]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Fix issues with raw receive_write_byref()
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 struct dbuf_hold_impl_data {
152 /* Function arguments */
153 dnode_t *dh_dn;
154 uint8_t dh_level;
155 uint64_t dh_blkid;
156 boolean_t dh_fail_sparse;
157 boolean_t dh_fail_uncached;
158 void *dh_tag;
159 dmu_buf_impl_t **dh_dbp;
160 /* Local variables */
161 dmu_buf_impl_t *dh_db;
162 dmu_buf_impl_t *dh_parent;
163 blkptr_t *dh_bp;
164 int dh_err;
165 dbuf_dirty_record_t *dh_dr;
166 int dh_depth;
167 };
168
169 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
170 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
171 boolean_t fail_uncached,
172 void *tag, dmu_buf_impl_t **dbp, int depth);
173 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
174
175 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
176 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
177
178 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
179 dmu_buf_evict_func_t *evict_func_sync,
180 dmu_buf_evict_func_t *evict_func_async,
181 dmu_buf_t **clear_on_evict_dbufp);
182
183 /*
184 * Global data structures and functions for the dbuf cache.
185 */
186 static kmem_cache_t *dbuf_kmem_cache;
187 static taskq_t *dbu_evict_taskq;
188
189 static kthread_t *dbuf_cache_evict_thread;
190 static kmutex_t dbuf_evict_lock;
191 static kcondvar_t dbuf_evict_cv;
192 static boolean_t dbuf_evict_thread_exit;
193
194 /*
195 * There are two dbuf caches; each dbuf can only be in one of them at a time.
196 *
197 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
198 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
199 * that represent the metadata that describes filesystems/snapshots/
200 * bookmarks/properties/etc. We only evict from this cache when we export a
201 * pool, to short-circuit as much I/O as possible for all administrative
202 * commands that need the metadata. There is no eviction policy for this
203 * cache, because we try to only include types in it which would occupy a
204 * very small amount of space per object but create a large impact on the
205 * performance of these commands. Instead, after it reaches a maximum size
206 * (which should only happen on very small memory systems with a very large
207 * number of filesystem objects), we stop taking new dbufs into the
208 * metadata cache, instead putting them in the normal dbuf cache.
209 *
210 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
211 * are not currently held but have been recently released. These dbufs
212 * are not eligible for arc eviction until they are aged out of the cache.
213 * Dbufs that are aged out of the cache will be immediately destroyed and
214 * become eligible for arc eviction.
215 *
216 * Dbufs are added to these caches once the last hold is released. If a dbuf is
217 * later accessed and still exists in the dbuf cache, then it will be removed
218 * from the cache and later re-added to the head of the cache.
219 *
220 * If a given dbuf meets the requirements for the metadata cache, it will go
221 * there, otherwise it will be considered for the generic LRU dbuf cache. The
222 * caches and the refcounts tracking their sizes are stored in an array indexed
223 * by those caches' matching enum values (from dbuf_cached_state_t).
224 */
225 typedef struct dbuf_cache {
226 multilist_t *cache;
227 refcount_t size;
228 } dbuf_cache_t;
229 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
230
231 /* Size limits for the caches */
232 unsigned long dbuf_cache_max_bytes = 0;
233 unsigned long dbuf_metadata_cache_max_bytes = 0;
234 /* Set the default sizes of the caches to log2 fraction of arc size */
235 int dbuf_cache_shift = 5;
236 int dbuf_metadata_cache_shift = 6;
237
238 /*
239 * The LRU dbuf cache uses a three-stage eviction policy:
240 * - A low water marker designates when the dbuf eviction thread
241 * should stop evicting from the dbuf cache.
242 * - When we reach the maximum size (aka mid water mark), we
243 * signal the eviction thread to run.
244 * - The high water mark indicates when the eviction thread
245 * is unable to keep up with the incoming load and eviction must
246 * happen in the context of the calling thread.
247 *
248 * The dbuf cache:
249 * (max size)
250 * low water mid water hi water
251 * +----------------------------------------+----------+----------+
252 * | | | |
253 * | | | |
254 * | | | |
255 * | | | |
256 * +----------------------------------------+----------+----------+
257 * stop signal evict
258 * evicting eviction directly
259 * thread
260 *
261 * The high and low water marks indicate the operating range for the eviction
262 * thread. The low water mark is, by default, 90% of the total size of the
263 * cache and the high water mark is at 110% (both of these percentages can be
264 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
265 * respectively). The eviction thread will try to ensure that the cache remains
266 * within this range by waking up every second and checking if the cache is
267 * above the low water mark. The thread can also be woken up by callers adding
268 * elements into the cache if the cache is larger than the mid water (i.e max
269 * cache size). Once the eviction thread is woken up and eviction is required,
270 * it will continue evicting buffers until it's able to reduce the cache size
271 * to the low water mark. If the cache size continues to grow and hits the high
272 * water mark, then callers adding elements to the cache will begin to evict
273 * directly from the cache until the cache is no longer above the high water
274 * mark.
275 */
276
277 /*
278 * The percentage above and below the maximum cache size.
279 */
280 uint_t dbuf_cache_hiwater_pct = 10;
281 uint_t dbuf_cache_lowater_pct = 10;
282
283 /* ARGSUSED */
284 static int
285 dbuf_cons(void *vdb, void *unused, int kmflag)
286 {
287 dmu_buf_impl_t *db = vdb;
288 bzero(db, sizeof (dmu_buf_impl_t));
289
290 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
291 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
292 multilist_link_init(&db->db_cache_link);
293 refcount_create(&db->db_holds);
294
295 return (0);
296 }
297
298 /* ARGSUSED */
299 static void
300 dbuf_dest(void *vdb, void *unused)
301 {
302 dmu_buf_impl_t *db = vdb;
303 mutex_destroy(&db->db_mtx);
304 cv_destroy(&db->db_changed);
305 ASSERT(!multilist_link_active(&db->db_cache_link));
306 refcount_destroy(&db->db_holds);
307 }
308
309 /*
310 * dbuf hash table routines
311 */
312 static dbuf_hash_table_t dbuf_hash_table;
313
314 static uint64_t dbuf_hash_count;
315
316 /*
317 * We use Cityhash for this. It's fast, and has good hash properties without
318 * requiring any large static buffers.
319 */
320 static uint64_t
321 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
322 {
323 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
324 }
325
326 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
327 ((dbuf)->db.db_object == (obj) && \
328 (dbuf)->db_objset == (os) && \
329 (dbuf)->db_level == (level) && \
330 (dbuf)->db_blkid == (blkid))
331
332 dmu_buf_impl_t *
333 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
334 {
335 dbuf_hash_table_t *h = &dbuf_hash_table;
336 uint64_t hv;
337 uint64_t idx;
338 dmu_buf_impl_t *db;
339
340 hv = dbuf_hash(os, obj, level, blkid);
341 idx = hv & h->hash_table_mask;
342
343 mutex_enter(DBUF_HASH_MUTEX(h, idx));
344 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
345 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
346 mutex_enter(&db->db_mtx);
347 if (db->db_state != DB_EVICTING) {
348 mutex_exit(DBUF_HASH_MUTEX(h, idx));
349 return (db);
350 }
351 mutex_exit(&db->db_mtx);
352 }
353 }
354 mutex_exit(DBUF_HASH_MUTEX(h, idx));
355 return (NULL);
356 }
357
358 static dmu_buf_impl_t *
359 dbuf_find_bonus(objset_t *os, uint64_t object)
360 {
361 dnode_t *dn;
362 dmu_buf_impl_t *db = NULL;
363
364 if (dnode_hold(os, object, FTAG, &dn) == 0) {
365 rw_enter(&dn->dn_struct_rwlock, RW_READER);
366 if (dn->dn_bonus != NULL) {
367 db = dn->dn_bonus;
368 mutex_enter(&db->db_mtx);
369 }
370 rw_exit(&dn->dn_struct_rwlock);
371 dnode_rele(dn, FTAG);
372 }
373 return (db);
374 }
375
376 /*
377 * Insert an entry into the hash table. If there is already an element
378 * equal to elem in the hash table, then the already existing element
379 * will be returned and the new element will not be inserted.
380 * Otherwise returns NULL.
381 */
382 static dmu_buf_impl_t *
383 dbuf_hash_insert(dmu_buf_impl_t *db)
384 {
385 dbuf_hash_table_t *h = &dbuf_hash_table;
386 objset_t *os = db->db_objset;
387 uint64_t obj = db->db.db_object;
388 int level = db->db_level;
389 uint64_t blkid, hv, idx;
390 dmu_buf_impl_t *dbf;
391 uint32_t i;
392
393 blkid = db->db_blkid;
394 hv = dbuf_hash(os, obj, level, blkid);
395 idx = hv & h->hash_table_mask;
396
397 mutex_enter(DBUF_HASH_MUTEX(h, idx));
398 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
399 dbf = dbf->db_hash_next, i++) {
400 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
401 mutex_enter(&dbf->db_mtx);
402 if (dbf->db_state != DB_EVICTING) {
403 mutex_exit(DBUF_HASH_MUTEX(h, idx));
404 return (dbf);
405 }
406 mutex_exit(&dbf->db_mtx);
407 }
408 }
409
410 if (i > 0) {
411 DBUF_STAT_BUMP(hash_collisions);
412 if (i == 1)
413 DBUF_STAT_BUMP(hash_chains);
414
415 DBUF_STAT_MAX(hash_chain_max, i);
416 }
417
418 mutex_enter(&db->db_mtx);
419 db->db_hash_next = h->hash_table[idx];
420 h->hash_table[idx] = db;
421 mutex_exit(DBUF_HASH_MUTEX(h, idx));
422 atomic_inc_64(&dbuf_hash_count);
423 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
424
425 return (NULL);
426 }
427
428 /*
429 * This returns whether this dbuf should be stored in the metadata cache, which
430 * is based on whether it's from one of the dnode types that store data related
431 * to traversing dataset hierarchies.
432 */
433 static boolean_t
434 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
435 {
436 DB_DNODE_ENTER(db);
437 dmu_object_type_t type = DB_DNODE(db)->dn_type;
438 DB_DNODE_EXIT(db);
439
440 /* Check if this dbuf is one of the types we care about */
441 if (DMU_OT_IS_METADATA_CACHED(type)) {
442 /* If we hit this, then we set something up wrong in dmu_ot */
443 ASSERT(DMU_OT_IS_METADATA(type));
444
445 /*
446 * Sanity check for small-memory systems: don't allocate too
447 * much memory for this purpose.
448 */
449 if (refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_max_bytes) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459 }
460
461 /*
462 * Remove an entry from the hash table. It must be in the EVICTING state.
463 */
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
466 {
467 dbuf_hash_table_t *h = &dbuf_hash_table;
468 uint64_t hv, idx;
469 dmu_buf_impl_t *dbf, **dbp;
470
471 hv = dbuf_hash(db->db_objset, db->db.db_object,
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
475 /*
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_MUTEX > db_mtx.
478 */
479 ASSERT(refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
495 atomic_dec_64(&dbuf_hash_count);
496 }
497
498 typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
502
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505 {
506 #ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
519 holds = refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
532 if (db->db_user_immediate_evict == TRUE)
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537 #endif
538 }
539
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
542 {
543 dmu_buf_user_t *dbu = db->db_user;
544
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
547 if (dbu == NULL)
548 return;
549
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553 #ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
557
558 /*
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
567 */
568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
577 }
578
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
581 {
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596 }
597
598
599 /*
600 * This function *must* return indices evenly distributed between all
601 * sublists of the multilist. This is needed due to how the dbuf eviction
602 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
603 * distributed between all sublists and uses this assumption when
604 * deciding which sublist to evict from and how much to evict from it.
605 */
606 unsigned int
607 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
608 {
609 dmu_buf_impl_t *db = obj;
610
611 /*
612 * The assumption here, is the hash value for a given
613 * dmu_buf_impl_t will remain constant throughout it's lifetime
614 * (i.e. it's objset, object, level and blkid fields don't change).
615 * Thus, we don't need to store the dbuf's sublist index
616 * on insertion, as this index can be recalculated on removal.
617 *
618 * Also, the low order bits of the hash value are thought to be
619 * distributed evenly. Otherwise, in the case that the multilist
620 * has a power of two number of sublists, each sublists' usage
621 * would not be evenly distributed.
622 */
623 return (dbuf_hash(db->db_objset, db->db.db_object,
624 db->db_level, db->db_blkid) %
625 multilist_get_num_sublists(ml));
626 }
627
628 static inline unsigned long
629 dbuf_cache_target_bytes(void)
630 {
631 return MIN(dbuf_cache_max_bytes,
632 arc_target_bytes() >> dbuf_cache_shift);
633 }
634
635 static inline uint64_t
636 dbuf_cache_hiwater_bytes(void)
637 {
638 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
639 return (dbuf_cache_target +
640 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
641 }
642
643 static inline uint64_t
644 dbuf_cache_lowater_bytes(void)
645 {
646 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
647 return (dbuf_cache_target -
648 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
649 }
650
651 static inline boolean_t
652 dbuf_cache_above_hiwater(void)
653 {
654 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
655 dbuf_cache_hiwater_bytes());
656 }
657
658 static inline boolean_t
659 dbuf_cache_above_lowater(void)
660 {
661 return (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
662 dbuf_cache_lowater_bytes());
663 }
664
665 /*
666 * Evict the oldest eligible dbuf from the dbuf cache.
667 */
668 static void
669 dbuf_evict_one(void)
670 {
671 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
672 multilist_sublist_t *mls = multilist_sublist_lock(
673 dbuf_caches[DB_DBUF_CACHE].cache, idx);
674
675 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
676
677 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
678 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
679 db = multilist_sublist_prev(mls, db);
680 }
681
682 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
683 multilist_sublist_t *, mls);
684
685 if (db != NULL) {
686 multilist_sublist_remove(mls, db);
687 multilist_sublist_unlock(mls);
688 (void) refcount_remove_many(&dbuf_caches[DB_DBUF_CACHE].size,
689 db->db.db_size, db);
690 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
691 DBUF_STAT_BUMPDOWN(cache_count);
692 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
693 db->db.db_size);
694 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
695 db->db_caching_status = DB_NO_CACHE;
696 dbuf_destroy(db);
697 DBUF_STAT_MAX(cache_size_bytes_max,
698 refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
699 DBUF_STAT_BUMP(cache_total_evicts);
700 } else {
701 multilist_sublist_unlock(mls);
702 }
703 }
704
705 /*
706 * The dbuf evict thread is responsible for aging out dbufs from the
707 * cache. Once the cache has reached it's maximum size, dbufs are removed
708 * and destroyed. The eviction thread will continue running until the size
709 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
710 * out of the cache it is destroyed and becomes eligible for arc eviction.
711 */
712 /* ARGSUSED */
713 static void
714 dbuf_evict_thread(void *unused)
715 {
716 callb_cpr_t cpr;
717
718 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
719
720 mutex_enter(&dbuf_evict_lock);
721 while (!dbuf_evict_thread_exit) {
722 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
723 CALLB_CPR_SAFE_BEGIN(&cpr);
724 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
725 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
726 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
727 }
728 mutex_exit(&dbuf_evict_lock);
729
730 /*
731 * Keep evicting as long as we're above the low water mark
732 * for the cache. We do this without holding the locks to
733 * minimize lock contention.
734 */
735 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
736 dbuf_evict_one();
737 }
738
739 mutex_enter(&dbuf_evict_lock);
740 }
741
742 dbuf_evict_thread_exit = B_FALSE;
743 cv_broadcast(&dbuf_evict_cv);
744 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
745 thread_exit();
746 }
747
748 /*
749 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
750 * If the dbuf cache is at its high water mark, then evict a dbuf from the
751 * dbuf cache using the callers context.
752 */
753 static void
754 dbuf_evict_notify(void)
755 {
756 /*
757 * We check if we should evict without holding the dbuf_evict_lock,
758 * because it's OK to occasionally make the wrong decision here,
759 * and grabbing the lock results in massive lock contention.
760 */
761 if (refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_target_bytes()) {
763 if (dbuf_cache_above_hiwater())
764 dbuf_evict_one();
765 cv_signal(&dbuf_evict_cv);
766 }
767 }
768
769 static int
770 dbuf_kstat_update(kstat_t *ksp, int rw)
771 {
772 dbuf_stats_t *ds = ksp->ks_data;
773
774 if (rw == KSTAT_WRITE) {
775 return (SET_ERROR(EACCES));
776 } else {
777 ds->metadata_cache_size_bytes.value.ui64 =
778 refcount_count(&dbuf_caches[DB_DBUF_METADATA_CACHE].size);
779 ds->cache_size_bytes.value.ui64 =
780 refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
781 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
782 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
783 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
784 ds->hash_elements.value.ui64 = dbuf_hash_count;
785 }
786
787 return (0);
788 }
789
790 void
791 dbuf_init(void)
792 {
793 uint64_t hsize = 1ULL << 16;
794 dbuf_hash_table_t *h = &dbuf_hash_table;
795 int i;
796
797 /*
798 * The hash table is big enough to fill all of physical memory
799 * with an average block size of zfs_arc_average_blocksize (default 8K).
