT3P(db, ==, NULL);
1708
1709 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1710
1711 for (; db != NULL; db = db_next) {
1712 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1713 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1714
1715 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1716 break;
1717 }
1718 ASSERT3U(db->db_blkid, >=, start_blkid);
1719
1720 /* found a level 0 buffer in the range */
1721 mutex_enter(&db->db_mtx);
1722 if (dbuf_undirty(db, tx)) {
1723 /* mutex has been dropped and dbuf destroyed */
1724 continue;
1725 }
1726
1727 if (db->db_state == DB_UNCACHED ||
1728 db->db_state == DB_NOFILL ||
1729 db->db_state == DB_EVICTING) {
1730 ASSERT(db->db.db_data == NULL);
1731 mutex_exit(&db->db_mtx);
1732 continue;
1733 }
1734 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1735 /* will be handled in dbuf_read_done or dbuf_rele */
1736 db->db_freed_in_flight = TRUE;
1737 mutex_exit(&db->db_mtx);
1738 continue;
1739 }
1740 if (zfs_refcount_count(&db->db_holds) == 0) {
1741 ASSERT(db->db_buf);
1742 dbuf_destroy(db);
1743 continue;
1744 }
1745 /* The dbuf is referenced */
1746
1747 if (db->db_last_dirty != NULL) {
1748 dbuf_dirty_record_t *dr = db->db_last_dirty;
1749
1750 if (dr->dr_txg == txg) {
1751 /*
1752 * This buffer is "in-use", re-adjust the file
1753 * size to reflect that this buffer may
1754 * contain new data when we sync.
1755 */
1756 if (db->db_blkid != DMU_SPILL_BLKID &&
1757 db->db_blkid > dn->dn_maxblkid)
1758 dn->dn_maxblkid = db->db_blkid;
1759 dbuf_unoverride(dr);
1760 } else {
1761 /*
1762 * This dbuf is not dirty in the open context.
1763 * Either uncache it (if its not referenced in
1764 * the open context) or reset its contents to
1765 * empty.
1766 */
1767 dbuf_fix_old_data(db, txg);
1768 }
1769 }
1770 /* clear the contents if its cached */
1771 if (db->db_state == DB_CACHED) {
1772 ASSERT(db->db.db_data != NULL);
1773 arc_release(db->db_buf, db);
1774 bzero(db->db.db_data, db->db.db_size);
1775 arc_buf_freeze(db->db_buf);
1776 }
1777
1778 mutex_exit(&db->db_mtx);
1779 }
1780
1781 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1782 mutex_exit(&dn->dn_dbufs_mtx);
1783 }
1784
1785 void
1786 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1787 {
1788 arc_buf_t *buf, *obuf;
1789 int osize = db->db.db_size;
1790 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1791 dnode_t *dn;
1792
1793 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1794
1795 DB_DNODE_ENTER(db);
1796 dn = DB_DNODE(db);
1797
1798 /* XXX does *this* func really need the lock? */
1799 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1800
1801 /*
1802 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1803 * is OK, because there can be no other references to the db
1804 * when we are changing its size, so no concurrent DB_FILL can
1805 * be happening.
1806 */
1807 /*
1808 * XXX we should be doing a dbuf_read, checking the return
1809 * value and returning that up to our callers
1810 */
1811 dmu_buf_will_dirty(&db->db, tx);
1812
1813 /* create the data buffer for the new block */
1814 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1815
1816 /* copy old block data to the new block */
1817 obuf = db->db_buf;
1818 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1819 /* zero the remainder */
1820 if (size > osize)
1821 bzero((uint8_t *)buf->b_data + osize, size - osize);
1822
1823 mutex_enter(&db->db_mtx);
1824 dbuf_set_data(db, buf);
1825 arc_buf_destroy(obuf, db);
1826 db->db.db_size = size;
1827
1828 if (db->db_level == 0) {
1829 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1830 db->db_last_dirty->dt.dl.dr_data = buf;
1831 }
1832 mutex_exit(&db->db_mtx);
1833
1834 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1835 DB_DNODE_EXIT(db);
1836 }
1837
1838 void
1839 dbuf_release_bp(dmu_buf_impl_t *db)
1840 {
1841 ASSERTV(objset_t *os = db->db_objset);
1842
1843 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1844 ASSERT(arc_released(os->os_phys_buf) ||
1845 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1846 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1847
1848 (void) arc_release(db->db_buf, db);
1849 }
1850
1851 /*
1852 * We already have a dirty record for this TXG, and we are being
1853 * dirtied again.
1854 */
1855 static void
1856 dbuf_redirty(dbuf_dirty_record_t *dr)
1857 {
1858 dmu_buf_impl_t *db = dr->dr_dbuf;
1859
1860 ASSERT(MUTEX_HELD(&db->db_mtx));
1861
1862 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1863 /*
1864 * If this buffer has already been written out,
1865 * we now need to reset its state.
1866 */
1867 dbuf_unoverride(dr);
1868 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1869 db->db_state != DB_NOFILL) {
1870 /* Already released on initial dirty, so just thaw. */
1871 ASSERT(arc_released(db->db_buf));
1872 arc_buf_thaw(db->db_buf);
1873 }
1874 }
1875 }
1876
1877 dbuf_dirty_record_t *
1878 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1879 {
1880 dnode_t *dn;
1881 objset_t *os;
1882 dbuf_dirty_record_t **drp, *dr;
1883 int drop_struct_lock = FALSE;
1884 int txgoff = tx->tx_txg & TXG_MASK;
1885
1886 ASSERT(tx->tx_txg != 0);
1887 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1888 DMU_TX_DIRTY_BUF(tx, db);
1889
1890 DB_DNODE_ENTER(db);
1891 dn = DB_DNODE(db);
1892 /*
1893 * Shouldn't dirty a regular buffer in syncing context. Private
1894 * objects may be dirtied in syncing context, but only if they
1895 * were already pre-dirtied in open context.
1896 */
1897 #ifdef DEBUG
1898 if (dn->dn_objset->os_dsl_dataset != NULL) {
1899 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1900 RW_READER, FTAG);
1901 }
1902 ASSERT(!dmu_tx_is_syncing(tx) ||
1903 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1904 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1905 dn->dn_objset->os_dsl_dataset == NULL);
1906 if (dn->dn_objset->os_dsl_dataset != NULL)
1907 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1908 #endif
1909 /*
1910 * We make this assert for private objects as well, but after we
1911 * check if we're already dirty. They are allowed to re-dirty
1912 * in syncing context.
1913 */
1914 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1915 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1916 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1917
1918 mutex_enter(&db->db_mtx);
1919 /*
1920 * XXX make this true for indirects too? The problem is that
1921 * transactions created with dmu_tx_create_assigned() from
1922 * syncing context don't bother holding ahead.
1923 */
1924 ASSERT(db->db_level != 0 ||
1925 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1926 db->db_state == DB_NOFILL);
1927
1928 mutex_enter(&dn->dn_mtx);
1929 /*
1930 * Don't set dirtyctx to SYNC if we're just modifying this as we
1931 * initialize the objset.
1932 */
1933 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1934 if (dn->dn_objset->os_dsl_dataset != NULL) {
1935 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1936 RW_READER, FTAG);
1937 }
1938 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1939 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1940 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1941 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1942 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1943 }
1944 if (dn->dn_objset->os_dsl_dataset != NULL) {
1945 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1946 FTAG);
1947 }
1948 }
1949
1950 if (tx->tx_txg > dn->dn_dirty_txg)
1951 dn->dn_dirty_txg = tx->tx_txg;
1952 mutex_exit(&dn->dn_mtx);
1953
1954 if (db->db_blkid == DMU_SPILL_BLKID)
1955 dn->dn_have_spill = B_TRUE;
1956
1957 /*
1958 * If this buffer is already dirty, we're done.
1959 */
1960 drp = &db->db_last_dirty;
1961 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1962 db->db.db_object == DMU_META_DNODE_OBJECT);
1963 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1964 drp = &dr->dr_next;
1965 if (dr && dr->dr_txg == tx->tx_txg) {
1966 DB_DNODE_EXIT(db);
1967
1968 dbuf_redirty(dr);
1969 mutex_exit(&db->db_mtx);
1970 return (dr);
1971 }
1972
1973 /*
1974 * Only valid if not already dirty.
1975 */
1976 ASSERT(dn->dn_object == 0 ||
1977 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1978 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1979
1980 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1981
1982 /*
1983 * We should only be dirtying in syncing context if it's the
1984 * mos or we're initializing the os or it's a special object.
1985 * However, we are allowed to dirty in syncing context provided
1986 * we already dirtied it in open context. Hence we must make
1987 * this assertion only if we're not already dirty.
1988 */
1989 os = dn->dn_objset;
1990 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1991 #ifdef DEBUG
1992 if (dn->dn_objset->os_dsl_dataset != NULL)
1993 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1994 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1995 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1996 if (dn->dn_objset->os_dsl_dataset != NULL)
1997 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1998 #endif
1999 ASSERT(db->db.db_size != 0);
2000
2001 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2002
2003 if (db->db_blkid != DMU_BONUS_BLKID) {
2004 dmu_objset_willuse_space(os, db->db.db_size, tx);
2005 }
2006
2007 /*
2008 * If this buffer is dirty in an old transaction group we need
2009 * to make a copy of it so that the changes we make in this
2010 * transaction group won't leak out when we sync the older txg.
2011 */
2012 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2013 list_link_init(&dr->dr_dirty_node);
2014 if (db->db_level == 0) {
2015 void *data_old = db->db_buf;
2016
2017 if (db->db_state != DB_NOFILL) {
2018 if (db->db_blkid == DMU_BONUS_BLKID) {
2019 dbuf_fix_old_data(db, tx->tx_txg);
2020 data_old = db->db.db_data;
2021 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2022 /*
2023 * Release the data buffer from the cache so
2024 * that we can modify it without impacting
2025 * possible other users of this cached data
2026 * block. Note that indirect blocks and
2027 * private objects are not released until the
2028 * syncing state (since they are only modified
2029 * then).
2030 */
2031 arc_release(db->db_buf, db);
2032 dbuf_fix_old_data(db, tx->tx_txg);
2033 data_old = db->db_buf;
2034 }
2035 ASSERT(data_old != NULL);
2036 }
2037 dr->dt.dl.dr_data = data_old;
2038 } else {
2039 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2040 list_create(&dr->dt.di.dr_children,
2041 sizeof (dbuf_dirty_record_t),
2042 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2043 }
2044 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
2045 dr->dr_accounted = db->db.db_size;
2046 dr->dr_dbuf = db;
2047 dr->dr_txg = tx->tx_txg;
2048 dr->dr_next = *drp;
2049 *drp = dr;
2050
2051 /*
2052 * We could have been freed_in_flight between the dbuf_noread
2053 * and dbuf_dirty. We win, as though the dbuf_noread() had
2054 * happened after the free.
