]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Prefix all refcount functions with zfs_
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 typedef struct dbuf_hold_arg {
152 /* Function arguments */
153 dnode_t *dh_dn;
154 uint8_t dh_level;
155 uint64_t dh_blkid;
156 boolean_t dh_fail_sparse;
157 boolean_t dh_fail_uncached;
158 void *dh_tag;
159 dmu_buf_impl_t **dh_dbp;
160 /* Local variables */
161 dmu_buf_impl_t *dh_db;
162 dmu_buf_impl_t *dh_parent;
163 blkptr_t *dh_bp;
164 int dh_err;
165 dbuf_dirty_record_t *dh_dr;
166 } dbuf_hold_arg_t;
167
168 static dbuf_hold_arg_t *dbuf_hold_arg_create(dnode_t *dn, uint8_t level,
169 uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached,
170 void *tag, dmu_buf_impl_t **dbp);
171 static int dbuf_hold_impl_arg(dbuf_hold_arg_t *dh);
172 static void dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh);
173
174 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
175 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
176
177 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
178 dmu_buf_evict_func_t *evict_func_sync,
179 dmu_buf_evict_func_t *evict_func_async,
180 dmu_buf_t **clear_on_evict_dbufp);
181
182 /*
183 * Global data structures and functions for the dbuf cache.
184 */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t *cache;
226 zfs_refcount_t size;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 unsigned long dbuf_cache_max_bytes = 0;
232 unsigned long dbuf_metadata_cache_max_bytes = 0;
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 int dbuf_cache_shift = 5;
235 int dbuf_metadata_cache_shift = 6;
236
237 /*
238 * The LRU dbuf cache uses a three-stage eviction policy:
239 * - A low water marker designates when the dbuf eviction thread
240 * should stop evicting from the dbuf cache.
241 * - When we reach the maximum size (aka mid water mark), we
242 * signal the eviction thread to run.
243 * - The high water mark indicates when the eviction thread
244 * is unable to keep up with the incoming load and eviction must
245 * happen in the context of the calling thread.
246 *
247 * The dbuf cache:
248 * (max size)
249 * low water mid water hi water
250 * +----------------------------------------+----------+----------+
251 * | | | |
252 * | | | |
253 * | | | |
254 * | | | |
255 * +----------------------------------------+----------+----------+
256 * stop signal evict
257 * evicting eviction directly
258 * thread
259 *
260 * The high and low water marks indicate the operating range for the eviction
261 * thread. The low water mark is, by default, 90% of the total size of the
262 * cache and the high water mark is at 110% (both of these percentages can be
263 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
264 * respectively). The eviction thread will try to ensure that the cache remains
265 * within this range by waking up every second and checking if the cache is
266 * above the low water mark. The thread can also be woken up by callers adding
267 * elements into the cache if the cache is larger than the mid water (i.e max
268 * cache size). Once the eviction thread is woken up and eviction is required,
269 * it will continue evicting buffers until it's able to reduce the cache size
270 * to the low water mark. If the cache size continues to grow and hits the high
271 * water mark, then callers adding elements to the cache will begin to evict
272 * directly from the cache until the cache is no longer above the high water
273 * mark.
274 */
275
276 /*
277 * The percentage above and below the maximum cache size.
278 */
279 uint_t dbuf_cache_hiwater_pct = 10;
280 uint_t dbuf_cache_lowater_pct = 10;
281
282 /* ARGSUSED */
283 static int
284 dbuf_cons(void *vdb, void *unused, int kmflag)
285 {
286 dmu_buf_impl_t *db = vdb;
287 bzero(db, sizeof (dmu_buf_impl_t));
288
289 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
290 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
291 multilist_link_init(&db->db_cache_link);
292 zfs_refcount_create(&db->db_holds);
293
294 return (0);
295 }
296
297 /* ARGSUSED */
298 static void
299 dbuf_dest(void *vdb, void *unused)
300 {
301 dmu_buf_impl_t *db = vdb;
302 mutex_destroy(&db->db_mtx);
303 cv_destroy(&db->db_changed);
304 ASSERT(!multilist_link_active(&db->db_cache_link));
305 zfs_refcount_destroy(&db->db_holds);
306 }
307
308 /*
309 * dbuf hash table routines
310 */
311 static dbuf_hash_table_t dbuf_hash_table;
312
313 static uint64_t dbuf_hash_count;
314
315 /*
316 * We use Cityhash for this. It's fast, and has good hash properties without
317 * requiring any large static buffers.
318 */
319 static uint64_t
320 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
321 {
322 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
323 }
324
325 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
330
331 dmu_buf_impl_t *
332 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
333 {
334 dbuf_hash_table_t *h = &dbuf_hash_table;
335 uint64_t hv;
336 uint64_t idx;
337 dmu_buf_impl_t *db;
338
339 hv = dbuf_hash(os, obj, level, blkid);
340 idx = hv & h->hash_table_mask;
341
342 mutex_enter(DBUF_HASH_MUTEX(h, idx));
343 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 mutex_enter(&db->db_mtx);
346 if (db->db_state != DB_EVICTING) {
347 mutex_exit(DBUF_HASH_MUTEX(h, idx));
348 return (db);
349 }
350 mutex_exit(&db->db_mtx);
351 }
352 }
353 mutex_exit(DBUF_HASH_MUTEX(h, idx));
354 return (NULL);
355 }
356
357 static dmu_buf_impl_t *
358 dbuf_find_bonus(objset_t *os, uint64_t object)
359 {
360 dnode_t *dn;
361 dmu_buf_impl_t *db = NULL;
362
363 if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus != NULL) {
366 db = dn->dn_bonus;
367 mutex_enter(&db->db_mtx);
368 }
369 rw_exit(&dn->dn_struct_rwlock);
370 dnode_rele(dn, FTAG);
371 }
372 return (db);
373 }
374
375 /*
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
380 */
381 static dmu_buf_impl_t *
382 dbuf_hash_insert(dmu_buf_impl_t *db)
383 {
384 dbuf_hash_table_t *h = &dbuf_hash_table;
385 objset_t *os = db->db_objset;
386 uint64_t obj = db->db.db_object;
387 int level = db->db_level;
388 uint64_t blkid, hv, idx;
389 dmu_buf_impl_t *dbf;
390 uint32_t i;
391
392 blkid = db->db_blkid;
393 hv = dbuf_hash(os, obj, level, blkid);
394 idx = hv & h->hash_table_mask;
395
396 mutex_enter(DBUF_HASH_MUTEX(h, idx));
397 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 dbf = dbf->db_hash_next, i++) {
399 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 mutex_enter(&dbf->db_mtx);
401 if (dbf->db_state != DB_EVICTING) {
402 mutex_exit(DBUF_HASH_MUTEX(h, idx));
403 return (dbf);
404 }
405 mutex_exit(&dbf->db_mtx);
406 }
407 }
408
409 if (i > 0) {
410 DBUF_STAT_BUMP(hash_collisions);
411 if (i == 1)
412 DBUF_STAT_BUMP(hash_chains);
413
414 DBUF_STAT_MAX(hash_chain_max, i);
415 }
416
417 mutex_enter(&db->db_mtx);
418 db->db_hash_next = h->hash_table[idx];
419 h->hash_table[idx] = db;
420 mutex_exit(DBUF_HASH_MUTEX(h, idx));
421 atomic_inc_64(&dbuf_hash_count);
422 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
423
424 return (NULL);
425 }
426
427 /*
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
431 */
432 static boolean_t
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
434 {
435 DB_DNODE_ENTER(db);
436 dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 DB_DNODE_EXIT(db);
438
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type));
443
444 /*
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
447 */
448 if (zfs_refcount_count(
449 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_max_bytes) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459 }
460
461 /*
462 * Remove an entry from the hash table. It must be in the EVICTING state.
463 */
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
466 {
467 dbuf_hash_table_t *h = &dbuf_hash_table;
468 uint64_t hv, idx;
469 dmu_buf_impl_t *dbf, **dbp;
470
471 hv = dbuf_hash(db->db_objset, db->db.db_object,
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
475 /*
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_MUTEX > db_mtx.
478 */
479 ASSERT(zfs_refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
495 atomic_dec_64(&dbuf_hash_count);
496 }
497
498 typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
502
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505 {
506 #ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
519 holds = zfs_refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
532 if (db->db_user_immediate_evict == TRUE)
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537 #endif
538 }
539
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
542 {
543 dmu_buf_user_t *dbu = db->db_user;
544
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
547 if (dbu == NULL)
548 return;
549
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553 #ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
557
558 /*
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
567 */
568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
577 }
578
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
581 {
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596 }
597
598
599 /*
600 * This function *must* return indices evenly distributed between all
601 * sublists of the multilist. This is needed due to how the dbuf eviction
602 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
603 * distributed between all sublists and uses this assumption when
604 * deciding which sublist to evict from and how much to evict from it.
605 */
606 unsigned int
607 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
608 {
609 dmu_buf_impl_t *db = obj;
610
611 /*
612 * The assumption here, is the hash value for a given
613 * dmu_buf_impl_t will remain constant throughout it's lifetime
614 * (i.e. it's objset, object, level and blkid fields don't change).
615 * Thus, we don't need to store the dbuf's sublist index
616 * on insertion, as this index can be recalculated on removal.
617 *
618 * Also, the low order bits of the hash value are thought to be
619 * distributed evenly. Otherwise, in the case that the multilist
620 * has a power of two number of sublists, each sublists' usage
621 * would not be evenly distributed.
622 */
623 return (dbuf_hash(db->db_objset, db->db.db_object,
624 db->db_level, db->db_blkid) %
625 multilist_get_num_sublists(ml));
626 }
627
628 static inline unsigned long
629 dbuf_cache_target_bytes(void)
630 {
631 return MIN(dbuf_cache_max_bytes,
632 arc_target_bytes() >> dbuf_cache_shift);
633 }
634
635 static inline uint64_t
636 dbuf_cache_hiwater_bytes(void)
637 {
638 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
639 return (dbuf_cache_target +
640 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
641 }
642
643 static inline uint64_t
644 dbuf_cache_lowater_bytes(void)
645 {
646 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
647 return (dbuf_cache_target -
648 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
649 }
650
651 static inline boolean_t
652 dbuf_cache_above_hiwater(void)
653 {
654 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
655 dbuf_cache_hiwater_bytes());
656 }
657
658 static inline boolean_t
659 dbuf_cache_above_lowater(void)
660 {
661 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
662 dbuf_cache_lowater_bytes());
663 }
664
665 /*
666 * Evict the oldest eligible dbuf from the dbuf cache.
667 */
668 static void
669 dbuf_evict_one(void)
670 {
671 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
672 multilist_sublist_t *mls = multilist_sublist_lock(
673 dbuf_caches[DB_DBUF_CACHE].cache, idx);
674
675 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
676
677 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
678 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
679 db = multilist_sublist_prev(mls, db);
680 }
681
682 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
683 multilist_sublist_t *, mls);
684
685 if (db != NULL) {
686 multilist_sublist_remove(mls, db);
687 multilist_sublist_unlock(mls);
688 (void) zfs_refcount_remove_many(
689 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
690 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
691 DBUF_STAT_BUMPDOWN(cache_count);
692 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
693 db->db.db_size);
694 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
695 db->db_caching_status = DB_NO_CACHE;
696 dbuf_destroy(db);
697 DBUF_STAT_MAX(cache_size_bytes_max,
698 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
699 DBUF_STAT_BUMP(cache_total_evicts);
700 } else {
701 multilist_sublist_unlock(mls);
702 }
703 }
704
705 /*
706 * The dbuf evict thread is responsible for aging out dbufs from the
707 * cache. Once the cache has reached it's maximum size, dbufs are removed
708 * and destroyed. The eviction thread will continue running until the size
709 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
710 * out of the cache it is destroyed and becomes eligible for arc eviction.
711 */
712 /* ARGSUSED */
713 static void
714 dbuf_evict_thread(void *unused)
715 {
716 callb_cpr_t cpr;
717
718 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
719
720 mutex_enter(&dbuf_evict_lock);
721 while (!dbuf_evict_thread_exit) {
722 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
723 CALLB_CPR_SAFE_BEGIN(&cpr);
724 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
725 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
726 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
727 }
728 mutex_exit(&dbuf_evict_lock);
729
730 /*
731 * Keep evicting as long as we're above the low water mark
732 * for the cache. We do this without holding the locks to
733 * minimize lock contention.
734 */
735 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
736 dbuf_evict_one();
737 }
738
739 mutex_enter(&dbuf_evict_lock);
740 }
741
742 dbuf_evict_thread_exit = B_FALSE;
743 cv_broadcast(&dbuf_evict_cv);
744 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
745 thread_exit();
746 }
747
748 /*
749 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
750 * If the dbuf cache is at its high water mark, then evict a dbuf from the
751 * dbuf cache using the callers context.
752 */
753 static void
754 dbuf_evict_notify(void)
755 {
756 /*
757 * We check if we should evict without holding the dbuf_evict_lock,
758 * because it's OK to occasionally make the wrong decision here,
759 * and grabbing the lock results in massive lock contention.
760 */
761 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_target_bytes()) {
763 if (dbuf_cache_above_hiwater())
764 dbuf_evict_one();
765 cv_signal(&dbuf_evict_cv);
766 }
767 }
768
769 static int
770 dbuf_kstat_update(kstat_t *ksp, int rw)
771 {
772 dbuf_stats_t *ds = ksp->ks_data;
773
774 if (rw == KSTAT_WRITE) {
775 return (SET_ERROR(EACCES));
776 } else {
777 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
778 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
779 ds->cache_size_bytes.value.ui64 =
780 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
781 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
782 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
783 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
784 ds->hash_elements.value.ui64 = dbuf_hash_count;
785 }
786
787 return (0);
788 }
789
790 void
791 dbuf_init(void)
792 {
793 uint64_t hsize = 1ULL << 16;
794 dbuf_hash_table_t *h = &dbuf_hash_table;
795 int i;
796
797 /*
798 * The hash table is big enough to fill all of physical memory
799 * with an average block size of zfs_arc_average_blocksize (default 8K).
800 * By default, the table will take up
801 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
802 */
803 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
804 hsize <<= 1;
805
806 retry:
807 h->hash_table_mask = hsize - 1;
808 #if defined(_KERNEL)
809 /*
810 * Large allocations which do not require contiguous pages
811 * should be using vmem_alloc() in the linux kernel
812 */
813 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
814 #else
815 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
816 #endif
817 if (h->hash_table == NULL) {
818 /* XXX - we should really return an error instead of assert */
819 ASSERT(hsize > (1ULL << 10));
820 hsize >>= 1;
821 goto retry;
822 }
823
824 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
825 sizeof (dmu_buf_impl_t),
826 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
827
828 for (i = 0; i < DBUF_MUTEXES; i++)
829 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
830
831 dbuf_stats_init(h);
832
833 /*
834 * Setup the parameters for the dbuf caches. We set the sizes of the
835 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
836 * of the target size of the ARC. If the values has been specified as
837 * a module option and they're not greater than the target size of the
838 * ARC, then we honor that value.
839 */
840 if (dbuf_cache_max_bytes == 0 ||
841 dbuf_cache_max_bytes >= arc_target_bytes()) {
842 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
843 }
844 if (dbuf_metadata_cache_max_bytes == 0 ||
845 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
846 dbuf_metadata_cache_max_bytes =
847 arc_target_bytes() >> dbuf_metadata_cache_shift;
848 }
849
850 /*
851 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
852 * configuration is not required.