800 * By default, the table will take up
801 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
802 */
803 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
804 hsize <<= 1;
805
806 retry:
807 h->hash_table_mask = hsize - 1;
808 #if defined(_KERNEL)
809 /*
810 * Large allocations which do not require contiguous pages
811 * should be using vmem_alloc() in the linux kernel
812 */
813 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
814 #else
815 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
816 #endif
817 if (h->hash_table == NULL) {
818 /* XXX - we should really return an error instead of assert */
819 ASSERT(hsize > (1ULL << 10));
820 hsize >>= 1;
821 goto retry;
822 }
823
824 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
825 sizeof (dmu_buf_impl_t),
826 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
827
828 for (i = 0; i < DBUF_MUTEXES; i++)
829 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
830
831 dbuf_stats_init(h);
832
833 /*
834 * Setup the parameters for the dbuf caches. We set the sizes of the
835 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
836 * of the target size of the ARC. If the values has been specified as
837 * a module option and they're not greater than the target size of the
838 * ARC, then we honor that value.
839 */
840 if (dbuf_cache_max_bytes == 0 ||
841 dbuf_cache_max_bytes >= arc_target_bytes()) {
842 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
843 }
844 if (dbuf_metadata_cache_max_bytes == 0 ||
845 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
846 dbuf_metadata_cache_max_bytes =
847 arc_target_bytes() >> dbuf_metadata_cache_shift;
848 }
849
850 /*
851 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
852 * configuration is not required.
853 */
854 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
855
856 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
857 dbuf_caches[dcs].cache =
858 multilist_create(sizeof (dmu_buf_impl_t),
859 offsetof(dmu_buf_impl_t, db_cache_link),
860 dbuf_cache_multilist_index_func);
861 refcount_create(&dbuf_caches[dcs].size);
862 }
863
864 dbuf_evict_thread_exit = B_FALSE;
865 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
866 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
867 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
868 NULL, 0, &p0, TS_RUN, minclsyspri);
869
870 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
871 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
872 KSTAT_FLAG_VIRTUAL);
873 if (dbuf_ksp != NULL) {
874 dbuf_ksp->ks_data = &dbuf_stats;
875 dbuf_ksp->ks_update = dbuf_kstat_update;
876 kstat_install(dbuf_ksp);
877
878 for (i = 0; i < DN_MAX_LEVELS; i++) {
879 snprintf(dbuf_stats.cache_levels[i].name,
880 KSTAT_STRLEN, "cache_level_%d", i);
881 dbuf_stats.cache_levels[i].data_type =
882 KSTAT_DATA_UINT64;
883 snprintf(dbuf_stats.cache_levels_bytes[i].name,
884 KSTAT_STRLEN, "cache_level_%d_bytes", i);
885 dbuf_stats.cache_levels_bytes[i].data_type =
886 KSTAT_DATA_UINT64;
887 }
888 }
889 }
890
891 void
892 dbuf_fini(void)
893 {
894 dbuf_hash_table_t *h = &dbuf_hash_table;
895 int i;
896
897 dbuf_stats_destroy();
898
899 for (i = 0; i < DBUF_MUTEXES; i++)
900 mutex_destroy(&h->hash_mutexes[i]);
901 #if defined(_KERNEL)
902 /*
903 * Large allocations which do not require contiguous pages
904 * should be using vmem_free() in the linux kernel
905 */
906 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
907 #else
908 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
909 #endif
910 kmem_cache_destroy(dbuf_kmem_cache);
911 taskq_destroy(dbu_evict_taskq);
912
913 mutex_enter(&dbuf_evict_lock);
914 dbuf_evict_thread_exit = B_TRUE;
915 while (dbuf_evict_thread_exit) {
916 cv_signal(&dbuf_evict_cv);
917 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
918 }
919 mutex_exit(&dbuf_evict_lock);
920
921 mutex_destroy(&dbuf_evict_lock);
922 cv_destroy(&dbuf_evict_cv);
923
924 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
925 refcount_destroy(&dbuf_caches[dcs].size);
926 multilist_destroy(dbuf_caches[dcs].cache);
927 }
928
929 if (dbuf_ksp != NULL) {
930 kstat_delete(dbuf_ksp);
931 dbuf_ksp = NULL;
932 }
933 }
934
935 /*
936 * Other stuff.
937 */
938
939 #ifdef ZFS_DEBUG
940 static void
941 dbuf_verify(dmu_buf_impl_t *db)
942 {
943 dnode_t *dn;
944 dbuf_dirty_record_t *dr;
945
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947
948 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
949 return;
950
951 ASSERT(db->db_objset != NULL);
952 DB_DNODE_ENTER(db);
953 dn = DB_DNODE(db);
954 if (dn == NULL) {
955 ASSERT(db->db_parent == NULL);
956 ASSERT(db->db_blkptr == NULL);
957 } else {
958 ASSERT3U(db->db.db_object, ==, dn->dn_object);
959 ASSERT3P(db->db_objset, ==, dn->dn_objset);
960 ASSERT3U(db->db_level, <, dn->dn_nlevels);
961 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
962 db->db_blkid == DMU_SPILL_BLKID ||
963 !avl_is_empty(&dn->dn_dbufs));
964 }
965 if (db->db_blkid == DMU_BONUS_BLKID) {
966 ASSERT(dn != NULL);
967 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
968 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
969 } else if (db->db_blkid == DMU_SPILL_BLKID) {
970 ASSERT(dn != NULL);
971 ASSERT0(db->db.db_offset);
972 } else {
973 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
974 }
975
976 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
977 ASSERT(dr->dr_dbuf == db);
978
979 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
980 ASSERT(dr->dr_dbuf == db);
981
982 /*
983 * We can't assert that db_size matches dn_datablksz because it
984 * can be momentarily different when another thread is doing
985 * dnode_set_blksz().
986 */
987 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
988 dr = db->db_data_pending;
989 /*
990 * It should only be modified in syncing context, so
991 * make sure we only have one copy of the data.
992 */
993 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
994 }
995
996 /* verify db->db_blkptr */
997 if (db->db_blkptr) {
998 if (db->db_parent == dn->dn_dbuf) {
999 /* db is pointed to by the dnode */
1000 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1001 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1002 ASSERT(db->db_parent == NULL);
1003 else
1004 ASSERT(db->db_parent != NULL);
1005 if (db->db_blkid != DMU_SPILL_BLKID)
1006 ASSERT3P(db->db_blkptr, ==,
1007 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1008 } else {
1009 /* db is pointed to by an indirect block */
1010 ASSERTV(int epb = db->db_parent->db.db_size >>
1011 SPA_BLKPTRSHIFT);
1012 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1013 ASSERT3U(db->db_parent->db.db_object, ==,
1014 db->db.db_object);
1015 /*
1016 * dnode_grow_indblksz() can make this fail if we don't
1017 * have the struct_rwlock. XXX indblksz no longer
1018 * grows. safe to do this now?
1019 */
1020 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1021 ASSERT3P(db->db_blkptr, ==,
1022 ((blkptr_t *)db->db_parent->db.db_data +
1023 db->db_blkid % epb));
1024 }
1025 }
1026 }
1027 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1028 (db->db_buf == NULL || db->db_buf->b_data) &&
1029 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1030 db->db_state != DB_FILL && !dn->dn_free_txg) {
1031 /*
1032 * If the blkptr isn't set but they have nonzero data,
1033 * it had better be dirty, otherwise we'll lose that
1034 * data when we evict this buffer.
1035 *
1036 * There is an exception to this rule for indirect blocks; in
1037 * this case, if the indirect block is a hole, we fill in a few
1038 * fields on each of the child blocks (importantly, birth time)
1039 * to prevent hole birth times from being lost when you
1040 * partially fill in a hole.
1041 */
1042 if (db->db_dirtycnt == 0) {
1043 if (db->db_level == 0) {
1044 uint64_t *buf = db->db.db_data;
1045 int i;
1046
1047 for (i = 0; i < db->db.db_size >> 3; i++) {
1048 ASSERT(buf[i] == 0);
1049 }
1050 } else {
1051 blkptr_t *bps = db->db.db_data;
1052 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1053 db->db.db_size);
1054 /*
1055 * We want to verify that all the blkptrs in the
1056 * indirect block are holes, but we may have
1057 * automatically set up a few fields for them.
1058 * We iterate through each blkptr and verify
1059 * they only have those fields set.
1060 */
1061 for (int i = 0;
1062 i < db->db.db_size / sizeof (blkptr_t);
1063 i++) {
1064 blkptr_t *bp = &bps[i];
1065 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1066 &bp->blk_cksum));
1067 ASSERT(
1068 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1069 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1070 DVA_IS_EMPTY(&bp->blk_dva[2]));
1071 ASSERT0(bp->blk_fill);
1072 ASSERT0(bp->blk_pad[0]);
1073 ASSERT0(bp->blk_pad[1]);
1074 ASSERT(!BP_IS_EMBEDDED(bp));
1075 ASSERT(BP_IS_HOLE(bp));
1076 ASSERT0(bp->blk_phys_birth);
1077 }
1078 }
1079 }
1080 }
1081 DB_DNODE_EXIT(db);
1082 }
1083 #endif
1084
1085 static void
1086 dbuf_clear_data(dmu_buf_impl_t *db)
1087 {
1088 ASSERT(MUTEX_HELD(&db->db_mtx));
1089 dbuf_evict_user(db);
1090 ASSERT3P(db->db_buf, ==, NULL);
1091 db->db.db_data = NULL;
1092 if (db->db_state != DB_NOFILL)
1093 db->db_state = DB_UNCACHED;
1094 }
1095
1096 static void
1097 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1098 {
1099 ASSERT(MUTEX_HELD(&db->db_mtx));
1100 ASSERT(buf != NULL);
1101
1102 db->db_buf = buf;
1103 ASSERT(buf->b_data != NULL);
1104 db->db.db_data = buf->b_data;
1105 }
1106
1107 /*
1108 * Loan out an arc_buf for read. Return the loaned arc_buf.
1109 */
1110 arc_buf_t *
1111 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1112 {
1113 arc_buf_t *abuf;
1114
1115 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1116 mutex_enter(&db->db_mtx);
1117 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
1118 int blksz = db->db.db_size;
1119 spa_t *spa = db->db_objset->os_spa;
1120
1121 mutex_exit(&db->db_mtx);
1122 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1123 bcopy(db->db.db_data, abuf->b_data, blksz);
1124 } else {
1125 abuf = db->db_buf;
1126 arc_loan_inuse_buf(abuf, db);
1127 db->db_buf = NULL;
1128 dbuf_clear_data(db);
1129 mutex_exit(&db->db_mtx);
1130 }
1131 return (abuf);
1132 }
1133
1134 /*
1135 * Calculate which level n block references the data at the level 0 offset
1136 * provided.
1137 */
1138 uint64_t
1139 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1140 {
1141 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1142 /*
1143 * The level n blkid is equal to the level 0 blkid divided by
1144 * the number of level 0s in a level n block.
1145 *
1146 * The level 0 blkid is offset >> datablkshift =
1147 * offset / 2^datablkshift.
1148 *
1149 * The number of level 0s in a level n is the number of block
1150 * pointers in an indirect block, raised to the power of level.
1151 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1152 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1153 *
1154 * Thus, the level n blkid is: offset /
1155 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1156 * = offset / 2^(datablkshift + level *
1157 * (indblkshift - SPA_BLKPTRSHIFT))
1158 * = offset >> (datablkshift + level *
1159 * (indblkshift - SPA_BLKPTRSHIFT))
1160 */
1161
1162 const unsigned exp = dn->dn_datablkshift +
1163 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1164
1165 if (exp >= 8 * sizeof (offset)) {
1166 /* This only happens on the highest indirection level */
1167 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1168 return (0);
1169 }
1170
1171 ASSERT3U(exp, <, 8 * sizeof (offset));
1172
1173 return (offset >> exp);
1174 } else {
1175 ASSERT3U(offset, <, dn->dn_datablksz);
1176 return (0);
1177 }
1178 }
1179
1180 static void
1181 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1182 arc_buf_t *buf, void *vdb)
1183 {
1184 dmu_buf_impl_t *db = vdb;
1185
1186 mutex_enter(&db->db_mtx);
1187 ASSERT3U(db->db_state, ==, DB_READ);
1188 /*
1189 * All reads are synchronous, so we must have a hold on the dbuf
1190 */
1191 ASSERT(refcount_count(&db->db_holds) > 0);
1192 ASSERT(db->db_buf == NULL);
1193 ASSERT(db->db.db_data == NULL);
1194 if (db->db_level == 0 && db->db_freed_in_flight) {
1195 /* we were freed in flight; disregard any error */
1196 if (buf == NULL) {
1197 buf = arc_alloc_buf(db->db_objset->os_spa,
1198 db, DBUF_GET_BUFC_TYPE(db), db->db.db_size);
1199 }
1200 arc_release(buf, db);
1201 bzero(buf->b_data, db->db.db_size);
1202 arc_buf_freeze(buf);
1203 db->db_freed_in_flight = FALSE;
1204 dbuf_set_data(db, buf);
1205 db->db_state = DB_CACHED;
1206 } else if (buf != NULL) {
1207 dbuf_set_data(db, buf);
1208 db->db_state = DB_CACHED;
1209 } else {
1210 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1211 ASSERT3P(db->db_buf, ==, NULL);
1212 db->db_state = DB_UNCACHED;
1213 }
1214 cv_broadcast(&db->db_changed);
1215 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1216 }
1217
1218
1219 /*
1220 * This function ensures that, when doing a decrypting read of a block,
1221 * we make sure we have decrypted the dnode associated with it. We must do
1222 * this so that we ensure we are fully authenticating the checksum-of-MACs
1223 * tree from the root of the objset down to this block. Indirect blocks are
1224 * always verified against their secure checksum-of-MACs assuming that the
1225 * dnode containing them is correct. Now that we are doing a decrypting read,
1226 * we can be sure that the key is loaded and verify that assumption. This is
1227 * especially important considering that we always read encrypted dnode
1228 * blocks as raw data (without verifying their MACs) to start, and
1229 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1230 */
1231 static int
1232 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1233 {
1234 int err = 0;
1235 objset_t *os = db->db_objset;
1236 arc_buf_t *dnode_abuf;
1237 dnode_t *dn;
1238 zbookmark_phys_t zb;
1239
1240 ASSERT(MUTEX_HELD(&db->db_mtx));
1241
1242 if (!os->os_encrypted || os->os_raw_receive ||
1243 (flags & DB_RF_NO_DECRYPT) != 0)
1244 return (0);
1245
1246 DB_DNODE_ENTER(db);
1247 dn = DB_DNODE(db);
1248 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1249
1250 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1251 DB_DNODE_EXIT(db);
1252 return (0);
1253 }
1254
1255 SET_BOOKMARK(&zb, dmu_objset_id(os),
1256 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1257 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1258
1259 /*
1260 * An error code of EACCES tells us that the key is still not
1261 * available. This is ok if we are only reading authenticated
1262 * (and therefore non-encrypted) blocks.
1263 */
1264 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1265 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1266 (db->db_blkid == DMU_BONUS_BLKID &&
1267 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1268 err = 0;
1269
1270 DB_DNODE_EXIT(db);
1271
1272 return (err);
1273 }
1274
1275 static int
1276 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1277 {
1278 dnode_t *dn;
1279 zbookmark_phys_t zb;
1280 uint32_t aflags = ARC_FLAG_NOWAIT;
1281 int err, zio_flags = 0;
1282
1283 DB_DNODE_ENTER(db);
1284 dn = DB_DNODE(db);
1285 ASSERT(!refcount_is_zero(&db->db_holds));
1286 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1287 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1288 ASSERT(MUTEX_HELD(&db->db_mtx));
1289 ASSERT(db->db_state == DB_UNCACHED);
1290 ASSERT(db->db_buf == NULL);
1291
1292 if (db->db_blkid == DMU_BONUS_BLKID) {
1293 /*
1294 * The bonus length stored in the dnode may be less than
1295 * the maximum available space in the bonus buffer.
1296 */
1297 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1298 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1299
1300 /* if the underlying dnode block is encrypted, decrypt it */
1301 err = dbuf_read_verify_dnode_crypt(db, flags);
1302 if (err != 0) {
1303 DB_DNODE_EXIT(db);
1304 mutex_exit(&db->db_mtx);
1305 return (err);
1306 }
1307
1308 ASSERT3U(bonuslen, <=, db->db.db_size);
1309 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1310 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1311 if (bonuslen < max_bonuslen)
1312 bzero(db->db.db_data, max_bonuslen);
1313 if (bonuslen)
1314 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1315 DB_DNODE_EXIT(db);
1316 db->db_state = DB_CACHED;
1317 mutex_exit(&db->db_mtx);
1318 return (0);
1319 }
1320
1321 /*
1322 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1323 * processes the delete record and clears the bp while we are waiting
1324 * for the dn_mtx (resulting in a "no" from block_freed).