2055 */
2056 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2057 db->db_blkid != DMU_SPILL_BLKID) {
2058 mutex_enter(&dn->dn_mtx);
2059 if (dn->dn_free_ranges[txgoff] != NULL) {
2060 range_tree_clear(dn->dn_free_ranges[txgoff],
2061 db->db_blkid, 1);
2062 }
2063 mutex_exit(&dn->dn_mtx);
2064 db->db_freed_in_flight = FALSE;
2065 }
2066
2067 /*
2068 * This buffer is now part of this txg
2069 */
2070 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2071 db->db_dirtycnt += 1;
2072 ASSERT3U(db->db_dirtycnt, <=, 3);
2073
2074 mutex_exit(&db->db_mtx);
2075
2076 if (db->db_blkid == DMU_BONUS_BLKID ||
2077 db->db_blkid == DMU_SPILL_BLKID) {
2078 mutex_enter(&dn->dn_mtx);
2079 ASSERT(!list_link_active(&dr->dr_dirty_node));
2080 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2081 mutex_exit(&dn->dn_mtx);
2082 dnode_setdirty(dn, tx);
2083 DB_DNODE_EXIT(db);
2084 return (dr);
2085 }
2086
2087 /*
2088 * The dn_struct_rwlock prevents db_blkptr from changing
2089 * due to a write from syncing context completing
2090 * while we are running, so we want to acquire it before
2091 * looking at db_blkptr.
2092 */
2093 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2094 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2095 drop_struct_lock = TRUE;
2096 }
2097
2098 /*
2099 * We need to hold the dn_struct_rwlock to make this assertion,
2100 * because it protects dn_phys / dn_next_nlevels from changing.
2101 */
2102 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2103 dn->dn_phys->dn_nlevels > db->db_level ||
2104 dn->dn_next_nlevels[txgoff] > db->db_level ||
2105 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2106 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2107
2108 /*
2109 * If we are overwriting a dedup BP, then unless it is snapshotted,
2110 * when we get to syncing context we will need to decrement its
2111 * refcount in the DDT. Prefetch the relevant DDT block so that
2112 * syncing context won't have to wait for the i/o.
2113 */
2114 ddt_prefetch(os->os_spa, db->db_blkptr);
2115
2116 if (db->db_level == 0) {
2117 ASSERT(!db->db_objset->os_raw_receive ||
2118 dn->dn_maxblkid >= db->db_blkid);
2119 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2120 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2121 }
2122
2123 if (db->db_level+1 < dn->dn_nlevels) {
2124 dmu_buf_impl_t *parent = db->db_parent;
2125 dbuf_dirty_record_t *di;
2126 int parent_held = FALSE;
2127
2128 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2129 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2130
2131 parent = dbuf_hold_level(dn, db->db_level+1,
2132 db->db_blkid >> epbs, FTAG);
2133 ASSERT(parent != NULL);
2134 parent_held = TRUE;
2135 }
2136 if (drop_struct_lock)
2137 rw_exit(&dn->dn_struct_rwlock);
2138 ASSERT3U(db->db_level+1, ==, parent->db_level);
2139 di = dbuf_dirty(parent, tx);
2140 if (parent_held)
2141 dbuf_rele(parent, FTAG);
2142
2143 mutex_enter(&db->db_mtx);
2144 /*
2145 * Since we've dropped the mutex, it's possible that
2146 * dbuf_undirty() might have changed this out from under us.
2147 */
2148 if (db->db_last_dirty == dr ||
2149 dn->dn_object == DMU_META_DNODE_OBJECT) {
2150 mutex_enter(&di->dt.di.dr_mtx);
2151 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2152 ASSERT(!list_link_active(&dr->dr_dirty_node));
2153 list_insert_tail(&di->dt.di.dr_children, dr);
2154 mutex_exit(&di->dt.di.dr_mtx);
2155 dr->dr_parent = di;
2156 }
2157 mutex_exit(&db->db_mtx);
2158 } else {
2159 ASSERT(db->db_level+1 == dn->dn_nlevels);
2160 ASSERT(db->db_blkid < dn->dn_nblkptr);
2161 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2162 mutex_enter(&dn->dn_mtx);
2163 ASSERT(!list_link_active(&dr->dr_dirty_node));
2164 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2165 mutex_exit(&dn->dn_mtx);
2166 if (drop_struct_lock)
2167 rw_exit(&dn->dn_struct_rwlock);
2168 }
2169
2170 dnode_setdirty(dn, tx);
2171 DB_DNODE_EXIT(db);
2172 return (dr);
2173 }
2174
2175 /*
2176 * Undirty a buffer in the transaction group referenced by the given
2177 * transaction. Return whether this evicted the dbuf.
2178 */
2179 static boolean_t
2180 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2181 {
2182 dnode_t *dn;
2183 uint64_t txg = tx->tx_txg;
2184 dbuf_dirty_record_t *dr, **drp;
2185
2186 ASSERT(txg != 0);
2187
2188 /*
2189 * Due to our use of dn_nlevels below, this can only be called
2190 * in open context, unless we are operating on the MOS.
2191 * From syncing context, dn_nlevels may be different from the
2192 * dn_nlevels used when dbuf was dirtied.
2193 */
2194 ASSERT(db->db_objset ==
2195 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2196 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2197 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2198 ASSERT0(db->db_level);
2199 ASSERT(MUTEX_HELD(&db->db_mtx));
2200
2201 /*
2202 * If this buffer is not dirty, we're done.
2203 */
2204 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2205 if (dr->dr_txg <= txg)
2206 break;
2207 if (dr == NULL || dr->dr_txg < txg)
2208 return (B_FALSE);
2209 ASSERT(dr->dr_txg == txg);
2210 ASSERT(dr->dr_dbuf == db);
2211
2212 DB_DNODE_ENTER(db);
2213 dn = DB_DNODE(db);
2214
2215 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2216
2217 ASSERT(db->db.db_size != 0);
2218
2219 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2220 dr->dr_accounted, txg);
2221
2222 *drp = dr->dr_next;
2223
2224 /*
2225 * Note that there are three places in dbuf_dirty()
2226 * where this dirty record may be put on a list.
2227 * Make sure to do a list_remove corresponding to
2228 * every one of those list_insert calls.
2229 */
2230 if (dr->dr_parent) {
2231 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2232 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2233 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2234 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2235 db->db_level + 1 == dn->dn_nlevels) {
2236 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2237 mutex_enter(&dn->dn_mtx);
2238 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2239 mutex_exit(&dn->dn_mtx);
2240 }
2241 DB_DNODE_EXIT(db);
2242
2243 if (db->db_state != DB_NOFILL) {
2244 dbuf_unoverride(dr);
2245
2246 ASSERT(db->db_buf != NULL);
2247 ASSERT(dr->dt.dl.dr_data != NULL);
2248 if (dr->dt.dl.dr_data != db->db_buf)
2249 arc_buf_destroy(dr->dt.dl.dr_data, db);
2250 }
2251
2252 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2253
2254 ASSERT(db->db_dirtycnt > 0);
2255 db->db_dirtycnt -= 1;
2256
2257 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2258 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2259 dbuf_destroy(db);
2260 return (B_TRUE);
2261 }
2262
2263 return (B_FALSE);
2264 }
2265
2266 static void
2267 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2268 {
2269 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2270
2271 ASSERT(tx->tx_txg != 0);
2272 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2273
2274 /*
2275 * Quick check for dirtyness. For already dirty blocks, this
2276 * reduces runtime of this function by >90%, and overall performance
2277 * by 50% for some workloads (e.g. file deletion with indirect blocks
2278 * cached).
2279 */
2280 mutex_enter(&db->db_mtx);
2281
2282 dbuf_dirty_record_t *dr;
2283 for (dr = db->db_last_dirty;
2284 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2285 /*
2286 * It's possible that it is already dirty but not cached,
2287 * because there are some calls to dbuf_dirty() that don't
2288 * go through dmu_buf_will_dirty().
2289 */
2290 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2291 /* This dbuf is already dirty and cached. */
2292 dbuf_redirty(dr);
2293 mutex_exit(&db->db_mtx);
2294 return;
2295 }
2296 }
2297 mutex_exit(&db->db_mtx);
2298
2299 DB_DNODE_ENTER(db);
2300 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2301 flags |= DB_RF_HAVESTRUCT;
2302 DB_DNODE_EXIT(db);
2303 (void) dbuf_read(db, NULL, flags);
2304 (void) dbuf_dirty(db, tx);
2305 }
2306
2307 void
2308 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2309 {
2310 dmu_buf_will_dirty_impl(db_fake,
2311 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2312 }
2313
2314 void
2315 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2316 {
2317 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2318
2319 db->db_state = DB_NOFILL;
2320
2321 dmu_buf_will_fill(db_fake, tx);
2322 }
2323
2324 void
2325 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2326 {
2327 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2328
2329 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2330 ASSERT(tx->tx_txg != 0);
2331 ASSERT(db->db_level == 0);
2332 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2333
2334 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2335 dmu_tx_private_ok(tx));
2336
2337 dbuf_noread(db);
2338 (void) dbuf_dirty(db, tx);
2339 }
2340
2341 /*
2342 * This function is effectively the same as dmu_buf_will_dirty(), but
2343 * indicates the caller expects raw encrypted data in the db, and provides
2344 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2345 * blkptr_t when this dbuf is written. This is only used for blocks of
2346 * dnodes, during raw receive.
2347 */
2348 void
2349 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2350 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2351 {
2352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2353 dbuf_dirty_record_t *dr;
2354
2355 /*
2356 * dr_has_raw_params is only processed for blocks of dnodes
2357 * (see dbuf_sync_dnode_leaf_crypt()).
2358 */
2359 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2360 ASSERT3U(db->db_level, ==, 0);
2361 ASSERT(db->db_objset->os_raw_receive);
2362
2363 dmu_buf_will_dirty_impl(db_fake,
2364 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2365
2366 dr = db->db_last_dirty;
2367 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2368 dr = dr->dr_next;
2369
2370 ASSERT3P(dr, !=, NULL);
2371 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2372
2373 dr->dt.dl.dr_has_raw_params = B_TRUE;
2374 dr->dt.dl.dr_byteorder = byteorder;
2375 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2376 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2377 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2378 }
2379
2380 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2381 /* ARGSUSED */
2382 void
2383 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2384 {
2385 mutex_enter(&db->db_mtx);
2386 DBUF_VERIFY(db);
2387
2388 if (db->db_state == DB_FILL) {
2389 if (db->db_level == 0 && db->db_freed_in_flight) {
2390 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2391 /* we were freed while filling */
2392 /* XXX dbuf_undirty? */
2393 bzero(db->db.db_data, db->db.db_size);
2394 db->db_freed_in_flight = FALSE;
2395 }
2396 db->db_state = DB_CACHED;
2397 cv_broadcast(&db->db_changed);
2398 }
2399 mutex_exit(&db->db_mtx);
2400 }
2401
2402 void
2403 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2404 bp_embedded_type_t etype, enum zio_compress comp,
2405 int uncompressed_size, int compressed_size, int byteorder,
2406 dmu_tx_t *tx)
2407 {
2408 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2409 struct dirty_leaf *dl;
2410 dmu_object_type_t type;
2411
2412 if (etype == BP_EMBEDDED_TYPE_DATA) {
2413 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2414 SPA_FEATURE_EMBEDDED_DATA));
2415 }
2416
2417 DB_DNODE_ENTER(db);
2418 type = DB_DNODE(db)->dn_type;
2419 DB_DNODE_EXIT(db);
2420
2421 ASSERT0(db->db_level);
2422 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2423
2424 dmu_buf_will_not_fill(dbuf, tx);
2425
2426 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2427 dl = &db->db_last_dirty->dt.dl;
2428 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2429 data, comp, uncompressed_size, compressed_size);
2430 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2431 BP_SET_TYPE(&dl->dr_overridden_by, type);
2432 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2433 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2434
2435 dl->dr_override_state = DR_OVERRIDDEN;
2436 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2437 }
2438
2439 /*
2440 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2441 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2442 */
2443 void
2444 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2445 {
2446 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2447 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2448 ASSERT(db->db_level == 0);
2449 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2450 ASSERT(buf != NULL);
2451 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2452 ASSERT(tx->tx_txg != 0);
2453
2454 arc_return_buf(buf, db);
2455 ASSERT(arc_released(buf));
2456
2457 mutex_enter(&db->db_mtx);
2458
2459 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2460 cv_wait(&db->db_changed, &db->db_mtx);
2461
2462 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2463
2464 if (db->db_state == DB_CACHED &&
2465 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2466 /*
2467 * In practice, we will never have a case where we have an
2468 * encrypted arc buffer while additional holds exist on the
2469 * dbuf. We don't handle this here so we simply assert that
2470 * fact instead.