853 */
854 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
855
856 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
857 dbuf_caches[dcs].cache =
858 multilist_create(sizeof (dmu_buf_impl_t),
859 offsetof(dmu_buf_impl_t, db_cache_link),
860 dbuf_cache_multilist_index_func);
861 zfs_refcount_create(&dbuf_caches[dcs].size);
862 }
863
864 dbuf_evict_thread_exit = B_FALSE;
865 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
866 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
867 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
868 NULL, 0, &p0, TS_RUN, minclsyspri);
869
870 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
871 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
872 KSTAT_FLAG_VIRTUAL);
873 if (dbuf_ksp != NULL) {
874 dbuf_ksp->ks_data = &dbuf_stats;
875 dbuf_ksp->ks_update = dbuf_kstat_update;
876 kstat_install(dbuf_ksp);
877
878 for (i = 0; i < DN_MAX_LEVELS; i++) {
879 snprintf(dbuf_stats.cache_levels[i].name,
880 KSTAT_STRLEN, "cache_level_%d", i);
881 dbuf_stats.cache_levels[i].data_type =
882 KSTAT_DATA_UINT64;
883 snprintf(dbuf_stats.cache_levels_bytes[i].name,
884 KSTAT_STRLEN, "cache_level_%d_bytes", i);
885 dbuf_stats.cache_levels_bytes[i].data_type =
886 KSTAT_DATA_UINT64;
887 }
888 }
889 }
890
891 void
892 dbuf_fini(void)
893 {
894 dbuf_hash_table_t *h = &dbuf_hash_table;
895 int i;
896
897 dbuf_stats_destroy();
898
899 for (i = 0; i < DBUF_MUTEXES; i++)
900 mutex_destroy(&h->hash_mutexes[i]);
901 #if defined(_KERNEL)
902 /*
903 * Large allocations which do not require contiguous pages
904 * should be using vmem_free() in the linux kernel
905 */
906 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
907 #else
908 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
909 #endif
910 kmem_cache_destroy(dbuf_kmem_cache);
911 taskq_destroy(dbu_evict_taskq);
912
913 mutex_enter(&dbuf_evict_lock);
914 dbuf_evict_thread_exit = B_TRUE;
915 while (dbuf_evict_thread_exit) {
916 cv_signal(&dbuf_evict_cv);
917 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
918 }
919 mutex_exit(&dbuf_evict_lock);
920
921 mutex_destroy(&dbuf_evict_lock);
922 cv_destroy(&dbuf_evict_cv);
923
924 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
925 zfs_refcount_destroy(&dbuf_caches[dcs].size);
926 multilist_destroy(dbuf_caches[dcs].cache);
927 }
928
929 if (dbuf_ksp != NULL) {
930 kstat_delete(dbuf_ksp);
931 dbuf_ksp = NULL;
932 }
933 }
934
935 /*
936 * Other stuff.
937 */
938
939 #ifdef ZFS_DEBUG
940 static void
941 dbuf_verify(dmu_buf_impl_t *db)
942 {
943 dnode_t *dn;
944 dbuf_dirty_record_t *dr;
945
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947
948 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
949 return;
950
951 ASSERT(db->db_objset != NULL);
952 DB_DNODE_ENTER(db);
953 dn = DB_DNODE(db);
954 if (dn == NULL) {
955 ASSERT(db->db_parent == NULL);
956 ASSERT(db->db_blkptr == NULL);
957 } else {
958 ASSERT3U(db->db.db_object, ==, dn->dn_object);
959 ASSERT3P(db->db_objset, ==, dn->dn_objset);
960 ASSERT3U(db->db_level, <, dn->dn_nlevels);
961 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
962 db->db_blkid == DMU_SPILL_BLKID ||
963 !avl_is_empty(&dn->dn_dbufs));
964 }
965 if (db->db_blkid == DMU_BONUS_BLKID) {
966 ASSERT(dn != NULL);
967 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
968 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
969 } else if (db->db_blkid == DMU_SPILL_BLKID) {
970 ASSERT(dn != NULL);
971 ASSERT0(db->db.db_offset);
972 } else {
973 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
974 }
975
976 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
977 ASSERT(dr->dr_dbuf == db);
978
979 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
980 ASSERT(dr->dr_dbuf == db);
981
982 /*
983 * We can't assert that db_size matches dn_datablksz because it
984 * can be momentarily different when another thread is doing
985 * dnode_set_blksz().
986 */
987 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
988 dr = db->db_data_pending;
989 /*
990 * It should only be modified in syncing context, so
991 * make sure we only have one copy of the data.
992 */
993 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
994 }
995
996 /* verify db->db_blkptr */
997 if (db->db_blkptr) {
998 if (db->db_parent == dn->dn_dbuf) {
999 /* db is pointed to by the dnode */
1000 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1001 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1002 ASSERT(db->db_parent == NULL);
1003 else
1004 ASSERT(db->db_parent != NULL);
1005 if (db->db_blkid != DMU_SPILL_BLKID)
1006 ASSERT3P(db->db_blkptr, ==,
1007 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1008 } else {
1009 /* db is pointed to by an indirect block */
1010 ASSERTV(int epb = db->db_parent->db.db_size >>
1011 SPA_BLKPTRSHIFT);
1012 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1013 ASSERT3U(db->db_parent->db.db_object, ==,
1014 db->db.db_object);
1015 /*
1016 * dnode_grow_indblksz() can make this fail if we don't
1017 * have the struct_rwlock. XXX indblksz no longer
1018 * grows. safe to do this now?
1019 */
1020 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1021 ASSERT3P(db->db_blkptr, ==,
1022 ((blkptr_t *)db->db_parent->db.db_data +
1023 db->db_blkid % epb));
1024 }
1025 }
1026 }
1027 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1028 (db->db_buf == NULL || db->db_buf->b_data) &&
1029 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1030 db->db_state != DB_FILL && !dn->dn_free_txg) {
1031 /*
1032 * If the blkptr isn't set but they have nonzero data,
1033 * it had better be dirty, otherwise we'll lose that
1034 * data when we evict this buffer.
1035 *
1036 * There is an exception to this rule for indirect blocks; in
1037 * this case, if the indirect block is a hole, we fill in a few
1038 * fields on each of the child blocks (importantly, birth time)
1039 * to prevent hole birth times from being lost when you
1040 * partially fill in a hole.
1041 */
1042 if (db->db_dirtycnt == 0) {
1043 if (db->db_level == 0) {
1044 uint64_t *buf = db->db.db_data;
1045 int i;
1046
1047 for (i = 0; i < db->db.db_size >> 3; i++) {
1048 ASSERT(buf[i] == 0);
1049 }
1050 } else {
1051 blkptr_t *bps = db->db.db_data;
1052 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1053 db->db.db_size);
1054 /*
1055 * We want to verify that all the blkptrs in the
1056 * indirect block are holes, but we may have
1057 * automatically set up a few fields for them.
1058 * We iterate through each blkptr and verify
1059 * they only have those fields set.
1060 */
1061 for (int i = 0;
1062 i < db->db.db_size / sizeof (blkptr_t);
1063 i++) {
1064 blkptr_t *bp = &bps[i];
1065 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1066 &bp->blk_cksum));
1067 ASSERT(
1068 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1069 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1070 DVA_IS_EMPTY(&bp->blk_dva[2]));
1071 ASSERT0(bp->blk_fill);
1072 ASSERT0(bp->blk_pad[0]);
1073 ASSERT0(bp->blk_pad[1]);
1074 ASSERT(!BP_IS_EMBEDDED(bp));
1075 ASSERT(BP_IS_HOLE(bp));
1076 ASSERT0(bp->blk_phys_birth);
1077 }
1078 }
1079 }
1080 }
1081 DB_DNODE_EXIT(db);
1082 }
1083 #endif
1084
1085 static void
1086 dbuf_clear_data(dmu_buf_impl_t *db)
1087 {
1088 ASSERT(MUTEX_HELD(&db->db_mtx));
1089 dbuf_evict_user(db);
1090 ASSERT3P(db->db_buf, ==, NULL);
1091 db->db.db_data = NULL;
1092 if (db->db_state != DB_NOFILL)
1093 db->db_state = DB_UNCACHED;
1094 }
1095
1096 static void
1097 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1098 {
1099 ASSERT(MUTEX_HELD(&db->db_mtx));
1100 ASSERT(buf != NULL);
1101
1102 db->db_buf = buf;
1103 ASSERT(buf->b_data != NULL);
1104 db->db.db_data = buf->b_data;
1105 }
1106
1107 /*
1108 * Loan out an arc_buf for read. Return the loaned arc_buf.
1109 */
1110 arc_buf_t *
1111 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1112 {
1113 arc_buf_t *abuf;
1114
1115 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1116 mutex_enter(&db->db_mtx);
1117 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1118 int blksz = db->db.db_size;
1119 spa_t *spa = db->db_objset->os_spa;
1120
1121 mutex_exit(&db->db_mtx);
1122 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1123 bcopy(db->db.db_data, abuf->b_data, blksz);
1124 } else {
1125 abuf = db->db_buf;
1126 arc_loan_inuse_buf(abuf, db);
1127 db->db_buf = NULL;
1128 dbuf_clear_data(db);
1129 mutex_exit(&db->db_mtx);
1130 }
1131 return (abuf);
1132 }
1133
1134 /*
1135 * Calculate which level n block references the data at the level 0 offset
1136 * provided.
1137 */
1138 uint64_t
1139 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1140 {
1141 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1142 /*
1143 * The level n blkid is equal to the level 0 blkid divided by
1144 * the number of level 0s in a level n block.
1145 *
1146 * The level 0 blkid is offset >> datablkshift =
1147 * offset / 2^datablkshift.
1148 *
1149 * The number of level 0s in a level n is the number of block
1150 * pointers in an indirect block, raised to the power of level.
1151 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1152 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1153 *
1154 * Thus, the level n blkid is: offset /
1155 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1156 * = offset / 2^(datablkshift + level *
1157 * (indblkshift - SPA_BLKPTRSHIFT))
1158 * = offset >> (datablkshift + level *
1159 * (indblkshift - SPA_BLKPTRSHIFT))
1160 */
1161
1162 const unsigned exp = dn->dn_datablkshift +
1163 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1164
1165 if (exp >= 8 * sizeof (offset)) {
1166 /* This only happens on the highest indirection level */
1167 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1168 return (0);
1169 }
1170
1171 ASSERT3U(exp, <, 8 * sizeof (offset));
1172
1173 return (offset >> exp);
1174 } else {
1175 ASSERT3U(offset, <, dn->dn_datablksz);
1176 return (0);
1177 }
1178 }
1179
1180 static void
1181 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1182 arc_buf_t *buf, void *vdb)
1183 {
1184 dmu_buf_impl_t *db = vdb;
1185
1186 mutex_enter(&db->db_mtx);
1187 ASSERT3U(db->db_state, ==, DB_READ);
1188 /*
1189 * All reads are synchronous, so we must have a hold on the dbuf
1190 */
1191 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1192 ASSERT(db->db_buf == NULL);
1193 ASSERT(db->db.db_data == NULL);
1194 if (buf == NULL) {
1195 /* i/o error */
1196 ASSERT(zio == NULL || zio->io_error != 0);
1197 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1198 ASSERT3P(db->db_buf, ==, NULL);
1199 db->db_state = DB_UNCACHED;
1200 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1201 /* freed in flight */
1202 ASSERT(zio == NULL || zio->io_error == 0);
1203 arc_release(buf, db);
1204 bzero(buf->b_data, db->db.db_size);
1205 arc_buf_freeze(buf);
1206 db->db_freed_in_flight = FALSE;
1207 dbuf_set_data(db, buf);
1208 db->db_state = DB_CACHED;
1209 } else {
1210 /* success */
1211 ASSERT(zio == NULL || zio->io_error == 0);
1212 dbuf_set_data(db, buf);
1213 db->db_state = DB_CACHED;
1214 }
1215 cv_broadcast(&db->db_changed);
1216 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1217 }
1218
1219
1220 /*
1221 * This function ensures that, when doing a decrypting read of a block,
1222 * we make sure we have decrypted the dnode associated with it. We must do
1223 * this so that we ensure we are fully authenticating the checksum-of-MACs
1224 * tree from the root of the objset down to this block. Indirect blocks are
1225 * always verified against their secure checksum-of-MACs assuming that the
1226 * dnode containing them is correct. Now that we are doing a decrypting read,
1227 * we can be sure that the key is loaded and verify that assumption. This is
1228 * especially important considering that we always read encrypted dnode
1229 * blocks as raw data (without verifying their MACs) to start, and
1230 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1231 */
1232 static int
1233 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1234 {
1235 int err = 0;
1236 objset_t *os = db->db_objset;
1237 arc_buf_t *dnode_abuf;
1238 dnode_t *dn;
1239 zbookmark_phys_t zb;
1240
1241 ASSERT(MUTEX_HELD(&db->db_mtx));
1242
1243 if (!os->os_encrypted || os->os_raw_receive ||
1244 (flags & DB_RF_NO_DECRYPT) != 0)
1245 return (0);
1246
1247 DB_DNODE_ENTER(db);
1248 dn = DB_DNODE(db);
1249 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1250
1251 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1252 DB_DNODE_EXIT(db);
1253 return (0);
1254 }
1255
1256 SET_BOOKMARK(&zb, dmu_objset_id(os),
1257 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1258 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1259
1260 /*
1261 * An error code of EACCES tells us that the key is still not
1262 * available. This is ok if we are only reading authenticated
1263 * (and therefore non-encrypted) blocks.
1264 */
1265 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1266 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1267 (db->db_blkid == DMU_BONUS_BLKID &&
1268 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1269 err = 0;
1270
1271 DB_DNODE_EXIT(db);
1272
1273 return (err);
1274 }
1275
1276 static int
1277 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1278 {
1279 dnode_t *dn;
1280 zbookmark_phys_t zb;
1281 uint32_t aflags = ARC_FLAG_NOWAIT;
1282 int err, zio_flags = 0;
1283
1284 DB_DNODE_ENTER(db);
1285 dn = DB_DNODE(db);
1286 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1287 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1288 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1289 ASSERT(MUTEX_HELD(&db->db_mtx));
1290 ASSERT(db->db_state == DB_UNCACHED);
1291 ASSERT(db->db_buf == NULL);
1292
1293 if (db->db_blkid == DMU_BONUS_BLKID) {
1294 /*
1295 * The bonus length stored in the dnode may be less than
1296 * the maximum available space in the bonus buffer.
1297 */
1298 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1299 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1300
1301 /* if the underlying dnode block is encrypted, decrypt it */
1302 err = dbuf_read_verify_dnode_crypt(db, flags);
1303 if (err != 0) {
1304 DB_DNODE_EXIT(db);
1305 mutex_exit(&db->db_mtx);
1306 return (err);
1307 }
1308
1309 ASSERT3U(bonuslen, <=, db->db.db_size);
1310 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1311 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1312 if (bonuslen < max_bonuslen)
1313 bzero(db->db.db_data, max_bonuslen);
1314 if (bonuslen)
1315 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1316 DB_DNODE_EXIT(db);
1317 db->db_state = DB_CACHED;
1318 mutex_exit(&db->db_mtx);
1319 return (0);
1320 }
1321
1322 /*
1323 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1324 * processes the delete record and clears the bp while we are waiting
1325 * for the dn_mtx (resulting in a "no" from block_freed).
1326 */
1327 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1328 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1329 BP_IS_HOLE(db->db_blkptr)))) {
1330 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1331
1332 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1333 db->db.db_size));
1334 bzero(db->db.db_data, db->db.db_size);
1335
1336 if (db->db_blkptr != NULL && db->db_level > 0 &&
1337 BP_IS_HOLE(db->db_blkptr) &&
1338 db->db_blkptr->blk_birth != 0) {
1339 blkptr_t *bps = db->db.db_data;
1340 for (int i = 0; i < ((1 <<
1341 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1342 i++) {
1343 blkptr_t *bp = &bps[i];
1344 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1345 1 << dn->dn_indblkshift);
1346 BP_SET_LSIZE(bp,
1347 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1348 dn->dn_datablksz :
1349 BP_GET_LSIZE(db->db_blkptr));
1350 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1351 BP_SET_LEVEL(bp,
1352 BP_GET_LEVEL(db->db_blkptr) - 1);
1353 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1354 }
1355 }
1356 DB_DNODE_EXIT(db);
1357 db->db_state = DB_CACHED;
1358 mutex_exit(&db->db_mtx);
1359 return (0);
1360 }
1361
1362
1363 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1364 db->db.db_object, db->db_level, db->db_blkid);
1365
1366 /*
1367 * All bps of an encrypted os should have the encryption bit set.
1368 * If this is not true it indicates tampering and we report an error.
1369 */
1370 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1371 spa_log_error(db->db_objset->os_spa, &zb);
1372 zfs_panic_recover("unencrypted block in encrypted "
1373 "object set %llu", dmu_objset_id(db->db_objset));
1374 DB_DNODE_EXIT(db);
1375 mutex_exit(&db->db_mtx);
1376 return (SET_ERROR(EIO));
1377 }
1378
1379 err = dbuf_read_verify_dnode_crypt(db, flags);
1380 if (err != 0) {
1381 DB_DNODE_EXIT(db);
1382 mutex_exit(&db->db_mtx);
1383 return (err);
1384 }
1385
1386 DB_DNODE_EXIT(db);
1387
1388 db->db_state = DB_READ;
1389 mutex_exit(&db->db_mtx);
1390
1391 if (DBUF_IS_L2CACHEABLE(db))
1392 aflags |= ARC_FLAG_L2CACHE;
1393
1394 dbuf_add_ref(db, NULL);
1395
1396 zio_flags = (flags & DB_RF_CANFAIL) ?
1397 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1398
1399 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1400 zio_flags |= ZIO_FLAG_RAW;
1401
1402 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1403 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1404 &aflags, &zb);
1405
1406 return (err);
1407 }
1408
1409 /*
1410 * This is our just-in-time copy function. It makes a copy of buffers that
1411 * have been modified in a previous transaction group before we access them in
1412 * the current active group.