1325 */
1326 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1327 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1328 BP_IS_HOLE(db->db_blkptr)))) {
1329 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1330
1331 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1332 db->db.db_size));
1333 bzero(db->db.db_data, db->db.db_size);
1334
1335 if (db->db_blkptr != NULL && db->db_level > 0 &&
1336 BP_IS_HOLE(db->db_blkptr) &&
1337 db->db_blkptr->blk_birth != 0) {
1338 blkptr_t *bps = db->db.db_data;
1339 for (int i = 0; i < ((1 <<
1340 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1341 i++) {
1342 blkptr_t *bp = &bps[i];
1343 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1344 1 << dn->dn_indblkshift);
1345 BP_SET_LSIZE(bp,
1346 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1347 dn->dn_datablksz :
1348 BP_GET_LSIZE(db->db_blkptr));
1349 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1350 BP_SET_LEVEL(bp,
1351 BP_GET_LEVEL(db->db_blkptr) - 1);
1352 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1353 }
1354 }
1355 DB_DNODE_EXIT(db);
1356 db->db_state = DB_CACHED;
1357 mutex_exit(&db->db_mtx);
1358 return (0);
1359 }
1360
1361
1362 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1363 db->db.db_object, db->db_level, db->db_blkid);
1364
1365 /*
1366 * All bps of an encrypted os should have the encryption bit set.
1367 * If this is not true it indicates tampering and we report an error.
1368 */
1369 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1370 spa_log_error(db->db_objset->os_spa, &zb);
1371 zfs_panic_recover("unencrypted block in encrypted "
1372 "object set %llu", dmu_objset_id(db->db_objset));
1373 DB_DNODE_EXIT(db);
1374 mutex_exit(&db->db_mtx);
1375 return (SET_ERROR(EIO));
1376 }
1377
1378 err = dbuf_read_verify_dnode_crypt(db, flags);
1379 if (err != 0) {
1380 DB_DNODE_EXIT(db);
1381 mutex_exit(&db->db_mtx);
1382 return (err);
1383 }
1384
1385 DB_DNODE_EXIT(db);
1386
1387 db->db_state = DB_READ;
1388 mutex_exit(&db->db_mtx);
1389
1390 if (DBUF_IS_L2CACHEABLE(db))
1391 aflags |= ARC_FLAG_L2CACHE;
1392
1393 dbuf_add_ref(db, NULL);
1394
1395 zio_flags = (flags & DB_RF_CANFAIL) ?
1396 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1397
1398 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1399 zio_flags |= ZIO_FLAG_RAW;
1400
1401 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1402 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1403 &aflags, &zb);
1404
1405 return (err);
1406 }
1407
1408 /*
1409 * This is our just-in-time copy function. It makes a copy of buffers that
1410 * have been modified in a previous transaction group before we access them in
1411 * the current active group.
1412 *
1413 * This function is used in three places: when we are dirtying a buffer for the
1414 * first time in a txg, when we are freeing a range in a dnode that includes
1415 * this buffer, and when we are accessing a buffer which was received compressed
1416 * and later referenced in a WRITE_BYREF record.
1417 *
1418 * Note that when we are called from dbuf_free_range() we do not put a hold on
1419 * the buffer, we just traverse the active dbuf list for the dnode.
1420 */
1421 static void
1422 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1423 {
1424 dbuf_dirty_record_t *dr = db->db_last_dirty;
1425
1426 ASSERT(MUTEX_HELD(&db->db_mtx));
1427 ASSERT(db->db.db_data != NULL);
1428 ASSERT(db->db_level == 0);
1429 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1430
1431 if (dr == NULL ||
1432 (dr->dt.dl.dr_data !=
1433 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1434 return;
1435
1436 /*
1437 * If the last dirty record for this dbuf has not yet synced
1438 * and its referencing the dbuf data, either:
1439 * reset the reference to point to a new copy,
1440 * or (if there a no active holders)
1441 * just null out the current db_data pointer.
1442 */
1443 ASSERT3U(dr->dr_txg, >=, txg - 2);
1444 if (db->db_blkid == DMU_BONUS_BLKID) {
1445 dnode_t *dn = DB_DNODE(db);
1446 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1447 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1448 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1449 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1450 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1451 dnode_t *dn = DB_DNODE(db);
1452 int size = arc_buf_size(db->db_buf);
1453 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1454 spa_t *spa = db->db_objset->os_spa;
1455 enum zio_compress compress_type =
1456 arc_get_compression(db->db_buf);
1457
1458 if (arc_is_encrypted(db->db_buf)) {
1459 boolean_t byteorder;
1460 uint8_t salt[ZIO_DATA_SALT_LEN];
1461 uint8_t iv[ZIO_DATA_IV_LEN];
1462 uint8_t mac[ZIO_DATA_MAC_LEN];
1463
1464 arc_get_raw_params(db->db_buf, &byteorder, salt,
1465 iv, mac);
1466 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1467 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1468 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1469 compress_type);
1470 } else if (compress_type != ZIO_COMPRESS_OFF) {
1471 ASSERT3U(type, ==, ARC_BUFC_DATA);
1472 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1473 size, arc_buf_lsize(db->db_buf), compress_type);
1474 } else {
1475 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1476 }
1477 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1478 } else {
1479 db->db_buf = NULL;
1480 dbuf_clear_data(db);
1481 }
1482 }
1483
1484 int
1485 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1486 {
1487 int err = 0;
1488 boolean_t prefetch;
1489 dnode_t *dn;
1490
1491 /*
1492 * We don't have to hold the mutex to check db_state because it
1493 * can't be freed while we have a hold on the buffer.
1494 */
1495 ASSERT(!refcount_is_zero(&db->db_holds));
1496
1497 if (db->db_state == DB_NOFILL)
1498 return (SET_ERROR(EIO));
1499
1500 DB_DNODE_ENTER(db);
1501 dn = DB_DNODE(db);
1502 if ((flags & DB_RF_HAVESTRUCT) == 0)
1503 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1504
1505 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1506 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1507 DBUF_IS_CACHEABLE(db);
1508
1509 mutex_enter(&db->db_mtx);
1510 if (db->db_state == DB_CACHED) {
1511 spa_t *spa = dn->dn_objset->os_spa;
1512
1513 /*
1514 * Ensure that this block's dnode has been decrypted if
1515 * the caller has requested decrypted data.
1516 */
1517 err = dbuf_read_verify_dnode_crypt(db, flags);
1518
1519 /*
1520 * If the arc buf is compressed or encrypted and the caller
1521 * requested uncompressed data, we need to untransform it
1522 * before returning. We also call arc_untransform() on any
1523 * unauthenticated blocks, which will verify their MAC if
1524 * the key is now available.
1525 */
1526 if (err == 0 && db->db_buf != NULL &&
1527 (flags & DB_RF_NO_DECRYPT) == 0 &&
1528 (arc_is_encrypted(db->db_buf) ||
1529 arc_is_unauthenticated(db->db_buf) ||
1530 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1531 zbookmark_phys_t zb;
1532
1533 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1534 db->db.db_object, db->db_level, db->db_blkid);
1535 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1536 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1537 dbuf_set_data(db, db->db_buf);
1538 }
1539 mutex_exit(&db->db_mtx);
1540 if (err == 0 && prefetch)
1541 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1542 if ((flags & DB_RF_HAVESTRUCT) == 0)
1543 rw_exit(&dn->dn_struct_rwlock);
1544 DB_DNODE_EXIT(db);
1545 DBUF_STAT_BUMP(hash_hits);
1546 } else if (db->db_state == DB_UNCACHED) {
1547 spa_t *spa = dn->dn_objset->os_spa;
1548 boolean_t need_wait = B_FALSE;
1549
1550 if (zio == NULL &&
1551 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1552 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1553 need_wait = B_TRUE;
1554 }
1555 err = dbuf_read_impl(db, zio, flags);
1556
1557 /* dbuf_read_impl has dropped db_mtx for us */
1558
1559 if (!err && prefetch)
1560 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1561
1562 if ((flags & DB_RF_HAVESTRUCT) == 0)
1563 rw_exit(&dn->dn_struct_rwlock);
1564 DB_DNODE_EXIT(db);
1565 DBUF_STAT_BUMP(hash_misses);
1566
1567 if (!err && need_wait)
1568 err = zio_wait(zio);
1569 } else {
1570 /*
1571 * Another reader came in while the dbuf was in flight
1572 * between UNCACHED and CACHED. Either a writer will finish
1573 * writing the buffer (sending the dbuf to CACHED) or the
1574 * first reader's request will reach the read_done callback
1575 * and send the dbuf to CACHED. Otherwise, a failure
1576 * occurred and the dbuf went to UNCACHED.
1577 */
1578 mutex_exit(&db->db_mtx);
1579 if (prefetch)
1580 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1581 if ((flags & DB_RF_HAVESTRUCT) == 0)
1582 rw_exit(&dn->dn_struct_rwlock);
1583 DB_DNODE_EXIT(db);
1584 DBUF_STAT_BUMP(hash_misses);
1585
1586 /* Skip the wait per the caller's request. */
1587 mutex_enter(&db->db_mtx);
1588 if ((flags & DB_RF_NEVERWAIT) == 0) {
1589 while (db->db_state == DB_READ ||
1590 db->db_state == DB_FILL) {
1591 ASSERT(db->db_state == DB_READ ||
1592 (flags & DB_RF_HAVESTRUCT) == 0);
1593 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1594 db, zio_t *, zio);
1595 cv_wait(&db->db_changed, &db->db_mtx);
1596 }
1597 if (db->db_state == DB_UNCACHED)
1598 err = SET_ERROR(EIO);
1599 }
1600 mutex_exit(&db->db_mtx);
1601 }
1602
1603 return (err);
1604 }
1605
1606 static void
1607 dbuf_noread(dmu_buf_impl_t *db)
1608 {
1609 ASSERT(!refcount_is_zero(&db->db_holds));
1610 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1611 mutex_enter(&db->db_mtx);
1612 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1613 cv_wait(&db->db_changed, &db->db_mtx);
1614 if (db->db_state == DB_UNCACHED) {
1615 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1616 spa_t *spa = db->db_objset->os_spa;
1617
1618 ASSERT(db->db_buf == NULL);
1619 ASSERT(db->db.db_data == NULL);
1620 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1621 db->db_state = DB_FILL;
1622 } else if (db->db_state == DB_NOFILL) {
1623 dbuf_clear_data(db);
1624 } else {
1625 ASSERT3U(db->db_state, ==, DB_CACHED);
1626 }
1627 mutex_exit(&db->db_mtx);
1628 }
1629
1630 void
1631 dbuf_unoverride(dbuf_dirty_record_t *dr)
1632 {
1633 dmu_buf_impl_t *db = dr->dr_dbuf;
1634 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1635 uint64_t txg = dr->dr_txg;
1636
1637 ASSERT(MUTEX_HELD(&db->db_mtx));
1638 /*
1639 * This assert is valid because dmu_sync() expects to be called by
1640 * a zilog's get_data while holding a range lock. This call only
1641 * comes from dbuf_dirty() callers who must also hold a range lock.
1642 */
1643 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1644 ASSERT(db->db_level == 0);
1645
1646 if (db->db_blkid == DMU_BONUS_BLKID ||
1647 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1648 return;
1649
1650 ASSERT(db->db_data_pending != dr);
1651
1652 /* free this block */
1653 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1654 zio_free(db->db_objset->os_spa, txg, bp);
1655
1656 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1657 dr->dt.dl.dr_nopwrite = B_FALSE;
1658 dr->dt.dl.dr_has_raw_params = B_FALSE;
1659
1660 /*
1661 * Release the already-written buffer, so we leave it in
1662 * a consistent dirty state. Note that all callers are
1663 * modifying the buffer, so they will immediately do
1664 * another (redundant) arc_release(). Therefore, leave
1665 * the buf thawed to save the effort of freezing &
1666 * immediately re-thawing it.
1667 */
1668 arc_release(dr->dt.dl.dr_data, db);
1669 }
1670
1671 /*
1672 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1673 * data blocks in the free range, so that any future readers will find
1674 * empty blocks.
1675 */
1676 void
1677 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1678 dmu_tx_t *tx)
1679 {
1680 dmu_buf_impl_t *db_search;
1681 dmu_buf_impl_t *db, *db_next;
1682 uint64_t txg = tx->tx_txg;
1683 avl_index_t where;
1684
1685 if (end_blkid > dn->dn_maxblkid &&
1686 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1687 end_blkid = dn->dn_maxblkid;
1688 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1689
1690 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1691 db_search->db_level = 0;
1692 db_search->db_blkid = start_blkid;
1693 db_search->db_state = DB_SEARCH;
1694
1695 mutex_enter(&dn->dn_dbufs_mtx);
1696 db = avl_find(&dn->dn_dbufs, db_search, &where);
1697 ASSERT3P(db, ==, NULL);
1698
1699 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1700
1701 for (; db != NULL; db = db_next) {
1702 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1703 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1704
1705 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1706 break;
1707 }
1708 ASSERT3U(db->db_blkid, >=, start_blkid);
1709
1710 /* found a level 0 buffer in the range */
1711 mutex_enter(&db->db_mtx);
1712 if (dbuf_undirty(db, tx)) {
1713 /* mutex has been dropped and dbuf destroyed */
1714 continue;
1715 }
1716
1717 if (db->db_state == DB_UNCACHED ||
1718 db->db_state == DB_NOFILL ||
1719 db->db_state == DB_EVICTING) {
1720 ASSERT(db->db.db_data == NULL);
1721 mutex_exit(&db->db_mtx);
1722 continue;
1723 }
1724 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1725 /* will be handled in dbuf_read_done or dbuf_rele */
1726 db->db_freed_in_flight = TRUE;
1727 mutex_exit(&db->db_mtx);
1728 continue;
1729 }
1730 if (refcount_count(&db->db_holds) == 0) {
1731 ASSERT(db->db_buf);
1732 dbuf_destroy(db);
1733 continue;
1734 }
1735 /* The dbuf is referenced */
1736
1737 if (db->db_last_dirty != NULL) {
1738 dbuf_dirty_record_t *dr = db->db_last_dirty;
1739
1740 if (dr->dr_txg == txg) {
1741 /*
1742 * This buffer is "in-use", re-adjust the file
1743 * size to reflect that this buffer may
1744 * contain new data when we sync.
1745 */
1746 if (db->db_blkid != DMU_SPILL_BLKID &&
1747 db->db_blkid > dn->dn_maxblkid)
1748 dn->dn_maxblkid = db->db_blkid;
1749 dbuf_unoverride(dr);
1750 } else {
1751 /*
1752 * This dbuf is not dirty in the open context.
1753 * Either uncache it (if its not referenced in
1754 * the open context) or reset its contents to
1755 * empty.
1756 */
1757 dbuf_fix_old_data(db, txg);
1758 }
1759 }
1760 /* clear the contents if its cached */
1761 if (db->db_state == DB_CACHED) {
1762 ASSERT(db->db.db_data != NULL);
1763 arc_release(db->db_buf, db);
1764 bzero(db->db.db_data, db->db.db_size);
1765 arc_buf_freeze(db->db_buf);
1766 }
1767
1768 mutex_exit(&db->db_mtx);
1769 }
1770
1771 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1772 mutex_exit(&dn->dn_dbufs_mtx);
1773 }
1774
1775 void
1776 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1777 {
1778 arc_buf_t *buf, *obuf;
1779 int osize = db->db.db_size;
1780 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1781 dnode_t *dn;
1782
1783 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1784
1785 DB_DNODE_ENTER(db);
1786 dn = DB_DNODE(db);
1787
1788 /* XXX does *this* func really need the lock? */
1789 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1790
1791 /*
1792 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1793 * is OK, because there can be no other references to the db
1794 * when we are changing its size, so no concurrent DB_FILL can
1795 * be happening.
1796 */
1797 /*
1798 * XXX we should be doing a dbuf_read, checking the return
1799 * value and returning that up to our callers
1800 */
1801 dmu_buf_will_dirty(&db->db, tx);
1802
1803 /* create the data buffer for the new block */
1804 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1805
1806 /* copy old block data to the new block */
1807 obuf = db->db_buf;
1808 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1809 /* zero the remainder */
1810 if (size > osize)
1811 bzero((uint8_t *)buf->b_data + osize, size - osize);
1812
1813 mutex_enter(&db->db_mtx);
1814 dbuf_set_data(db, buf);
1815 arc_buf_destroy(obuf, db);
1816 db->db.db_size = size;
1817
1818 if (db->db_level == 0) {
1819 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1820 db->db_last_dirty->dt.dl.dr_data = buf;
1821 }
1822 mutex_exit(&db->db_mtx);
1823
1824 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1825 DB_DNODE_EXIT(db);
1826 }
1827
1828 void
1829 dbuf_release_bp(dmu_buf_impl_t *db)
1830 {
1831 ASSERTV(objset_t *os = db->db_objset);
1832
1833 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1834 ASSERT(arc_released(os->os_phys_buf) ||
1835 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1836 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1837
1838 (void) arc_release(db->db_buf, db);
1839 }
1840
1841 /*
1842 * We already have a dirty record for this TXG, and we are being
1843 * dirtied again.
1844 */
1845 static void
1846 dbuf_redirty(dbuf_dirty_record_t *dr)
1847 {
1848 dmu_buf_impl_t *db = dr->dr_dbuf;
1849
1850 ASSERT(MUTEX_HELD(&db->db_mtx));
1851
1852 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1853 /*
1854 * If this buffer has already been written out,
1855 * we now need to reset its state.