2471 */
2472 ASSERT(!arc_is_encrypted(buf));
2473 mutex_exit(&db->db_mtx);
2474 (void) dbuf_dirty(db, tx);
2475 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2476 arc_buf_destroy(buf, db);
2477 xuio_stat_wbuf_copied();
2478 return;
2479 }
2480
2481 xuio_stat_wbuf_nocopy();
2482 if (db->db_state == DB_CACHED) {
2483 dbuf_dirty_record_t *dr = db->db_last_dirty;
2484
2485 ASSERT(db->db_buf != NULL);
2486 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2487 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2488
2489 if (!arc_released(db->db_buf)) {
2490 ASSERT(dr->dt.dl.dr_override_state ==
2491 DR_OVERRIDDEN);
2492 arc_release(db->db_buf, db);
2493 }
2494 dr->dt.dl.dr_data = buf;
2495 arc_buf_destroy(db->db_buf, db);
2496 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2497 arc_release(db->db_buf, db);
2498 arc_buf_destroy(db->db_buf, db);
2499 }
2500 db->db_buf = NULL;
2501 }
2502 ASSERT(db->db_buf == NULL);
2503 dbuf_set_data(db, buf);
2504 db->db_state = DB_FILL;
2505 mutex_exit(&db->db_mtx);
2506 (void) dbuf_dirty(db, tx);
2507 dmu_buf_fill_done(&db->db, tx);
2508 }
2509
2510 void
2511 dbuf_destroy(dmu_buf_impl_t *db)
2512 {
2513 dnode_t *dn;
2514 dmu_buf_impl_t *parent = db->db_parent;
2515 dmu_buf_impl_t *dndb;
2516
2517 ASSERT(MUTEX_HELD(&db->db_mtx));
2518 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2519
2520 if (db->db_buf != NULL) {
2521 arc_buf_destroy(db->db_buf, db);
2522 db->db_buf = NULL;
2523 }
2524
2525 if (db->db_blkid == DMU_BONUS_BLKID) {
2526 int slots = DB_DNODE(db)->dn_num_slots;
2527 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2528 if (db->db.db_data != NULL) {
2529 kmem_free(db->db.db_data, bonuslen);
2530 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2531 db->db_state = DB_UNCACHED;
2532 }
2533 }
2534
2535 dbuf_clear_data(db);
2536
2537 if (multilist_link_active(&db->db_cache_link)) {
2538 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2539 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2540
2541 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2542 (void) zfs_refcount_remove_many(
2543 &dbuf_caches[db->db_caching_status].size,
2544 db->db.db_size, db);
2545
2546 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2547 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2548 } else {
2549 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2550 DBUF_STAT_BUMPDOWN(cache_count);
2551 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2552 db->db.db_size);
2553 }
2554 db->db_caching_status = DB_NO_CACHE;
2555 }
2556
2557 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2558 ASSERT(db->db_data_pending == NULL);
2559
2560 db->db_state = DB_EVICTING;
2561 db->db_blkptr = NULL;
2562
2563 /*
2564 * Now that db_state is DB_EVICTING, nobody else can find this via
2565 * the hash table. We can now drop db_mtx, which allows us to
2566 * acquire the dn_dbufs_mtx.
2567 */
2568 mutex_exit(&db->db_mtx);
2569
2570 DB_DNODE_ENTER(db);
2571 dn = DB_DNODE(db);
2572 dndb = dn->dn_dbuf;
2573 if (db->db_blkid != DMU_BONUS_BLKID) {
2574 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2575 if (needlock)
2576 mutex_enter(&dn->dn_dbufs_mtx);
2577 avl_remove(&dn->dn_dbufs, db);
2578 atomic_dec_32(&dn->dn_dbufs_count);
2579 membar_producer();
2580 DB_DNODE_EXIT(db);
2581 if (needlock)
2582 mutex_exit(&dn->dn_dbufs_mtx);
2583 /*
2584 * Decrementing the dbuf count means that the hold corresponding
2585 * to the removed dbuf is no longer discounted in dnode_move(),
2586 * so the dnode cannot be moved until after we release the hold.
2587 * The membar_producer() ensures visibility of the decremented
2588 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2589 * release any lock.
2590 */
2591 mutex_enter(&dn->dn_mtx);
2592 dnode_rele_and_unlock(dn, db, B_TRUE);
2593 db->db_dnode_handle = NULL;
2594
2595 dbuf_hash_remove(db);
2596 } else {
2597 DB_DNODE_EXIT(db);
2598 }
2599
2600 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2601
2602 db->db_parent = NULL;
2603
2604 ASSERT(db->db_buf == NULL);
2605 ASSERT(db->db.db_data == NULL);
2606 ASSERT(db->db_hash_next == NULL);
2607 ASSERT(db->db_blkptr == NULL);
2608 ASSERT(db->db_data_pending == NULL);
2609 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2610 ASSERT(!multilist_link_active(&db->db_cache_link));
2611
2612 kmem_cache_free(dbuf_kmem_cache, db);
2613 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2614
2615 /*
2616 * If this dbuf is referenced from an indirect dbuf,
2617 * decrement the ref count on the indirect dbuf.
2618 */
2619 if (parent && parent != dndb) {
2620 mutex_enter(&parent->db_mtx);
2621 dbuf_rele_and_unlock(parent, db, B_TRUE);
2622 }
2623 }
2624
2625 /*
2626 * Note: While bpp will always be updated if the function returns success,
2627 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2628 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2629 * object.
2630 */
2631 __attribute__((always_inline))
2632 static inline int
2633 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2634 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2635 {
2636 *parentp = NULL;
2637 *bpp = NULL;
2638
2639 ASSERT(blkid != DMU_BONUS_BLKID);
2640
2641 if (blkid == DMU_SPILL_BLKID) {
2642 mutex_enter(&dn->dn_mtx);
2643 if (dn->dn_have_spill &&
2644 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2645 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2646 else
2647 *bpp = NULL;
2648 dbuf_add_ref(dn->dn_dbuf, NULL);
2649 *parentp = dn->dn_dbuf;
2650 mutex_exit(&dn->dn_mtx);
2651 return (0);
2652 }
2653
2654 int nlevels =
2655 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2656 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2657
2658 ASSERT3U(level * epbs, <, 64);
2659 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2660 /*
2661 * This assertion shouldn't trip as long as the max indirect block size
2662 * is less than 1M. The reason for this is that up to that point,
2663 * the number of levels required to address an entire object with blocks
2664 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2665 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2666 * (i.e. we can address the entire object), objects will all use at most
2667 * N-1 levels and the assertion won't overflow. However, once epbs is
2668 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2669 * enough to address an entire object, so objects will have 5 levels,
2670 * but then this assertion will overflow.
2671 *
2672 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2673 * need to redo this logic to handle overflows.
2674 */
2675 ASSERT(level >= nlevels ||
2676 ((nlevels - level - 1) * epbs) +
2677 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2678 if (level >= nlevels ||
2679 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2680 ((nlevels - level - 1) * epbs)) ||
2681 (fail_sparse &&
2682 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2683 /* the buffer has no parent yet */
2684 return (SET_ERROR(ENOENT));
2685 } else if (level < nlevels-1) {
2686 /* this block is referenced from an indirect block */
2687 int err;
2688 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level + 1,
2689 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2690 err = dbuf_hold_impl_arg(dh);
2691 dbuf_hold_arg_destroy(dh);
2692 if (err)
2693 return (err);
2694 err = dbuf_read(*parentp, NULL,
2695 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2696 if (err) {
2697 dbuf_rele(*parentp, NULL);
2698 *parentp = NULL;
2699 return (err);
2700 }
2701 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2702 (blkid & ((1ULL << epbs) - 1));
2703 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2704 ASSERT(BP_IS_HOLE(*bpp));
2705 return (0);
2706 } else {
2707 /* the block is referenced from the dnode */
2708 ASSERT3U(level, ==, nlevels-1);
2709 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2710 blkid < dn->dn_phys->dn_nblkptr);
2711 if (dn->dn_dbuf) {
2712 dbuf_add_ref(dn->dn_dbuf, NULL);
2713 *parentp = dn->dn_dbuf;
2714 }
2715 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2716 return (0);
2717 }
2718 }
2719
2720 static dmu_buf_impl_t *
2721 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2722 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2723 {
2724 objset_t *os = dn->dn_objset;
2725 dmu_buf_impl_t *db, *odb;
2726
2727 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2728 ASSERT(dn->dn_type != DMU_OT_NONE);
2729
2730 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2731
2732 db->db_objset = os;
2733 db->db.db_object = dn->dn_object;
2734 db->db_level = level;
2735 db->db_blkid = blkid;
2736 db->db_last_dirty = NULL;
2737 db->db_dirtycnt = 0;
2738 db->db_dnode_handle = dn->dn_handle;
2739 db->db_parent = parent;
2740 db->db_blkptr = blkptr;
2741
2742 db->db_user = NULL;
2743 db->db_user_immediate_evict = FALSE;
2744 db->db_freed_in_flight = FALSE;
2745 db->db_pending_evict = FALSE;
2746
2747 if (blkid == DMU_BONUS_BLKID) {
2748 ASSERT3P(parent, ==, dn->dn_dbuf);
2749 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2750 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2751 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2752 db->db.db_offset = DMU_BONUS_BLKID;
2753 db->db_state = DB_UNCACHED;
2754 db->db_caching_status = DB_NO_CACHE;
2755 /* the bonus dbuf is not placed in the hash table */
2756 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2757 return (db);
2758 } else if (blkid == DMU_SPILL_BLKID) {
2759 db->db.db_size = (blkptr != NULL) ?
2760 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2761 db->db.db_offset = 0;
2762 } else {
2763 int blocksize =
2764 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2765 db->db.db_size = blocksize;
2766 db->db.db_offset = db->db_blkid * blocksize;
2767 }
2768
2769 /*
2770 * Hold the dn_dbufs_mtx while we get the new dbuf
2771 * in the hash table *and* added to the dbufs list.
2772 * This prevents a possible deadlock with someone
2773 * trying to look up this dbuf before its added to the
2774 * dn_dbufs list.