1413 *
1414 * This function is used in three places: when we are dirtying a buffer for the
1415 * first time in a txg, when we are freeing a range in a dnode that includes
1416 * this buffer, and when we are accessing a buffer which was received compressed
1417 * and later referenced in a WRITE_BYREF record.
1418 *
1419 * Note that when we are called from dbuf_free_range() we do not put a hold on
1420 * the buffer, we just traverse the active dbuf list for the dnode.
1421 */
1422 static void
1423 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1424 {
1425 dbuf_dirty_record_t *dr = db->db_last_dirty;
1426
1427 ASSERT(MUTEX_HELD(&db->db_mtx));
1428 ASSERT(db->db.db_data != NULL);
1429 ASSERT(db->db_level == 0);
1430 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1431
1432 if (dr == NULL ||
1433 (dr->dt.dl.dr_data !=
1434 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1435 return;
1436
1437 /*
1438 * If the last dirty record for this dbuf has not yet synced
1439 * and its referencing the dbuf data, either:
1440 * reset the reference to point to a new copy,
1441 * or (if there a no active holders)
1442 * just null out the current db_data pointer.
1443 */
1444 ASSERT3U(dr->dr_txg, >=, txg - 2);
1445 if (db->db_blkid == DMU_BONUS_BLKID) {
1446 dnode_t *dn = DB_DNODE(db);
1447 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1448 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1449 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1450 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1451 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1452 dnode_t *dn = DB_DNODE(db);
1453 int size = arc_buf_size(db->db_buf);
1454 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1455 spa_t *spa = db->db_objset->os_spa;
1456 enum zio_compress compress_type =
1457 arc_get_compression(db->db_buf);
1458
1459 if (arc_is_encrypted(db->db_buf)) {
1460 boolean_t byteorder;
1461 uint8_t salt[ZIO_DATA_SALT_LEN];
1462 uint8_t iv[ZIO_DATA_IV_LEN];
1463 uint8_t mac[ZIO_DATA_MAC_LEN];
1464
1465 arc_get_raw_params(db->db_buf, &byteorder, salt,
1466 iv, mac);
1467 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1468 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1469 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1470 compress_type);
1471 } else if (compress_type != ZIO_COMPRESS_OFF) {
1472 ASSERT3U(type, ==, ARC_BUFC_DATA);
1473 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1474 size, arc_buf_lsize(db->db_buf), compress_type);
1475 } else {
1476 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1477 }
1478 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1479 } else {
1480 db->db_buf = NULL;
1481 dbuf_clear_data(db);
1482 }
1483 }
1484
1485 int
1486 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1487 {
1488 int err = 0;
1489 boolean_t prefetch;
1490 dnode_t *dn;
1491
1492 /*
1493 * We don't have to hold the mutex to check db_state because it
1494 * can't be freed while we have a hold on the buffer.
1495 */
1496 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1497
1498 if (db->db_state == DB_NOFILL)
1499 return (SET_ERROR(EIO));
1500
1501 DB_DNODE_ENTER(db);
1502 dn = DB_DNODE(db);
1503 if ((flags & DB_RF_HAVESTRUCT) == 0)
1504 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1505
1506 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1507 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1508 DBUF_IS_CACHEABLE(db);
1509
1510 mutex_enter(&db->db_mtx);
1511 if (db->db_state == DB_CACHED) {
1512 spa_t *spa = dn->dn_objset->os_spa;
1513
1514 /*
1515 * Ensure that this block's dnode has been decrypted if
1516 * the caller has requested decrypted data.
1517 */
1518 err = dbuf_read_verify_dnode_crypt(db, flags);
1519
1520 /*
1521 * If the arc buf is compressed or encrypted and the caller
1522 * requested uncompressed data, we need to untransform it
1523 * before returning. We also call arc_untransform() on any
1524 * unauthenticated blocks, which will verify their MAC if
1525 * the key is now available.
1526 */
1527 if (err == 0 && db->db_buf != NULL &&
1528 (flags & DB_RF_NO_DECRYPT) == 0 &&
1529 (arc_is_encrypted(db->db_buf) ||
1530 arc_is_unauthenticated(db->db_buf) ||
1531 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1532 zbookmark_phys_t zb;
1533
1534 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1535 db->db.db_object, db->db_level, db->db_blkid);
1536 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1537 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1538 dbuf_set_data(db, db->db_buf);
1539 }
1540 mutex_exit(&db->db_mtx);
1541 if (err == 0 && prefetch)
1542 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1543 if ((flags & DB_RF_HAVESTRUCT) == 0)
1544 rw_exit(&dn->dn_struct_rwlock);
1545 DB_DNODE_EXIT(db);
1546 DBUF_STAT_BUMP(hash_hits);
1547 } else if (db->db_state == DB_UNCACHED) {
1548 spa_t *spa = dn->dn_objset->os_spa;
1549 boolean_t need_wait = B_FALSE;
1550
1551 if (zio == NULL &&
1552 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1553 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1554 need_wait = B_TRUE;
1555 }
1556 err = dbuf_read_impl(db, zio, flags);
1557
1558 /* dbuf_read_impl has dropped db_mtx for us */
1559
1560 if (!err && prefetch)
1561 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1562
1563 if ((flags & DB_RF_HAVESTRUCT) == 0)
1564 rw_exit(&dn->dn_struct_rwlock);
1565 DB_DNODE_EXIT(db);
1566 DBUF_STAT_BUMP(hash_misses);
1567
1568 if (!err && need_wait)
1569 err = zio_wait(zio);
1570 } else {
1571 /*
1572 * Another reader came in while the dbuf was in flight
1573 * between UNCACHED and CACHED. Either a writer will finish
1574 * writing the buffer (sending the dbuf to CACHED) or the
1575 * first reader's request will reach the read_done callback
1576 * and send the dbuf to CACHED. Otherwise, a failure
1577 * occurred and the dbuf went to UNCACHED.
1578 */
1579 mutex_exit(&db->db_mtx);
1580 if (prefetch)
1581 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1582 if ((flags & DB_RF_HAVESTRUCT) == 0)
1583 rw_exit(&dn->dn_struct_rwlock);
1584 DB_DNODE_EXIT(db);
1585 DBUF_STAT_BUMP(hash_misses);
1586
1587 /* Skip the wait per the caller's request. */
1588 mutex_enter(&db->db_mtx);
1589 if ((flags & DB_RF_NEVERWAIT) == 0) {
1590 while (db->db_state == DB_READ ||
1591 db->db_state == DB_FILL) {
1592 ASSERT(db->db_state == DB_READ ||
1593 (flags & DB_RF_HAVESTRUCT) == 0);
1594 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1595 db, zio_t *, zio);
1596 cv_wait(&db->db_changed, &db->db_mtx);
1597 }
1598 if (db->db_state == DB_UNCACHED)
1599 err = SET_ERROR(EIO);
1600 }
1601 mutex_exit(&db->db_mtx);
1602 }
1603
1604 return (err);
1605 }
1606
1607 static void
1608 dbuf_noread(dmu_buf_impl_t *db)
1609 {
1610 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1611 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1612 mutex_enter(&db->db_mtx);
1613 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1614 cv_wait(&db->db_changed, &db->db_mtx);
1615 if (db->db_state == DB_UNCACHED) {
1616 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1617 spa_t *spa = db->db_objset->os_spa;
1618
1619 ASSERT(db->db_buf == NULL);
1620 ASSERT(db->db.db_data == NULL);
1621 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1622 db->db_state = DB_FILL;
1623 } else if (db->db_state == DB_NOFILL) {
1624 dbuf_clear_data(db);
1625 } else {
1626 ASSERT3U(db->db_state, ==, DB_CACHED);
1627 }
1628 mutex_exit(&db->db_mtx);
1629 }
1630
1631 void
1632 dbuf_unoverride(dbuf_dirty_record_t *dr)
1633 {
1634 dmu_buf_impl_t *db = dr->dr_dbuf;
1635 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1636 uint64_t txg = dr->dr_txg;
1637
1638 ASSERT(MUTEX_HELD(&db->db_mtx));
1639 /*
1640 * This assert is valid because dmu_sync() expects to be called by
1641 * a zilog's get_data while holding a range lock. This call only
1642 * comes from dbuf_dirty() callers who must also hold a range lock.
1643 */
1644 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1645 ASSERT(db->db_level == 0);
1646
1647 if (db->db_blkid == DMU_BONUS_BLKID ||
1648 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1649 return;
1650
1651 ASSERT(db->db_data_pending != dr);
1652
1653 /* free this block */
1654 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1655 zio_free(db->db_objset->os_spa, txg, bp);
1656
1657 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1658 dr->dt.dl.dr_nopwrite = B_FALSE;
1659 dr->dt.dl.dr_has_raw_params = B_FALSE;
1660
1661 /*
1662 * Release the already-written buffer, so we leave it in
1663 * a consistent dirty state. Note that all callers are
1664 * modifying the buffer, so they will immediately do
1665 * another (redundant) arc_release(). Therefore, leave
1666 * the buf thawed to save the effort of freezing &
1667 * immediately re-thawing it.
1668 */
1669 arc_release(dr->dt.dl.dr_data, db);
1670 }
1671
1672 /*
1673 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1674 * data blocks in the free range, so that any future readers will find
1675 * empty blocks.
1676 */
1677 void
1678 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1679 dmu_tx_t *tx)
1680 {
1681 dmu_buf_impl_t *db_search;
1682 dmu_buf_impl_t *db, *db_next;
1683 uint64_t txg = tx->tx_txg;
1684 avl_index_t where;
1685
1686 if (end_blkid > dn->dn_maxblkid &&
1687 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1688 end_blkid = dn->dn_maxblkid;
1689 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1690
1691 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1692 db_search->db_level = 0;
1693 db_search->db_blkid = start_blkid;
1694 db_search->db_state = DB_SEARCH;
1695
1696 mutex_enter(&dn->dn_dbufs_mtx);
1697 db = avl_find(&dn->dn_dbufs, db_search, &where);
1698 ASSERT3P(db, ==, NULL);
1699
1700 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1701
1702 for (; db != NULL; db = db_next) {
1703 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1704 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1705
1706 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1707 break;
1708 }
1709 ASSERT3U(db->db_blkid, >=, start_blkid);
1710
1711 /* found a level 0 buffer in the range */
1712 mutex_enter(&db->db_mtx);
1713 if (dbuf_undirty(db, tx)) {
1714 /* mutex has been dropped and dbuf destroyed */
1715 continue;
1716 }
1717
1718 if (db->db_state == DB_UNCACHED ||
1719 db->db_state == DB_NOFILL ||
1720 db->db_state == DB_EVICTING) {
1721 ASSERT(db->db.db_data == NULL);
1722 mutex_exit(&db->db_mtx);
1723 continue;
1724 }
1725 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1726 /* will be handled in dbuf_read_done or dbuf_rele */
1727 db->db_freed_in_flight = TRUE;
1728 mutex_exit(&db->db_mtx);
1729 continue;
1730 }
1731 if (zfs_refcount_count(&db->db_holds) == 0) {
1732 ASSERT(db->db_buf);
1733 dbuf_destroy(db);
1734 continue;
1735 }
1736 /* The dbuf is referenced */
1737
1738 if (db->db_last_dirty != NULL) {
1739 dbuf_dirty_record_t *dr = db->db_last_dirty;
1740
1741 if (dr->dr_txg == txg) {
1742 /*
1743 * This buffer is "in-use", re-adjust the file
1744 * size to reflect that this buffer may
1745 * contain new data when we sync.
1746 */
1747 if (db->db_blkid != DMU_SPILL_BLKID &&
1748 db->db_blkid > dn->dn_maxblkid)
1749 dn->dn_maxblkid = db->db_blkid;
1750 dbuf_unoverride(dr);
1751 } else {
1752 /*
1753 * This dbuf is not dirty in the open context.
1754 * Either uncache it (if its not referenced in
1755 * the open context) or reset its contents to
1756 * empty.
1757 */
1758 dbuf_fix_old_data(db, txg);
1759 }
1760 }
1761 /* clear the contents if its cached */
1762 if (db->db_state == DB_CACHED) {
1763 ASSERT(db->db.db_data != NULL);
1764 arc_release(db->db_buf, db);
1765 bzero(db->db.db_data, db->db.db_size);
1766 arc_buf_freeze(db->db_buf);
1767 }
1768
1769 mutex_exit(&db->db_mtx);
1770 }
1771
1772 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1773 mutex_exit(&dn->dn_dbufs_mtx);
1774 }
1775
1776 void
1777 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1778 {
1779 arc_buf_t *buf, *obuf;
1780 int osize = db->db.db_size;
1781 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1782 dnode_t *dn;
1783
1784 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1785
1786 DB_DNODE_ENTER(db);
1787 dn = DB_DNODE(db);
1788
1789 /* XXX does *this* func really need the lock? */
1790 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1791
1792 /*
1793 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1794 * is OK, because there can be no other references to the db
1795 * when we are changing its size, so no concurrent DB_FILL can
1796 * be happening.
1797 */
1798 /*
1799 * XXX we should be doing a dbuf_read, checking the return
1800 * value and returning that up to our callers
1801 */
1802 dmu_buf_will_dirty(&db->db, tx);
1803
1804 /* create the data buffer for the new block */
1805 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1806
1807 /* copy old block data to the new block */
1808 obuf = db->db_buf;
1809 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1810 /* zero the remainder */
1811 if (size > osize)
1812 bzero((uint8_t *)buf->b_data + osize, size - osize);
1813
1814 mutex_enter(&db->db_mtx);
1815 dbuf_set_data(db, buf);
1816 arc_buf_destroy(obuf, db);
1817 db->db.db_size = size;
1818
1819 if (db->db_level == 0) {
1820 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1821 db->db_last_dirty->dt.dl.dr_data = buf;
1822 }
1823 mutex_exit(&db->db_mtx);
1824
1825 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1826 DB_DNODE_EXIT(db);
1827 }
1828
1829 void
1830 dbuf_release_bp(dmu_buf_impl_t *db)
1831 {
1832 ASSERTV(objset_t *os = db->db_objset);
1833
1834 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1835 ASSERT(arc_released(os->os_phys_buf) ||
1836 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1837 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1838
1839 (void) arc_release(db->db_buf, db);
1840 }
1841
1842 /*
1843 * We already have a dirty record for this TXG, and we are being
1844 * dirtied again.
1845 */
1846 static void
1847 dbuf_redirty(dbuf_dirty_record_t *dr)
1848 {
1849 dmu_buf_impl_t *db = dr->dr_dbuf;
1850
1851 ASSERT(MUTEX_HELD(&db->db_mtx));
1852
1853 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1854 /*
1855 * If this buffer has already been written out,
1856 * we now need to reset its state.
1857 */
1858 dbuf_unoverride(dr);
1859 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1860 db->db_state != DB_NOFILL) {
1861 /* Already released on initial dirty, so just thaw. */
1862 ASSERT(arc_released(db->db_buf));
1863 arc_buf_thaw(db->db_buf);
1864 }
1865 }
1866 }
1867
1868 dbuf_dirty_record_t *
1869 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1870 {
1871 dnode_t *dn;
1872 objset_t *os;
1873 dbuf_dirty_record_t **drp, *dr;
1874 int drop_struct_lock = FALSE;
1875 int txgoff = tx->tx_txg & TXG_MASK;
1876
1877 ASSERT(tx->tx_txg != 0);
1878 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1879 DMU_TX_DIRTY_BUF(tx, db);
1880
1881 DB_DNODE_ENTER(db);
1882 dn = DB_DNODE(db);
1883 /*
1884 * Shouldn't dirty a regular buffer in syncing context. Private
1885 * objects may be dirtied in syncing context, but only if they
1886 * were already pre-dirtied in open context.
1887 */
1888 #ifdef DEBUG
1889 if (dn->dn_objset->os_dsl_dataset != NULL) {
1890 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1891 RW_READER, FTAG);
1892 }
1893 ASSERT(!dmu_tx_is_syncing(tx) ||
1894 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1895 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1896 dn->dn_objset->os_dsl_dataset == NULL);
1897 if (dn->dn_objset->os_dsl_dataset != NULL)
1898 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1899 #endif
1900 /*
1901 * We make this assert for private objects as well, but after we
1902 * check if we're already dirty. They are allowed to re-dirty
1903 * in syncing context.
1904 */
1905 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1906 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1907 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1908
1909 mutex_enter(&db->db_mtx);
1910 /*
1911 * XXX make this true for indirects too? The problem is that
1912 * transactions created with dmu_tx_create_assigned() from
1913 * syncing context don't bother holding ahead.
1914 */
1915 ASSERT(db->db_level != 0 ||
1916 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1917 db->db_state == DB_NOFILL);
1918
1919 mutex_enter(&dn->dn_mtx);
1920 /*
1921 * Don't set dirtyctx to SYNC if we're just modifying this as we
1922 * initialize the objset.