1856 */
1857 dbuf_unoverride(dr);
1858 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1859 db->db_state != DB_NOFILL) {
1860 /* Already released on initial dirty, so just thaw. */
1861 ASSERT(arc_released(db->db_buf));
1862 arc_buf_thaw(db->db_buf);
1863 }
1864 }
1865 }
1866
1867 dbuf_dirty_record_t *
1868 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1869 {
1870 dnode_t *dn;
1871 objset_t *os;
1872 dbuf_dirty_record_t **drp, *dr;
1873 int drop_struct_lock = FALSE;
1874 int txgoff = tx->tx_txg & TXG_MASK;
1875
1876 ASSERT(tx->tx_txg != 0);
1877 ASSERT(!refcount_is_zero(&db->db_holds));
1878 DMU_TX_DIRTY_BUF(tx, db);
1879
1880 DB_DNODE_ENTER(db);
1881 dn = DB_DNODE(db);
1882 /*
1883 * Shouldn't dirty a regular buffer in syncing context. Private
1884 * objects may be dirtied in syncing context, but only if they
1885 * were already pre-dirtied in open context.
1886 */
1887 #ifdef DEBUG
1888 if (dn->dn_objset->os_dsl_dataset != NULL) {
1889 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1890 RW_READER, FTAG);
1891 }
1892 ASSERT(!dmu_tx_is_syncing(tx) ||
1893 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1894 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1895 dn->dn_objset->os_dsl_dataset == NULL);
1896 if (dn->dn_objset->os_dsl_dataset != NULL)
1897 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1898 #endif
1899 /*
1900 * We make this assert for private objects as well, but after we
1901 * check if we're already dirty. They are allowed to re-dirty
1902 * in syncing context.
1903 */
1904 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1905 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1906 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1907
1908 mutex_enter(&db->db_mtx);
1909 /*
1910 * XXX make this true for indirects too? The problem is that
1911 * transactions created with dmu_tx_create_assigned() from
1912 * syncing context don't bother holding ahead.
1913 */
1914 ASSERT(db->db_level != 0 ||
1915 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1916 db->db_state == DB_NOFILL);
1917
1918 mutex_enter(&dn->dn_mtx);
1919 /*
1920 * Don't set dirtyctx to SYNC if we're just modifying this as we
1921 * initialize the objset.
1922 */
1923 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1924 if (dn->dn_objset->os_dsl_dataset != NULL) {
1925 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1926 RW_READER, FTAG);
1927 }
1928 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1929 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1930 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1931 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1932 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1933 }
1934 if (dn->dn_objset->os_dsl_dataset != NULL) {
1935 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1936 FTAG);
1937 }
1938 }
1939
1940 if (tx->tx_txg > dn->dn_dirty_txg)
1941 dn->dn_dirty_txg = tx->tx_txg;
1942 mutex_exit(&dn->dn_mtx);
1943
1944 if (db->db_blkid == DMU_SPILL_BLKID)
1945 dn->dn_have_spill = B_TRUE;
1946
1947 /*
1948 * If this buffer is already dirty, we're done.
1949 */
1950 drp = &db->db_last_dirty;
1951 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1952 db->db.db_object == DMU_META_DNODE_OBJECT);
1953 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1954 drp = &dr->dr_next;
1955 if (dr && dr->dr_txg == tx->tx_txg) {
1956 DB_DNODE_EXIT(db);
1957
1958 dbuf_redirty(dr);
1959 mutex_exit(&db->db_mtx);
1960 return (dr);
1961 }
1962
1963 /*
1964 * Only valid if not already dirty.
1965 */
1966 ASSERT(dn->dn_object == 0 ||
1967 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1968 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1969
1970 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1971
1972 /*
1973 * We should only be dirtying in syncing context if it's the
1974 * mos or we're initializing the os or it's a special object.
1975 * However, we are allowed to dirty in syncing context provided
1976 * we already dirtied it in open context. Hence we must make
1977 * this assertion only if we're not already dirty.
1978 */
1979 os = dn->dn_objset;
1980 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1981 #ifdef DEBUG
1982 if (dn->dn_objset->os_dsl_dataset != NULL)
1983 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1984 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1985 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1986 if (dn->dn_objset->os_dsl_dataset != NULL)
1987 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1988 #endif
1989 ASSERT(db->db.db_size != 0);
1990
1991 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1992
1993 if (db->db_blkid != DMU_BONUS_BLKID) {
1994 dmu_objset_willuse_space(os, db->db.db_size, tx);
1995 }
1996
1997 /*
1998 * If this buffer is dirty in an old transaction group we need
1999 * to make a copy of it so that the changes we make in this
2000 * transaction group won't leak out when we sync the older txg.
2001 */
2002 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2003 list_link_init(&dr->dr_dirty_node);
2004 if (db->db_level == 0) {
2005 void *data_old = db->db_buf;
2006
2007 if (db->db_state != DB_NOFILL) {
2008 if (db->db_blkid == DMU_BONUS_BLKID) {
2009 dbuf_fix_old_data(db, tx->tx_txg);
2010 data_old = db->db.db_data;
2011 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2012 /*
2013 * Release the data buffer from the cache so
2014 * that we can modify it without impacting
2015 * possible other users of this cached data
2016 * block. Note that indirect blocks and
2017 * private objects are not released until the
2018 * syncing state (since they are only modified
2019 * then).
2020 */
2021 arc_release(db->db_buf, db);
2022 dbuf_fix_old_data(db, tx->tx_txg);
2023 data_old = db->db_buf;
2024 }
2025 ASSERT(data_old != NULL);
2026 }
2027 dr->dt.dl.dr_data = data_old;
2028 } else {
2029 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2030 list_create(&dr->dt.di.dr_children,
2031 sizeof (dbuf_dirty_record_t),
2032 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2033 }
2034 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
2035 dr->dr_accounted = db->db.db_size;
2036 dr->dr_dbuf = db;
2037 dr->dr_txg = tx->tx_txg;
2038 dr->dr_next = *drp;
2039 *drp = dr;
2040
2041 /*
2042 * We could have been freed_in_flight between the dbuf_noread
2043 * and dbuf_dirty. We win, as though the dbuf_noread() had
2044 * happened after the free.
2045 */
2046 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2047 db->db_blkid != DMU_SPILL_BLKID) {
2048 mutex_enter(&dn->dn_mtx);
2049 if (dn->dn_free_ranges[txgoff] != NULL) {
2050 range_tree_clear(dn->dn_free_ranges[txgoff],
2051 db->db_blkid, 1);
2052 }
2053 mutex_exit(&dn->dn_mtx);
2054 db->db_freed_in_flight = FALSE;
2055 }
2056
2057 /*
2058 * This buffer is now part of this txg
2059 */
2060 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2061 db->db_dirtycnt += 1;
2062 ASSERT3U(db->db_dirtycnt, <=, 3);
2063
2064 mutex_exit(&db->db_mtx);
2065
2066 if (db->db_blkid == DMU_BONUS_BLKID ||
2067 db->db_blkid == DMU_SPILL_BLKID) {
2068 mutex_enter(&dn->dn_mtx);
2069 ASSERT(!list_link_active(&dr->dr_dirty_node));
2070 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2071 mutex_exit(&dn->dn_mtx);
2072 dnode_setdirty(dn, tx);
2073 DB_DNODE_EXIT(db);
2074 return (dr);
2075 }
2076
2077 /*
2078 * The dn_struct_rwlock prevents db_blkptr from changing
2079 * due to a write from syncing context completing
2080 * while we are running, so we want to acquire it before
2081 * looking at db_blkptr.
2082 */
2083 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2084 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2085 drop_struct_lock = TRUE;
2086 }
2087
2088 /*
2089 * We need to hold the dn_struct_rwlock to make this assertion,
2090 * because it protects dn_phys / dn_next_nlevels from changing.
2091 */
2092 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2093 dn->dn_phys->dn_nlevels > db->db_level ||
2094 dn->dn_next_nlevels[txgoff] > db->db_level ||
2095 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2096 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2097
2098 /*
2099 * If we are overwriting a dedup BP, then unless it is snapshotted,
2100 * when we get to syncing context we will need to decrement its
2101 * refcount in the DDT. Prefetch the relevant DDT block so that
2102 * syncing context won't have to wait for the i/o.
2103 */
2104 ddt_prefetch(os->os_spa, db->db_blkptr);
2105
2106 if (db->db_level == 0) {
2107 ASSERT(!db->db_objset->os_raw_receive ||
2108 dn->dn_maxblkid >= db->db_blkid);
2109 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2110 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2111 }
2112
2113 if (db->db_level+1 < dn->dn_nlevels) {
2114 dmu_buf_impl_t *parent = db->db_parent;
2115 dbuf_dirty_record_t *di;
2116 int parent_held = FALSE;
2117
2118 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2119 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2120
2121 parent = dbuf_hold_level(dn, db->db_level+1,
2122 db->db_blkid >> epbs, FTAG);
2123 ASSERT(parent != NULL);
2124 parent_held = TRUE;
2125 }
2126 if (drop_struct_lock)
2127 rw_exit(&dn->dn_struct_rwlock);
2128 ASSERT3U(db->db_level+1, ==, parent->db_level);
2129 di = dbuf_dirty(parent, tx);
2130 if (parent_held)
2131 dbuf_rele(parent, FTAG);
2132
2133 mutex_enter(&db->db_mtx);
2134 /*
2135 * Since we've dropped the mutex, it's possible that
2136 * dbuf_undirty() might have changed this out from under us.
2137 */
2138 if (db->db_last_dirty == dr ||
2139 dn->dn_object == DMU_META_DNODE_OBJECT) {
2140 mutex_enter(&di->dt.di.dr_mtx);
2141 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2142 ASSERT(!list_link_active(&dr->dr_dirty_node));
2143 list_insert_tail(&di->dt.di.dr_children, dr);
2144 mutex_exit(&di->dt.di.dr_mtx);
2145 dr->dr_parent = di;
2146 }
2147 mutex_exit(&db->db_mtx);
2148 } else {
2149 ASSERT(db->db_level+1 == dn->dn_nlevels);
2150 ASSERT(db->db_blkid < dn->dn_nblkptr);
2151 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2152 mutex_enter(&dn->dn_mtx);
2153 ASSERT(!list_link_active(&dr->dr_dirty_node));
2154 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2155 mutex_exit(&dn->dn_mtx);
2156 if (drop_struct_lock)
2157 rw_exit(&dn->dn_struct_rwlock);
2158 }
2159
2160 dnode_setdirty(dn, tx);
2161 DB_DNODE_EXIT(db);
2162 return (dr);
2163 }
2164
2165 /*
2166 * Undirty a buffer in the transaction group referenced by the given
2167 * transaction. Return whether this evicted the dbuf.
2168 */
2169 static boolean_t
2170 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2171 {
2172 dnode_t *dn;
2173 uint64_t txg = tx->tx_txg;
2174 dbuf_dirty_record_t *dr, **drp;
2175
2176 ASSERT(txg != 0);
2177
2178 /*
2179 * Due to our use of dn_nlevels below, this can only be called
2180 * in open context, unless we are operating on the MOS.
2181 * From syncing context, dn_nlevels may be different from the
2182 * dn_nlevels used when dbuf was dirtied.
2183 */
2184 ASSERT(db->db_objset ==
2185 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2186 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2187 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2188 ASSERT0(db->db_level);
2189 ASSERT(MUTEX_HELD(&db->db_mtx));
2190
2191 /*
2192 * If this buffer is not dirty, we're done.
2193 */
2194 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2195 if (dr->dr_txg <= txg)
2196 break;
2197 if (dr == NULL || dr->dr_txg < txg)
2198 return (B_FALSE);
2199 ASSERT(dr->dr_txg == txg);
2200 ASSERT(dr->dr_dbuf == db);
2201
2202 DB_DNODE_ENTER(db);
2203 dn = DB_DNODE(db);
2204
2205 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2206
2207 ASSERT(db->db.db_size != 0);
2208
2209 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2210 dr->dr_accounted, txg);
2211
2212 *drp = dr->dr_next;
2213
2214 /*
2215 * Note that there are three places in dbuf_dirty()
2216 * where this dirty record may be put on a list.
2217 * Make sure to do a list_remove corresponding to
2218 * every one of those list_insert calls.
2219 */
2220 if (dr->dr_parent) {
2221 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2222 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2223 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2224 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2225 db->db_level + 1 == dn->dn_nlevels) {
2226 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2227 mutex_enter(&dn->dn_mtx);
2228 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2229 mutex_exit(&dn->dn_mtx);
2230 }
2231 DB_DNODE_EXIT(db);
2232
2233 if (db->db_state != DB_NOFILL) {
2234 dbuf_unoverride(dr);
2235
2236 ASSERT(db->db_buf != NULL);
2237 ASSERT(dr->dt.dl.dr_data != NULL);
2238 if (dr->dt.dl.dr_data != db->db_buf)
2239 arc_buf_destroy(dr->dt.dl.dr_data, db);
2240 }
2241
2242 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2243
2244 ASSERT(db->db_dirtycnt > 0);
2245 db->db_dirtycnt -= 1;
2246
2247 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2248 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2249 dbuf_destroy(db);
2250 return (B_TRUE);
2251 }
2252
2253 return (B_FALSE);
2254 }
2255
2256 static void
2257 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2258 {
2259 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2260
2261 ASSERT(tx->tx_txg != 0);
2262 ASSERT(!refcount_is_zero(&db->db_holds));
2263
2264 /*
2265 * Quick check for dirtyness. For already dirty blocks, this
2266 * reduces runtime of this function by >90%, and overall performance
2267 * by 50% for some workloads (e.g. file deletion with indirect blocks
2268 * cached).
2269 */
2270 mutex_enter(&db->db_mtx);
2271
2272 dbuf_dirty_record_t *dr;
2273 for (dr = db->db_last_dirty;
2274 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2275 /*
2276 * It's possible that it is already dirty but not cached,
2277 * because there are some calls to dbuf_dirty() that don't
2278 * go through dmu_buf_will_dirty().
2279 */
2280 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2281 /* This dbuf is already dirty and cached. */
2282 dbuf_redirty(dr);
2283 mutex_exit(&db->db_mtx);
2284 return;
2285 }
2286 }
2287 mutex_exit(&db->db_mtx);
2288
2289 DB_DNODE_ENTER(db);
2290 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2291 flags |= DB_RF_HAVESTRUCT;
2292 DB_DNODE_EXIT(db);
2293 (void) dbuf_read(db, NULL, flags);
2294 (void) dbuf_dirty(db, tx);
2295 }
2296
2297 void
2298 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2299 {
2300 dmu_buf_will_dirty_impl(db_fake,
2301 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2302 }
2303
2304 void
2305 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2306 {
2307 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2308
2309 db->db_state = DB_NOFILL;
2310
2311 dmu_buf_will_fill(db_fake, tx);
2312 }
2313
2314 void
2315 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2316 {
2317 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2318
2319 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2320 ASSERT(tx->tx_txg != 0);
2321 ASSERT(db->db_level == 0);
2322 ASSERT(!refcount_is_zero(&db->db_holds));
2323
2324 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2325 dmu_tx_private_ok(tx));
2326
2327 dbuf_noread(db);
2328 (void) dbuf_dirty(db, tx);
2329 }
2330
2331 /*
2332 * This function is effectively the same as dmu_buf_will_dirty(), but
2333 * indicates the caller expects raw encrypted data in the db, and provides
2334 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2335 * blkptr_t when this dbuf is written. This is only used for blocks of
2336 * dnodes, during raw receive.
2337 */
2338 void
2339 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2340 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2341 {
2342 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2343 dbuf_dirty_record_t *dr;
2344
2345 /*
2346 * dr_has_raw_params is only processed for blocks of dnodes
2347 * (see dbuf_sync_dnode_leaf_crypt()).