2775 */
2776 mutex_enter(&dn->dn_dbufs_mtx);
2777 db->db_state = DB_EVICTING;
2778 if ((odb = dbuf_hash_insert(db)) != NULL) {
2779 /* someone else inserted it first */
2780 kmem_cache_free(dbuf_kmem_cache, db);
2781 mutex_exit(&dn->dn_dbufs_mtx);
2782 DBUF_STAT_BUMP(hash_insert_race);
2783 return (odb);
2784 }
2785 avl_add(&dn->dn_dbufs, db);
2786
2787 db->db_state = DB_UNCACHED;
2788 db->db_caching_status = DB_NO_CACHE;
2789 mutex_exit(&dn->dn_dbufs_mtx);
2790 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2791
2792 if (parent && parent != dn->dn_dbuf)
2793 dbuf_add_ref(parent, db);
2794
2795 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2796 zfs_refcount_count(&dn->dn_holds) > 0);
2797 (void) zfs_refcount_add(&dn->dn_holds, db);
2798 atomic_inc_32(&dn->dn_dbufs_count);
2799
2800 dprintf_dbuf(db, "db=%p\n", db);
2801
2802 return (db);
2803 }
2804
2805 typedef struct dbuf_prefetch_arg {
2806 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2807 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2808 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2809 int dpa_curlevel; /* The current level that we're reading */
2810 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2811 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2812 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2813 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2814 } dbuf_prefetch_arg_t;
2815
2816 /*
2817 * Actually issue the prefetch read for the block given.
2818 */
2819 static void
2820 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2821 {
2822 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2823 return;
2824
2825 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2826 arc_flags_t aflags =
2827 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2828
2829 /* dnodes are always read as raw and then converted later */
2830 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2831 dpa->dpa_curlevel == 0)
2832 zio_flags |= ZIO_FLAG_RAW;
2833
2834 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2835 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2836 ASSERT(dpa->dpa_zio != NULL);
2837 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2838 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2839 }
2840
2841 /*
2842 * Called when an indirect block above our prefetch target is read in. This
2843 * will either read in the next indirect block down the tree or issue the actual
2844 * prefetch if the next block down is our target.
2845 */
2846 static void
2847 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2848 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2849 {
2850 dbuf_prefetch_arg_t *dpa = private;
2851
2852 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2853 ASSERT3S(dpa->dpa_curlevel, >, 0);
2854
2855 if (abuf == NULL) {
2856 ASSERT(zio == NULL || zio->io_error != 0);
2857 kmem_free(dpa, sizeof (*dpa));
2858 return;
2859 }
2860 ASSERT(zio == NULL || zio->io_error == 0);
2861
2862 /*
2863 * The dpa_dnode is only valid if we are called with a NULL
2864 * zio. This indicates that the arc_read() returned without
2865 * first calling zio_read() to issue a physical read. Once
2866 * a physical read is made the dpa_dnode must be invalidated
2867 * as the locks guarding it may have been dropped. If the
2868 * dpa_dnode is still valid, then we want to add it to the dbuf
2869 * cache. To do so, we must hold the dbuf associated with the block
2870 * we just prefetched, read its contents so that we associate it
2871 * with an arc_buf_t, and then release it.
2872 */
2873 if (zio != NULL) {
2874 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2875 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2876 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2877 } else {
2878 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2879 }
2880 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2881
2882 dpa->dpa_dnode = NULL;
2883 } else if (dpa->dpa_dnode != NULL) {
2884 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2885 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2886 dpa->dpa_zb.zb_level));
2887 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2888 dpa->dpa_curlevel, curblkid, FTAG);
2889 if (db == NULL) {
2890 kmem_free(dpa, sizeof (*dpa));
2891 arc_buf_destroy(abuf, private);
2892 return;
2893 }
2894
2895 (void) dbuf_read(db, NULL,
2896 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2897 dbuf_rele(db, FTAG);
2898 }
2899
2900 dpa->dpa_curlevel--;
2901 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2902 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2903 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2904 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2905
2906 if (BP_IS_HOLE(bp)) {
2907 kmem_free(dpa, sizeof (*dpa));
2908 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2909 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2910 dbuf_issue_final_prefetch(dpa, bp);
2911 kmem_free(dpa, sizeof (*dpa));
2912 } else {
2913 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2914 zbookmark_phys_t zb;
2915
2916 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2917 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2918 iter_aflags |= ARC_FLAG_L2CACHE;
2919
2920 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2921
2922 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2923 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2924
2925 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2926 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2927 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2928 &iter_aflags, &zb);
2929 }
2930
2931 arc_buf_destroy(abuf, private);
2932 }
2933
2934 /*
2935 * Issue prefetch reads for the given block on the given level. If the indirect
2936 * blocks above that block are not in memory, we will read them in
2937 * asynchronously. As a result, this call never blocks waiting for a read to
2938 * complete. Note that the prefetch might fail if the dataset is encrypted and
2939 * the encryption key is unmapped before the IO completes.
2940 */
2941 void
2942 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2943 arc_flags_t aflags)
2944 {
2945 blkptr_t bp;
2946 int epbs, nlevels, curlevel;
2947 uint64_t curblkid;
2948
2949 ASSERT(blkid != DMU_BONUS_BLKID);
2950 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2951
2952 if (blkid > dn->dn_maxblkid)
2953 return;
2954
2955 if (dnode_block_freed(dn, blkid))
2956 return;
2957
2958 /*
2959 * This dnode hasn't been written to disk yet, so there's nothing to
2960 * prefetch.
2961 */
2962 nlevels = dn->dn_phys->dn_nlevels;
2963 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2964 return;
2965
2966 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2967 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2968 return;
2969
2970 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2971 level, blkid);
2972 if (db != NULL) {
2973 mutex_exit(&db->db_mtx);
2974 /*
2975 * This dbuf already exists. It is either CACHED, or
2976 * (we assume) about to be read or filled.
2977 */
2978 return;
2979 }
2980
2981 /*
2982 * Find the closest ancestor (indirect block) of the target block
2983 * that is present in the cache. In this indirect block, we will
2984 * find the bp that is at curlevel, curblkid.
2985 */
2986 curlevel = level;
2987 curblkid = blkid;
2988 while (curlevel < nlevels - 1) {
2989 int parent_level = curlevel + 1;
2990 uint64_t parent_blkid = curblkid >> epbs;
2991 dmu_buf_impl_t *db;
2992
2993 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2994 FALSE, TRUE, FTAG, &db) == 0) {
2995 blkptr_t *bpp = db->db_buf->b_data;
2996 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2997 dbuf_rele(db, FTAG);
2998 break;
2999 }
3000
3001 curlevel = parent_level;
3002 curblkid = parent_blkid;
3003 }
3004
3005 if (curlevel == nlevels - 1) {
3006 /* No cached indirect blocks found. */
3007 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3008 bp = dn->dn_phys->dn_blkptr[curblkid];
3009 }
3010 if (BP_IS_HOLE(&bp))
3011 return;
3012
3013 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3014
3015 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3016 ZIO_FLAG_CANFAIL);
3017
3018 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3019 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3020 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3021 dn->dn_object, level, blkid);
3022 dpa->dpa_curlevel = curlevel;
3023 dpa->dpa_prio = prio;
3024 dpa->dpa_aflags = aflags;
3025 dpa->dpa_spa = dn->dn_objset->os_spa;
3026 dpa->dpa_dnode = dn;
3027 dpa->dpa_epbs = epbs;
3028 dpa->dpa_zio = pio;
3029
3030 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3031 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3032 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3033
3034 /*
3035 * If we have the indirect just above us, no need to do the asynchronous
3036 * prefetch chain; we'll just run the last step ourselves. If we're at
3037 * a higher level, though, we want to issue the prefetches for all the
3038 * indirect blocks asynchronously, so we can go on with whatever we were
3039 * doing.
3040 */
3041 if (curlevel == level) {
3042 ASSERT3U(curblkid, ==, blkid);
3043 dbuf_issue_final_prefetch(dpa, &bp);
3044 kmem_free(dpa, sizeof (*dpa));
3045 } else {
3046 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3047 zbookmark_phys_t zb;
3048
3049 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3050 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3051 iter_aflags |= ARC_FLAG_L2CACHE;
3052
3053 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3054 dn->dn_object, curlevel, curblkid);
3055 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3056 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3057 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3058 &iter_aflags, &zb);
3059 }
3060 /*
3061 * We use pio here instead of dpa_zio since it's possible that
3062 * dpa may have already been freed.
3063 */
3064 zio_nowait(pio);
3065 }
3066
3067 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
3068
3069 /*
3070 * Helper function for dbuf_hold_impl_arg() to copy a buffer. Handles
3071 * the case of encrypted, compressed and uncompressed buffers by
3072 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3073 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3074 *
3075 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl_arg().
3076 */
3077 noinline static void
3078 dbuf_hold_copy(struct dbuf_hold_arg *dh)
3079 {
3080 dnode_t *dn = dh->dh_dn;
3081 dmu_buf_impl_t *db = dh->dh_db;
3082 dbuf_dirty_record_t *dr = dh->dh_dr;
3083 arc_buf_t *data = dr->dt.dl.dr_data;
3084
3085 enum zio_compress compress_type = arc_get_compression(data);
3086
3087 if (arc_is_encrypted(data)) {
3088 boolean_t byteorder;
3089 uint8_t salt[ZIO_DATA_SALT_LEN];
3090 uint8_t iv[ZIO_DATA_IV_LEN];
3091 uint8_t mac[ZIO_DATA_MAC_LEN];
3092
3093 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3094 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3095 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3096 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3097 compress_type));
3098 } else if (compress_type != ZIO_COMPRESS_OFF) {
3099 dbuf_set_data(db, arc_alloc_compressed_buf(
3100 dn->dn_objset->os_spa, db, arc_buf_size(data),
3101 arc_buf_lsize(data), compress_type));
3102 } else {
3103 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3104 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3105 }
3106
3107 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3108 }
3109
3110 /*
3111 * Returns with db_holds incremented, and db_mtx not held.
3112 * Note: dn_struct_rwlock must be held.
3113 */
3114 static int
3115 dbuf_hold_impl_arg(struct dbuf_hold_arg *dh)
3116 {
3117 dh->dh_parent = NULL;
3118
3119 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3120 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3121 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
3122
3123 *(dh->dh_dbp) = NULL;
3124
3125 /* dbuf_find() returns with db_mtx held */
3126 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3127 dh->dh_level, dh->dh_blkid);
3128
3129 if (dh->dh_db == NULL) {
3130 dh->dh_bp = NULL;
3131
3132 if (dh->dh_fail_uncached)
3133 return (SET_ERROR(ENOENT));
3134
3135 ASSERT3P(dh->dh_parent, ==, NULL);
3136 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3137 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp);
3138 if (dh->dh_fail_sparse) {
3139 if (dh->dh_err == 0 &&
3140 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
3141 dh->dh_err = SET_ERROR(ENOENT);
3142 if (dh->dh_err) {
3143 if (dh->dh_parent)
3144 dbuf_rele(dh->dh_parent, NULL);
3145 return (dh->dh_err);
3146 }
3147 }
3148 if (dh->dh_err && dh->dh_err != ENOENT)
3149 return (dh->dh_err);
3150 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3151 dh->dh_parent, dh->dh_bp);
3152 }
3153
3154 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3155 mutex_exit(&dh->dh_db->db_mtx);
3156 return (SET_ERROR(ENOENT));
3157 }
3158
3159 if (dh->dh_db->db_buf != NULL) {
3160 arc_buf_access(dh->dh_db->db_buf);
3161 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3162 }
3163
3164 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3165
3166 /*
3167 * If this buffer is currently syncing out, and we are are
3168 * still referencing it from db_data, we need to make a copy
3169 * of it in case we decide we want to dirty it again in this txg.