1923 */
1924 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1925 if (dn->dn_objset->os_dsl_dataset != NULL) {
1926 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1927 RW_READER, FTAG);
1928 }
1929 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1930 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1931 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1932 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1933 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1934 }
1935 if (dn->dn_objset->os_dsl_dataset != NULL) {
1936 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1937 FTAG);
1938 }
1939 }
1940
1941 if (tx->tx_txg > dn->dn_dirty_txg)
1942 dn->dn_dirty_txg = tx->tx_txg;
1943 mutex_exit(&dn->dn_mtx);
1944
1945 if (db->db_blkid == DMU_SPILL_BLKID)
1946 dn->dn_have_spill = B_TRUE;
1947
1948 /*
1949 * If this buffer is already dirty, we're done.
1950 */
1951 drp = &db->db_last_dirty;
1952 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1953 db->db.db_object == DMU_META_DNODE_OBJECT);
1954 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1955 drp = &dr->dr_next;
1956 if (dr && dr->dr_txg == tx->tx_txg) {
1957 DB_DNODE_EXIT(db);
1958
1959 dbuf_redirty(dr);
1960 mutex_exit(&db->db_mtx);
1961 return (dr);
1962 }
1963
1964 /*
1965 * Only valid if not already dirty.
1966 */
1967 ASSERT(dn->dn_object == 0 ||
1968 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1969 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1970
1971 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1972
1973 /*
1974 * We should only be dirtying in syncing context if it's the
1975 * mos or we're initializing the os or it's a special object.
1976 * However, we are allowed to dirty in syncing context provided
1977 * we already dirtied it in open context. Hence we must make
1978 * this assertion only if we're not already dirty.
1979 */
1980 os = dn->dn_objset;
1981 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1982 #ifdef DEBUG
1983 if (dn->dn_objset->os_dsl_dataset != NULL)
1984 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1985 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1986 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1987 if (dn->dn_objset->os_dsl_dataset != NULL)
1988 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1989 #endif
1990 ASSERT(db->db.db_size != 0);
1991
1992 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1993
1994 if (db->db_blkid != DMU_BONUS_BLKID) {
1995 dmu_objset_willuse_space(os, db->db.db_size, tx);
1996 }
1997
1998 /*
1999 * If this buffer is dirty in an old transaction group we need
2000 * to make a copy of it so that the changes we make in this
2001 * transaction group won't leak out when we sync the older txg.
2002 */
2003 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2004 list_link_init(&dr->dr_dirty_node);
2005 if (db->db_level == 0) {
2006 void *data_old = db->db_buf;
2007
2008 if (db->db_state != DB_NOFILL) {
2009 if (db->db_blkid == DMU_BONUS_BLKID) {
2010 dbuf_fix_old_data(db, tx->tx_txg);
2011 data_old = db->db.db_data;
2012 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2013 /*
2014 * Release the data buffer from the cache so
2015 * that we can modify it without impacting
2016 * possible other users of this cached data
2017 * block. Note that indirect blocks and
2018 * private objects are not released until the
2019 * syncing state (since they are only modified
2020 * then).
2021 */
2022 arc_release(db->db_buf, db);
2023 dbuf_fix_old_data(db, tx->tx_txg);
2024 data_old = db->db_buf;
2025 }
2026 ASSERT(data_old != NULL);
2027 }
2028 dr->dt.dl.dr_data = data_old;
2029 } else {
2030 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2031 list_create(&dr->dt.di.dr_children,
2032 sizeof (dbuf_dirty_record_t),
2033 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2034 }
2035 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
2036 dr->dr_accounted = db->db.db_size;
2037 dr->dr_dbuf = db;
2038 dr->dr_txg = tx->tx_txg;
2039 dr->dr_next = *drp;
2040 *drp = dr;
2041
2042 /*
2043 * We could have been freed_in_flight between the dbuf_noread
2044 * and dbuf_dirty. We win, as though the dbuf_noread() had
2045 * happened after the free.
2046 */
2047 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2048 db->db_blkid != DMU_SPILL_BLKID) {
2049 mutex_enter(&dn->dn_mtx);
2050 if (dn->dn_free_ranges[txgoff] != NULL) {
2051 range_tree_clear(dn->dn_free_ranges[txgoff],
2052 db->db_blkid, 1);
2053 }
2054 mutex_exit(&dn->dn_mtx);
2055 db->db_freed_in_flight = FALSE;
2056 }
2057
2058 /*
2059 * This buffer is now part of this txg
2060 */
2061 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2062 db->db_dirtycnt += 1;
2063 ASSERT3U(db->db_dirtycnt, <=, 3);
2064
2065 mutex_exit(&db->db_mtx);
2066
2067 if (db->db_blkid == DMU_BONUS_BLKID ||
2068 db->db_blkid == DMU_SPILL_BLKID) {
2069 mutex_enter(&dn->dn_mtx);
2070 ASSERT(!list_link_active(&dr->dr_dirty_node));
2071 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2072 mutex_exit(&dn->dn_mtx);
2073 dnode_setdirty(dn, tx);
2074 DB_DNODE_EXIT(db);
2075 return (dr);
2076 }
2077
2078 /*
2079 * The dn_struct_rwlock prevents db_blkptr from changing
2080 * due to a write from syncing context completing
2081 * while we are running, so we want to acquire it before
2082 * looking at db_blkptr.
2083 */
2084 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2085 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2086 drop_struct_lock = TRUE;
2087 }
2088
2089 /*
2090 * We need to hold the dn_struct_rwlock to make this assertion,
2091 * because it protects dn_phys / dn_next_nlevels from changing.
2092 */
2093 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2094 dn->dn_phys->dn_nlevels > db->db_level ||
2095 dn->dn_next_nlevels[txgoff] > db->db_level ||
2096 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2097 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2098
2099 /*
2100 * If we are overwriting a dedup BP, then unless it is snapshotted,
2101 * when we get to syncing context we will need to decrement its
2102 * refcount in the DDT. Prefetch the relevant DDT block so that
2103 * syncing context won't have to wait for the i/o.
2104 */
2105 ddt_prefetch(os->os_spa, db->db_blkptr);
2106
2107 if (db->db_level == 0) {
2108 ASSERT(!db->db_objset->os_raw_receive ||
2109 dn->dn_maxblkid >= db->db_blkid);
2110 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2111 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2112 }
2113
2114 if (db->db_level+1 < dn->dn_nlevels) {
2115 dmu_buf_impl_t *parent = db->db_parent;
2116 dbuf_dirty_record_t *di;
2117 int parent_held = FALSE;
2118
2119 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2120 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2121
2122 parent = dbuf_hold_level(dn, db->db_level+1,
2123 db->db_blkid >> epbs, FTAG);
2124 ASSERT(parent != NULL);
2125 parent_held = TRUE;
2126 }
2127 if (drop_struct_lock)
2128 rw_exit(&dn->dn_struct_rwlock);
2129 ASSERT3U(db->db_level+1, ==, parent->db_level);
2130 di = dbuf_dirty(parent, tx);
2131 if (parent_held)
2132 dbuf_rele(parent, FTAG);
2133
2134 mutex_enter(&db->db_mtx);
2135 /*
2136 * Since we've dropped the mutex, it's possible that
2137 * dbuf_undirty() might have changed this out from under us.
2138 */
2139 if (db->db_last_dirty == dr ||
2140 dn->dn_object == DMU_META_DNODE_OBJECT) {
2141 mutex_enter(&di->dt.di.dr_mtx);
2142 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2143 ASSERT(!list_link_active(&dr->dr_dirty_node));
2144 list_insert_tail(&di->dt.di.dr_children, dr);
2145 mutex_exit(&di->dt.di.dr_mtx);
2146 dr->dr_parent = di;
2147 }
2148 mutex_exit(&db->db_mtx);
2149 } else {
2150 ASSERT(db->db_level+1 == dn->dn_nlevels);
2151 ASSERT(db->db_blkid < dn->dn_nblkptr);
2152 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2153 mutex_enter(&dn->dn_mtx);
2154 ASSERT(!list_link_active(&dr->dr_dirty_node));
2155 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2156 mutex_exit(&dn->dn_mtx);
2157 if (drop_struct_lock)
2158 rw_exit(&dn->dn_struct_rwlock);
2159 }
2160
2161 dnode_setdirty(dn, tx);
2162 DB_DNODE_EXIT(db);
2163 return (dr);
2164 }
2165
2166 /*
2167 * Undirty a buffer in the transaction group referenced by the given
2168 * transaction. Return whether this evicted the dbuf.
2169 */
2170 static boolean_t
2171 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2172 {
2173 dnode_t *dn;
2174 uint64_t txg = tx->tx_txg;
2175 dbuf_dirty_record_t *dr, **drp;
2176
2177 ASSERT(txg != 0);
2178
2179 /*
2180 * Due to our use of dn_nlevels below, this can only be called
2181 * in open context, unless we are operating on the MOS.
2182 * From syncing context, dn_nlevels may be different from the
2183 * dn_nlevels used when dbuf was dirtied.
2184 */
2185 ASSERT(db->db_objset ==
2186 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2187 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2188 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2189 ASSERT0(db->db_level);
2190 ASSERT(MUTEX_HELD(&db->db_mtx));
2191
2192 /*
2193 * If this buffer is not dirty, we're done.
2194 */
2195 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2196 if (dr->dr_txg <= txg)
2197 break;
2198 if (dr == NULL || dr->dr_txg < txg)
2199 return (B_FALSE);
2200 ASSERT(dr->dr_txg == txg);
2201 ASSERT(dr->dr_dbuf == db);
2202
2203 DB_DNODE_ENTER(db);
2204 dn = DB_DNODE(db);
2205
2206 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2207
2208 ASSERT(db->db.db_size != 0);
2209
2210 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2211 dr->dr_accounted, txg);
2212
2213 *drp = dr->dr_next;
2214
2215 /*
2216 * Note that there are three places in dbuf_dirty()
2217 * where this dirty record may be put on a list.
2218 * Make sure to do a list_remove corresponding to
2219 * every one of those list_insert calls.
2220 */
2221 if (dr->dr_parent) {
2222 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2223 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2224 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2225 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2226 db->db_level + 1 == dn->dn_nlevels) {
2227 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2228 mutex_enter(&dn->dn_mtx);
2229 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2230 mutex_exit(&dn->dn_mtx);
2231 }
2232 DB_DNODE_EXIT(db);
2233
2234 if (db->db_state != DB_NOFILL) {
2235 dbuf_unoverride(dr);
2236
2237 ASSERT(db->db_buf != NULL);
2238 ASSERT(dr->dt.dl.dr_data != NULL);
2239 if (dr->dt.dl.dr_data != db->db_buf)
2240 arc_buf_destroy(dr->dt.dl.dr_data, db);
2241 }
2242
2243 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2244
2245 ASSERT(db->db_dirtycnt > 0);
2246 db->db_dirtycnt -= 1;
2247
2248 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2249 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2250 dbuf_destroy(db);
2251 return (B_TRUE);
2252 }
2253
2254 return (B_FALSE);
2255 }
2256
2257 static void
2258 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2259 {
2260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2261
2262 ASSERT(tx->tx_txg != 0);
2263 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2264
2265 /*
2266 * Quick check for dirtyness. For already dirty blocks, this
2267 * reduces runtime of this function by >90%, and overall performance
2268 * by 50% for some workloads (e.g. file deletion with indirect blocks
2269 * cached).
2270 */
2271 mutex_enter(&db->db_mtx);
2272
2273 dbuf_dirty_record_t *dr;
2274 for (dr = db->db_last_dirty;
2275 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2276 /*
2277 * It's possible that it is already dirty but not cached,
2278 * because there are some calls to dbuf_dirty() that don't
2279 * go through dmu_buf_will_dirty().
2280 */
2281 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2282 /* This dbuf is already dirty and cached. */
2283 dbuf_redirty(dr);
2284 mutex_exit(&db->db_mtx);
2285 return;
2286 }
2287 }
2288 mutex_exit(&db->db_mtx);
2289
2290 DB_DNODE_ENTER(db);
2291 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2292 flags |= DB_RF_HAVESTRUCT;
2293 DB_DNODE_EXIT(db);
2294 (void) dbuf_read(db, NULL, flags);
2295 (void) dbuf_dirty(db, tx);
2296 }
2297
2298 void
2299 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2300 {
2301 dmu_buf_will_dirty_impl(db_fake,
2302 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2303 }
2304
2305 void
2306 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2307 {
2308 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2309
2310 db->db_state = DB_NOFILL;
2311
2312 dmu_buf_will_fill(db_fake, tx);
2313 }
2314
2315 void
2316 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2317 {
2318 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2319
2320 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2321 ASSERT(tx->tx_txg != 0);
2322 ASSERT(db->db_level == 0);
2323 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2324
2325 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2326 dmu_tx_private_ok(tx));
2327
2328 dbuf_noread(db);
2329 (void) dbuf_dirty(db, tx);
2330 }
2331
2332 /*
2333 * This function is effectively the same as dmu_buf_will_dirty(), but
2334 * indicates the caller expects raw encrypted data in the db, and provides
2335 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2336 * blkptr_t when this dbuf is written. This is only used for blocks of
2337 * dnodes, during raw receive.
2338 */
2339 void
2340 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2341 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2342 {
2343 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2344 dbuf_dirty_record_t *dr;
2345
2346 /*
2347 * dr_has_raw_params is only processed for blocks of dnodes
2348 * (see dbuf_sync_dnode_leaf_crypt()).
2349 */
2350 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2351 ASSERT3U(db->db_level, ==, 0);
2352 ASSERT(db->db_objset->os_raw_receive);
2353
2354 dmu_buf_will_dirty_impl(db_fake,
2355 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2356
2357 dr = db->db_last_dirty;
2358 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2359 dr = dr->dr_next;
2360
2361 ASSERT3P(dr, !=, NULL);
2362 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2363
2364 dr->dt.dl.dr_has_raw_params = B_TRUE;
2365 dr->dt.dl.dr_byteorder = byteorder;
2366 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2367 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2368 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2369 }
2370
2371 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2372 /* ARGSUSED */
2373 void
2374 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2375 {
2376 mutex_enter(&db->db_mtx);
2377 DBUF_VERIFY(db);
2378
2379 if (db->db_state == DB_FILL) {
2380 if (db->db_level == 0 && db->db_freed_in_flight) {
2381 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2382 /* we were freed while filling */
2383 /* XXX dbuf_undirty? */
2384 bzero(db->db.db_data, db->db.db_size);
2385 db->db_freed_in_flight = FALSE;
2386 }
2387 db->db_state = DB_CACHED;
2388 cv_broadcast(&db->db_changed);
2389 }
2390 mutex_exit(&db->db_mtx);
2391 }
2392
2393 void
2394 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2395 bp_embedded_type_t etype, enum zio_compress comp,
2396 int uncompressed_size, int compressed_size, int byteorder,
2397 dmu_tx_t *tx)
2398 {
2399 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2400 struct dirty_leaf *dl;
2401 dmu_object_type_t type;
2402
2403 if (etype == BP_EMBEDDED_TYPE_DATA) {
2404 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2405 SPA_FEATURE_EMBEDDED_DATA));
2406 }
2407
2408 DB_DNODE_ENTER(db);
2409 type = DB_DNODE(db)->dn_type;
2410 DB_DNODE_EXIT(db);
2411
2412 ASSERT0(db->db_level);
2413 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2414
2415 dmu_buf_will_not_fill(dbuf, tx);
2416
2417 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2418 dl = &db->db_last_dirty->dt.dl;
2419 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2420 data, comp, uncompressed_size, compressed_size);
2421 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2422 BP_SET_TYPE(&dl->dr_overridden_by, type);
2423 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2424 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2425
2426 dl->dr_override_state = DR_OVERRIDDEN;
2427 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2428 }
2429
2430 /*
2431 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2432 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2433 */
2434 void
2435 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2436 {
2437 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2438 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2439 ASSERT(db->db_level == 0);
2440 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2441 ASSERT(buf != NULL);
2442 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2443 ASSERT(tx->tx_txg != 0);
2444
2445 arc_return_buf(buf, db);
2446 ASSERT(arc_released(buf));
2447
2448 mutex_enter(&db->db_mtx);
2449
2450 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2451 cv_wait(&db->db_changed, &db->db_mtx);
2452
2453 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2454
2455 if (db->db_state == DB_CACHED &&
2456 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2457 /*
2458 * In practice, we will never have a case where we have an
2459 * encrypted arc buffer while additional holds exist on the
2460 * dbuf. We don't handle this here so we simply assert that
2461 * fact instead.