2348 */
2349 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2350 ASSERT3U(db->db_level, ==, 0);
2351 ASSERT(db->db_objset->os_raw_receive);
2352
2353 dmu_buf_will_dirty_impl(db_fake,
2354 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2355
2356 dr = db->db_last_dirty;
2357 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2358 dr = dr->dr_next;
2359
2360 ASSERT3P(dr, !=, NULL);
2361 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2362
2363 dr->dt.dl.dr_has_raw_params = B_TRUE;
2364 dr->dt.dl.dr_byteorder = byteorder;
2365 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2366 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2367 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2368 }
2369
2370 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2371 /* ARGSUSED */
2372 void
2373 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2374 {
2375 mutex_enter(&db->db_mtx);
2376 DBUF_VERIFY(db);
2377
2378 if (db->db_state == DB_FILL) {
2379 if (db->db_level == 0 && db->db_freed_in_flight) {
2380 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2381 /* we were freed while filling */
2382 /* XXX dbuf_undirty? */
2383 bzero(db->db.db_data, db->db.db_size);
2384 db->db_freed_in_flight = FALSE;
2385 }
2386 db->db_state = DB_CACHED;
2387 cv_broadcast(&db->db_changed);
2388 }
2389 mutex_exit(&db->db_mtx);
2390 }
2391
2392 void
2393 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2394 bp_embedded_type_t etype, enum zio_compress comp,
2395 int uncompressed_size, int compressed_size, int byteorder,
2396 dmu_tx_t *tx)
2397 {
2398 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2399 struct dirty_leaf *dl;
2400 dmu_object_type_t type;
2401
2402 if (etype == BP_EMBEDDED_TYPE_DATA) {
2403 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2404 SPA_FEATURE_EMBEDDED_DATA));
2405 }
2406
2407 DB_DNODE_ENTER(db);
2408 type = DB_DNODE(db)->dn_type;
2409 DB_DNODE_EXIT(db);
2410
2411 ASSERT0(db->db_level);
2412 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2413
2414 dmu_buf_will_not_fill(dbuf, tx);
2415
2416 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2417 dl = &db->db_last_dirty->dt.dl;
2418 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2419 data, comp, uncompressed_size, compressed_size);
2420 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2421 BP_SET_TYPE(&dl->dr_overridden_by, type);
2422 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2423 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2424
2425 dl->dr_override_state = DR_OVERRIDDEN;
2426 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2427 }
2428
2429 /*
2430 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2431 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2432 */
2433 void
2434 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2435 {
2436 ASSERT(!refcount_is_zero(&db->db_holds));
2437 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2438 ASSERT(db->db_level == 0);
2439 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2440 ASSERT(buf != NULL);
2441 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2442 ASSERT(tx->tx_txg != 0);
2443
2444 arc_return_buf(buf, db);
2445 ASSERT(arc_released(buf));
2446
2447 mutex_enter(&db->db_mtx);
2448
2449 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2450 cv_wait(&db->db_changed, &db->db_mtx);
2451
2452 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2453
2454 if (db->db_state == DB_CACHED &&
2455 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2456 /*
2457 * In practice, we will never have a case where we have an
2458 * encrypted arc buffer while additional holds exist on the
2459 * dbuf. We don't handle this here so we simply assert that
2460 * fact instead.
2461 */
2462 ASSERT(!arc_is_encrypted(buf));
2463 mutex_exit(&db->db_mtx);
2464 (void) dbuf_dirty(db, tx);
2465 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2466 arc_buf_destroy(buf, db);
2467 xuio_stat_wbuf_copied();
2468 return;
2469 }
2470
2471 xuio_stat_wbuf_nocopy();
2472 if (db->db_state == DB_CACHED) {
2473 dbuf_dirty_record_t *dr = db->db_last_dirty;
2474
2475 ASSERT(db->db_buf != NULL);
2476 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2477 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2478
2479 if (!arc_released(db->db_buf)) {
2480 ASSERT(dr->dt.dl.dr_override_state ==
2481 DR_OVERRIDDEN);
2482 arc_release(db->db_buf, db);
2483 }
2484 dr->dt.dl.dr_data = buf;
2485 arc_buf_destroy(db->db_buf, db);
2486 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2487 arc_release(db->db_buf, db);
2488 arc_buf_destroy(db->db_buf, db);
2489 }
2490 db->db_buf = NULL;
2491 }
2492 ASSERT(db->db_buf == NULL);
2493 dbuf_set_data(db, buf);
2494 db->db_state = DB_FILL;
2495 mutex_exit(&db->db_mtx);
2496 (void) dbuf_dirty(db, tx);
2497 dmu_buf_fill_done(&db->db, tx);
2498 }
2499
2500 void
2501 dbuf_destroy(dmu_buf_impl_t *db)
2502 {
2503 dnode_t *dn;
2504 dmu_buf_impl_t *parent = db->db_parent;
2505 dmu_buf_impl_t *dndb;
2506
2507 ASSERT(MUTEX_HELD(&db->db_mtx));
2508 ASSERT(refcount_is_zero(&db->db_holds));
2509
2510 if (db->db_buf != NULL) {
2511 arc_buf_destroy(db->db_buf, db);
2512 db->db_buf = NULL;
2513 }
2514
2515 if (db->db_blkid == DMU_BONUS_BLKID) {
2516 int slots = DB_DNODE(db)->dn_num_slots;
2517 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2518 if (db->db.db_data != NULL) {
2519 kmem_free(db->db.db_data, bonuslen);
2520 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2521 db->db_state = DB_UNCACHED;
2522 }
2523 }
2524
2525 dbuf_clear_data(db);
2526
2527 if (multilist_link_active(&db->db_cache_link)) {
2528 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2529 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2530
2531 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2532 (void) refcount_remove_many(
2533 &dbuf_caches[db->db_caching_status].size,
2534 db->db.db_size, db);
2535
2536 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2537 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2538 } else {
2539 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2540 DBUF_STAT_BUMPDOWN(cache_count);
2541 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2542 db->db.db_size);
2543 }
2544 db->db_caching_status = DB_NO_CACHE;
2545 }
2546
2547 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2548 ASSERT(db->db_data_pending == NULL);
2549
2550 db->db_state = DB_EVICTING;
2551 db->db_blkptr = NULL;
2552
2553 /*
2554 * Now that db_state is DB_EVICTING, nobody else can find this via
2555 * the hash table. We can now drop db_mtx, which allows us to
2556 * acquire the dn_dbufs_mtx.
2557 */
2558 mutex_exit(&db->db_mtx);
2559
2560 DB_DNODE_ENTER(db);
2561 dn = DB_DNODE(db);
2562 dndb = dn->dn_dbuf;
2563 if (db->db_blkid != DMU_BONUS_BLKID) {
2564 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2565 if (needlock)
2566 mutex_enter(&dn->dn_dbufs_mtx);
2567 avl_remove(&dn->dn_dbufs, db);
2568 atomic_dec_32(&dn->dn_dbufs_count);
2569 membar_producer();
2570 DB_DNODE_EXIT(db);
2571 if (needlock)
2572 mutex_exit(&dn->dn_dbufs_mtx);
2573 /*
2574 * Decrementing the dbuf count means that the hold corresponding
2575 * to the removed dbuf is no longer discounted in dnode_move(),
2576 * so the dnode cannot be moved until after we release the hold.
2577 * The membar_producer() ensures visibility of the decremented
2578 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2579 * release any lock.
2580 */
2581 mutex_enter(&dn->dn_mtx);
2582 dnode_rele_and_unlock(dn, db, B_TRUE);
2583 db->db_dnode_handle = NULL;
2584
2585 dbuf_hash_remove(db);
2586 } else {
2587 DB_DNODE_EXIT(db);
2588 }
2589
2590 ASSERT(refcount_is_zero(&db->db_holds));
2591
2592 db->db_parent = NULL;
2593
2594 ASSERT(db->db_buf == NULL);
2595 ASSERT(db->db.db_data == NULL);
2596 ASSERT(db->db_hash_next == NULL);
2597 ASSERT(db->db_blkptr == NULL);
2598 ASSERT(db->db_data_pending == NULL);
2599 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2600 ASSERT(!multilist_link_active(&db->db_cache_link));
2601
2602 kmem_cache_free(dbuf_kmem_cache, db);
2603 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2604
2605 /*
2606 * If this dbuf is referenced from an indirect dbuf,
2607 * decrement the ref count on the indirect dbuf.
2608 */
2609 if (parent && parent != dndb) {
2610 mutex_enter(&parent->db_mtx);
2611 dbuf_rele_and_unlock(parent, db, B_TRUE);
2612 }
2613 }
2614
2615 /*
2616 * Note: While bpp will always be updated if the function returns success,
2617 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2618 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2619 * object.
2620 */
2621 __attribute__((always_inline))
2622 static inline int
2623 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2624 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2625 {
2626 *parentp = NULL;
2627 *bpp = NULL;
2628
2629 ASSERT(blkid != DMU_BONUS_BLKID);
2630
2631 if (blkid == DMU_SPILL_BLKID) {
2632 mutex_enter(&dn->dn_mtx);
2633 if (dn->dn_have_spill &&
2634 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2635 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2636 else
2637 *bpp = NULL;
2638 dbuf_add_ref(dn->dn_dbuf, NULL);
2639 *parentp = dn->dn_dbuf;
2640 mutex_exit(&dn->dn_mtx);
2641 return (0);
2642 }
2643
2644 int nlevels =
2645 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2646 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2647
2648 ASSERT3U(level * epbs, <, 64);
2649 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2650 /*
2651 * This assertion shouldn't trip as long as the max indirect block size
2652 * is less than 1M. The reason for this is that up to that point,
2653 * the number of levels required to address an entire object with blocks
2654 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2655 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2656 * (i.e. we can address the entire object), objects will all use at most
2657 * N-1 levels and the assertion won't overflow. However, once epbs is
2658 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2659 * enough to address an entire object, so objects will have 5 levels,
2660 * but then this assertion will overflow.
2661 *
2662 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2663 * need to redo this logic to handle overflows.
2664 */
2665 ASSERT(level >= nlevels ||
2666 ((nlevels - level - 1) * epbs) +
2667 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2668 if (level >= nlevels ||
2669 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2670 ((nlevels - level - 1) * epbs)) ||
2671 (fail_sparse &&
2672 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2673 /* the buffer has no parent yet */
2674 return (SET_ERROR(ENOENT));
2675 } else if (level < nlevels-1) {
2676 /* this block is referenced from an indirect block */
2677 int err;
2678 if (dh == NULL) {
2679 err = dbuf_hold_impl(dn, level+1,
2680 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2681 } else {
2682 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2683 blkid >> epbs, fail_sparse, FALSE, NULL,
2684 parentp, dh->dh_depth + 1);
2685 err = __dbuf_hold_impl(dh + 1);
2686 }
2687 if (err)
2688 return (err);
2689 err = dbuf_read(*parentp, NULL,
2690 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2691 if (err) {
2692 dbuf_rele(*parentp, NULL);
2693 *parentp = NULL;
2694 return (err);
2695 }
2696 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2697 (blkid & ((1ULL << epbs) - 1));
2698 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2699 ASSERT(BP_IS_HOLE(*bpp));
2700 return (0);
2701 } else {
2702 /* the block is referenced from the dnode */
2703 ASSERT3U(level, ==, nlevels-1);
2704 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2705 blkid < dn->dn_phys->dn_nblkptr);
2706 if (dn->dn_dbuf) {
2707 dbuf_add_ref(dn->dn_dbuf, NULL);
2708 *parentp = dn->dn_dbuf;
2709 }
2710 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2711 return (0);
2712 }
2713 }
2714
2715 static dmu_buf_impl_t *
2716 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2717 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2718 {
2719 objset_t *os = dn->dn_objset;
2720 dmu_buf_impl_t *db, *odb;
2721
2722 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2723 ASSERT(dn->dn_type != DMU_OT_NONE);
2724
2725 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2726
2727 db->db_objset = os;
2728 db->db.db_object = dn->dn_object;
2729 db->db_level = level;
2730 db->db_blkid = blkid;
2731 db->db_last_dirty = NULL;
2732 db->db_dirtycnt = 0;
2733 db->db_dnode_handle = dn->dn_handle;
2734 db->db_parent = parent;
2735 db->db_blkptr = blkptr;
2736
2737 db->db_user = NULL;
2738 db->db_user_immediate_evict = FALSE;
2739 db->db_freed_in_flight = FALSE;
2740 db->db_pending_evict = FALSE;
2741
2742 if (blkid == DMU_BONUS_BLKID) {
2743 ASSERT3P(parent, ==, dn->dn_dbuf);
2744 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2745 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2746 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2747 db->db.db_offset = DMU_BONUS_BLKID;
2748 db->db_state = DB_UNCACHED;
2749 db->db_caching_status = DB_NO_CACHE;
2750 /* the bonus dbuf is not placed in the hash table */
2751 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2752 return (db);
2753 } else if (blkid == DMU_SPILL_BLKID) {
2754 db->db.db_size = (blkptr != NULL) ?
2755 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2756 db->db.db_offset = 0;
2757 } else {
2758 int blocksize =
2759 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2760 db->db.db_size = blocksize;
2761 db->db.db_offset = db->db_blkid * blocksize;
2762 }
2763
2764 /*
2765 * Hold the dn_dbufs_mtx while we get the new dbuf
2766 * in the hash table *and* added to the dbufs list.
2767 * This prevents a possible deadlock with someone
2768 * trying to look up this dbuf before its added to the
2769 * dn_dbufs list.
2770 */
2771 mutex_enter(&dn->dn_dbufs_mtx);
2772 db->db_state = DB_EVICTING;
2773 if ((odb = dbuf_hash_insert(db)) != NULL) {
2774 /* someone else inserted it first */
2775 kmem_cache_free(dbuf_kmem_cache, db);
2776 mutex_exit(&dn->dn_dbufs_mtx);
2777 DBUF_STAT_BUMP(hash_insert_race);
2778 return (odb);
2779 }
2780 avl_add(&dn->dn_dbufs, db);
2781
2782 db->db_state = DB_UNCACHED;
2783 db->db_caching_status = DB_NO_CACHE;
2784 mutex_exit(&dn->dn_dbufs_mtx);
2785 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2786
2787 if (parent && parent != dn->dn_dbuf)
2788 dbuf_add_ref(parent, db);
2789
2790 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2791 refcount_count(&dn->dn_holds) > 0);
2792 (void) refcount_add(&dn->dn_holds, db);
2793 atomic_inc_32(&dn->dn_dbufs_count);
2794
2795 dprintf_dbuf(db, "db=%p\n", db);
2796
2797 return (db);
2798 }
2799
2800 typedef struct dbuf_prefetch_arg {
2801 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2802 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2803 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2804 int dpa_curlevel; /* The current level that we're reading */
2805 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2806 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2807 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2808 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2809 } dbuf_prefetch_arg_t;
2810
2811 /*
2812 * Actually issue the prefetch read for the block given.
2813 */
2814 static void
2815 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2816 {
2817 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2818 return;
2819
2820 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2821 arc_flags_t aflags =
2822 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2823
2824 /* dnodes are always read as raw and then converted later */
2825 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2826 dpa->dpa_curlevel == 0)
2827 zio_flags |= ZIO_FLAG_RAW;
2828
2829 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2830 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2831 ASSERT(dpa->dpa_zio != NULL);
2832 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2833 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2834 }
2835
2836 /*
2837 * Called when an indirect block above our prefetch target is read in. This
2838 * will either read in the next indirect block down the tree or issue the actual
2839 * prefetch if the next block down is our target.
2840 */
2841 static void
2842 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2843 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2844 {
2845 dbuf_prefetch_arg_t *dpa = private;
2846
2847 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2848 ASSERT3S(dpa->dpa_curlevel, >, 0);
2849
2850 /*
2851 * The dpa_dnode is only valid if we are called with a NULL
2852 * zio. This indicates that the arc_read() returned without
2853 * first calling zio_read() to issue a physical read. Once
2854 * a physical read is made the dpa_dnode must be invalidated
2855 * as the locks guarding it may have been dropped. If the
2856 * dpa_dnode is still valid, then we want to add it to the dbuf
2857 * cache. To do so, we must hold the dbuf associated with the block
2858 * we just prefetched, read its contents so that we associate it
2859 * with an arc_buf_t, and then release it.
2860 */
2861 if (zio != NULL) {
2862 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2863 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2864 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2865 } else {
2866 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2867 }
2868 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2869
2870 dpa->dpa_dnode = NULL;
2871 } else if (dpa->dpa_dnode != NULL) {
2872 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2873 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2874 dpa->dpa_zb.zb_level));
2875 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2876 dpa->dpa_curlevel, curblkid, FTAG);
2877 (void) dbuf_read(db, NULL,
2878 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2879 dbuf_rele(db, FTAG);
2880 }
2881
2882 if (abuf == NULL) {
2883 kmem_free(dpa, sizeof (*dpa));
2884 return;
2885 }
2886
2887 dpa->dpa_curlevel--;
2888 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2889 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2890 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2891 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2892
2893 if (BP_IS_HOLE(bp)) {
2894 kmem_free(dpa, sizeof (*dpa));
2895 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2896 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2897 dbuf_issue_final_prefetch(dpa, bp);
2898 kmem_free(dpa, sizeof (*dpa));
2899 } else {
2900 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2901 zbookmark_phys_t zb;
2902
2903 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2904 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2905 iter_aflags |= ARC_FLAG_L2CACHE;
2906
2907 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2908
2909 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2910 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2911
2912 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2913 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2914 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2915 &iter_aflags, &zb);
2916 }
2917
2918 arc_buf_destroy(abuf, private);
2919 }
2920
2921 /*
2922 * Issue prefetch reads for the given block on the given level. If the indirect
2923 * blocks above that block are not in memory, we will read them in
2924 * asynchronously. As a result, this call never blocks waiting for a read to
2925 * complete. Note that the prefetch might fail if the dataset is encrypted and
2926 * the encryption key is unmapped before the IO completes.
2927 */
2928 void
2929 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2930 arc_flags_t aflags)
2931 {
2932 blkptr_t bp;
2933 int epbs, nlevels, curlevel;
2934 uint64_t curblkid;
2935
2936 ASSERT(blkid != DMU_BONUS_BLKID);
2937 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2938
2939 if (blkid > dn->dn_maxblkid)
2940 return;
2941
2942 if (dnode_block_freed(dn, blkid))
2943 return;
2944
2945 /*
2946 * This dnode hasn't been written to disk yet, so there's nothing to
2947 * prefetch.