3170 */
3171 if (dh->dh_db->db_level == 0 &&
3172 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3173 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3174 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3175 dh->dh_dr = dh->dh_db->db_data_pending;
3176 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3177 dbuf_hold_copy(dh);
3178 }
3179
3180 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3181 ASSERT(zfs_refcount_is_zero(&dh->dh_db->db_holds));
3182 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
3183 dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
3184
3185 multilist_remove(
3186 dbuf_caches[dh->dh_db->db_caching_status].cache,
3187 dh->dh_db);
3188 (void) zfs_refcount_remove_many(
3189 &dbuf_caches[dh->dh_db->db_caching_status].size,
3190 dh->dh_db->db.db_size, dh->dh_db);
3191
3192 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3193 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3194 } else {
3195 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3196 DBUF_STAT_BUMPDOWN(cache_count);
3197 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3198 dh->dh_db->db.db_size);
3199 }
3200 dh->dh_db->db_caching_status = DB_NO_CACHE;
3201 }
3202 (void) zfs_refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3203 DBUF_VERIFY(dh->dh_db);
3204 mutex_exit(&dh->dh_db->db_mtx);
3205
3206 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3207 if (dh->dh_parent)
3208 dbuf_rele(dh->dh_parent, NULL);
3209
3210 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3211 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3212 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3213 *(dh->dh_dbp) = dh->dh_db;
3214
3215 return (0);
3216 }
3217
3218 /*
3219 * dbuf_hold_impl_arg() is called recursively, via dbuf_findbp(). There can
3220 * be as many recursive calls as there are levels of on-disk indirect blocks,
3221 * but typically only 0-2 recursive calls. To minimize the stack frame size,
3222 * the recursive function's arguments and "local variables" are allocated on
3223 * the heap as the dbuf_hold_arg_t.
3224 */
3225 int
3226 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3227 boolean_t fail_sparse, boolean_t fail_uncached,
3228 void *tag, dmu_buf_impl_t **dbp)
3229 {
3230 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level, blkid,
3231 fail_sparse, fail_uncached, tag, dbp);
3232
3233 int error = dbuf_hold_impl_arg(dh);
3234
3235 dbuf_hold_arg_destroy(dh);
3236
3237 return (error);
3238 }
3239
3240 static dbuf_hold_arg_t *
3241 dbuf_hold_arg_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3242 boolean_t fail_sparse, boolean_t fail_uncached,
3243 void *tag, dmu_buf_impl_t **dbp)
3244 {
3245 dbuf_hold_arg_t *dh = kmem_alloc(sizeof (*dh), KM_SLEEP);
3246 dh->dh_dn = dn;
3247 dh->dh_level = level;
3248 dh->dh_blkid = blkid;
3249
3250 dh->dh_fail_sparse = fail_sparse;
3251 dh->dh_fail_uncached = fail_uncached;
3252
3253 dh->dh_tag = tag;
3254 dh->dh_dbp = dbp;
3255
3256 dh->dh_db = NULL;
3257 dh->dh_parent = NULL;
3258 dh->dh_bp = NULL;
3259 dh->dh_err = 0;
3260 dh->dh_dr = NULL;
3261
3262 return (dh);
3263 }
3264
3265 static void
3266 dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh)
3267 {
3268 kmem_free(dh, sizeof (*dh));
3269 }
3270
3271 dmu_buf_impl_t *
3272 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3273 {
3274 return (dbuf_hold_level(dn, 0, blkid, tag));
3275 }
3276
3277 dmu_buf_impl_t *
3278 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3279 {
3280 dmu_buf_impl_t *db;
3281 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3282 return (err ? NULL : db);
3283 }
3284
3285 void
3286 dbuf_create_bonus(dnode_t *dn)
3287 {
3288 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3289
3290 ASSERT(dn->dn_bonus == NULL);
3291 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3292 }
3293
3294 int
3295 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3296 {
3297 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3298 dnode_t *dn;
3299
3300 if (db->db_blkid != DMU_SPILL_BLKID)
3301 return (SET_ERROR(ENOTSUP));
3302 if (blksz == 0)
3303 blksz = SPA_MINBLOCKSIZE;
3304 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3305 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3306
3307 DB_DNODE_ENTER(db);
3308 dn = DB_DNODE(db);
3309 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3310 dbuf_new_size(db, blksz, tx);
3311 rw_exit(&dn->dn_struct_rwlock);
3312 DB_DNODE_EXIT(db);
3313
3314 return (0);
3315 }
3316
3317 void
3318 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3319 {
3320 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3321 }
3322
3323 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3324 void
3325 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3326 {
3327 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3328 VERIFY3S(holds, >, 1);
3329 }
3330
3331 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3332 boolean_t
3333 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3334 void *tag)
3335 {
3336 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3337 dmu_buf_impl_t *found_db;
3338 boolean_t result = B_FALSE;
3339
3340 if (blkid == DMU_BONUS_BLKID)
3341 found_db = dbuf_find_bonus(os, obj);
3342 else
3343 found_db = dbuf_find(os, obj, 0, blkid);
3344
3345 if (found_db != NULL) {
3346 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3347 (void) zfs_refcount_add(&db->db_holds, tag);
3348 result = B_TRUE;
3349 }
3350 mutex_exit(&found_db->db_mtx);
3351 }
3352 return (result);
3353 }
3354
3355 /*
3356 * If you call dbuf_rele() you had better not be referencing the dnode handle
3357 * unless you have some other direct or indirect hold on the dnode. (An indirect
3358 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3359 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3360 * dnode's parent dbuf evicting its dnode handles.
3361 */
3362 void
3363 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3364 {
3365 mutex_enter(&db->db_mtx);
3366 dbuf_rele_and_unlock(db, tag, B_FALSE);
3367 }
3368
3369 void
3370 dmu_buf_rele(dmu_buf_t *db, void *tag)
3371 {
3372 dbuf_rele((dmu_buf_impl_t *)db, tag);
3373 }
3374
3375 /*
3376 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3377 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3378 * argument should be set if we are already in the dbuf-evicting code
3379 * path, in which case we don't want to recursively evict. This allows us to
3380 * avoid deeply nested stacks that would have a call flow similar to this:
3381 *
3382 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3383 * ^ |
3384 * | |
3385 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3386 *
3387 */
3388 void
3389 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3390 {
3391 int64_t holds;
3392
3393 ASSERT(MUTEX_HELD(&db->db_mtx));
3394 DBUF_VERIFY(db);
3395
3396 /*
3397 * Remove the reference to the dbuf before removing its hold on the
3398 * dnode so we can guarantee in dnode_move() that a referenced bonus
3399 * buffer has a corresponding dnode hold.
3400 */
3401 holds = zfs_refcount_remove(&db->db_holds, tag);
3402 ASSERT(holds >= 0);
3403
3404 /*
3405 * We can't freeze indirects if there is a possibility that they
3406 * may be modified in the current syncing context.
3407 */
3408 if (db->db_buf != NULL &&
3409 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3410 arc_buf_freeze(db->db_buf);
3411 }
3412
3413 if (holds == db->db_dirtycnt &&
3414 db->db_level == 0 && db->db_user_immediate_evict)
3415 dbuf_evict_user(db);
3416
3417 if (holds == 0) {
3418 if (db->db_blkid == DMU_BONUS_BLKID) {
3419 dnode_t *dn;
3420 boolean_t evict_dbuf = db->db_pending_evict;
3421
3422 /*
3423 * If the dnode moves here, we cannot cross this
3424 * barrier until the move completes.
3425 */
3426 DB_DNODE_ENTER(db);
3427
3428 dn = DB_DNODE(db);
3429 atomic_dec_32(&dn->dn_dbufs_count);
3430
3431 /*
3432 * Decrementing the dbuf count means that the bonus
3433 * buffer's dnode hold is no longer discounted in
3434 * dnode_move(). The dnode cannot move until after
3435 * the dnode_rele() below.
3436 */
3437 DB_DNODE_EXIT(db);
3438
3439 /*
3440 * Do not reference db after its lock is dropped.
3441 * Another thread may evict it.
3442 */
3443 mutex_exit(&db->db_mtx);
3444
3445 if (evict_dbuf)
3446 dnode_evict_bonus(dn);
3447
3448 dnode_rele(dn, db);
3449 } else if (db->db_buf == NULL) {
3450 /*
3451 * This is a special case: we never associated this
3452 * dbuf with any data allocated from the ARC.
3453 */
3454 ASSERT(db->db_state == DB_UNCACHED ||
3455 db->db_state == DB_NOFILL);
3456 dbuf_destroy(db);
3457 } else if (arc_released(db->db_buf)) {
3458 /*
3459 * This dbuf has anonymous data associated with it.
3460 */
3461 dbuf_destroy(db);
3462 } else {
3463 boolean_t do_arc_evict = B_FALSE;
3464 blkptr_t bp;
3465 spa_t *spa = dmu_objset_spa(db->db_objset);
3466
3467 if (!DBUF_IS_CACHEABLE(db) &&
3468 db->db_blkptr != NULL &&
3469 !BP_IS_HOLE(db->db_blkptr) &&
3470 !BP_IS_EMBEDDED(db->db_blkptr)) {
3471 do_arc_evict = B_TRUE;
3472 bp = *db->db_blkptr;
3473 }
3474
3475 if (!DBUF_IS_CACHEABLE(db) ||
3476 db->db_pending_evict) {
3477 dbuf_destroy(db);
3478 } else if (!multilist_link_active(&db->db_cache_link)) {
3479 ASSERT3U(db->db_caching_status, ==,
3480 DB_NO_CACHE);
3481
3482 dbuf_cached_state_t dcs =
3483 dbuf_include_in_metadata_cache(db) ?