2462 */
2463 ASSERT(!arc_is_encrypted(buf));
2464 mutex_exit(&db->db_mtx);
2465 (void) dbuf_dirty(db, tx);
2466 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2467 arc_buf_destroy(buf, db);
2468 xuio_stat_wbuf_copied();
2469 return;
2470 }
2471
2472 xuio_stat_wbuf_nocopy();
2473 if (db->db_state == DB_CACHED) {
2474 dbuf_dirty_record_t *dr = db->db_last_dirty;
2475
2476 ASSERT(db->db_buf != NULL);
2477 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2478 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2479
2480 if (!arc_released(db->db_buf)) {
2481 ASSERT(dr->dt.dl.dr_override_state ==
2482 DR_OVERRIDDEN);
2483 arc_release(db->db_buf, db);
2484 }
2485 dr->dt.dl.dr_data = buf;
2486 arc_buf_destroy(db->db_buf, db);
2487 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2488 arc_release(db->db_buf, db);
2489 arc_buf_destroy(db->db_buf, db);
2490 }
2491 db->db_buf = NULL;
2492 }
2493 ASSERT(db->db_buf == NULL);
2494 dbuf_set_data(db, buf);
2495 db->db_state = DB_FILL;
2496 mutex_exit(&db->db_mtx);
2497 (void) dbuf_dirty(db, tx);
2498 dmu_buf_fill_done(&db->db, tx);
2499 }
2500
2501 void
2502 dbuf_destroy(dmu_buf_impl_t *db)
2503 {
2504 dnode_t *dn;
2505 dmu_buf_impl_t *parent = db->db_parent;
2506 dmu_buf_impl_t *dndb;
2507
2508 ASSERT(MUTEX_HELD(&db->db_mtx));
2509 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2510
2511 if (db->db_buf != NULL) {
2512 arc_buf_destroy(db->db_buf, db);
2513 db->db_buf = NULL;
2514 }
2515
2516 if (db->db_blkid == DMU_BONUS_BLKID) {
2517 int slots = DB_DNODE(db)->dn_num_slots;
2518 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2519 if (db->db.db_data != NULL) {
2520 kmem_free(db->db.db_data, bonuslen);
2521 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2522 db->db_state = DB_UNCACHED;
2523 }
2524 }
2525
2526 dbuf_clear_data(db);
2527
2528 if (multilist_link_active(&db->db_cache_link)) {
2529 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2530 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2531
2532 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2533 (void) zfs_refcount_remove_many(
2534 &dbuf_caches[db->db_caching_status].size,
2535 db->db.db_size, db);
2536
2537 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2538 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2539 } else {
2540 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2541 DBUF_STAT_BUMPDOWN(cache_count);
2542 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2543 db->db.db_size);
2544 }
2545 db->db_caching_status = DB_NO_CACHE;
2546 }
2547
2548 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2549 ASSERT(db->db_data_pending == NULL);
2550
2551 db->db_state = DB_EVICTING;
2552 db->db_blkptr = NULL;
2553
2554 /*
2555 * Now that db_state is DB_EVICTING, nobody else can find this via
2556 * the hash table. We can now drop db_mtx, which allows us to
2557 * acquire the dn_dbufs_mtx.
2558 */
2559 mutex_exit(&db->db_mtx);
2560
2561 DB_DNODE_ENTER(db);
2562 dn = DB_DNODE(db);
2563 dndb = dn->dn_dbuf;
2564 if (db->db_blkid != DMU_BONUS_BLKID) {
2565 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2566 if (needlock)
2567 mutex_enter(&dn->dn_dbufs_mtx);
2568 avl_remove(&dn->dn_dbufs, db);
2569 atomic_dec_32(&dn->dn_dbufs_count);
2570 membar_producer();
2571 DB_DNODE_EXIT(db);
2572 if (needlock)
2573 mutex_exit(&dn->dn_dbufs_mtx);
2574 /*
2575 * Decrementing the dbuf count means that the hold corresponding
2576 * to the removed dbuf is no longer discounted in dnode_move(),
2577 * so the dnode cannot be moved until after we release the hold.
2578 * The membar_producer() ensures visibility of the decremented
2579 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2580 * release any lock.
2581 */
2582 mutex_enter(&dn->dn_mtx);
2583 dnode_rele_and_unlock(dn, db, B_TRUE);
2584 db->db_dnode_handle = NULL;
2585
2586 dbuf_hash_remove(db);
2587 } else {
2588 DB_DNODE_EXIT(db);
2589 }
2590
2591 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2592
2593 db->db_parent = NULL;
2594
2595 ASSERT(db->db_buf == NULL);
2596 ASSERT(db->db.db_data == NULL);
2597 ASSERT(db->db_hash_next == NULL);
2598 ASSERT(db->db_blkptr == NULL);
2599 ASSERT(db->db_data_pending == NULL);
2600 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2601 ASSERT(!multilist_link_active(&db->db_cache_link));
2602
2603 kmem_cache_free(dbuf_kmem_cache, db);
2604 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2605
2606 /*
2607 * If this dbuf is referenced from an indirect dbuf,
2608 * decrement the ref count on the indirect dbuf.
2609 */
2610 if (parent && parent != dndb) {
2611 mutex_enter(&parent->db_mtx);
2612 dbuf_rele_and_unlock(parent, db, B_TRUE);
2613 }
2614 }
2615
2616 /*
2617 * Note: While bpp will always be updated if the function returns success,
2618 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2619 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2620 * object.
2621 */
2622 __attribute__((always_inline))
2623 static inline int
2624 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2625 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2626 {
2627 *parentp = NULL;
2628 *bpp = NULL;
2629
2630 ASSERT(blkid != DMU_BONUS_BLKID);
2631
2632 if (blkid == DMU_SPILL_BLKID) {
2633 mutex_enter(&dn->dn_mtx);
2634 if (dn->dn_have_spill &&
2635 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2636 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2637 else
2638 *bpp = NULL;
2639 dbuf_add_ref(dn->dn_dbuf, NULL);
2640 *parentp = dn->dn_dbuf;
2641 mutex_exit(&dn->dn_mtx);
2642 return (0);
2643 }
2644
2645 int nlevels =
2646 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2647 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2648
2649 ASSERT3U(level * epbs, <, 64);
2650 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2651 /*
2652 * This assertion shouldn't trip as long as the max indirect block size
2653 * is less than 1M. The reason for this is that up to that point,
2654 * the number of levels required to address an entire object with blocks
2655 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2656 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2657 * (i.e. we can address the entire object), objects will all use at most
2658 * N-1 levels and the assertion won't overflow. However, once epbs is
2659 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2660 * enough to address an entire object, so objects will have 5 levels,
2661 * but then this assertion will overflow.
2662 *
2663 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2664 * need to redo this logic to handle overflows.
2665 */
2666 ASSERT(level >= nlevels ||
2667 ((nlevels - level - 1) * epbs) +
2668 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2669 if (level >= nlevels ||
2670 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2671 ((nlevels - level - 1) * epbs)) ||
2672 (fail_sparse &&
2673 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2674 /* the buffer has no parent yet */
2675 return (SET_ERROR(ENOENT));
2676 } else if (level < nlevels-1) {
2677 /* this block is referenced from an indirect block */
2678 int err;
2679 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level + 1,
2680 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2681 err = dbuf_hold_impl_arg(dh);
2682 dbuf_hold_arg_destroy(dh);
2683 if (err)
2684 return (err);
2685 err = dbuf_read(*parentp, NULL,
2686 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2687 if (err) {
2688 dbuf_rele(*parentp, NULL);
2689 *parentp = NULL;
2690 return (err);
2691 }
2692 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2693 (blkid & ((1ULL << epbs) - 1));
2694 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2695 ASSERT(BP_IS_HOLE(*bpp));
2696 return (0);
2697 } else {
2698 /* the block is referenced from the dnode */
2699 ASSERT3U(level, ==, nlevels-1);
2700 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2701 blkid < dn->dn_phys->dn_nblkptr);
2702 if (dn->dn_dbuf) {
2703 dbuf_add_ref(dn->dn_dbuf, NULL);
2704 *parentp = dn->dn_dbuf;
2705 }
2706 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2707 return (0);
2708 }
2709 }
2710
2711 static dmu_buf_impl_t *
2712 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2713 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2714 {
2715 objset_t *os = dn->dn_objset;
2716 dmu_buf_impl_t *db, *odb;
2717
2718 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2719 ASSERT(dn->dn_type != DMU_OT_NONE);
2720
2721 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2722
2723 db->db_objset = os;
2724 db->db.db_object = dn->dn_object;
2725 db->db_level = level;
2726 db->db_blkid = blkid;
2727 db->db_last_dirty = NULL;
2728 db->db_dirtycnt = 0;
2729 db->db_dnode_handle = dn->dn_handle;
2730 db->db_parent = parent;
2731 db->db_blkptr = blkptr;
2732
2733 db->db_user = NULL;
2734 db->db_user_immediate_evict = FALSE;
2735 db->db_freed_in_flight = FALSE;
2736 db->db_pending_evict = FALSE;
2737
2738 if (blkid == DMU_BONUS_BLKID) {
2739 ASSERT3P(parent, ==, dn->dn_dbuf);
2740 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2741 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2742 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2743 db->db.db_offset = DMU_BONUS_BLKID;
2744 db->db_state = DB_UNCACHED;
2745 db->db_caching_status = DB_NO_CACHE;
2746 /* the bonus dbuf is not placed in the hash table */
2747 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2748 return (db);
2749 } else if (blkid == DMU_SPILL_BLKID) {
2750 db->db.db_size = (blkptr != NULL) ?
2751 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2752 db->db.db_offset = 0;
2753 } else {
2754 int blocksize =
2755 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2756 db->db.db_size = blocksize;
2757 db->db.db_offset = db->db_blkid * blocksize;
2758 }
2759
2760 /*
2761 * Hold the dn_dbufs_mtx while we get the new dbuf
2762 * in the hash table *and* added to the dbufs list.
2763 * This prevents a possible deadlock with someone
2764 * trying to look up this dbuf before its added to the
2765 * dn_dbufs list.
2766 */
2767 mutex_enter(&dn->dn_dbufs_mtx);
2768 db->db_state = DB_EVICTING;
2769 if ((odb = dbuf_hash_insert(db)) != NULL) {
2770 /* someone else inserted it first */
2771 kmem_cache_free(dbuf_kmem_cache, db);
2772 mutex_exit(&dn->dn_dbufs_mtx);
2773 DBUF_STAT_BUMP(hash_insert_race);
2774 return (odb);
2775 }
2776 avl_add(&dn->dn_dbufs, db);
2777
2778 db->db_state = DB_UNCACHED;
2779 db->db_caching_status = DB_NO_CACHE;
2780 mutex_exit(&dn->dn_dbufs_mtx);
2781 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2782
2783 if (parent && parent != dn->dn_dbuf)
2784 dbuf_add_ref(parent, db);
2785
2786 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2787 zfs_refcount_count(&dn->dn_holds) > 0);
2788 (void) zfs_refcount_add(&dn->dn_holds, db);
2789 atomic_inc_32(&dn->dn_dbufs_count);
2790
2791 dprintf_dbuf(db, "db=%p\n", db);
2792
2793 return (db);
2794 }
2795
2796 typedef struct dbuf_prefetch_arg {
2797 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2798 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2799 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2800 int dpa_curlevel; /* The current level that we're reading */
2801 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2802 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2803 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2804 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2805 } dbuf_prefetch_arg_t;
2806
2807 /*
2808 * Actually issue the prefetch read for the block given.
2809 */
2810 static void
2811 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2812 {
2813 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2814 return;
2815
2816 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2817 arc_flags_t aflags =
2818 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2819
2820 /* dnodes are always read as raw and then converted later */
2821 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2822 dpa->dpa_curlevel == 0)
2823 zio_flags |= ZIO_FLAG_RAW;
2824
2825 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2826 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2827 ASSERT(dpa->dpa_zio != NULL);
2828 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2829 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2830 }
2831
2832 /*
2833 * Called when an indirect block above our prefetch target is read in. This
2834 * will either read in the next indirect block down the tree or issue the actual
2835 * prefetch if the next block down is our target.
2836 */
2837 static void
2838 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2839 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2840 {
2841 dbuf_prefetch_arg_t *dpa = private;
2842
2843 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2844 ASSERT3S(dpa->dpa_curlevel, >, 0);
2845
2846 if (abuf == NULL) {
2847 ASSERT(zio == NULL || zio->io_error != 0);
2848 kmem_free(dpa, sizeof (*dpa));
2849 return;
2850 }
2851 ASSERT(zio == NULL || zio->io_error == 0);
2852
2853 /*
2854 * The dpa_dnode is only valid if we are called with a NULL
2855 * zio. This indicates that the arc_read() returned without
2856 * first calling zio_read() to issue a physical read. Once
2857 * a physical read is made the dpa_dnode must be invalidated
2858 * as the locks guarding it may have been dropped. If the
2859 * dpa_dnode is still valid, then we want to add it to the dbuf
2860 * cache. To do so, we must hold the dbuf associated with the block
2861 * we just prefetched, read its contents so that we associate it
2862 * with an arc_buf_t, and then release it.
2863 */
2864 if (zio != NULL) {
2865 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2866 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2867 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2868 } else {
2869 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2870 }
2871 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2872
2873 dpa->dpa_dnode = NULL;
2874 } else if (dpa->dpa_dnode != NULL) {
2875 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2876 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2877 dpa->dpa_zb.zb_level));
2878 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2879 dpa->dpa_curlevel, curblkid, FTAG);
2880 (void) dbuf_read(db, NULL,
2881 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2882 dbuf_rele(db, FTAG);
2883 }
2884
2885 dpa->dpa_curlevel--;
2886 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2887 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2888 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2889 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2890
2891 if (BP_IS_HOLE(bp)) {
2892 kmem_free(dpa, sizeof (*dpa));
2893 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2894 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2895 dbuf_issue_final_prefetch(dpa, bp);
2896 kmem_free(dpa, sizeof (*dpa));
2897 } else {
2898 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2899 zbookmark_phys_t zb;
2900
2901 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2902 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2903 iter_aflags |= ARC_FLAG_L2CACHE;
2904
2905 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2906
2907 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2908 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2909
2910 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2911 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2912 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2913 &iter_aflags, &zb);
2914 }
2915
2916 arc_buf_destroy(abuf, private);
2917 }
2918
2919 /*
2920 * Issue prefetch reads for the given block on the given level. If the indirect
2921 * blocks above that block are not in memory, we will read them in
2922 * asynchronously. As a result, this call never blocks waiting for a read to
2923 * complete. Note that the prefetch might fail if the dataset is encrypted and
2924 * the encryption key is unmapped before the IO completes.
2925 */
2926 void
2927 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2928 arc_flags_t aflags)
2929 {
2930 blkptr_t bp;
2931 int epbs, nlevels, curlevel;
2932 uint64_t curblkid;
2933
2934 ASSERT(blkid != DMU_BONUS_BLKID);
2935 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2936
2937 if (blkid > dn->dn_maxblkid)
2938 return;
2939
2940 if (dnode_block_freed(dn, blkid))
2941 return;
2942
2943 /*
2944 * This dnode hasn't been written to disk yet, so there's nothing to
2945 * prefetch.
2946 */
2947 nlevels = dn->dn_phys->dn_nlevels;
2948 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2949 return;
2950
2951 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2952 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2953 return;
2954
2955 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2956 level, blkid);
2957 if (db != NULL) {
2958 mutex_exit(&db->db_mtx);
2959 /*
2960 * This dbuf already exists. It is either CACHED, or
2961 * (we assume) about to be read or filled.
2962 */
2963 return;
2964 }
2965
2966 /*
2967 * Find the closest ancestor (indirect block) of the target block
2968 * that is present in the cache. In this indirect block, we will
2969 * find the bp that is at curlevel, curblkid.
2970 */
2971 curlevel = level;
2972 curblkid = blkid;
2973 while (curlevel < nlevels - 1) {
2974 int parent_level = curlevel + 1;
2975 uint64_t parent_blkid = curblkid >> epbs;
2976 dmu_buf_impl_t *db;
2977
2978 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2979 FALSE, TRUE, FTAG, &db) == 0) {
2980 blkptr_t *bpp = db->db_buf->b_data;
2981 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2982 dbuf_rele(db, FTAG);
2983 break;
2984 }
2985
2986 curlevel = parent_level;
2987 curblkid = parent_blkid;
2988 }
2989
2990 if (curlevel == nlevels - 1) {
2991 /* No cached indirect blocks found. */
2992 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2993 bp = dn->dn_phys->dn_blkptr[curblkid];
2994 }
2995 if (BP_IS_HOLE(&bp))
2996 return;
2997
2998 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2999
3000 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3001 ZIO_FLAG_CANFAIL);
3002
3003 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3004 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3005 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3006 dn->dn_object, level, blkid);
3007 dpa->dpa_curlevel = curlevel;
3008 dpa->dpa_prio = prio;
3009 dpa->dpa_aflags = aflags;
3010 dpa->dpa_spa = dn->dn_objset->os_spa;
3011 dpa->dpa_dnode = dn;
3012 dpa->dpa_epbs = epbs;
3013 dpa->dpa_zio = pio;
3014
3015 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3016 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3017 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3018
3019 /*
3020 * If we have the indirect just above us, no need to do the asynchronous
3021 * prefetch chain; we'll just run the last step ourselves. If we're at
3022 * a higher level, though, we want to issue the prefetches for all the
3023 * indirect blocks asynchronously, so we can go on with whatever we were
3024 * doing.