2948 */
2949 nlevels = dn->dn_phys->dn_nlevels;
2950 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2951 return;
2952
2953 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2954 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2955 return;
2956
2957 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2958 level, blkid);
2959 if (db != NULL) {
2960 mutex_exit(&db->db_mtx);
2961 /*
2962 * This dbuf already exists. It is either CACHED, or
2963 * (we assume) about to be read or filled.
2964 */
2965 return;
2966 }
2967
2968 /*
2969 * Find the closest ancestor (indirect block) of the target block
2970 * that is present in the cache. In this indirect block, we will
2971 * find the bp that is at curlevel, curblkid.
2972 */
2973 curlevel = level;
2974 curblkid = blkid;
2975 while (curlevel < nlevels - 1) {
2976 int parent_level = curlevel + 1;
2977 uint64_t parent_blkid = curblkid >> epbs;
2978 dmu_buf_impl_t *db;
2979
2980 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2981 FALSE, TRUE, FTAG, &db) == 0) {
2982 blkptr_t *bpp = db->db_buf->b_data;
2983 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2984 dbuf_rele(db, FTAG);
2985 break;
2986 }
2987
2988 curlevel = parent_level;
2989 curblkid = parent_blkid;
2990 }
2991
2992 if (curlevel == nlevels - 1) {
2993 /* No cached indirect blocks found. */
2994 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2995 bp = dn->dn_phys->dn_blkptr[curblkid];
2996 }
2997 if (BP_IS_HOLE(&bp))
2998 return;
2999
3000 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3001
3002 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3003 ZIO_FLAG_CANFAIL);
3004
3005 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3006 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3007 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3008 dn->dn_object, level, blkid);
3009 dpa->dpa_curlevel = curlevel;
3010 dpa->dpa_prio = prio;
3011 dpa->dpa_aflags = aflags;
3012 dpa->dpa_spa = dn->dn_objset->os_spa;
3013 dpa->dpa_dnode = dn;
3014 dpa->dpa_epbs = epbs;
3015 dpa->dpa_zio = pio;
3016
3017 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3018 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3019 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3020
3021 /*
3022 * If we have the indirect just above us, no need to do the asynchronous
3023 * prefetch chain; we'll just run the last step ourselves. If we're at
3024 * a higher level, though, we want to issue the prefetches for all the
3025 * indirect blocks asynchronously, so we can go on with whatever we were
3026 * doing.
3027 */
3028 if (curlevel == level) {
3029 ASSERT3U(curblkid, ==, blkid);
3030 dbuf_issue_final_prefetch(dpa, &bp);
3031 kmem_free(dpa, sizeof (*dpa));
3032 } else {
3033 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3034 zbookmark_phys_t zb;
3035
3036 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3037 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3038 iter_aflags |= ARC_FLAG_L2CACHE;
3039
3040 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3041 dn->dn_object, curlevel, curblkid);
3042 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3043 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3044 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3045 &iter_aflags, &zb);
3046 }
3047 /*
3048 * We use pio here instead of dpa_zio since it's possible that
3049 * dpa may have already been freed.
3050 */
3051 zio_nowait(pio);
3052 }
3053
3054 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
3055
3056 /*
3057 * Helper function for __dbuf_hold_impl() to copy a buffer. Handles
3058 * the case of encrypted, compressed and uncompressed buffers by
3059 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3060 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3061 *
3062 * NOTE: Declared noinline to avoid stack bloat in __dbuf_hold_impl().
3063 */
3064 noinline static void
3065 dbuf_hold_copy(struct dbuf_hold_impl_data *dh)
3066 {
3067 dnode_t *dn = dh->dh_dn;
3068 dmu_buf_impl_t *db = dh->dh_db;
3069 dbuf_dirty_record_t *dr = dh->dh_dr;
3070 arc_buf_t *data = dr->dt.dl.dr_data;
3071
3072 enum zio_compress compress_type = arc_get_compression(data);
3073
3074 if (arc_is_encrypted(data)) {
3075 boolean_t byteorder;
3076 uint8_t salt[ZIO_DATA_SALT_LEN];
3077 uint8_t iv[ZIO_DATA_IV_LEN];
3078 uint8_t mac[ZIO_DATA_MAC_LEN];
3079
3080 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3081 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3082 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3083 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3084 compress_type));
3085 } else if (compress_type != ZIO_COMPRESS_OFF) {
3086 dbuf_set_data(db, arc_alloc_compressed_buf(
3087 dn->dn_objset->os_spa, db, arc_buf_size(data),
3088 arc_buf_lsize(data), compress_type));
3089 } else {
3090 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3091 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3092 }
3093
3094 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3095 }
3096
3097 /*
3098 * Returns with db_holds incremented, and db_mtx not held.
3099 * Note: dn_struct_rwlock must be held.
3100 */
3101 static int
3102 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
3103 {
3104 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
3105 dh->dh_parent = NULL;
3106
3107 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3108 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3109 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
3110
3111 *(dh->dh_dbp) = NULL;
3112
3113 /* dbuf_find() returns with db_mtx held */
3114 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3115 dh->dh_level, dh->dh_blkid);
3116
3117 if (dh->dh_db == NULL) {
3118 dh->dh_bp = NULL;
3119
3120 if (dh->dh_fail_uncached)
3121 return (SET_ERROR(ENOENT));
3122
3123 ASSERT3P(dh->dh_parent, ==, NULL);
3124 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3125 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
3126 if (dh->dh_fail_sparse) {
3127 if (dh->dh_err == 0 &&
3128 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
3129 dh->dh_err = SET_ERROR(ENOENT);
3130 if (dh->dh_err) {
3131 if (dh->dh_parent)
3132 dbuf_rele(dh->dh_parent, NULL);
3133 return (dh->dh_err);
3134 }
3135 }
3136 if (dh->dh_err && dh->dh_err != ENOENT)
3137 return (dh->dh_err);
3138 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3139 dh->dh_parent, dh->dh_bp);
3140 }
3141
3142 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3143 mutex_exit(&dh->dh_db->db_mtx);
3144 return (SET_ERROR(ENOENT));
3145 }
3146
3147 if (dh->dh_db->db_buf != NULL) {
3148 arc_buf_access(dh->dh_db->db_buf);
3149 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3150 }
3151
3152 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3153
3154 /*
3155 * If this buffer is currently syncing out, and we are are
3156 * still referencing it from db_data, we need to make a copy
3157 * of it in case we decide we want to dirty it again in this txg.
3158 */
3159 if (dh->dh_db->db_level == 0 &&
3160 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3161 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3162 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3163 dh->dh_dr = dh->dh_db->db_data_pending;
3164 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3165 dbuf_hold_copy(dh);
3166 }
3167
3168 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3169 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
3170 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
3171 dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
3172
3173 multilist_remove(
3174 dbuf_caches[dh->dh_db->db_caching_status].cache,
3175 dh->dh_db);
3176 (void) refcount_remove_many(
3177 &dbuf_caches[dh->dh_db->db_caching_status].size,
3178 dh->dh_db->db.db_size, dh->dh_db);
3179
3180 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3181 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3182 } else {
3183 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3184 DBUF_STAT_BUMPDOWN(cache_count);
3185 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3186 dh->dh_db->db.db_size);
3187 }
3188 dh->dh_db->db_caching_status = DB_NO_CACHE;
3189 }
3190 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3191 DBUF_VERIFY(dh->dh_db);
3192 mutex_exit(&dh->dh_db->db_mtx);
3193
3194 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3195 if (dh->dh_parent)
3196 dbuf_rele(dh->dh_parent, NULL);
3197
3198 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3199 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3200 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3201 *(dh->dh_dbp) = dh->dh_db;
3202
3203 return (0);
3204 }
3205
3206 /*
3207 * The following code preserves the recursive function dbuf_hold_impl()
3208 * but moves the local variables AND function arguments to the heap to
3209 * minimize the stack frame size. Enough space is initially allocated
3210 * on the stack for 20 levels of recursion.
3211 */
3212 int
3213 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3214 boolean_t fail_sparse, boolean_t fail_uncached,
3215 void *tag, dmu_buf_impl_t **dbp)
3216 {
3217 struct dbuf_hold_impl_data *dh;
3218 int error;
3219
3220 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
3221 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
3222 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
3223 fail_uncached, tag, dbp, 0);
3224
3225 error = __dbuf_hold_impl(dh);
3226
3227 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
3228 DBUF_HOLD_IMPL_MAX_DEPTH);
3229
3230 return (error);
3231 }
3232
3233 static void
3234 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
3235 dnode_t *dn, uint8_t level, uint64_t blkid,
3236 boolean_t fail_sparse, boolean_t fail_uncached,
3237 void *tag, dmu_buf_impl_t **dbp, int depth)
3238 {
3239 dh->dh_dn = dn;
3240 dh->dh_level = level;
3241 dh->dh_blkid = blkid;
3242
3243 dh->dh_fail_sparse = fail_sparse;
3244 dh->dh_fail_uncached = fail_uncached;
3245
3246 dh->dh_tag = tag;
3247 dh->dh_dbp = dbp;
3248
3249 dh->dh_db = NULL;
3250 dh->dh_parent = NULL;
3251 dh->dh_bp = NULL;
3252 dh->dh_err = 0;
3253 dh->dh_dr = NULL;
3254
3255 dh->dh_depth = depth;
3256 }
3257
3258 dmu_buf_impl_t *
3259 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3260 {
3261 return (dbuf_hold_level(dn, 0, blkid, tag));
3262 }
3263
3264 dmu_buf_impl_t *
3265 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3266 {
3267 dmu_buf_impl_t *db;
3268 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3269 return (err ? NULL : db);
3270 }
3271
3272 void
3273 dbuf_create_bonus(dnode_t *dn)
3274 {
3275 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3276
3277 ASSERT(dn->dn_bonus == NULL);
3278 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3279 }
3280
3281 int
3282 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3283 {
3284 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3285 dnode_t *dn;
3286
3287 if (db->db_blkid != DMU_SPILL_BLKID)
3288 return (SET_ERROR(ENOTSUP));
3289 if (blksz == 0)
3290 blksz = SPA_MINBLOCKSIZE;
3291 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3292 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3293
3294 DB_DNODE_ENTER(db);
3295 dn = DB_DNODE(db);
3296 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3297 dbuf_new_size(db, blksz, tx);
3298 rw_exit(&dn->dn_struct_rwlock);
3299 DB_DNODE_EXIT(db);
3300
3301 return (0);
3302 }
3303
3304 void
3305 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3306 {
3307 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3308 }
3309
3310 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3311 void
3312 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3313 {
3314 int64_t holds = refcount_add(&db->db_holds, tag);
3315 VERIFY3S(holds, >, 1);
3316 }
3317
3318 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3319 boolean_t
3320 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3321 void *tag)
3322 {
3323 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3324 dmu_buf_impl_t *found_db;
3325 boolean_t result = B_FALSE;
3326
3327 if (blkid == DMU_BONUS_BLKID)
3328 found_db = dbuf_find_bonus(os, obj);
3329 else
3330 found_db = dbuf_find(os, obj, 0, blkid);
3331
3332 if (found_db != NULL) {
3333 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3334 (void) refcount_add(&db->db_holds, tag);
3335 result = B_TRUE;
3336 }
3337 mutex_exit(&found_db->db_mtx);
3338 }
3339 return (result);
3340 }
3341
3342 /*
3343 * If you call dbuf_rele() you had better not be referencing the dnode handle
3344 * unless you have some other direct or indirect hold on the dnode. (An indirect
3345 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3346 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3347 * dnode's parent dbuf evicting its dnode handles.
3348 */
3349 void
3350 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3351 {
3352 mutex_enter(&db->db_mtx);
3353 dbuf_rele_and_unlock(db, tag, B_FALSE);
3354 }
3355
3356 void
3357 dmu_buf_rele(dmu_buf_t *db, void *tag)
3358 {
3359 dbuf_rele((dmu_buf_impl_t *)db, tag);
3360 }
3361
3362 /*
3363 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3364 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3365 * argument should be set if we are already in the dbuf-evicting code
3366 * path, in which case we don't want to recursively evict. This allows us to
3367 * avoid deeply nested stacks that would have a call flow similar to this:
3368 *
3369 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3370 * ^ |
3371 * | |
3372 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3373 *
3374 */
3375 void
3376 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3377 {
3378 int64_t holds;
3379
3380 ASSERT(MUTEX_HELD(&db->db_mtx));
3381 DBUF_VERIFY(db);
3382
3383 /*
3384 * Remove the reference to the dbuf before removing its hold on the
3385 * dnode so we can guarantee in dnode_move() that a referenced bonus
3386 * buffer has a corresponding dnode hold.
3387 */
3388 holds = refcount_remove(&db->db_holds, tag);
3389 ASSERT(holds >= 0);
3390
3391 /*
3392 * We can't freeze indirects if there is a possibility that they
3393 * may be modified in the current syncing context.
3394 */
3395 if (db->db_buf != NULL &&
3396 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3397 arc_buf_freeze(db->db_buf);
3398 }
3399
3400 if (holds == db->db_dirtycnt &&
3401 db->db_level == 0 && db->db_user_immediate_evict)
3402 dbuf_evict_user(db);
3403
3404 if (holds == 0) {
3405 if (db->db_blkid == DMU_BONUS_BLKID) {
3406 dnode_t *dn;
3407 boolean_t evict_dbuf = db->db_pending_evict;
3408
3409 /*
3410 * If the dnode moves here, we cannot cross this
3411 * barrier until the move completes.
3412 */
3413 DB_DNODE_ENTER(db);
3414
3415 dn = DB_DNODE(db);
3416 atomic_dec_32(&dn->dn_dbufs_count);
3417
3418 /*
3419 * Decrementing the dbuf count means that the bonus
3420 * buffer's dnode hold is no longer discounted in
3421 * dnode_move(). The dnode cannot move until after
3422 * the dnode_rele() below.
3423 */
3424 DB_DNODE_EXIT(db);
3425
3426 /*
3427 * Do not reference db after its lock is dropped.
3428 * Another thread may evict it.
3429 */
3430 mutex_exit(&db->db_mtx);
3431
3432 if (evict_dbuf)
3433 dnode_evict_bonus(dn);
3434
3435 dnode_rele(dn, db);
3436 } else if (db->db_buf == NULL) {
3437 /*
3438 * This is a special case: we never associated this
3439 * dbuf with any data allocated from the ARC.
3440 */
3441 ASSERT(db->db_state == DB_UNCACHED ||
3442 db->db_state == DB_NOFILL);
3443 dbuf_destroy(db);
3444 } else if (arc_released(db->db_buf)) {
3445 /*
3446 * This dbuf has anonymous data associated with it.
3447 */
3448 dbuf_destroy(db);
3449 } else {
3450 boolean_t do_arc_evict = B_FALSE;
3451 blkptr_t bp;
3452 spa_t *spa = dmu_objset_spa(db->db_objset);
3453
3454 if (!DBUF_IS_CACHEABLE(db) &&
3455 db->db_blkptr != NULL &&
3456 !BP_IS_HOLE(db->db_blkptr) &&
3457 !BP_IS_EMBEDDED(db->db_blkptr)) {
3458 do_arc_evict = B_TRUE;
3459 bp = *db->db_blkptr;
3460 }
3461
3462 if (!DBUF_IS_CACHEABLE(db) ||
3463 db->db_pending_evict) {
3464 dbuf_destroy(db);
3465 } else if (!multilist_link_active(&db->db_cache_link)) {
3466 ASSERT3U(db->db_caching_status, ==,
3467 DB_NO_CACHE);
3468
3469 dbuf_cached_state_t dcs =
3470 dbuf_include_in_metadata_cache(db) ?