3484 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3485 db->db_caching_status = dcs;
3486
3487 multilist_insert(dbuf_caches[dcs].cache, db);
3488 (void) zfs_refcount_add_many(
3489 &dbuf_caches[dcs].size,
3490 db->db.db_size, db);
3491
3492 if (dcs == DB_DBUF_METADATA_CACHE) {
3493 DBUF_STAT_BUMP(metadata_cache_count);
3494 DBUF_STAT_MAX(
3495 metadata_cache_size_bytes_max,
3496 zfs_refcount_count(
3497 &dbuf_caches[dcs].size));
3498 } else {
3499 DBUF_STAT_BUMP(
3500 cache_levels[db->db_level]);
3501 DBUF_STAT_BUMP(cache_count);
3502 DBUF_STAT_INCR(
3503 cache_levels_bytes[db->db_level],
3504 db->db.db_size);
3505 DBUF_STAT_MAX(cache_size_bytes_max,
3506 zfs_refcount_count(
3507 &dbuf_caches[dcs].size));
3508 }
3509 mutex_exit(&db->db_mtx);
3510
3511 if (db->db_caching_status == DB_DBUF_CACHE &&
3512 !evicting) {
3513 dbuf_evict_notify();
3514 }
3515 }
3516
3517 if (do_arc_evict)
3518 arc_freed(spa, &bp);
3519 }
3520 } else {
3521 mutex_exit(&db->db_mtx);
3522 }
3523
3524 }
3525
3526 #pragma weak dmu_buf_refcount = dbuf_refcount
3527 uint64_t
3528 dbuf_refcount(dmu_buf_impl_t *db)
3529 {
3530 return (zfs_refcount_count(&db->db_holds));
3531 }
3532
3533 uint64_t
3534 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3535 {
3536 uint64_t holds;
3537 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3538
3539 mutex_enter(&db->db_mtx);
3540 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3541 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3542 mutex_exit(&db->db_mtx);
3543
3544 return (holds);
3545 }
3546
3547 void *
3548 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3549 dmu_buf_user_t *new_user)
3550 {
3551 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3552
3553 mutex_enter(&db->db_mtx);
3554 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3555 if (db->db_user == old_user)
3556 db->db_user = new_user;
3557 else
3558 old_user = db->db_user;
3559 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3560 mutex_exit(&db->db_mtx);
3561
3562 return (old_user);
3563 }
3564
3565 void *
3566 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3567 {
3568 return (dmu_buf_replace_user(db_fake, NULL, user));
3569 }
3570
3571 void *
3572 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3573 {
3574 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3575
3576 db->db_user_immediate_evict = TRUE;
3577 return (dmu_buf_set_user(db_fake, user));
3578 }
3579
3580 void *
3581 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3582 {
3583 return (dmu_buf_replace_user(db_fake, user, NULL));
3584 }
3585
3586 void *
3587 dmu_buf_get_user(dmu_buf_t *db_fake)
3588 {
3589 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3590
3591 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3592 return (db->db_user);
3593 }
3594
3595 void
3596 dmu_buf_user_evict_wait()
3597 {
3598 taskq_wait(dbu_evict_taskq);
3599 }
3600
3601 blkptr_t *
3602 dmu_buf_get_blkptr(dmu_buf_t *db)
3603 {
3604 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3605 return (dbi->db_blkptr);
3606 }
3607
3608 objset_t *
3609 dmu_buf_get_objset(dmu_buf_t *db)
3610 {
3611 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3612 return (dbi->db_objset);
3613 }
3614
3615 dnode_t *
3616 dmu_buf_dnode_enter(dmu_buf_t *db)
3617 {
3618 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3619 DB_DNODE_ENTER(dbi);
3620 return (DB_DNODE(dbi));
3621 }
3622
3623 void
3624 dmu_buf_dnode_exit(dmu_buf_t *db)
3625 {
3626 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3627 DB_DNODE_EXIT(dbi);
3628 }
3629
3630 static void
3631 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3632 {
3633 /* ASSERT(dmu_tx_is_syncing(tx) */
3634 ASSERT(MUTEX_HELD(&db->db_mtx));
3635
3636 if (db->db_blkptr != NULL)
3637 return;
3638
3639 if (db->db_blkid == DMU_SPILL_BLKID) {
3640 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3641 BP_ZERO(db->db_blkptr);
3642 return;
3643 }
3644 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3645 /*
3646 * This buffer was allocated at a time when there was
3647 * no available blkptrs from the dnode, or it was
3648 * inappropriate to hook it in (i.e., nlevels mis-match).
3649 */
3650 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3651 ASSERT(db->db_parent == NULL);
3652 db->db_parent = dn->dn_dbuf;
3653 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3654 DBUF_VERIFY(db);
3655 } else {
3656 dmu_buf_impl_t *parent = db->db_parent;
3657 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3658
3659 ASSERT(dn->dn_phys->dn_nlevels > 1);
3660 if (parent == NULL) {
3661 mutex_exit(&db->db_mtx);
3662 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3663 parent = dbuf_hold_level(dn, db->db_level + 1,
3664 db->db_blkid >> epbs, db);
3665 rw_exit(&dn->dn_struct_rwlock);
3666 mutex_enter(&db->db_mtx);
3667 db->db_parent = parent;
3668 }
3669 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3670 (db->db_blkid & ((1ULL << epbs) - 1));
3671 DBUF_VERIFY(db);
3672 }
3673 }
3674
3675 /*
3676 * When syncing out a blocks of dnodes, adjust the block to deal with
3677 * encryption. Normally, we make sure the block is decrypted before writing
3678 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3679 * from a raw receive. In this case, set the ARC buf's crypt params so
3680 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3681 */
3682 static void
3683 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3684 {
3685 int err;
3686 dmu_buf_impl_t *db = dr->dr_dbuf;
3687
3688 ASSERT(MUTEX_HELD(&db->db_mtx));
3689 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3690 ASSERT3U(db->db_level, ==, 0);
3691
3692 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3693 zbookmark_phys_t zb;
3694
3695 /*
3696 * Unfortunately, there is currently no mechanism for
3697 * syncing context to handle decryption errors. An error
3698 * here is only possible if an attacker maliciously
3699 * changed a dnode block and updated the associated
3700 * checksums going up the block tree.
3701 */
3702 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3703 db->db.db_object, db->db_level, db->db_blkid);
3704 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3705 &zb, B_TRUE);
3706 if (err)
3707 panic("Invalid dnode block MAC");
3708 } else if (dr->dt.dl.dr_has_raw_params) {
3709 (void) arc_release(dr->dt.dl.dr_data, db);
3710 arc_convert_to_raw(dr->dt.dl.dr_data,
3711 dmu_objset_id(db->db_objset),
3712 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3713 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3714 }
3715 }
3716
3717 /*
3718 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3719 * is critical the we not allow the compiler to inline this function in to
3720 * dbuf_sync_list() thereby drastically bloating the stack usage.
3721 */
3722 noinline static void
3723 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3724 {
3725 dmu_buf_impl_t *db = dr->dr_dbuf;
3726 dnode_t *dn;
3727 zio_t *zio;
3728
3729 ASSERT(dmu_tx_is_syncing(tx));
3730
3731 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3732
3733 mutex_enter(&db->db_mtx);
3734
3735 ASSERT(db->db_level > 0);
3736 DBUF_VERIFY(db);
3737
3738 /* Read the block if it hasn't been read yet. */
3739 if (db->db_buf == NULL) {
3740 mutex_exit(&db->db_mtx);
3741 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3742 mutex_enter(&db->db_mtx);
3743 }
3744 ASSERT3U(db->db_state, ==, DB_CACHED);
3745 ASSERT(db->db_buf != NULL);
3746
3747 DB_DNODE_ENTER(db);
3748 dn = DB_DNODE(db);
3749 /* Indirect block size must match what the dnode thinks it is. */
3750 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3751 dbuf_check_blkptr(dn, db);
3752 DB_DNODE_EXIT(db);
3753
3754 /* Provide the pending dirty record to child dbufs */
3755 db->db_data_pending = dr;
3756
3757 mutex_exit(&db->db_mtx);
3758
3759 dbuf_write(dr, db->db_buf, tx);
3760
3761 zio = dr->dr_zio;
3762 mutex_enter(&dr->dt.di.dr_mtx);
3763 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3764 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3765 mutex_exit(&dr->dt.di.dr_mtx);
3766 zio_nowait(zio);
3767 }
3768
3769 /*
3770 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3771 * critical the we not allow the compiler to inline this function in to
3772 * dbuf_sync_list() thereby drastically bloating the stack usage.
3773 */
3774 noinline static void
3775 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3776 {
3777 arc_buf_t **datap = &dr->dt.dl.dr_data;
3778 dmu_buf_impl_t *db = dr->dr_dbuf;
3779 dnode_t *dn;
3780 objset_t *os;
3781 uint64_t txg = tx->tx_txg;
3782
3783 ASSERT(dmu_tx_is_syncing(tx));
3784
3785 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3786
3787 mutex_enter(&db->db_mtx);
3788 /*
3789 * To be synced, we must be dirtied. But we
3790 * might have been freed after the dirty.
3791 */
3792 if (db->db_state == DB_UNCACHED) {
3793 /* This buffer has been freed since it was dirtied */
3794 ASSERT(db->db.db_data == NULL);
3795 } else if (db->db_state == DB_FILL) {
3796 /* This buffer was freed and is now being re-filled */
3797 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3798 } else {
3799 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3800 }
3801 DBUF_VERIFY(db);
3802
3803 DB_DNODE_ENTER(db);
3804 dn = DB_DNODE(db);
3805
3806 if (db->db_blkid == DMU_SPILL_BLKID) {
3807 mutex_enter(&dn->dn_mtx);
3808 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3809 /*
3810 * In the previous transaction group, the bonus buffer
3811 * was entirely used to store the attributes for the
3812 * dnode which overrode the dn_spill field. However,
3813 * when adding more attributes to the file a spill
3814 * block was required to hold the extra attributes.
3815 *
3816 * Make sure to clear the garbage left in the dn_spill
3817 * field from the previous attributes in the bonus
3818 * buffer. Otherwise, after writing out the spill
3819 * block to the new allocated dva, it will free
3820 * the old block pointed to by the invalid dn_spill.
3821 */
3822 db->db_blkptr = NULL;
3823 }
3824 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3825 mutex_exit(&dn->dn_mtx);
3826 }
3827
3828 /*
3829 * If this is a bonus buffer, simply copy the bonus data into the
3830 * dnode. It will be written out when the dnode is synced (and it
3831 * will be synced, since it must have been dirty for dbuf_sync to
3832 * be called).
3833 */
3834 if (db->db_blkid == DMU_BONUS_BLKID) {
3835 dbuf_dirty_record_t **drp;
3836
3837 ASSERT(*datap != NULL);
3838 ASSERT0(db->db_level);
3839 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3840 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3841 bcopy(*datap, DN_BONUS(dn->dn_phys),
3842 DN_MAX_BONUS_LEN(dn->dn_phys));
3843 DB_DNODE_EXIT(db);
3844
3845 if (*datap != db->db.db_data) {
3846 int slots = DB_DNODE(db)->dn_num_slots;
3847 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3848 kmem_free(*datap, bonuslen);
3849 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3850 }
3851 db->db_data_pending = NULL;
3852 drp = &db->db_last_dirty;
3853 while (*drp != dr)
3854 drp = &(*drp)->dr_next;
3855 ASSERT(dr->dr_next == NULL);
3856 ASSERT(dr->dr_dbuf == db);
3857 *drp = dr->dr_next;
3858 if (dr->dr_dbuf->db_level != 0) {
3859 mutex_destroy(&dr->dt.di.dr_mtx);
3860 list_destroy(&dr->dt.di.dr_children);
3861 }
3862 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3863 ASSERT(db->db_dirtycnt > 0);
3864 db->db_dirtycnt -= 1;
3865 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3866 return;
3867 }
3868
3869 os = dn->dn_objset;
3870
3871 /*
3872 * This function may have dropped the db_mtx lock allowing a dmu_sync
3873 * operation to sneak in. As a result, we need to ensure that we
3874 * don't check the dr_override_state until we have returned from
3875 * dbuf_check_blkptr.
3876 */
3877 dbuf_check_blkptr(dn, db);
3878
3879 /*
3880 * If this buffer is in the middle of an immediate write,
3881 * wait for the synchronous IO to complete.
3882 */
3883 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3884 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3885 cv_wait(&db->db_changed, &db->db_mtx);
3886 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3887 }
3888
3889 /*
3890 * If this is a dnode block, ensure it is appropriately encrypted
3891 * or decrypted, depending on what we are writing to it this txg.
3892 */
3893 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3894 dbuf_prepare_encrypted_dnode_leaf(dr);
3895
3896 if (db->db_state != DB_NOFILL &&
3897 dn->dn_object != DMU_META_DNODE_OBJECT &&
3898 zfs_refcount_count(&db->db_holds) > 1 &&
3899 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3900 *datap == db->db_buf) {
3901 /*
3902 * If this buffer is currently "in use" (i.e., there
3903 * are active holds and db_data still references it),
3904 * then make a copy before we start the write so that
3905 * any modifications from the open txg will not leak
3906 * into this write.
3907 *
3908 * NOTE: this copy does not need to be made for
3909 * objects only modified in the syncing context (e.g.
3910 * DNONE_DNODE blocks).