3025 */
3026 if (curlevel == level) {
3027 ASSERT3U(curblkid, ==, blkid);
3028 dbuf_issue_final_prefetch(dpa, &bp);
3029 kmem_free(dpa, sizeof (*dpa));
3030 } else {
3031 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3032 zbookmark_phys_t zb;
3033
3034 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3035 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3036 iter_aflags |= ARC_FLAG_L2CACHE;
3037
3038 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3039 dn->dn_object, curlevel, curblkid);
3040 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3041 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3042 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3043 &iter_aflags, &zb);
3044 }
3045 /*
3046 * We use pio here instead of dpa_zio since it's possible that
3047 * dpa may have already been freed.
3048 */
3049 zio_nowait(pio);
3050 }
3051
3052 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
3053
3054 /*
3055 * Helper function for dbuf_hold_impl_arg() to copy a buffer. Handles
3056 * the case of encrypted, compressed and uncompressed buffers by
3057 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3058 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3059 *
3060 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl_arg().
3061 */
3062 noinline static void
3063 dbuf_hold_copy(struct dbuf_hold_arg *dh)
3064 {
3065 dnode_t *dn = dh->dh_dn;
3066 dmu_buf_impl_t *db = dh->dh_db;
3067 dbuf_dirty_record_t *dr = dh->dh_dr;
3068 arc_buf_t *data = dr->dt.dl.dr_data;
3069
3070 enum zio_compress compress_type = arc_get_compression(data);
3071
3072 if (arc_is_encrypted(data)) {
3073 boolean_t byteorder;
3074 uint8_t salt[ZIO_DATA_SALT_LEN];
3075 uint8_t iv[ZIO_DATA_IV_LEN];
3076 uint8_t mac[ZIO_DATA_MAC_LEN];
3077
3078 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3079 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3080 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3081 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3082 compress_type));
3083 } else if (compress_type != ZIO_COMPRESS_OFF) {
3084 dbuf_set_data(db, arc_alloc_compressed_buf(
3085 dn->dn_objset->os_spa, db, arc_buf_size(data),
3086 arc_buf_lsize(data), compress_type));
3087 } else {
3088 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3089 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3090 }
3091
3092 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3093 }
3094
3095 /*
3096 * Returns with db_holds incremented, and db_mtx not held.
3097 * Note: dn_struct_rwlock must be held.
3098 */
3099 static int
3100 dbuf_hold_impl_arg(struct dbuf_hold_arg *dh)
3101 {
3102 dh->dh_parent = NULL;
3103
3104 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3105 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3106 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
3107
3108 *(dh->dh_dbp) = NULL;
3109
3110 /* dbuf_find() returns with db_mtx held */
3111 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3112 dh->dh_level, dh->dh_blkid);
3113
3114 if (dh->dh_db == NULL) {
3115 dh->dh_bp = NULL;
3116
3117 if (dh->dh_fail_uncached)
3118 return (SET_ERROR(ENOENT));
3119
3120 ASSERT3P(dh->dh_parent, ==, NULL);
3121 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3122 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp);
3123 if (dh->dh_fail_sparse) {
3124 if (dh->dh_err == 0 &&
3125 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
3126 dh->dh_err = SET_ERROR(ENOENT);
3127 if (dh->dh_err) {
3128 if (dh->dh_parent)
3129 dbuf_rele(dh->dh_parent, NULL);
3130 return (dh->dh_err);
3131 }
3132 }
3133 if (dh->dh_err && dh->dh_err != ENOENT)
3134 return (dh->dh_err);
3135 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3136 dh->dh_parent, dh->dh_bp);
3137 }
3138
3139 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3140 mutex_exit(&dh->dh_db->db_mtx);
3141 return (SET_ERROR(ENOENT));
3142 }
3143
3144 if (dh->dh_db->db_buf != NULL) {
3145 arc_buf_access(dh->dh_db->db_buf);
3146 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3147 }
3148
3149 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3150
3151 /*
3152 * If this buffer is currently syncing out, and we are are
3153 * still referencing it from db_data, we need to make a copy
3154 * of it in case we decide we want to dirty it again in this txg.
3155 */
3156 if (dh->dh_db->db_level == 0 &&
3157 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3158 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3159 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3160 dh->dh_dr = dh->dh_db->db_data_pending;
3161 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3162 dbuf_hold_copy(dh);
3163 }
3164
3165 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3166 ASSERT(zfs_refcount_is_zero(&dh->dh_db->db_holds));
3167 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
3168 dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
3169
3170 multilist_remove(
3171 dbuf_caches[dh->dh_db->db_caching_status].cache,
3172 dh->dh_db);
3173 (void) zfs_refcount_remove_many(
3174 &dbuf_caches[dh->dh_db->db_caching_status].size,
3175 dh->dh_db->db.db_size, dh->dh_db);
3176
3177 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3178 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3179 } else {
3180 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3181 DBUF_STAT_BUMPDOWN(cache_count);
3182 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3183 dh->dh_db->db.db_size);
3184 }
3185 dh->dh_db->db_caching_status = DB_NO_CACHE;
3186 }
3187 (void) zfs_refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3188 DBUF_VERIFY(dh->dh_db);
3189 mutex_exit(&dh->dh_db->db_mtx);
3190
3191 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3192 if (dh->dh_parent)
3193 dbuf_rele(dh->dh_parent, NULL);
3194
3195 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3196 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3197 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3198 *(dh->dh_dbp) = dh->dh_db;
3199
3200 return (0);
3201 }
3202
3203 /*
3204 * dbuf_hold_impl_arg() is called recursively, via dbuf_findbp(). There can
3205 * be as many recursive calls as there are levels of on-disk indirect blocks,
3206 * but typically only 0-2 recursive calls. To minimize the stack frame size,
3207 * the recursive function's arguments and "local variables" are allocated on
3208 * the heap as the dbuf_hold_arg_t.
3209 */
3210 int
3211 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3212 boolean_t fail_sparse, boolean_t fail_uncached,
3213 void *tag, dmu_buf_impl_t **dbp)
3214 {
3215 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level, blkid,
3216 fail_sparse, fail_uncached, tag, dbp);
3217
3218 int error = dbuf_hold_impl_arg(dh);
3219
3220 dbuf_hold_arg_destroy(dh);
3221
3222 return (error);
3223 }
3224
3225 static dbuf_hold_arg_t *
3226 dbuf_hold_arg_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3227 boolean_t fail_sparse, boolean_t fail_uncached,
3228 void *tag, dmu_buf_impl_t **dbp)
3229 {
3230 dbuf_hold_arg_t *dh = kmem_alloc(sizeof (*dh), KM_SLEEP);
3231 dh->dh_dn = dn;
3232 dh->dh_level = level;
3233 dh->dh_blkid = blkid;
3234
3235 dh->dh_fail_sparse = fail_sparse;
3236 dh->dh_fail_uncached = fail_uncached;
3237
3238 dh->dh_tag = tag;
3239 dh->dh_dbp = dbp;
3240
3241 dh->dh_db = NULL;
3242 dh->dh_parent = NULL;
3243 dh->dh_bp = NULL;
3244 dh->dh_err = 0;
3245 dh->dh_dr = NULL;
3246
3247 return (dh);
3248 }
3249
3250 static void
3251 dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh)
3252 {
3253 kmem_free(dh, sizeof (*dh));
3254 }
3255
3256 dmu_buf_impl_t *
3257 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3258 {
3259 return (dbuf_hold_level(dn, 0, blkid, tag));
3260 }
3261
3262 dmu_buf_impl_t *
3263 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3264 {
3265 dmu_buf_impl_t *db;
3266 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3267 return (err ? NULL : db);
3268 }
3269
3270 void
3271 dbuf_create_bonus(dnode_t *dn)
3272 {
3273 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3274
3275 ASSERT(dn->dn_bonus == NULL);
3276 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3277 }
3278
3279 int
3280 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3281 {
3282 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3283 dnode_t *dn;
3284
3285 if (db->db_blkid != DMU_SPILL_BLKID)
3286 return (SET_ERROR(ENOTSUP));
3287 if (blksz == 0)
3288 blksz = SPA_MINBLOCKSIZE;
3289 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3290 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3291
3292 DB_DNODE_ENTER(db);
3293 dn = DB_DNODE(db);
3294 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3295 dbuf_new_size(db, blksz, tx);
3296 rw_exit(&dn->dn_struct_rwlock);
3297 DB_DNODE_EXIT(db);
3298
3299 return (0);
3300 }
3301
3302 void
3303 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3304 {
3305 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3306 }
3307
3308 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3309 void
3310 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3311 {
3312 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3313 VERIFY3S(holds, >, 1);
3314 }
3315
3316 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3317 boolean_t
3318 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3319 void *tag)
3320 {
3321 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3322 dmu_buf_impl_t *found_db;
3323 boolean_t result = B_FALSE;
3324
3325 if (blkid == DMU_BONUS_BLKID)
3326 found_db = dbuf_find_bonus(os, obj);
3327 else
3328 found_db = dbuf_find(os, obj, 0, blkid);
3329
3330 if (found_db != NULL) {
3331 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3332 (void) zfs_refcount_add(&db->db_holds, tag);
3333 result = B_TRUE;
3334 }
3335 mutex_exit(&found_db->db_mtx);
3336 }
3337 return (result);
3338 }
3339
3340 /*
3341 * If you call dbuf_rele() you had better not be referencing the dnode handle
3342 * unless you have some other direct or indirect hold on the dnode. (An indirect
3343 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3344 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3345 * dnode's parent dbuf evicting its dnode handles.
3346 */
3347 void
3348 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3349 {
3350 mutex_enter(&db->db_mtx);
3351 dbuf_rele_and_unlock(db, tag, B_FALSE);
3352 }
3353
3354 void
3355 dmu_buf_rele(dmu_buf_t *db, void *tag)
3356 {
3357 dbuf_rele((dmu_buf_impl_t *)db, tag);
3358 }
3359
3360 /*
3361 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3362 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3363 * argument should be set if we are already in the dbuf-evicting code
3364 * path, in which case we don't want to recursively evict. This allows us to
3365 * avoid deeply nested stacks that would have a call flow similar to this:
3366 *
3367 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3368 * ^ |
3369 * | |
3370 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3371 *
3372 */
3373 void
3374 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3375 {
3376 int64_t holds;
3377
3378 ASSERT(MUTEX_HELD(&db->db_mtx));
3379 DBUF_VERIFY(db);
3380
3381 /*
3382 * Remove the reference to the dbuf before removing its hold on the
3383 * dnode so we can guarantee in dnode_move() that a referenced bonus
3384 * buffer has a corresponding dnode hold.
3385 */
3386 holds = zfs_refcount_remove(&db->db_holds, tag);
3387 ASSERT(holds >= 0);
3388
3389 /*
3390 * We can't freeze indirects if there is a possibility that they
3391 * may be modified in the current syncing context.
3392 */
3393 if (db->db_buf != NULL &&
3394 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3395 arc_buf_freeze(db->db_buf);
3396 }
3397
3398 if (holds == db->db_dirtycnt &&
3399 db->db_level == 0 && db->db_user_immediate_evict)
3400 dbuf_evict_user(db);
3401
3402 if (holds == 0) {
3403 if (db->db_blkid == DMU_BONUS_BLKID) {
3404 dnode_t *dn;
3405 boolean_t evict_dbuf = db->db_pending_evict;
3406
3407 /*
3408 * If the dnode moves here, we cannot cross this
3409 * barrier until the move completes.
3410 */
3411 DB_DNODE_ENTER(db);
3412
3413 dn = DB_DNODE(db);
3414 atomic_dec_32(&dn->dn_dbufs_count);
3415
3416 /*
3417 * Decrementing the dbuf count means that the bonus
3418 * buffer's dnode hold is no longer discounted in
3419 * dnode_move(). The dnode cannot move until after
3420 * the dnode_rele() below.
3421 */
3422 DB_DNODE_EXIT(db);
3423
3424 /*
3425 * Do not reference db after its lock is dropped.
3426 * Another thread may evict it.
3427 */
3428 mutex_exit(&db->db_mtx);
3429
3430 if (evict_dbuf)
3431 dnode_evict_bonus(dn);
3432
3433 dnode_rele(dn, db);
3434 } else if (db->db_buf == NULL) {
3435 /*
3436 * This is a special case: we never associated this
3437 * dbuf with any data allocated from the ARC.
3438 */
3439 ASSERT(db->db_state == DB_UNCACHED ||
3440 db->db_state == DB_NOFILL);
3441 dbuf_destroy(db);
3442 } else if (arc_released(db->db_buf)) {
3443 /*
3444 * This dbuf has anonymous data associated with it.
3445 */
3446 dbuf_destroy(db);
3447 } else {
3448 boolean_t do_arc_evict = B_FALSE;
3449 blkptr_t bp;
3450 spa_t *spa = dmu_objset_spa(db->db_objset);
3451
3452 if (!DBUF_IS_CACHEABLE(db) &&
3453 db->db_blkptr != NULL &&
3454 !BP_IS_HOLE(db->db_blkptr) &&
3455 !BP_IS_EMBEDDED(db->db_blkptr)) {
3456 do_arc_evict = B_TRUE;
3457 bp = *db->db_blkptr;
3458 }
3459
3460 if (!DBUF_IS_CACHEABLE(db) ||
3461 db->db_pending_evict) {
3462 dbuf_destroy(db);
3463 } else if (!multilist_link_active(&db->db_cache_link)) {
3464 ASSERT3U(db->db_caching_status, ==,
3465 DB_NO_CACHE);
3466
3467 dbuf_cached_state_t dcs =
3468 dbuf_include_in_metadata_cache(db) ?
3469 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3470 db->db_caching_status = dcs;
3471
3472 multilist_insert(dbuf_caches[dcs].cache, db);
3473 (void) zfs_refcount_add_many(
3474 &dbuf_caches[dcs].size,
3475 db->db.db_size, db);
3476
3477 if (dcs == DB_DBUF_METADATA_CACHE) {
3478 DBUF_STAT_BUMP(metadata_cache_count);
3479 DBUF_STAT_MAX(
3480 metadata_cache_size_bytes_max,
3481 zfs_refcount_count(
3482 &dbuf_caches[dcs].size));
3483 } else {
3484 DBUF_STAT_BUMP(
3485 cache_levels[db->db_level]);
3486 DBUF_STAT_BUMP(cache_count);
3487 DBUF_STAT_INCR(
3488 cache_levels_bytes[db->db_level],
3489 db->db.db_size);
3490 DBUF_STAT_MAX(cache_size_bytes_max,
3491 zfs_refcount_count(
3492 &dbuf_caches[dcs].size));
3493 }
3494 mutex_exit(&db->db_mtx);
3495
3496 if (db->db_caching_status == DB_DBUF_CACHE &&
3497 !evicting) {
3498 dbuf_evict_notify();
3499 }
3500 }
3501
3502 if (do_arc_evict)
3503 arc_freed(spa, &bp);
3504 }
3505 } else {
3506 mutex_exit(&db->db_mtx);
3507 }
3508
3509 }
3510
3511 #pragma weak dmu_buf_refcount = dbuf_refcount
3512 uint64_t
3513 dbuf_refcount(dmu_buf_impl_t *db)
3514 {
3515 return (zfs_refcount_count(&db->db_holds));
3516 }
3517
3518 uint64_t
3519 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3520 {
3521 uint64_t holds;
3522 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3523
3524 mutex_enter(&db->db_mtx);
3525 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3526 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3527 mutex_exit(&db->db_mtx);
3528
3529 return (holds);
3530 }
3531
3532 void *
3533 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3534 dmu_buf_user_t *new_user)
3535 {
3536 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3537
3538 mutex_enter(&db->db_mtx);
3539 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3540 if (db->db_user == old_user)
3541 db->db_user = new_user;
3542 else
3543 old_user = db->db_user;
3544 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3545 mutex_exit(&db->db_mtx);
3546
3547 return (old_user);
3548 }
3549
3550 void *
3551 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3552 {
3553 return (dmu_buf_replace_user(db_fake, NULL, user));
3554 }
3555
3556 void *
3557 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3558 {
3559 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3560
3561 db->db_user_immediate_evict = TRUE;
3562 return (dmu_buf_set_user(db_fake, user));
3563 }
3564
3565 void *
3566 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3567 {
3568 return (dmu_buf_replace_user(db_fake, user, NULL));
3569 }
3570
3571 void *
3572 dmu_buf_get_user(dmu_buf_t *db_fake)
3573 {
3574 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3575
3576 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3577 return (db->db_user);
3578 }
3579
3580 void
3581 dmu_buf_user_evict_wait()
3582 {
3583 taskq_wait(dbu_evict_taskq);
3584 }
3585
3586 blkptr_t *
3587 dmu_buf_get_blkptr(dmu_buf_t *db)
3588 {
3589 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3590 return (dbi->db_blkptr);
3591 }
3592
3593 objset_t *
3594 dmu_buf_get_objset(dmu_buf_t *db)
3595 {
3596 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3597 return (dbi->db_objset);
3598 }
3599
3600 dnode_t *
3601 dmu_buf_dnode_enter(dmu_buf_t *db)
3602 {
3603 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3604 DB_DNODE_ENTER(dbi);
3605 return (DB_DNODE(dbi));
3606 }
3607
3608 void
3609 dmu_buf_dnode_exit(dmu_buf_t *db)
3610 {
3611 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3612 DB_DNODE_EXIT(dbi);
3613 }
3614
3615 static void
3616 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3617 {
3618 /* ASSERT(dmu_tx_is_syncing(tx) */
3619 ASSERT(MUTEX_HELD(&db->db_mtx));
3620
3621 if (db->db_blkptr != NULL)
3622 return;
3623
3624 if (db->db_blkid == DMU_SPILL_BLKID) {
3625 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3626 BP_ZERO(db->db_blkptr);
3627 return;
3628 }
3629 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3630 /*
3631 * This buffer was allocated at a time when there was
3632 * no available blkptrs from the dnode, or it was
3633 * inappropriate to hook it in (i.e., nlevels mis-match).