3471 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3472 db->db_caching_status = dcs;
3473
3474 multilist_insert(dbuf_caches[dcs].cache, db);
3475 (void) refcount_add_many(&dbuf_caches[dcs].size,
3476 db->db.db_size, db);
3477
3478 if (dcs == DB_DBUF_METADATA_CACHE) {
3479 DBUF_STAT_BUMP(metadata_cache_count);
3480 DBUF_STAT_MAX(
3481 metadata_cache_size_bytes_max,
3482 refcount_count(
3483 &dbuf_caches[dcs].size));
3484 } else {
3485 DBUF_STAT_BUMP(
3486 cache_levels[db->db_level]);
3487 DBUF_STAT_BUMP(cache_count);
3488 DBUF_STAT_INCR(
3489 cache_levels_bytes[db->db_level],
3490 db->db.db_size);
3491 DBUF_STAT_MAX(cache_size_bytes_max,
3492 refcount_count(
3493 &dbuf_caches[dcs].size));
3494 }
3495 mutex_exit(&db->db_mtx);
3496
3497 if (db->db_caching_status == DB_DBUF_CACHE &&
3498 !evicting) {
3499 dbuf_evict_notify();
3500 }
3501 }
3502
3503 if (do_arc_evict)
3504 arc_freed(spa, &bp);
3505 }
3506 } else {
3507 mutex_exit(&db->db_mtx);
3508 }
3509
3510 }
3511
3512 #pragma weak dmu_buf_refcount = dbuf_refcount
3513 uint64_t
3514 dbuf_refcount(dmu_buf_impl_t *db)
3515 {
3516 return (refcount_count(&db->db_holds));
3517 }
3518
3519 uint64_t
3520 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3521 {
3522 uint64_t holds;
3523 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3524
3525 mutex_enter(&db->db_mtx);
3526 ASSERT3U(refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3527 holds = refcount_count(&db->db_holds) - db->db_dirtycnt;
3528 mutex_exit(&db->db_mtx);
3529
3530 return (holds);
3531 }
3532
3533 void *
3534 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3535 dmu_buf_user_t *new_user)
3536 {
3537 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3538
3539 mutex_enter(&db->db_mtx);
3540 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3541 if (db->db_user == old_user)
3542 db->db_user = new_user;
3543 else
3544 old_user = db->db_user;
3545 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3546 mutex_exit(&db->db_mtx);
3547
3548 return (old_user);
3549 }
3550
3551 void *
3552 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3553 {
3554 return (dmu_buf_replace_user(db_fake, NULL, user));
3555 }
3556
3557 void *
3558 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3559 {
3560 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3561
3562 db->db_user_immediate_evict = TRUE;
3563 return (dmu_buf_set_user(db_fake, user));
3564 }
3565
3566 void *
3567 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3568 {
3569 return (dmu_buf_replace_user(db_fake, user, NULL));
3570 }
3571
3572 void *
3573 dmu_buf_get_user(dmu_buf_t *db_fake)
3574 {
3575 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3576
3577 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3578 return (db->db_user);
3579 }
3580
3581 void
3582 dmu_buf_user_evict_wait()
3583 {
3584 taskq_wait(dbu_evict_taskq);
3585 }
3586
3587 blkptr_t *
3588 dmu_buf_get_blkptr(dmu_buf_t *db)
3589 {
3590 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3591 return (dbi->db_blkptr);
3592 }
3593
3594 objset_t *
3595 dmu_buf_get_objset(dmu_buf_t *db)
3596 {
3597 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3598 return (dbi->db_objset);
3599 }
3600
3601 dnode_t *
3602 dmu_buf_dnode_enter(dmu_buf_t *db)
3603 {
3604 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3605 DB_DNODE_ENTER(dbi);
3606 return (DB_DNODE(dbi));
3607 }
3608
3609 void
3610 dmu_buf_dnode_exit(dmu_buf_t *db)
3611 {
3612 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3613 DB_DNODE_EXIT(dbi);
3614 }
3615
3616 static void
3617 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3618 {
3619 /* ASSERT(dmu_tx_is_syncing(tx) */
3620 ASSERT(MUTEX_HELD(&db->db_mtx));
3621
3622 if (db->db_blkptr != NULL)
3623 return;
3624
3625 if (db->db_blkid == DMU_SPILL_BLKID) {
3626 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3627 BP_ZERO(db->db_blkptr);
3628 return;
3629 }
3630 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3631 /*
3632 * This buffer was allocated at a time when there was
3633 * no available blkptrs from the dnode, or it was
3634 * inappropriate to hook it in (i.e., nlevels mis-match).
3635 */
3636 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3637 ASSERT(db->db_parent == NULL);
3638 db->db_parent = dn->dn_dbuf;
3639 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3640 DBUF_VERIFY(db);
3641 } else {
3642 dmu_buf_impl_t *parent = db->db_parent;
3643 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3644
3645 ASSERT(dn->dn_phys->dn_nlevels > 1);
3646 if (parent == NULL) {
3647 mutex_exit(&db->db_mtx);
3648 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3649 parent = dbuf_hold_level(dn, db->db_level + 1,
3650 db->db_blkid >> epbs, db);
3651 rw_exit(&dn->dn_struct_rwlock);
3652 mutex_enter(&db->db_mtx);
3653 db->db_parent = parent;
3654 }
3655 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3656 (db->db_blkid & ((1ULL << epbs) - 1));
3657 DBUF_VERIFY(db);
3658 }
3659 }
3660
3661 /*
3662 * When syncing out a blocks of dnodes, adjust the block to deal with
3663 * encryption. Normally, we make sure the block is decrypted before writing
3664 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3665 * from a raw receive. In this case, set the ARC buf's crypt params so
3666 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3667 */
3668 static void
3669 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3670 {
3671 int err;
3672 dmu_buf_impl_t *db = dr->dr_dbuf;
3673
3674 ASSERT(MUTEX_HELD(&db->db_mtx));
3675 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3676 ASSERT3U(db->db_level, ==, 0);
3677
3678 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3679 zbookmark_phys_t zb;
3680
3681 /*
3682 * Unfortunately, there is currently no mechanism for
3683 * syncing context to handle decryption errors. An error
3684 * here is only possible if an attacker maliciously
3685 * changed a dnode block and updated the associated
3686 * checksums going up the block tree.
3687 */
3688 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3689 db->db.db_object, db->db_level, db->db_blkid);
3690 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3691 &zb, B_TRUE);
3692 if (err)
3693 panic("Invalid dnode block MAC");
3694 } else if (dr->dt.dl.dr_has_raw_params) {
3695 (void) arc_release(dr->dt.dl.dr_data, db);
3696 arc_convert_to_raw(dr->dt.dl.dr_data,
3697 dmu_objset_id(db->db_objset),
3698 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3699 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3700 }
3701 }
3702
3703 /*
3704 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3705 * is critical the we not allow the compiler to inline this function in to
3706 * dbuf_sync_list() thereby drastically bloating the stack usage.
3707 */
3708 noinline static void
3709 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3710 {
3711 dmu_buf_impl_t *db = dr->dr_dbuf;
3712 dnode_t *dn;
3713 zio_t *zio;
3714
3715 ASSERT(dmu_tx_is_syncing(tx));
3716
3717 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3718
3719 mutex_enter(&db->db_mtx);
3720
3721 ASSERT(db->db_level > 0);
3722 DBUF_VERIFY(db);
3723
3724 /* Read the block if it hasn't been read yet. */
3725 if (db->db_buf == NULL) {
3726 mutex_exit(&db->db_mtx);
3727 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3728 mutex_enter(&db->db_mtx);
3729 }
3730 ASSERT3U(db->db_state, ==, DB_CACHED);
3731 ASSERT(db->db_buf != NULL);
3732
3733 DB_DNODE_ENTER(db);
3734 dn = DB_DNODE(db);
3735 /* Indirect block size must match what the dnode thinks it is. */
3736 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3737 dbuf_check_blkptr(dn, db);
3738 DB_DNODE_EXIT(db);
3739
3740 /* Provide the pending dirty record to child dbufs */
3741 db->db_data_pending = dr;
3742
3743 mutex_exit(&db->db_mtx);
3744
3745 dbuf_write(dr, db->db_buf, tx);
3746
3747 zio = dr->dr_zio;
3748 mutex_enter(&dr->dt.di.dr_mtx);
3749 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3750 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3751 mutex_exit(&dr->dt.di.dr_mtx);
3752 zio_nowait(zio);
3753 }
3754
3755 /*
3756 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3757 * critical the we not allow the compiler to inline this function in to
3758 * dbuf_sync_list() thereby drastically bloating the stack usage.
3759 */
3760 noinline static void
3761 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3762 {
3763 arc_buf_t **datap = &dr->dt.dl.dr_data;
3764 dmu_buf_impl_t *db = dr->dr_dbuf;
3765 dnode_t *dn;
3766 objset_t *os;
3767 uint64_t txg = tx->tx_txg;
3768
3769 ASSERT(dmu_tx_is_syncing(tx));
3770
3771 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3772
3773 mutex_enter(&db->db_mtx);
3774 /*
3775 * To be synced, we must be dirtied. But we
3776 * might have been freed after the dirty.
3777 */
3778 if (db->db_state == DB_UNCACHED) {
3779 /* This buffer has been freed since it was dirtied */
3780 ASSERT(db->db.db_data == NULL);
3781 } else if (db->db_state == DB_FILL) {
3782 /* This buffer was freed and is now being re-filled */
3783 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3784 } else {
3785 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3786 }
3787 DBUF_VERIFY(db);
3788
3789 DB_DNODE_ENTER(db);
3790 dn = DB_DNODE(db);
3791
3792 if (db->db_blkid == DMU_SPILL_BLKID) {
3793 mutex_enter(&dn->dn_mtx);
3794 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3795 /*
3796 * In the previous transaction group, the bonus buffer
3797 * was entirely used to store the attributes for the
3798 * dnode which overrode the dn_spill field. However,
3799 * when adding more attributes to the file a spill
3800 * block was required to hold the extra attributes.
3801 *
3802 * Make sure to clear the garbage left in the dn_spill
3803 * field from the previous attributes in the bonus
3804 * buffer. Otherwise, after writing out the spill
3805 * block to the new allocated dva, it will free
3806 * the old block pointed to by the invalid dn_spill.
3807 */
3808 db->db_blkptr = NULL;
3809 }
3810 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3811 mutex_exit(&dn->dn_mtx);
3812 }
3813
3814 /*
3815 * If this is a bonus buffer, simply copy the bonus data into the
3816 * dnode. It will be written out when the dnode is synced (and it
3817 * will be synced, since it must have been dirty for dbuf_sync to
3818 * be called).
3819 */
3820 if (db->db_blkid == DMU_BONUS_BLKID) {
3821 dbuf_dirty_record_t **drp;
3822
3823 ASSERT(*datap != NULL);
3824 ASSERT0(db->db_level);
3825 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3826 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3827 bcopy(*datap, DN_BONUS(dn->dn_phys),
3828 DN_MAX_BONUS_LEN(dn->dn_phys));
3829 DB_DNODE_EXIT(db);
3830
3831 if (*datap != db->db.db_data) {
3832 int slots = DB_DNODE(db)->dn_num_slots;
3833 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3834 kmem_free(*datap, bonuslen);
3835 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3836 }
3837 db->db_data_pending = NULL;
3838 drp = &db->db_last_dirty;
3839 while (*drp != dr)
3840 drp = &(*drp)->dr_next;
3841 ASSERT(dr->dr_next == NULL);
3842 ASSERT(dr->dr_dbuf == db);
3843 *drp = dr->dr_next;
3844 if (dr->dr_dbuf->db_level != 0) {
3845 mutex_destroy(&dr->dt.di.dr_mtx);
3846 list_destroy(&dr->dt.di.dr_children);
3847 }
3848 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3849 ASSERT(db->db_dirtycnt > 0);
3850 db->db_dirtycnt -= 1;
3851 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3852 return;
3853 }
3854
3855 os = dn->dn_objset;
3856
3857 /*
3858 * This function may have dropped the db_mtx lock allowing a dmu_sync
3859 * operation to sneak in. As a result, we need to ensure that we
3860 * don't check the dr_override_state until we have returned from
3861 * dbuf_check_blkptr.
3862 */
3863 dbuf_check_blkptr(dn, db);
3864
3865 /*
3866 * If this buffer is in the middle of an immediate write,
3867 * wait for the synchronous IO to complete.
3868 */
3869 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3870 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3871 cv_wait(&db->db_changed, &db->db_mtx);
3872 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3873 }
3874
3875 /*
3876 * If this is a dnode block, ensure it is appropriately encrypted
3877 * or decrypted, depending on what we are writing to it this txg.
3878 */
3879 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3880 dbuf_prepare_encrypted_dnode_leaf(dr);
3881
3882 if (db->db_state != DB_NOFILL &&
3883 dn->dn_object != DMU_META_DNODE_OBJECT &&
3884 refcount_count(&db->db_holds) > 1 &&
3885 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3886 *datap == db->db_buf) {
3887 /*
3888 * If this buffer is currently "in use" (i.e., there
3889 * are active holds and db_data still references it),
3890 * then make a copy before we start the write so that
3891 * any modifications from the open txg will not leak
3892 * into this write.
3893 *
3894 * NOTE: this copy does not need to be made for
3895 * objects only modified in the syncing context (e.g.
3896 * DNONE_DNODE blocks).
3897 */
3898 int psize = arc_buf_size(*datap);
3899 int lsize = arc_buf_lsize(*datap);
3900 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3901 enum zio_compress compress_type = arc_get_compression(*datap);
3902
3903 if (arc_is_encrypted(*datap)) {
3904 boolean_t byteorder;
3905 uint8_t salt[ZIO_DATA_SALT_LEN];
3906 uint8_t iv[ZIO_DATA_IV_LEN];
3907 uint8_t mac[ZIO_DATA_MAC_LEN];
3908
3909 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3910 *datap = arc_alloc_raw_buf(os->os_spa, db,
3911 dmu_objset_id(os), byteorder, salt, iv, mac,
3912 dn->dn_type, psize, lsize, compress_type);
3913 } else if (compress_type != ZIO_COMPRESS_OFF) {
3914 ASSERT3U(type, ==, ARC_BUFC_DATA);
3915 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3916 psize, lsize, compress_type);
3917 } else {
3918 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3919 }
3920 bcopy(db->db.db_data, (*datap)->b_data, psize);
3921 }
3922 db->db_data_pending = dr;
3923
3924 mutex_exit(&db->db_mtx);
3925
3926 dbuf_write(dr, *datap, tx);
3927
3928 ASSERT(!list_link_active(&dr->dr_dirty_node));
3929 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3930 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3931 DB_DNODE_EXIT(db);
3932 } else {
3933 /*
3934 * Although zio_nowait() does not "wait for an IO", it does
3935 * initiate the IO. If this is an empty write it seems plausible
3936 * that the IO could actually be completed before the nowait
3937 * returns. We need to DB_DNODE_EXIT() first in case
3938 * zio_nowait() invalidates the dbuf.
3939 */
3940 DB_DNODE_EXIT(db);
3941 zio_nowait(dr->dr_zio);
3942 }
3943 }
3944
3945 void
3946 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3947 {
3948 dbuf_dirty_record_t *dr;
3949
3950 while ((dr = list_head(list))) {
3951 if (dr->dr_zio != NULL) {
3952 /*
3953 * If we find an already initialized zio then we
3954 * are processing the meta-dnode, and we have finished.
3955 * The dbufs for all dnodes are put back on the list
3956 * during processing, so that we can zio_wait()
3957 * these IOs after initiating all child IOs.
3958 */
3959 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3960 DMU_META_DNODE_OBJECT);
3961 break;
3962 }
3963 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3964 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3965 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3966 }
3967 list_remove(list, dr);
3968 if (dr->dr_dbuf->db_level > 0)
3969 dbuf_sync_indirect(dr, tx);
3970 else
3971 dbuf_sync_leaf(dr, tx);
3972 }
3973 }
3974
3975 /* ARGSUSED */
3976 static void
3977 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3978 {
3979 dmu_buf_impl_t *db = vdb;
3980 dnode_t *dn;
3981 blkptr_t *bp = zio->io_bp;
3982 blkptr_t *bp_orig = &zio->io_bp_orig;
3983 spa_t *spa = zio->io_spa;
3984 int64_t delta;
3985 uint64_t fill = 0;
3986 int i;
3987
3988 ASSERT3P(db->db_blkptr, !=, NULL);
3989 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3990
3991 DB_DNODE_ENTER(db);
3992 dn = DB_DNODE(db);
3993 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3994 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3995 zio->io_prev_space_delta = delta;
3996
3997 if (bp->blk_birth != 0) {
3998 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3999 BP_GET_TYPE(bp) == dn->dn_type) ||
4000 (db->db_blkid == DMU_SPILL_BLKID &&
4001 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4002 BP_IS_EMBEDDED(bp));
4003 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4004 }
4005
4006 mutex_enter(&db->db_mtx);
4007
4008 #ifdef ZFS_DEBUG
4009 if (db->db_blkid == DMU_SPILL_BLKID) {
4010 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4011 ASSERT(!(BP_IS_HOLE(bp)) &&
4012 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4013 }
4014 #endif
4015
4016 if (db->db_level == 0) {
4017 mutex_enter(&dn->dn_mtx);
4018 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4019 db->db_blkid != DMU_SPILL_BLKID) {
4020 ASSERT0(db->db_objset->os_raw_receive);
4021 dn->dn_phys->dn_maxblkid = db->db_blkid;
4022 }
4023 mutex_exit(&dn->dn_mtx);
4024
4025 if (dn->dn_type == DMU_OT_DNODE) {
4026 i = 0;
4027 while (i < db->db.db_size) {
4028 dnode_phys_t *dnp =
4029 (void *)(((char *)db->db.db_data) + i);
4030
4031 i += DNODE_MIN_SIZE;
4032 if (dnp->dn_type != DMU_OT_NONE) {
4033 fill++;
4034 i += dnp->dn_extra_slots *
4035 DNODE_MIN_SIZE;
4036 }
4037 }
4038 } else {
4039 if (BP_IS_HOLE(bp)) {
4040 fill = 0;
4041 } else {
4042 fill = 1;
4043 }
4044 }
4045 } else {
4046 blkptr_t *ibp = db->db.db_data;
4047 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4048 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4049 if (BP_IS_HOLE(ibp))
4050 continue;
4051 fill += BP_GET_FILL(ibp);
4052 }
4053 }
4054 DB_DNODE_EXIT(db);
4055
4056 if (!BP_IS_EMBEDDED(bp))
4057 BP_SET_FILL(bp, fill);
4058
4059 mutex_exit(&db->db_mtx);
4060
4061 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4062 *db->db_blkptr = *bp;
4063 rw_exit(&dn->dn_struct_rwlock);
4064 }
4065
4066 /* ARGSUSED */
4067 /*
4068 * This function gets called just prior to running through the compression
4069 * stage of the zio pipeline. If we're an indirect block comprised of only
4070 * holes, then we want this indirect to be compressed away to a hole. In
4071 * order to do that we must zero out any information about the holes that
4072 * this indirect points to prior to before we try to compress it.