3911 */
3912 int psize = arc_buf_size(*datap);
3913 int lsize = arc_buf_lsize(*datap);
3914 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3915 enum zio_compress compress_type = arc_get_compression(*datap);
3916
3917 if (arc_is_encrypted(*datap)) {
3918 boolean_t byteorder;
3919 uint8_t salt[ZIO_DATA_SALT_LEN];
3920 uint8_t iv[ZIO_DATA_IV_LEN];
3921 uint8_t mac[ZIO_DATA_MAC_LEN];
3922
3923 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3924 *datap = arc_alloc_raw_buf(os->os_spa, db,
3925 dmu_objset_id(os), byteorder, salt, iv, mac,
3926 dn->dn_type, psize, lsize, compress_type);
3927 } else if (compress_type != ZIO_COMPRESS_OFF) {
3928 ASSERT3U(type, ==, ARC_BUFC_DATA);
3929 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3930 psize, lsize, compress_type);
3931 } else {
3932 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3933 }
3934 bcopy(db->db.db_data, (*datap)->b_data, psize);
3935 }
3936 db->db_data_pending = dr;
3937
3938 mutex_exit(&db->db_mtx);
3939
3940 dbuf_write(dr, *datap, tx);
3941
3942 ASSERT(!list_link_active(&dr->dr_dirty_node));
3943 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3944 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3945 DB_DNODE_EXIT(db);
3946 } else {
3947 /*
3948 * Although zio_nowait() does not "wait for an IO", it does
3949 * initiate the IO. If this is an empty write it seems plausible
3950 * that the IO could actually be completed before the nowait
3951 * returns. We need to DB_DNODE_EXIT() first in case
3952 * zio_nowait() invalidates the dbuf.
3953 */
3954 DB_DNODE_EXIT(db);
3955 zio_nowait(dr->dr_zio);
3956 }
3957 }
3958
3959 void
3960 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3961 {
3962 dbuf_dirty_record_t *dr;
3963
3964 while ((dr = list_head(list))) {
3965 if (dr->dr_zio != NULL) {
3966 /*
3967 * If we find an already initialized zio then we
3968 * are processing the meta-dnode, and we have finished.
3969 * The dbufs for all dnodes are put back on the list
3970 * during processing, so that we can zio_wait()
3971 * these IOs after initiating all child IOs.
3972 */
3973 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3974 DMU_META_DNODE_OBJECT);
3975 break;
3976 }
3977 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3978 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3979 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3980 }
3981 list_remove(list, dr);
3982 if (dr->dr_dbuf->db_level > 0)
3983 dbuf_sync_indirect(dr, tx);
3984 else
3985 dbuf_sync_leaf(dr, tx);
3986 }
3987 }
3988
3989 /* ARGSUSED */
3990 static void
3991 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3992 {
3993 dmu_buf_impl_t *db = vdb;
3994 dnode_t *dn;
3995 blkptr_t *bp = zio->io_bp;
3996 blkptr_t *bp_orig = &zio->io_bp_orig;
3997 spa_t *spa = zio->io_spa;
3998 int64_t delta;
3999 uint64_t fill = 0;
4000 int i;
4001
4002 ASSERT3P(db->db_blkptr, !=, NULL);
4003 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4004
4005 DB_DNODE_ENTER(db);
4006 dn = DB_DNODE(db);
4007 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4008 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4009 zio->io_prev_space_delta = delta;
4010
4011 if (bp->blk_birth != 0) {
4012 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4013 BP_GET_TYPE(bp) == dn->dn_type) ||
4014 (db->db_blkid == DMU_SPILL_BLKID &&
4015 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4016 BP_IS_EMBEDDED(bp));
4017 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4018 }
4019
4020 mutex_enter(&db->db_mtx);
4021
4022 #ifdef ZFS_DEBUG
4023 if (db->db_blkid == DMU_SPILL_BLKID) {
4024 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4025 ASSERT(!(BP_IS_HOLE(bp)) &&
4026 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4027 }
4028 #endif
4029
4030 if (db->db_level == 0) {
4031 mutex_enter(&dn->dn_mtx);
4032 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4033 db->db_blkid != DMU_SPILL_BLKID) {
4034 ASSERT0(db->db_objset->os_raw_receive);
4035 dn->dn_phys->dn_maxblkid = db->db_blkid;
4036 }
4037 mutex_exit(&dn->dn_mtx);
4038
4039 if (dn->dn_type == DMU_OT_DNODE) {
4040 i = 0;
4041 while (i < db->db.db_size) {
4042 dnode_phys_t *dnp =
4043 (void *)(((char *)db->db.db_data) + i);
4044
4045 i += DNODE_MIN_SIZE;
4046 if (dnp->dn_type != DMU_OT_NONE) {
4047 fill++;
4048 i += dnp->dn_extra_slots *
4049 DNODE_MIN_SIZE;
4050 }
4051 }
4052 } else {
4053 if (BP_IS_HOLE(bp)) {
4054 fill = 0;
4055 } else {
4056 fill = 1;
4057 }
4058 }
4059 } else {
4060 blkptr_t *ibp = db->db.db_data;
4061 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4062 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4063 if (BP_IS_HOLE(ibp))
4064 continue;
4065 fill += BP_GET_FILL(ibp);
4066 }
4067 }
4068 DB_DNODE_EXIT(db);
4069
4070 if (!BP_IS_EMBEDDED(bp))
4071 BP_SET_FILL(bp, fill);
4072
4073 mutex_exit(&db->db_mtx);
4074
4075 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4076 *db->db_blkptr = *bp;
4077 rw_exit(&dn->dn_struct_rwlock);
4078 }
4079
4080 /* ARGSUSED */
4081 /*
4082 * This function gets called just prior to running through the compression
4083 * stage of the zio pipeline. If we're an indirect block comprised of only
4084 * holes, then we want this indirect to be compressed away to a hole. In
4085 * order to do that we must zero out any information about the holes that
4086 * this indirect points to prior to before we try to compress it.
4087 */
4088 static void
4089 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4090 {
4091 dmu_buf_impl_t *db = vdb;
4092 dnode_t *dn;
4093 blkptr_t *bp;
4094 unsigned int epbs, i;
4095
4096 ASSERT3U(db->db_level, >, 0);
4097 DB_DNODE_ENTER(db);
4098 dn = DB_DNODE(db);
4099 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4100 ASSERT3U(epbs, <, 31);
4101
4102 /* Determine if all our children are holes */
4103 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4104 if (!BP_IS_HOLE(bp))
4105 break;
4106 }
4107
4108 /*
4109 * If all the children are holes, then zero them all out so that
4110 * we may get compressed away.
4111 */
4112 if (i == 1ULL << epbs) {
4113 /*
4114 * We only found holes. Grab the rwlock to prevent
4115 * anybody from reading the blocks we're about to
4116 * zero out.
4117 */
4118 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4119 bzero(db->db.db_data, db->db.db_size);
4120 rw_exit(&dn->dn_struct_rwlock);
4121 }
4122 DB_DNODE_EXIT(db);
4123 }
4124
4125 /*
4126 * The SPA will call this callback several times for each zio - once
4127 * for every physical child i/o (zio->io_phys_children times). This
4128 * allows the DMU to monitor the progress of each logical i/o. For example,
4129 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4130 * block. There may be a long delay before all copies/fragments are completed,
4131 * so this callback allows us to retire dirty space gradually, as the physical
4132 * i/os complete.
4133 */
4134 /* ARGSUSED */
4135 static void
4136 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4137 {
4138 dmu_buf_impl_t *db = arg;
4139 objset_t *os = db->db_objset;
4140 dsl_pool_t *dp = dmu_objset_pool(os);
4141 dbuf_dirty_record_t *dr;
4142 int delta = 0;
4143
4144 dr = db->db_data_pending;
4145 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4146
4147 /*
4148 * The callback will be called io_phys_children times. Retire one
4149 * portion of our dirty space each time we are called. Any rounding
4150 * error will be cleaned up by dsl_pool_sync()'s call to
4151 * dsl_pool_undirty_space().
4152 */
4153 delta = dr->dr_accounted / zio->io_phys_children;
4154 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4155 }
4156
4157 /* ARGSUSED */
4158 static void
4159 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4160 {
4161 dmu_buf_impl_t *db = vdb;
4162 blkptr_t *bp_orig = &zio->io_bp_orig;
4163 blkptr_t *bp = db->db_blkptr;
4164 objset_t *os = db->db_objset;
4165 dmu_tx_t *tx = os->os_synctx;
4166 dbuf_dirty_record_t **drp, *dr;
4167
4168 ASSERT0(zio->io_error);
4169 ASSERT(db->db_blkptr == bp);
4170
4171 /*
4172 * For nopwrites and rewrites we ensure that the bp matches our
4173 * original and bypass all the accounting.
4174 */
4175 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4176 ASSERT(BP_EQUAL(bp, bp_orig));
4177 } else {
4178 dsl_dataset_t *ds = os->os_dsl_dataset;
4179 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4180 dsl_dataset_block_born(ds, bp, tx);
4181 }
4182
4183 mutex_enter(&db->db_mtx);
4184
4185 DBUF_VERIFY(db);
4186
4187 drp = &db->db_last_dirty;
4188 while ((dr = *drp) != db->db_data_pending)
4189 drp = &dr->dr_next;
4190 ASSERT(!list_link_active(&dr->dr_dirty_node));
4191 ASSERT(dr->dr_dbuf == db);
4192 ASSERT(dr->dr_next == NULL);
4193 *drp = dr->dr_next;
4194
4195 #ifdef ZFS_DEBUG
4196 if (db->db_blkid == DMU_SPILL_BLKID) {
4197 dnode_t *dn;
4198
4199 DB_DNODE_ENTER(db);
4200 dn = DB_DNODE(db);
4201 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4202 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4203 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4204 DB_DNODE_EXIT(db);
4205 }
4206 #endif
4207
4208 if (db->db_level == 0) {
4209 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4210 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4211 if (db->db_state != DB_NOFILL) {
4212 if (dr->dt.dl.dr_data != db->db_buf)
4213 arc_buf_destroy(dr->dt.dl.dr_data, db);
4214 }
4215 } else {
4216 dnode_t *dn;
4217
4218 DB_DNODE_ENTER(db);
4219 dn = DB_DNODE(db);
4220 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4221 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4222 if (!BP_IS_HOLE(db->db_blkptr)) {
4223 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4224 SPA_BLKPTRSHIFT);
4225 ASSERT3U(db->db_blkid, <=,
4226 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4227 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4228 db->db.db_size);
4229 }
4230 DB_DNODE_EXIT(db);
4231 mutex_destroy(&dr->dt.di.dr_mtx);
4232 list_destroy(&dr->dt.di.dr_children);
4233 }
4234 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4235
4236 cv_broadcast(&db->db_changed);
4237 ASSERT(db->db_dirtycnt > 0);
4238 db->db_dirtycnt -= 1;
4239 db->db_data_pending = NULL;
4240 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4241 }
4242
4243 static void
4244 dbuf_write_nofill_ready(zio_t *zio)
4245 {
4246 dbuf_write_ready(zio, NULL, zio->io_private);
4247 }
4248
4249 static void
4250 dbuf_write_nofill_done(zio_t *zio)
4251 {
4252 dbuf_write_done(zio, NULL, zio->io_private);
4253 }
4254
4255 static void
4256 dbuf_write_override_ready(zio_t *zio)
4257 {
4258 dbuf_dirty_record_t *dr = zio->io_private;
4259 dmu_buf_impl_t *db = dr->dr_dbuf;
4260
4261 dbuf_write_ready(zio, NULL, db);
4262 }
4263
4264 static void
4265 dbuf_write_override_done(zio_t *zio)
4266 {
4267 dbuf_dirty_record_t *dr = zio->io_private;
4268 dmu_buf_impl_t *db = dr->dr_dbuf;
4269 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4270
4271 mutex_enter(&db->db_mtx);
4272 if (!BP_EQUAL(zio->io_bp, obp)) {
4273 if (!BP_IS_HOLE(obp))
4274 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4275 arc_release(dr->dt.dl.dr_data, db);
4276 }
4277 mutex_exit(&db->db_mtx);
4278
4279 dbuf_write_done(zio, NULL, db);
4280
4281 if (zio->io_abd != NULL)
4282 abd_put(zio->io_abd);
4283 }
4284
4285 typedef struct dbuf_remap_impl_callback_arg {
4286 objset_t *drica_os;
4287 uint64_t drica_blk_birth;
4288 dmu_tx_t *drica_tx;
4289 } dbuf_remap_impl_callback_arg_t;
4290
4291 static void
4292 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4293 void *arg)
4294 {
4295 dbuf_remap_impl_callback_arg_t *drica = arg;
4296 objset_t *os = drica->drica_os;
4297 spa_t *spa = dmu_objset_spa(os);
4298 dmu_tx_t *tx = drica->drica_tx;
4299
4300 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4301
4302 if (os == spa_meta_objset(spa)) {
4303 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4304 } else {
4305 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4306 size, drica->drica_blk_birth, tx);
4307 }
4308 }
4309
4310 static void
4311 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4312 {
4313 blkptr_t bp_copy = *bp;
4314 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4315 dbuf_remap_impl_callback_arg_t drica;
4316
4317 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4318
4319 drica.drica_os = dn->dn_objset;
4320 drica.drica_blk_birth = bp->blk_birth;
4321 drica.drica_tx = tx;
4322 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4323 &drica)) {
4324 /*
4325 * The struct_rwlock prevents dbuf_read_impl() from
4326 * dereferencing the BP while we are changing it. To
4327 * avoid lock contention, only grab it when we are actually
4328 * changing the BP.