3634 */
3635 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3636 ASSERT(db->db_parent == NULL);
3637 db->db_parent = dn->dn_dbuf;
3638 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3639 DBUF_VERIFY(db);
3640 } else {
3641 dmu_buf_impl_t *parent = db->db_parent;
3642 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3643
3644 ASSERT(dn->dn_phys->dn_nlevels > 1);
3645 if (parent == NULL) {
3646 mutex_exit(&db->db_mtx);
3647 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3648 parent = dbuf_hold_level(dn, db->db_level + 1,
3649 db->db_blkid >> epbs, db);
3650 rw_exit(&dn->dn_struct_rwlock);
3651 mutex_enter(&db->db_mtx);
3652 db->db_parent = parent;
3653 }
3654 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3655 (db->db_blkid & ((1ULL << epbs) - 1));
3656 DBUF_VERIFY(db);
3657 }
3658 }
3659
3660 /*
3661 * When syncing out a blocks of dnodes, adjust the block to deal with
3662 * encryption. Normally, we make sure the block is decrypted before writing
3663 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3664 * from a raw receive. In this case, set the ARC buf's crypt params so
3665 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3666 */
3667 static void
3668 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3669 {
3670 int err;
3671 dmu_buf_impl_t *db = dr->dr_dbuf;
3672
3673 ASSERT(MUTEX_HELD(&db->db_mtx));
3674 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3675 ASSERT3U(db->db_level, ==, 0);
3676
3677 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3678 zbookmark_phys_t zb;
3679
3680 /*
3681 * Unfortunately, there is currently no mechanism for
3682 * syncing context to handle decryption errors. An error
3683 * here is only possible if an attacker maliciously
3684 * changed a dnode block and updated the associated
3685 * checksums going up the block tree.
3686 */
3687 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3688 db->db.db_object, db->db_level, db->db_blkid);
3689 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3690 &zb, B_TRUE);
3691 if (err)
3692 panic("Invalid dnode block MAC");
3693 } else if (dr->dt.dl.dr_has_raw_params) {
3694 (void) arc_release(dr->dt.dl.dr_data, db);
3695 arc_convert_to_raw(dr->dt.dl.dr_data,
3696 dmu_objset_id(db->db_objset),
3697 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3698 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3699 }
3700 }
3701
3702 /*
3703 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3704 * is critical the we not allow the compiler to inline this function in to
3705 * dbuf_sync_list() thereby drastically bloating the stack usage.
3706 */
3707 noinline static void
3708 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3709 {
3710 dmu_buf_impl_t *db = dr->dr_dbuf;
3711 dnode_t *dn;
3712 zio_t *zio;
3713
3714 ASSERT(dmu_tx_is_syncing(tx));
3715
3716 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3717
3718 mutex_enter(&db->db_mtx);
3719
3720 ASSERT(db->db_level > 0);
3721 DBUF_VERIFY(db);
3722
3723 /* Read the block if it hasn't been read yet. */
3724 if (db->db_buf == NULL) {
3725 mutex_exit(&db->db_mtx);
3726 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3727 mutex_enter(&db->db_mtx);
3728 }
3729 ASSERT3U(db->db_state, ==, DB_CACHED);
3730 ASSERT(db->db_buf != NULL);
3731
3732 DB_DNODE_ENTER(db);
3733 dn = DB_DNODE(db);
3734 /* Indirect block size must match what the dnode thinks it is. */
3735 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3736 dbuf_check_blkptr(dn, db);
3737 DB_DNODE_EXIT(db);
3738
3739 /* Provide the pending dirty record to child dbufs */
3740 db->db_data_pending = dr;
3741
3742 mutex_exit(&db->db_mtx);
3743
3744 dbuf_write(dr, db->db_buf, tx);
3745
3746 zio = dr->dr_zio;
3747 mutex_enter(&dr->dt.di.dr_mtx);
3748 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3749 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3750 mutex_exit(&dr->dt.di.dr_mtx);
3751 zio_nowait(zio);
3752 }
3753
3754 /*
3755 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3756 * critical the we not allow the compiler to inline this function in to
3757 * dbuf_sync_list() thereby drastically bloating the stack usage.
3758 */
3759 noinline static void
3760 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3761 {
3762 arc_buf_t **datap = &dr->dt.dl.dr_data;
3763 dmu_buf_impl_t *db = dr->dr_dbuf;
3764 dnode_t *dn;
3765 objset_t *os;
3766 uint64_t txg = tx->tx_txg;
3767
3768 ASSERT(dmu_tx_is_syncing(tx));
3769
3770 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3771
3772 mutex_enter(&db->db_mtx);
3773 /*
3774 * To be synced, we must be dirtied. But we
3775 * might have been freed after the dirty.
3776 */
3777 if (db->db_state == DB_UNCACHED) {
3778 /* This buffer has been freed since it was dirtied */
3779 ASSERT(db->db.db_data == NULL);
3780 } else if (db->db_state == DB_FILL) {
3781 /* This buffer was freed and is now being re-filled */
3782 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3783 } else {
3784 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3785 }
3786 DBUF_VERIFY(db);
3787
3788 DB_DNODE_ENTER(db);
3789 dn = DB_DNODE(db);
3790
3791 if (db->db_blkid == DMU_SPILL_BLKID) {
3792 mutex_enter(&dn->dn_mtx);
3793 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3794 /*
3795 * In the previous transaction group, the bonus buffer
3796 * was entirely used to store the attributes for the
3797 * dnode which overrode the dn_spill field. However,
3798 * when adding more attributes to the file a spill
3799 * block was required to hold the extra attributes.
3800 *
3801 * Make sure to clear the garbage left in the dn_spill
3802 * field from the previous attributes in the bonus
3803 * buffer. Otherwise, after writing out the spill
3804 * block to the new allocated dva, it will free
3805 * the old block pointed to by the invalid dn_spill.
3806 */
3807 db->db_blkptr = NULL;
3808 }
3809 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3810 mutex_exit(&dn->dn_mtx);
3811 }
3812
3813 /*
3814 * If this is a bonus buffer, simply copy the bonus data into the
3815 * dnode. It will be written out when the dnode is synced (and it
3816 * will be synced, since it must have been dirty for dbuf_sync to
3817 * be called).
3818 */
3819 if (db->db_blkid == DMU_BONUS_BLKID) {
3820 dbuf_dirty_record_t **drp;
3821
3822 ASSERT(*datap != NULL);
3823 ASSERT0(db->db_level);
3824 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3825 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3826 bcopy(*datap, DN_BONUS(dn->dn_phys),
3827 DN_MAX_BONUS_LEN(dn->dn_phys));
3828 DB_DNODE_EXIT(db);
3829
3830 if (*datap != db->db.db_data) {
3831 int slots = DB_DNODE(db)->dn_num_slots;
3832 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3833 kmem_free(*datap, bonuslen);
3834 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3835 }
3836 db->db_data_pending = NULL;
3837 drp = &db->db_last_dirty;
3838 while (*drp != dr)
3839 drp = &(*drp)->dr_next;
3840 ASSERT(dr->dr_next == NULL);
3841 ASSERT(dr->dr_dbuf == db);
3842 *drp = dr->dr_next;
3843 if (dr->dr_dbuf->db_level != 0) {
3844 mutex_destroy(&dr->dt.di.dr_mtx);
3845 list_destroy(&dr->dt.di.dr_children);
3846 }
3847 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3848 ASSERT(db->db_dirtycnt > 0);
3849 db->db_dirtycnt -= 1;
3850 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3851 return;
3852 }
3853
3854 os = dn->dn_objset;
3855
3856 /*
3857 * This function may have dropped the db_mtx lock allowing a dmu_sync
3858 * operation to sneak in. As a result, we need to ensure that we
3859 * don't check the dr_override_state until we have returned from
3860 * dbuf_check_blkptr.
3861 */
3862 dbuf_check_blkptr(dn, db);
3863
3864 /*
3865 * If this buffer is in the middle of an immediate write,
3866 * wait for the synchronous IO to complete.
3867 */
3868 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3869 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3870 cv_wait(&db->db_changed, &db->db_mtx);
3871 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3872 }
3873
3874 /*
3875 * If this is a dnode block, ensure it is appropriately encrypted
3876 * or decrypted, depending on what we are writing to it this txg.
3877 */
3878 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3879 dbuf_prepare_encrypted_dnode_leaf(dr);
3880
3881 if (db->db_state != DB_NOFILL &&
3882 dn->dn_object != DMU_META_DNODE_OBJECT &&
3883 zfs_refcount_count(&db->db_holds) > 1 &&
3884 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3885 *datap == db->db_buf) {
3886 /*
3887 * If this buffer is currently "in use" (i.e., there
3888 * are active holds and db_data still references it),
3889 * then make a copy before we start the write so that
3890 * any modifications from the open txg will not leak
3891 * into this write.
3892 *
3893 * NOTE: this copy does not need to be made for
3894 * objects only modified in the syncing context (e.g.
3895 * DNONE_DNODE blocks).
3896 */
3897 int psize = arc_buf_size(*datap);
3898 int lsize = arc_buf_lsize(*datap);
3899 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3900 enum zio_compress compress_type = arc_get_compression(*datap);
3901
3902 if (arc_is_encrypted(*datap)) {
3903 boolean_t byteorder;
3904 uint8_t salt[ZIO_DATA_SALT_LEN];
3905 uint8_t iv[ZIO_DATA_IV_LEN];
3906 uint8_t mac[ZIO_DATA_MAC_LEN];
3907
3908 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3909 *datap = arc_alloc_raw_buf(os->os_spa, db,
3910 dmu_objset_id(os), byteorder, salt, iv, mac,
3911 dn->dn_type, psize, lsize, compress_type);
3912 } else if (compress_type != ZIO_COMPRESS_OFF) {
3913 ASSERT3U(type, ==, ARC_BUFC_DATA);
3914 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3915 psize, lsize, compress_type);
3916 } else {
3917 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3918 }
3919 bcopy(db->db.db_data, (*datap)->b_data, psize);
3920 }
3921 db->db_data_pending = dr;
3922
3923 mutex_exit(&db->db_mtx);
3924
3925 dbuf_write(dr, *datap, tx);
3926
3927 ASSERT(!list_link_active(&dr->dr_dirty_node));
3928 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3929 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3930 DB_DNODE_EXIT(db);
3931 } else {
3932 /*
3933 * Although zio_nowait() does not "wait for an IO", it does
3934 * initiate the IO. If this is an empty write it seems plausible
3935 * that the IO could actually be completed before the nowait
3936 * returns. We need to DB_DNODE_EXIT() first in case
3937 * zio_nowait() invalidates the dbuf.
3938 */
3939 DB_DNODE_EXIT(db);
3940 zio_nowait(dr->dr_zio);
3941 }
3942 }
3943
3944 void
3945 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3946 {
3947 dbuf_dirty_record_t *dr;
3948
3949 while ((dr = list_head(list))) {
3950 if (dr->dr_zio != NULL) {
3951 /*
3952 * If we find an already initialized zio then we
3953 * are processing the meta-dnode, and we have finished.
3954 * The dbufs for all dnodes are put back on the list
3955 * during processing, so that we can zio_wait()
3956 * these IOs after initiating all child IOs.
3957 */
3958 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3959 DMU_META_DNODE_OBJECT);
3960 break;
3961 }
3962 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3963 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3964 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3965 }
3966 list_remove(list, dr);
3967 if (dr->dr_dbuf->db_level > 0)
3968 dbuf_sync_indirect(dr, tx);
3969 else
3970 dbuf_sync_leaf(dr, tx);
3971 }
3972 }
3973
3974 /* ARGSUSED */
3975 static void
3976 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3977 {
3978 dmu_buf_impl_t *db = vdb;
3979 dnode_t *dn;
3980 blkptr_t *bp = zio->io_bp;
3981 blkptr_t *bp_orig = &zio->io_bp_orig;
3982 spa_t *spa = zio->io_spa;
3983 int64_t delta;
3984 uint64_t fill = 0;
3985 int i;
3986
3987 ASSERT3P(db->db_blkptr, !=, NULL);
3988 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3989
3990 DB_DNODE_ENTER(db);
3991 dn = DB_DNODE(db);
3992 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3993 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3994 zio->io_prev_space_delta = delta;
3995
3996 if (bp->blk_birth != 0) {
3997 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3998 BP_GET_TYPE(bp) == dn->dn_type) ||
3999 (db->db_blkid == DMU_SPILL_BLKID &&
4000 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4001 BP_IS_EMBEDDED(bp));
4002 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4003 }
4004
4005 mutex_enter(&db->db_mtx);
4006
4007 #ifdef ZFS_DEBUG
4008 if (db->db_blkid == DMU_SPILL_BLKID) {
4009 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4010 ASSERT(!(BP_IS_HOLE(bp)) &&
4011 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4012 }
4013 #endif
4014
4015 if (db->db_level == 0) {
4016 mutex_enter(&dn->dn_mtx);
4017 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4018 db->db_blkid != DMU_SPILL_BLKID) {
4019 ASSERT0(db->db_objset->os_raw_receive);
4020 dn->dn_phys->dn_maxblkid = db->db_blkid;
4021 }
4022 mutex_exit(&dn->dn_mtx);
4023
4024 if (dn->dn_type == DMU_OT_DNODE) {
4025 i = 0;
4026 while (i < db->db.db_size) {
4027 dnode_phys_t *dnp =
4028 (void *)(((char *)db->db.db_data) + i);
4029
4030 i += DNODE_MIN_SIZE;
4031 if (dnp->dn_type != DMU_OT_NONE) {
4032 fill++;
4033 i += dnp->dn_extra_slots *
4034 DNODE_MIN_SIZE;
4035 }
4036 }
4037 } else {
4038 if (BP_IS_HOLE(bp)) {
4039 fill = 0;
4040 } else {
4041 fill = 1;
4042 }
4043 }
4044 } else {
4045 blkptr_t *ibp = db->db.db_data;
4046 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4047 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4048 if (BP_IS_HOLE(ibp))
4049 continue;
4050 fill += BP_GET_FILL(ibp);
4051 }
4052 }
4053 DB_DNODE_EXIT(db);
4054
4055 if (!BP_IS_EMBEDDED(bp))
4056 BP_SET_FILL(bp, fill);
4057
4058 mutex_exit(&db->db_mtx);
4059
4060 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4061 *db->db_blkptr = *bp;
4062 rw_exit(&dn->dn_struct_rwlock);
4063 }
4064
4065 /* ARGSUSED */
4066 /*
4067 * This function gets called just prior to running through the compression
4068 * stage of the zio pipeline. If we're an indirect block comprised of only
4069 * holes, then we want this indirect to be compressed away to a hole. In
4070 * order to do that we must zero out any information about the holes that
4071 * this indirect points to prior to before we try to compress it.