4073 */
4074 static void
4075 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4076 {
4077 dmu_buf_impl_t *db = vdb;
4078 dnode_t *dn;
4079 blkptr_t *bp;
4080 unsigned int epbs, i;
4081
4082 ASSERT3U(db->db_level, >, 0);
4083 DB_DNODE_ENTER(db);
4084 dn = DB_DNODE(db);
4085 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4086 ASSERT3U(epbs, <, 31);
4087
4088 /* Determine if all our children are holes */
4089 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4090 if (!BP_IS_HOLE(bp))
4091 break;
4092 }
4093
4094 /*
4095 * If all the children are holes, then zero them all out so that
4096 * we may get compressed away.
4097 */
4098 if (i == 1ULL << epbs) {
4099 /*
4100 * We only found holes. Grab the rwlock to prevent
4101 * anybody from reading the blocks we're about to
4102 * zero out.
4103 */
4104 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4105 bzero(db->db.db_data, db->db.db_size);
4106 rw_exit(&dn->dn_struct_rwlock);
4107 }
4108 DB_DNODE_EXIT(db);
4109 }
4110
4111 /*
4112 * The SPA will call this callback several times for each zio - once
4113 * for every physical child i/o (zio->io_phys_children times). This
4114 * allows the DMU to monitor the progress of each logical i/o. For example,
4115 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4116 * block. There may be a long delay before all copies/fragments are completed,
4117 * so this callback allows us to retire dirty space gradually, as the physical
4118 * i/os complete.
4119 */
4120 /* ARGSUSED */
4121 static void
4122 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4123 {
4124 dmu_buf_impl_t *db = arg;
4125 objset_t *os = db->db_objset;
4126 dsl_pool_t *dp = dmu_objset_pool(os);
4127 dbuf_dirty_record_t *dr;
4128 int delta = 0;
4129
4130 dr = db->db_data_pending;
4131 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4132
4133 /*
4134 * The callback will be called io_phys_children times. Retire one
4135 * portion of our dirty space each time we are called. Any rounding
4136 * error will be cleaned up by dsl_pool_sync()'s call to
4137 * dsl_pool_undirty_space().
4138 */
4139 delta = dr->dr_accounted / zio->io_phys_children;
4140 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4141 }
4142
4143 /* ARGSUSED */
4144 static void
4145 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4146 {
4147 dmu_buf_impl_t *db = vdb;
4148 blkptr_t *bp_orig = &zio->io_bp_orig;
4149 blkptr_t *bp = db->db_blkptr;
4150 objset_t *os = db->db_objset;
4151 dmu_tx_t *tx = os->os_synctx;
4152 dbuf_dirty_record_t **drp, *dr;
4153
4154 ASSERT0(zio->io_error);
4155 ASSERT(db->db_blkptr == bp);
4156
4157 /*
4158 * For nopwrites and rewrites we ensure that the bp matches our
4159 * original and bypass all the accounting.
4160 */
4161 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4162 ASSERT(BP_EQUAL(bp, bp_orig));
4163 } else {
4164 dsl_dataset_t *ds = os->os_dsl_dataset;
4165 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4166 dsl_dataset_block_born(ds, bp, tx);
4167 }
4168
4169 mutex_enter(&db->db_mtx);
4170
4171 DBUF_VERIFY(db);
4172
4173 drp = &db->db_last_dirty;
4174 while ((dr = *drp) != db->db_data_pending)
4175 drp = &dr->dr_next;
4176 ASSERT(!list_link_active(&dr->dr_dirty_node));
4177 ASSERT(dr->dr_dbuf == db);
4178 ASSERT(dr->dr_next == NULL);
4179 *drp = dr->dr_next;
4180
4181 #ifdef ZFS_DEBUG
4182 if (db->db_blkid == DMU_SPILL_BLKID) {
4183 dnode_t *dn;
4184
4185 DB_DNODE_ENTER(db);
4186 dn = DB_DNODE(db);
4187 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4188 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4189 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4190 DB_DNODE_EXIT(db);
4191 }
4192 #endif
4193
4194 if (db->db_level == 0) {
4195 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4196 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4197 if (db->db_state != DB_NOFILL) {
4198 if (dr->dt.dl.dr_data != db->db_buf)
4199 arc_buf_destroy(dr->dt.dl.dr_data, db);
4200 }
4201 } else {
4202 dnode_t *dn;
4203
4204 DB_DNODE_ENTER(db);
4205 dn = DB_DNODE(db);
4206 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4207 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4208 if (!BP_IS_HOLE(db->db_blkptr)) {
4209 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4210 SPA_BLKPTRSHIFT);
4211 ASSERT3U(db->db_blkid, <=,
4212 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4213 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4214 db->db.db_size);
4215 }
4216 DB_DNODE_EXIT(db);
4217 mutex_destroy(&dr->dt.di.dr_mtx);
4218 list_destroy(&dr->dt.di.dr_children);
4219 }
4220 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4221
4222 cv_broadcast(&db->db_changed);
4223 ASSERT(db->db_dirtycnt > 0);
4224 db->db_dirtycnt -= 1;
4225 db->db_data_pending = NULL;
4226 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4227 }
4228
4229 static void
4230 dbuf_write_nofill_ready(zio_t *zio)
4231 {
4232 dbuf_write_ready(zio, NULL, zio->io_private);
4233 }
4234
4235 static void
4236 dbuf_write_nofill_done(zio_t *zio)
4237 {
4238 dbuf_write_done(zio, NULL, zio->io_private);
4239 }
4240
4241 static void
4242 dbuf_write_override_ready(zio_t *zio)
4243 {
4244 dbuf_dirty_record_t *dr = zio->io_private;
4245 dmu_buf_impl_t *db = dr->dr_dbuf;
4246
4247 dbuf_write_ready(zio, NULL, db);
4248 }
4249
4250 static void
4251 dbuf_write_override_done(zio_t *zio)
4252 {
4253 dbuf_dirty_record_t *dr = zio->io_private;
4254 dmu_buf_impl_t *db = dr->dr_dbuf;
4255 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4256
4257 mutex_enter(&db->db_mtx);
4258 if (!BP_EQUAL(zio->io_bp, obp)) {
4259 if (!BP_IS_HOLE(obp))
4260 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4261 arc_release(dr->dt.dl.dr_data, db);
4262 }
4263 mutex_exit(&db->db_mtx);
4264
4265 dbuf_write_done(zio, NULL, db);
4266
4267 if (zio->io_abd != NULL)
4268 abd_put(zio->io_abd);
4269 }
4270
4271 typedef struct dbuf_remap_impl_callback_arg {
4272 objset_t *drica_os;
4273 uint64_t drica_blk_birth;
4274 dmu_tx_t *drica_tx;
4275 } dbuf_remap_impl_callback_arg_t;
4276
4277 static void
4278 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4279 void *arg)
4280 {
4281 dbuf_remap_impl_callback_arg_t *drica = arg;
4282 objset_t *os = drica->drica_os;
4283 spa_t *spa = dmu_objset_spa(os);
4284 dmu_tx_t *tx = drica->drica_tx;
4285
4286 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4287
4288 if (os == spa_meta_objset(spa)) {
4289 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4290 } else {
4291 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4292 size, drica->drica_blk_birth, tx);
4293 }
4294 }
4295
4296 static void
4297 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4298 {
4299 blkptr_t bp_copy = *bp;
4300 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4301 dbuf_remap_impl_callback_arg_t drica;
4302
4303 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4304
4305 drica.drica_os = dn->dn_objset;
4306 drica.drica_blk_birth = bp->blk_birth;
4307 drica.drica_tx = tx;
4308 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4309 &drica)) {
4310 /*
4311 * The struct_rwlock prevents dbuf_read_impl() from
4312 * dereferencing the BP while we are changing it. To
4313 * avoid lock contention, only grab it when we are actually
4314 * changing the BP.
4315 */
4316 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4317 *bp = bp_copy;
4318 rw_exit(&dn->dn_struct_rwlock);
4319 }
4320 }
4321
4322 /*
4323 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4324 * to remap a copy of every bp in the dbuf.
4325 */
4326 boolean_t
4327 dbuf_can_remap(const dmu_buf_impl_t *db)
4328 {
4329 spa_t *spa = dmu_objset_spa(db->db_objset);
4330 blkptr_t *bp = db->db.db_data;
4331 boolean_t ret = B_FALSE;
4332
4333 ASSERT3U(db->db_level, >, 0);
4334 ASSERT3S(db->db_state, ==, DB_CACHED);
4335
4336 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4337
4338 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4339 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4340 blkptr_t bp_copy = bp[i];
4341 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4342 ret = B_TRUE;
4343 break;
4344 }
4345 }
4346 spa_config_exit(spa, SCL_VDEV, FTAG);
4347
4348 return (ret);
4349 }
4350
4351 boolean_t
4352 dnode_needs_remap(const dnode_t *dn)
4353 {
4354 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4355 boolean_t ret = B_FALSE;
4356
4357 if (dn->dn_phys->dn_nlevels == 0) {
4358 return (B_FALSE);
4359 }
4360
4361 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4362
4363 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4364 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4365 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4366 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4367 ret = B_TRUE;
4368 break;
4369 }
4370 }
4371 spa_config_exit(spa, SCL_VDEV, FTAG);
4372
4373 return (ret);
4374 }
4375
4376 /*
4377 * Remap any existing BP's to concrete vdevs, if possible.
4378 */
4379 static void
4380 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4381 {
4382 spa_t *spa = dmu_objset_spa(db->db_objset);
4383 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4384
4385 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4386 return;
4387
4388 if (db->db_level > 0) {
4389 blkptr_t *bp = db->db.db_data;
4390 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4391 dbuf_remap_impl(dn, &bp[i], tx);
4392 }
4393 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4394 dnode_phys_t *dnp = db->db.db_data;
4395 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4396 DMU_OT_DNODE);
4397 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4398 i += dnp[i].dn_extra_slots + 1) {
4399 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4400 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4401 }
4402 }
4403 }
4404 }
4405
4406
4407 /* Issue I/O to commit a dirty buffer to disk. */
4408 static void
4409 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4410 {
4411 dmu_buf_impl_t *db = dr->dr_dbuf;
4412 dnode_t *dn;
4413 objset_t *os;
4414 dmu_buf_impl_t *parent = db->db_parent;
4415 uint64_t txg = tx->tx_txg;
4416 zbookmark_phys_t zb;
4417 zio_prop_t zp;
4418 zio_t *zio;
4419 int wp_flag = 0;
4420
4421 ASSERT(dmu_tx_is_syncing(tx));
4422
4423 DB_DNODE_ENTER(db);
4424 dn = DB_DNODE(db);
4425 os = dn->dn_objset;
4426
4427 if (db->db_state != DB_NOFILL) {
4428 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4429 /*
4430 * Private object buffers are released here rather
4431 * than in dbuf_dirty() since they are only modified
4432 * in the syncing context and we don't want the
4433 * overhead of making multiple copies of the data.
4434 */
4435 if (BP_IS_HOLE(db->db_blkptr)) {
4436 arc_buf_thaw(data);
4437 } else {
4438 dbuf_release_bp(db);
4439 }
4440 dbuf_remap(dn, db, tx);
4441 }
4442 }
4443
4444 if (parent != dn->dn_dbuf) {
4445 /* Our parent is an indirect block. */
4446 /* We have a dirty parent that has been scheduled for write. */
4447 ASSERT(parent && parent->db_data_pending);
4448 /* Our parent's buffer is one level closer to the dnode. */
4449 ASSERT(db->db_level == parent->db_level-1);
4450 /*
4451 * We're about to modify our parent's db_data by modifying
4452 * our block pointer, so the parent must be released.
4453 */
4454 ASSERT(arc_released(parent->db_buf));
4455 zio = parent->db_data_pending->dr_zio;
4456 } else {
4457 /* Our parent is the dnode itself. */
4458 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4459 db->db_blkid != DMU_SPILL_BLKID) ||
4460 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4461 if (db->db_blkid != DMU_SPILL_BLKID)
4462 ASSERT3P(db->db_blkptr, ==,
4463 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4464 zio = dn->dn_zio;
4465 }
4466
4467 ASSERT(db->db_level == 0 || data == db->db_buf);
4468 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4469 ASSERT(zio);
4470
4471 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4472 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4473 db->db.db_object, db->db_level, db->db_blkid);
4474
4475 if (db->db_blkid == DMU_SPILL_BLKID)
4476 wp_flag = WP_SPILL;
4477 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4478
4479 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4480 DB_DNODE_EXIT(db);
4481
4482 /*
4483 * We copy the blkptr now (rather than when we instantiate the dirty
4484 * record), because its value can change between open context and
4485 * syncing context. We do not need to hold dn_struct_rwlock to read
4486 * db_blkptr because we are in syncing context.
4487 */
4488 dr->dr_bp_copy = *db->db_blkptr;
4489
4490 if (db->db_level == 0 &&
4491 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4492 /*
4493 * The BP for this block has been provided by open context
4494 * (by dmu_sync() or dmu_buf_write_embedded()).
4495 */
4496 abd_t *contents = (data != NULL) ?
4497 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4498
4499 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4500 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4501 &zp, dbuf_write_override_ready, NULL, NULL,
4502 dbuf_write_override_done,
4503 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4504 mutex_enter(&db->db_mtx);
4505 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4506 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4507 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4508 mutex_exit(&db->db_mtx);
4509 } else if (db->db_state == DB_NOFILL) {
4510 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4511 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4512 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4513 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4514 dbuf_write_nofill_ready, NULL, NULL,
4515 dbuf_write_nofill_done, db,
4516 ZIO_PRIORITY_ASYNC_WRITE,
4517 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4518 } else {
4519 ASSERT(arc_released(data));
4520
4521 /*
4522 * For indirect blocks, we want to setup the children
4523 * ready callback so that we can properly handle an indirect
4524 * block that only contains holes.
4525 */
4526 arc_write_done_func_t *children_ready_cb = NULL;
4527 if (db->db_level != 0)
4528 children_ready_cb = dbuf_write_children_ready;
4529
4530 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4531 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4532 &zp, dbuf_write_ready,
4533 children_ready_cb, dbuf_write_physdone,
4534 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4535 ZIO_FLAG_MUSTSUCCEED, &zb);
4536 }
4537 }
4538
4539 #if defined(_KERNEL)
4540 EXPORT_SYMBOL(dbuf_find);
4541 EXPORT_SYMBOL(dbuf_is_metadata);
4542 EXPORT_SYMBOL(dbuf_destroy);
4543 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4544 EXPORT_SYMBOL(dbuf_whichblock);
4545 EXPORT_SYMBOL(dbuf_read);
4546 EXPORT_SYMBOL(dbuf_unoverride);
4547 EXPORT_SYMBOL(dbuf_free_range);
4548 EXPORT_SYMBOL(dbuf_new_size);
4549 EXPORT_SYMBOL(dbuf_release_bp);
4550 EXPORT_SYMBOL(dbuf_dirty);
4551 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4552 EXPORT_SYMBOL(dmu_buf_will_dirty);
4553 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4554 EXPORT_SYMBOL(dmu_buf_will_fill);
4555 EXPORT_SYMBOL(dmu_buf_fill_done);
4556 EXPORT_SYMBOL(dmu_buf_rele);
4557 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4558 EXPORT_SYMBOL(dbuf_prefetch);
4559 EXPORT_SYMBOL(dbuf_hold_impl);
4560 EXPORT_SYMBOL(dbuf_hold);
4561 EXPORT_SYMBOL(dbuf_hold_level);
4562 EXPORT_SYMBOL(dbuf_create_bonus);
4563 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4564 EXPORT_SYMBOL(dbuf_rm_spill);
4565 EXPORT_SYMBOL(dbuf_add_ref);
4566 EXPORT_SYMBOL(dbuf_rele);
4567 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4568 EXPORT_SYMBOL(dbuf_refcount);
4569 EXPORT_SYMBOL(dbuf_sync_list);
4570 EXPORT_SYMBOL(dmu_buf_set_user);
4571 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4572 EXPORT_SYMBOL(dmu_buf_get_user);
4573 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4574
4575 /* BEGIN CSTYLED */
4576 module_param(dbuf_cache_max_bytes, ulong, 0644);
4577 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4578 "Maximum size in bytes of the dbuf cache.");
4579
4580 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4581 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4582 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4583 "directly.");
4584
4585 module_param(dbuf_cache_lowater_pct, uint, 0644);
4586 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4587 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4588 "evicting dbufs.");
4589
4590 module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
4591 MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
4592 "Maximum size in bytes of the dbuf metadata cache.");
4593
4594 module_param(dbuf_cache_shift, int, 0644);
4595 MODULE_PARM_DESC(dbuf_cache_shift,
4596 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4597
4598 module_param(dbuf_metadata_cache_shift, int, 0644);
4599 MODULE_PARM_DESC(dbuf_cache_shift,
4600 "Set the size of the dbuf metadata cache to a log2 fraction of "
4601 "arc size.");
4602 /* END CSTYLED */
4603 #endif