4329 */
4330 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4331 *bp = bp_copy;
4332 rw_exit(&dn->dn_struct_rwlock);
4333 }
4334 }
4335
4336 /*
4337 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4338 * to remap a copy of every bp in the dbuf.
4339 */
4340 boolean_t
4341 dbuf_can_remap(const dmu_buf_impl_t *db)
4342 {
4343 spa_t *spa = dmu_objset_spa(db->db_objset);
4344 blkptr_t *bp = db->db.db_data;
4345 boolean_t ret = B_FALSE;
4346
4347 ASSERT3U(db->db_level, >, 0);
4348 ASSERT3S(db->db_state, ==, DB_CACHED);
4349
4350 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4351
4352 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4353 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4354 blkptr_t bp_copy = bp[i];
4355 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4356 ret = B_TRUE;
4357 break;
4358 }
4359 }
4360 spa_config_exit(spa, SCL_VDEV, FTAG);
4361
4362 return (ret);
4363 }
4364
4365 boolean_t
4366 dnode_needs_remap(const dnode_t *dn)
4367 {
4368 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4369 boolean_t ret = B_FALSE;
4370
4371 if (dn->dn_phys->dn_nlevels == 0) {
4372 return (B_FALSE);
4373 }
4374
4375 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4376
4377 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4378 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4379 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4380 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4381 ret = B_TRUE;
4382 break;
4383 }
4384 }
4385 spa_config_exit(spa, SCL_VDEV, FTAG);
4386
4387 return (ret);
4388 }
4389
4390 /*
4391 * Remap any existing BP's to concrete vdevs, if possible.
4392 */
4393 static void
4394 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4395 {
4396 spa_t *spa = dmu_objset_spa(db->db_objset);
4397 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4398
4399 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4400 return;
4401
4402 if (db->db_level > 0) {
4403 blkptr_t *bp = db->db.db_data;
4404 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4405 dbuf_remap_impl(dn, &bp[i], tx);
4406 }
4407 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4408 dnode_phys_t *dnp = db->db.db_data;
4409 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4410 DMU_OT_DNODE);
4411 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4412 i += dnp[i].dn_extra_slots + 1) {
4413 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4414 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4415 }
4416 }
4417 }
4418 }
4419
4420
4421 /* Issue I/O to commit a dirty buffer to disk. */
4422 static void
4423 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4424 {
4425 dmu_buf_impl_t *db = dr->dr_dbuf;
4426 dnode_t *dn;
4427 objset_t *os;
4428 dmu_buf_impl_t *parent = db->db_parent;
4429 uint64_t txg = tx->tx_txg;
4430 zbookmark_phys_t zb;
4431 zio_prop_t zp;
4432 zio_t *zio;
4433 int wp_flag = 0;
4434
4435 ASSERT(dmu_tx_is_syncing(tx));
4436
4437 DB_DNODE_ENTER(db);
4438 dn = DB_DNODE(db);
4439 os = dn->dn_objset;
4440
4441 if (db->db_state != DB_NOFILL) {
4442 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4443 /*
4444 * Private object buffers are released here rather
4445 * than in dbuf_dirty() since they are only modified
4446 * in the syncing context and we don't want the
4447 * overhead of making multiple copies of the data.
4448 */
4449 if (BP_IS_HOLE(db->db_blkptr)) {
4450 arc_buf_thaw(data);
4451 } else {
4452 dbuf_release_bp(db);
4453 }
4454 dbuf_remap(dn, db, tx);
4455 }
4456 }
4457
4458 if (parent != dn->dn_dbuf) {
4459 /* Our parent is an indirect block. */
4460 /* We have a dirty parent that has been scheduled for write. */
4461 ASSERT(parent && parent->db_data_pending);
4462 /* Our parent's buffer is one level closer to the dnode. */
4463 ASSERT(db->db_level == parent->db_level-1);
4464 /*
4465 * We're about to modify our parent's db_data by modifying
4466 * our block pointer, so the parent must be released.
4467 */
4468 ASSERT(arc_released(parent->db_buf));
4469 zio = parent->db_data_pending->dr_zio;
4470 } else {
4471 /* Our parent is the dnode itself. */
4472 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4473 db->db_blkid != DMU_SPILL_BLKID) ||
4474 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4475 if (db->db_blkid != DMU_SPILL_BLKID)
4476 ASSERT3P(db->db_blkptr, ==,
4477 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4478 zio = dn->dn_zio;
4479 }
4480
4481 ASSERT(db->db_level == 0 || data == db->db_buf);
4482 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4483 ASSERT(zio);
4484
4485 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4486 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4487 db->db.db_object, db->db_level, db->db_blkid);
4488
4489 if (db->db_blkid == DMU_SPILL_BLKID)
4490 wp_flag = WP_SPILL;
4491 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4492
4493 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4494 DB_DNODE_EXIT(db);
4495
4496 /*
4497 * We copy the blkptr now (rather than when we instantiate the dirty
4498 * record), because its value can change between open context and
4499 * syncing context. We do not need to hold dn_struct_rwlock to read
4500 * db_blkptr because we are in syncing context.
4501 */
4502 dr->dr_bp_copy = *db->db_blkptr;
4503
4504 if (db->db_level == 0 &&
4505 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4506 /*
4507 * The BP for this block has been provided by open context
4508 * (by dmu_sync() or dmu_buf_write_embedded()).
4509 */
4510 abd_t *contents = (data != NULL) ?
4511 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4512
4513 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4514 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4515 &zp, dbuf_write_override_ready, NULL, NULL,
4516 dbuf_write_override_done,
4517 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4518 mutex_enter(&db->db_mtx);
4519 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4520 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4521 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4522 mutex_exit(&db->db_mtx);
4523 } else if (db->db_state == DB_NOFILL) {
4524 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4525 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4526 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4527 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4528 dbuf_write_nofill_ready, NULL, NULL,
4529 dbuf_write_nofill_done, db,
4530 ZIO_PRIORITY_ASYNC_WRITE,
4531 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4532 } else {
4533 ASSERT(arc_released(data));
4534
4535 /*
4536 * For indirect blocks, we want to setup the children
4537 * ready callback so that we can properly handle an indirect
4538 * block that only contains holes.
4539 */
4540 arc_write_done_func_t *children_ready_cb = NULL;
4541 if (db->db_level != 0)
4542 children_ready_cb = dbuf_write_children_ready;
4543
4544 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4545 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4546 &zp, dbuf_write_ready,
4547 children_ready_cb, dbuf_write_physdone,
4548 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4549 ZIO_FLAG_MUSTSUCCEED, &zb);
4550 }
4551 }
4552
4553 #if defined(_KERNEL)
4554 EXPORT_SYMBOL(dbuf_find);
4555 EXPORT_SYMBOL(dbuf_is_metadata);
4556 EXPORT_SYMBOL(dbuf_destroy);
4557 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4558 EXPORT_SYMBOL(dbuf_whichblock);
4559 EXPORT_SYMBOL(dbuf_read);
4560 EXPORT_SYMBOL(dbuf_unoverride);
4561 EXPORT_SYMBOL(dbuf_free_range);
4562 EXPORT_SYMBOL(dbuf_new_size);
4563 EXPORT_SYMBOL(dbuf_release_bp);
4564 EXPORT_SYMBOL(dbuf_dirty);
4565 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4566 EXPORT_SYMBOL(dmu_buf_will_dirty);
4567 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4568 EXPORT_SYMBOL(dmu_buf_will_fill);
4569 EXPORT_SYMBOL(dmu_buf_fill_done);
4570 EXPORT_SYMBOL(dmu_buf_rele);
4571 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4572 EXPORT_SYMBOL(dbuf_prefetch);
4573 EXPORT_SYMBOL(dbuf_hold_impl);
4574 EXPORT_SYMBOL(dbuf_hold);
4575 EXPORT_SYMBOL(dbuf_hold_level);
4576 EXPORT_SYMBOL(dbuf_create_bonus);
4577 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4578 EXPORT_SYMBOL(dbuf_rm_spill);
4579 EXPORT_SYMBOL(dbuf_add_ref);
4580 EXPORT_SYMBOL(dbuf_rele);
4581 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4582 EXPORT_SYMBOL(dbuf_refcount);
4583 EXPORT_SYMBOL(dbuf_sync_list);
4584 EXPORT_SYMBOL(dmu_buf_set_user);
4585 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4586 EXPORT_SYMBOL(dmu_buf_get_user);
4587 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4588
4589 /* BEGIN CSTYLED */
4590 module_param(dbuf_cache_max_bytes, ulong, 0644);
4591 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4592 "Maximum size in bytes of the dbuf cache.");
4593
4594 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4595 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4596 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4597 "directly.");
4598
4599 module_param(dbuf_cache_lowater_pct, uint, 0644);
4600 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4601 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4602 "evicting dbufs.");
4603
4604 module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
4605 MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
4606 "Maximum size in bytes of the dbuf metadata cache.");
4607
4608 module_param(dbuf_cache_shift, int, 0644);
4609 MODULE_PARM_DESC(dbuf_cache_shift,
4610 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4611
4612 module_param(dbuf_metadata_cache_shift, int, 0644);
4613 MODULE_PARM_DESC(dbuf_cache_shift,
4614 "Set the size of the dbuf metadata cache to a log2 fraction of "
4615 "arc size.");
4616 /* END CSTYLED */
4617 #endif