4072 */
4073 static void
4074 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4075 {
4076 dmu_buf_impl_t *db = vdb;
4077 dnode_t *dn;
4078 blkptr_t *bp;
4079 unsigned int epbs, i;
4080
4081 ASSERT3U(db->db_level, >, 0);
4082 DB_DNODE_ENTER(db);
4083 dn = DB_DNODE(db);
4084 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4085 ASSERT3U(epbs, <, 31);
4086
4087 /* Determine if all our children are holes */
4088 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4089 if (!BP_IS_HOLE(bp))
4090 break;
4091 }
4092
4093 /*
4094 * If all the children are holes, then zero them all out so that
4095 * we may get compressed away.
4096 */
4097 if (i == 1ULL << epbs) {
4098 /*
4099 * We only found holes. Grab the rwlock to prevent
4100 * anybody from reading the blocks we're about to
4101 * zero out.
4102 */
4103 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4104 bzero(db->db.db_data, db->db.db_size);
4105 rw_exit(&dn->dn_struct_rwlock);
4106 }
4107 DB_DNODE_EXIT(db);
4108 }
4109
4110 /*
4111 * The SPA will call this callback several times for each zio - once
4112 * for every physical child i/o (zio->io_phys_children times). This
4113 * allows the DMU to monitor the progress of each logical i/o. For example,
4114 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4115 * block. There may be a long delay before all copies/fragments are completed,
4116 * so this callback allows us to retire dirty space gradually, as the physical
4117 * i/os complete.
4118 */
4119 /* ARGSUSED */
4120 static void
4121 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4122 {
4123 dmu_buf_impl_t *db = arg;
4124 objset_t *os = db->db_objset;
4125 dsl_pool_t *dp = dmu_objset_pool(os);
4126 dbuf_dirty_record_t *dr;
4127 int delta = 0;
4128
4129 dr = db->db_data_pending;
4130 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4131
4132 /*
4133 * The callback will be called io_phys_children times. Retire one
4134 * portion of our dirty space each time we are called. Any rounding
4135 * error will be cleaned up by dsl_pool_sync()'s call to
4136 * dsl_pool_undirty_space().
4137 */
4138 delta = dr->dr_accounted / zio->io_phys_children;
4139 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4140 }
4141
4142 /* ARGSUSED */
4143 static void
4144 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4145 {
4146 dmu_buf_impl_t *db = vdb;
4147 blkptr_t *bp_orig = &zio->io_bp_orig;
4148 blkptr_t *bp = db->db_blkptr;
4149 objset_t *os = db->db_objset;
4150 dmu_tx_t *tx = os->os_synctx;
4151 dbuf_dirty_record_t **drp, *dr;
4152
4153 ASSERT0(zio->io_error);
4154 ASSERT(db->db_blkptr == bp);
4155
4156 /*
4157 * For nopwrites and rewrites we ensure that the bp matches our
4158 * original and bypass all the accounting.
4159 */
4160 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4161 ASSERT(BP_EQUAL(bp, bp_orig));
4162 } else {
4163 dsl_dataset_t *ds = os->os_dsl_dataset;
4164 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4165 dsl_dataset_block_born(ds, bp, tx);
4166 }
4167
4168 mutex_enter(&db->db_mtx);
4169
4170 DBUF_VERIFY(db);
4171
4172 drp = &db->db_last_dirty;
4173 while ((dr = *drp) != db->db_data_pending)
4174 drp = &dr->dr_next;
4175 ASSERT(!list_link_active(&dr->dr_dirty_node));
4176 ASSERT(dr->dr_dbuf == db);
4177 ASSERT(dr->dr_next == NULL);
4178 *drp = dr->dr_next;
4179
4180 #ifdef ZFS_DEBUG
4181 if (db->db_blkid == DMU_SPILL_BLKID) {
4182 dnode_t *dn;
4183
4184 DB_DNODE_ENTER(db);
4185 dn = DB_DNODE(db);
4186 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4187 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4188 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4189 DB_DNODE_EXIT(db);
4190 }
4191 #endif
4192
4193 if (db->db_level == 0) {
4194 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4195 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4196 if (db->db_state != DB_NOFILL) {
4197 if (dr->dt.dl.dr_data != db->db_buf)
4198 arc_buf_destroy(dr->dt.dl.dr_data, db);
4199 }
4200 } else {
4201 dnode_t *dn;
4202
4203 DB_DNODE_ENTER(db);
4204 dn = DB_DNODE(db);
4205 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4206 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4207 if (!BP_IS_HOLE(db->db_blkptr)) {
4208 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4209 SPA_BLKPTRSHIFT);
4210 ASSERT3U(db->db_blkid, <=,
4211 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4212 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4213 db->db.db_size);
4214 }
4215 DB_DNODE_EXIT(db);
4216 mutex_destroy(&dr->dt.di.dr_mtx);
4217 list_destroy(&dr->dt.di.dr_children);
4218 }
4219 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4220
4221 cv_broadcast(&db->db_changed);
4222 ASSERT(db->db_dirtycnt > 0);
4223 db->db_dirtycnt -= 1;
4224 db->db_data_pending = NULL;
4225 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4226 }
4227
4228 static void
4229 dbuf_write_nofill_ready(zio_t *zio)
4230 {
4231 dbuf_write_ready(zio, NULL, zio->io_private);
4232 }
4233
4234 static void
4235 dbuf_write_nofill_done(zio_t *zio)
4236 {
4237 dbuf_write_done(zio, NULL, zio->io_private);
4238 }
4239
4240 static void
4241 dbuf_write_override_ready(zio_t *zio)
4242 {
4243 dbuf_dirty_record_t *dr = zio->io_private;
4244 dmu_buf_impl_t *db = dr->dr_dbuf;
4245
4246 dbuf_write_ready(zio, NULL, db);
4247 }
4248
4249 static void
4250 dbuf_write_override_done(zio_t *zio)
4251 {
4252 dbuf_dirty_record_t *dr = zio->io_private;
4253 dmu_buf_impl_t *db = dr->dr_dbuf;
4254 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4255
4256 mutex_enter(&db->db_mtx);
4257 if (!BP_EQUAL(zio->io_bp, obp)) {
4258 if (!BP_IS_HOLE(obp))
4259 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4260 arc_release(dr->dt.dl.dr_data, db);
4261 }
4262 mutex_exit(&db->db_mtx);
4263
4264 dbuf_write_done(zio, NULL, db);
4265
4266 if (zio->io_abd != NULL)
4267 abd_put(zio->io_abd);
4268 }
4269
4270 typedef struct dbuf_remap_impl_callback_arg {
4271 objset_t *drica_os;
4272 uint64_t drica_blk_birth;
4273 dmu_tx_t *drica_tx;
4274 } dbuf_remap_impl_callback_arg_t;
4275
4276 static void
4277 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4278 void *arg)
4279 {
4280 dbuf_remap_impl_callback_arg_t *drica = arg;
4281 objset_t *os = drica->drica_os;
4282 spa_t *spa = dmu_objset_spa(os);
4283 dmu_tx_t *tx = drica->drica_tx;
4284
4285 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4286
4287 if (os == spa_meta_objset(spa)) {
4288 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4289 } else {
4290 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4291 size, drica->drica_blk_birth, tx);
4292 }
4293 }
4294
4295 static void
4296 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4297 {
4298 blkptr_t bp_copy = *bp;
4299 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4300 dbuf_remap_impl_callback_arg_t drica;
4301
4302 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4303
4304 drica.drica_os = dn->dn_objset;
4305 drica.drica_blk_birth = bp->blk_birth;
4306 drica.drica_tx = tx;
4307 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4308 &drica)) {
4309 /*
4310 * The struct_rwlock prevents dbuf_read_impl() from
4311 * dereferencing the BP while we are changing it. To
4312 * avoid lock contention, only grab it when we are actually
4313 * changing the BP.
4314 */
4315 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4316 *bp = bp_copy;
4317 rw_exit(&dn->dn_struct_rwlock);
4318 }
4319 }
4320
4321 /*
4322 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4323 * to remap a copy of every bp in the dbuf.
4324 */
4325 boolean_t
4326 dbuf_can_remap(const dmu_buf_impl_t *db)
4327 {
4328 spa_t *spa = dmu_objset_spa(db->db_objset);
4329 blkptr_t *bp = db->db.db_data;
4330 boolean_t ret = B_FALSE;
4331
4332 ASSERT3U(db->db_level, >, 0);
4333 ASSERT3S(db->db_state, ==, DB_CACHED);
4334
4335 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4336
4337 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4338 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4339 blkptr_t bp_copy = bp[i];
4340 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4341 ret = B_TRUE;
4342 break;
4343 }
4344 }
4345 spa_config_exit(spa, SCL_VDEV, FTAG);
4346
4347 return (ret);
4348 }
4349
4350 boolean_t
4351 dnode_needs_remap(const dnode_t *dn)
4352 {
4353 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4354 boolean_t ret = B_FALSE;
4355
4356 if (dn->dn_phys->dn_nlevels == 0) {
4357 return (B_FALSE);
4358 }
4359
4360 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4361
4362 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4363 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4364 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4365 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4366 ret = B_TRUE;
4367 break;
4368 }
4369 }
4370 spa_config_exit(spa, SCL_VDEV, FTAG);
4371
4372 return (ret);
4373 }
4374
4375 /*
4376 * Remap any existing BP's to concrete vdevs, if possible.
4377 */
4378 static void
4379 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4380 {
4381 spa_t *spa = dmu_objset_spa(db->db_objset);
4382 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4383
4384 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4385 return;
4386
4387 if (db->db_level > 0) {
4388 blkptr_t *bp = db->db.db_data;
4389 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4390 dbuf_remap_impl(dn, &bp[i], tx);
4391 }
4392 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4393 dnode_phys_t *dnp = db->db.db_data;
4394 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4395 DMU_OT_DNODE);
4396 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4397 i += dnp[i].dn_extra_slots + 1) {
4398 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4399 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4400 }
4401 }
4402 }
4403 }
4404
4405
4406 /* Issue I/O to commit a dirty buffer to disk. */
4407 static void
4408 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4409 {
4410 dmu_buf_impl_t *db = dr->dr_dbuf;
4411 dnode_t *dn;
4412 objset_t *os;
4413 dmu_buf_impl_t *parent = db->db_parent;
4414 uint64_t txg = tx->tx_txg;
4415 zbookmark_phys_t zb;
4416 zio_prop_t zp;
4417 zio_t *zio;
4418 int wp_flag = 0;
4419
4420 ASSERT(dmu_tx_is_syncing(tx));
4421
4422 DB_DNODE_ENTER(db);
4423 dn = DB_DNODE(db);
4424 os = dn->dn_objset;
4425
4426 if (db->db_state != DB_NOFILL) {
4427 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4428 /*
4429 * Private object buffers are released here rather
4430 * than in dbuf_dirty() since they are only modified
4431 * in the syncing context and we don't want the
4432 * overhead of making multiple copies of the data.
4433 */
4434 if (BP_IS_HOLE(db->db_blkptr)) {
4435 arc_buf_thaw(data);
4436 } else {
4437 dbuf_release_bp(db);
4438 }
4439 dbuf_remap(dn, db, tx);
4440 }
4441 }
4442
4443 if (parent != dn->dn_dbuf) {
4444 /* Our parent is an indirect block. */
4445 /* We have a dirty parent that has been scheduled for write. */
4446 ASSERT(parent && parent->db_data_pending);
4447 /* Our parent's buffer is one level closer to the dnode. */
4448 ASSERT(db->db_level == parent->db_level-1);
4449 /*
4450 * We're about to modify our parent's db_data by modifying
4451 * our block pointer, so the parent must be released.
4452 */
4453 ASSERT(arc_released(parent->db_buf));
4454 zio = parent->db_data_pending->dr_zio;
4455 } else {
4456 /* Our parent is the dnode itself. */
4457 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4458 db->db_blkid != DMU_SPILL_BLKID) ||
4459 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4460 if (db->db_blkid != DMU_SPILL_BLKID)
4461 ASSERT3P(db->db_blkptr, ==,
4462 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4463 zio = dn->dn_zio;
4464 }
4465
4466 ASSERT(db->db_level == 0 || data == db->db_buf);
4467 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4468 ASSERT(zio);
4469
4470 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4471 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4472 db->db.db_object, db->db_level, db->db_blkid);
4473
4474 if (db->db_blkid == DMU_SPILL_BLKID)
4475 wp_flag = WP_SPILL;
4476 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4477
4478 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4479 DB_DNODE_EXIT(db);
4480
4481 /*
4482 * We copy the blkptr now (rather than when we instantiate the dirty
4483 * record), because its value can change between open context and
4484 * syncing context. We do not need to hold dn_struct_rwlock to read
4485 * db_blkptr because we are in syncing context.
4486 */
4487 dr->dr_bp_copy = *db->db_blkptr;
4488
4489 if (db->db_level == 0 &&
4490 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4491 /*
4492 * The BP for this block has been provided by open context
4493 * (by dmu_sync() or dmu_buf_write_embedded()).
4494 */
4495 abd_t *contents = (data != NULL) ?
4496 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4497
4498 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4499 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4500 &zp, dbuf_write_override_ready, NULL, NULL,
4501 dbuf_write_override_done,
4502 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4503 mutex_enter(&db->db_mtx);
4504 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4505 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4506 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4507 mutex_exit(&db->db_mtx);
4508 } else if (db->db_state == DB_NOFILL) {
4509 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4510 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4511 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4512 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4513 dbuf_write_nofill_ready, NULL, NULL,
4514 dbuf_write_nofill_done, db,
4515 ZIO_PRIORITY_ASYNC_WRITE,
4516 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4517 } else {
4518 ASSERT(arc_released(data));
4519
4520 /*
4521 * For indirect blocks, we want to setup the children
4522 * ready callback so that we can properly handle an indirect
4523 * block that only contains holes.
4524 */
4525 arc_write_done_func_t *children_ready_cb = NULL;
4526 if (db->db_level != 0)
4527 children_ready_cb = dbuf_write_children_ready;
4528
4529 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4530 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4531 &zp, dbuf_write_ready,
4532 children_ready_cb, dbuf_write_physdone,
4533 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4534 ZIO_FLAG_MUSTSUCCEED, &zb);
4535 }
4536 }
4537
4538 #if defined(_KERNEL)
4539 EXPORT_SYMBOL(dbuf_find);
4540 EXPORT_SYMBOL(dbuf_is_metadata);
4541 EXPORT_SYMBOL(dbuf_destroy);
4542 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4543 EXPORT_SYMBOL(dbuf_whichblock);
4544 EXPORT_SYMBOL(dbuf_read);
4545 EXPORT_SYMBOL(dbuf_unoverride);
4546 EXPORT_SYMBOL(dbuf_free_range);
4547 EXPORT_SYMBOL(dbuf_new_size);
4548 EXPORT_SYMBOL(dbuf_release_bp);
4549 EXPORT_SYMBOL(dbuf_dirty);
4550 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4551 EXPORT_SYMBOL(dmu_buf_will_dirty);
4552 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4553 EXPORT_SYMBOL(dmu_buf_will_fill);
4554 EXPORT_SYMBOL(dmu_buf_fill_done);
4555 EXPORT_SYMBOL(dmu_buf_rele);
4556 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4557 EXPORT_SYMBOL(dbuf_prefetch);
4558 EXPORT_SYMBOL(dbuf_hold_impl);
4559 EXPORT_SYMBOL(dbuf_hold);
4560 EXPORT_SYMBOL(dbuf_hold_level);
4561 EXPORT_SYMBOL(dbuf_create_bonus);
4562 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4563 EXPORT_SYMBOL(dbuf_rm_spill);
4564 EXPORT_SYMBOL(dbuf_add_ref);
4565 EXPORT_SYMBOL(dbuf_rele);
4566 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4567 EXPORT_SYMBOL(dbuf_refcount);
4568 EXPORT_SYMBOL(dbuf_sync_list);
4569 EXPORT_SYMBOL(dmu_buf_set_user);
4570 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4571 EXPORT_SYMBOL(dmu_buf_get_user);
4572 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4573
4574 /* BEGIN CSTYLED */
4575 module_param(dbuf_cache_max_bytes, ulong, 0644);
4576 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4577 "Maximum size in bytes of the dbuf cache.");
4578
4579 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4580 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4581 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4582 "directly.");
4583
4584 module_param(dbuf_cache_lowater_pct, uint, 0644);
4585 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4586 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4587 "evicting dbufs.");
4588
4589 module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
4590 MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
4591 "Maximum size in bytes of the dbuf metadata cache.");
4592
4593 module_param(dbuf_cache_shift, int, 0644);
4594 MODULE_PARM_DESC(dbuf_cache_shift,
4595 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4596
4597 module_param(dbuf_metadata_cache_shift, int, 0644);
4598 MODULE_PARM_DESC(dbuf_cache_shift,
4599 "Set the size of the dbuf metadata cache to a log2 fraction of "
4600 "arc size.");
4601 /* END CSTYLED */
4602 #endif